EP2064390B1 - Track measurement method, and high-precision measuring system for small railway construction sites - Google Patents

Track measurement method, and high-precision measuring system for small railway construction sites Download PDF

Info

Publication number
EP2064390B1
EP2064390B1 EP07803147.3A EP07803147A EP2064390B1 EP 2064390 B1 EP2064390 B1 EP 2064390B1 EP 07803147 A EP07803147 A EP 07803147A EP 2064390 B1 EP2064390 B1 EP 2064390B1
Authority
EP
European Patent Office
Prior art keywords
car
track
tachymeter
reflector
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07803147.3A
Other languages
German (de)
French (fr)
Other versions
EP2064390A2 (en
Inventor
Günter GRASHOF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gbm Wiebe Gleisbaumaschinen GmbH
Original Assignee
Gbm Wiebe Gleisbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gbm Wiebe Gleisbaumaschinen GmbH filed Critical Gbm Wiebe Gleisbaumaschinen GmbH
Publication of EP2064390A2 publication Critical patent/EP2064390A2/en
Application granted granted Critical
Publication of EP2064390B1 publication Critical patent/EP2064390B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes

Definitions

  • the patent application relates to a method for track surveying and a highly accurate measuring system for small construction sites in track construction.
  • the parameters to be recorded are u.a. from the gauge, the torsion and the elevation together, in curves the so-called arrow heights are measured to determine the curvature behavior.
  • the position at which it has been detected must be measured for such a parameter set.
  • GPS Global Positioning System
  • Galileo Galileo
  • a method is known by which the actual position of a track section can be determined using satellite data using differential GPS and compared with the target data from the construction project.
  • a measuring unit which determines both the track geometry and the position in the stop-and-go method, is moved to a second measuring unit (base) in small steps.
  • the measured data for the track geometry become one coordinate along with the position data of the second measuring unit stored. From the entirety of the data, a log for a downstream processing operation can be created.
  • the measurement data for the position determination can be determined only with the stop of the first measuring unit with sufficient accuracy.
  • the accuracy increases when the distance between the stops is reduced, which in turn makes the method very time-consuming and therefore expensive.
  • a tamping machine which may precede the measuring unit, must stop and accelerate again and again for the stops. This is associated with such a heavy machine with a high consumption and a load on the machine drive.
  • shadowing by trees can obstruct the observations during position determination, or high ambiguities in ravines can falsify the determined coordinates.
  • Another method to measure track geometry in conjunction with a position is in DE 3444723 C2 described.
  • an artificial base is placed over the track section to be measured via an adjusted laser beam.
  • Track geometry changes are documented via a laser sensor field that shifts from the base.
  • the parameter sets are connected to measurement data that provide information about the distance traveled.
  • the laser sensor field is usually attached to a heavy, rail-bound vehicle.
  • EP 559850 B1 A method for track measurement is described in which the parameters of the track geometry are detected with the aid of a vehicle, which determines its own position by means of lasers and measuring marks, which are attached to catenary masts or other immovable points. During the movement of the measuring vehicle, the laser is tracked so that a continuous alignment of the measuring mark takes place. The tracking can be done by motorized rangefinders, instead of the targets brands reflectors can be used.
  • the measuring optics is mounted on the vehicle.
  • the adjustment of the angle to the target is very tiring for an observer.
  • a motorized device shortens the working time of the measuring unit, as the high power consumption of the motor makes the batteries tire quickly.
  • the attached measuring marks must be placed in relation to the track. This requires work in advance to determine the position of these usually only a few meters apart points and means at the same time a departure from the initiated by Deutsche Bahn AG process to switch to a fixed point field that defines only a small number of fixed points in the mileage.
  • DE 2460618 C2 a mobile device for measuring the track position, which is characterized by its low weight and simple design.
  • the measuring principle is similar to the method in EP 559850 B1 except that the base is formed by a theodolite target beam.
  • the movement of the destination cross attached to a car opposite this base is recorded and linked to track geometry measurements.
  • the disadvantage is that a lack of automation makes an observer necessary and the movement of the measuring carriage must be determined in a simple manner. An observer often makes mistakes and the possible position measurements are also faulty, so that the accuracy falls short of the requirement.
  • Modern track laying machines also depend on data protocols that are in place through the system DE 2460618 C2 can not be delivered.
  • a modern measuring method is off GB 2 403 861 A known.
  • the system includes a laser scanner, a data gate, and may include one or more position determination units.
  • the system can be used to measure railway lines and trackside objects such as bridges, platforms, signals and tunnel walls.
  • Another method is characterized in that the track geometry is detected by measuring deviations from a base.
  • the position of the measuring vehicle is realized in the best case by inertial measuring systems. This method is also subject to very large inaccuracies and limited in speed.
  • the object of the invention is to develop a measuring system for track construction, which determines the data of the track geometry in compliance with the required accuracies and logs, however, has a very compact and lightweight design that allows transport with a car and operated by a person ,
  • distance measurements and angle measurements to a reflector on a reflector carriage are made continuously (on-the-fly) by a tachymeter on a tachymeter cart and transferred to a data acquisition unit.
  • the determined coordinates are connected to the measured values of the track geometry determined on the reflector carriage, and the deviations between the desired position and the actual position are made available digitally or analogue via output devices.
  • the position of the Tachymeterwagens by differential GPS.
  • a base station on a known point of any network preferably a point of the DBREF of Deutsche Bahn AG, built and another receiver (rover) on the Tachymeterwagen set.
  • the coordinate determination of the tachymeter carriage is carried out by linking the correction data determined at the base station with the measured values of the rover.
  • the correction data is not determined by a base station but via the reference network.
  • the high-precision measuring system is constructed such that measuring devices for removing the track geometry as well as a reflector are arranged on a reflector carriage movable on the track, consisting of a device module, a surveying module, a running module and / or an extension module for larger gauges, and on top of one another the track secured tachymeter, consisting of a device module, a survey module, a running module and / or an extension module for larger gauges, next to a rover for satellite-based determination of the position of a tachymeter, a data acquisition unit and an output device are arranged.
  • the reflector trolley and the tachometer trolley are adapted to different gauges by extension modules.
  • the extension module is adjusted by means of telescoping and then permanently adjustable elements variable to the required track width of the track body.
  • the data acquisition unit and output devices are housed in weatherproof enclosures.
  • the method is modified so that the determination of the position of a measurement data set is not made by the measuring unit but by an external device.
  • conditions of the environment can be taken into account by, for example, the location of the Tachymeterwagens is chosen so that shading is not to be feared and the route can still be viewed.
  • One is much freer in the preparation of the measurement and ultimately also achieves measured values that meet the requirements of Deutsche Bahn AG in their accuracy.
  • An advantage of the measuring system is that the position-determining satellite receivers remain continuously in the same position for a long time, so that these positions can be determined very precisely over a large number of measurements and this accuracy can be incorporated into the further determination process.
  • Another advantage of the invention is that from the position of the tachymeter out other data can be detected in addition to the track to supplement the measurement data from the track geometry without long setup times are required.
  • a considerable advantage is that despite the extensive equipment low weight of the car, which can be easily moved by a single person and so if necessary, can be quickly taken out of the way. Obstruction of rail traffic can thus be minimized. In addition, long makeready times for vehicles with railway-typical axle loads and their transfer to the place of use are eliminated. The transport by a car allows a more flexible use.
  • the required elements can be assembled after transport to the site without regard to belonging to Tachymeter- or reflector car, since the basic structure of both cars is identical. This facilitates the use and saves set-up time.
  • the data acquisition unit can be connected via standard interfaces.
  • the human being excluded as a possible source of error, since the measurement data collection, the position determination and the data evaluation are automated and the measurement data are processed in the editing process. This is advantageous for ensuring the security requirements.
  • the measuring system according to the invention ( FIG. 1 ) consists of a Tachymeterwagen 4, a reflector carriage 8 and a base station 1 for satellite-based position determination.
  • the base station 1 is set up over a known fixed point 2 of a reference network and begins to send the correction parameters.
  • the first carriage, the reflector carriage 8, comprises detection systems for the distortion of the tracks 11, the elevation 12 and the track width 13.
  • the data are acquired by a data acquisition unit 37.
  • a reflector car radio antenna 9 for receiving measurement data and a known from the measurement reflector 10 for Tachymeterfactn are arranged.
  • the speedometer car 4 On the second car, the speedometer car 4, there is a GPS antenna for receiving satellite data 5, which continuously measures the position.
  • a motorized tachymeter 6 In a stored as a device constant distance to a motorized tachymeter 6 is mounted, which has a known from the machine control in road construction synchronization of angle and distance measurements, and makes continuous angle and distance measurements to the reflector on the reflector car.
  • the data of the base station 1 and the data determined on the reflector carriage 8 data are received.
  • the measurement data of the tachymeter 6 and position data of the rover 5 are transferred with the data received via radio to an evaluation unit 14 for the calculation.
  • the evaluation unit 14 on the tachometer trolley 4 determines the correction parameters for the measurement at the rover 5 from the position data determined at the base 1.
  • the position of the tachymeter in the coordinate system of the Irish Bahn AG can thus also be determined via the device constant.
  • the positions of the reflector carriage 8 and the measured values of the track geometry acquisition devices are linked with each other via the tachymeter measurements. These values can be directly compared with the previously read in target geometry of the track and processed so that they can be read in and processed by common stuffing machines.
  • a point previously determined by a satellite-based method is aimed at as an orientation.
  • the Tachymeterwagen 4 is secured using a so-called dead man's brake against changing its position.
  • a first basic measurement is made at the start position of the reflector carriage 27. Thereafter, the reflector carriage 8 is pushed by an operator on the Tachymeterwagen 4.
  • the tachymeter 6 has high angular and path accuracies and a motor that allows automatic Zielnach adjustment, so that the aiming beam is continuously directed to the reflector 10.
  • the conventional method of step-by-step measurements, in which the reflector carriage 8 would have to be stopped for position detection, is replaced in the present invention by a kinematic method which replaces the on-the-fly method in which no intermediate stop is maintained must become.
  • the basis for this procedure is the possibility of synchronization.
  • a final second basic measurement takes place shortly before the reflector carriage 8 arrives at the tachometer trolley 4.
  • the two positions 27 and 28 from the basic measurements represent the beginning and the end point of a tendon, to which all measured values from the measured distance are converted. From this one obtains the required for the track construction arrow heights of the track position.
  • FIG. 1 shows the measuring arrangement according to the invention.
  • a base station 1 for satellite-based position determination is set up above a fixed point 2.
  • the correction data determined here are sent to the tachymeter car radio antenna 7 and subsequently stored in the evaluation unit 14 with the data determined via the rover 5.
  • a torsion measuring unit 11, a superelevation measuring unit 12 and a gauge measuring unit 13 continuously measure the parameters on the reflector carriage 8 the track geometry and deliver it to the integrated data acquisition unit 37. At the same time measurements are continuously carried out between the total station 6 and the reflector 10 via a measuring beam 15 and passed to the evaluation unit 14.
  • the determined data are linked together and provided after the end of the measurement as a protocol in digital or analog form of the evaluation unit 14 and subsequently an output device 16 available.
  • the supply of electrical equipment via the power supply to the tachometer trolley 17 and the power supply to the reflector carriage 18.
  • the reflector 10 is mounted on a conventional tripod 19, which in turn is fixedly connected to the reflector carriage 8.
  • FIG. 2 shows the representation of the modules of a reflector carriage 8.
  • the torsion measuring unit 11, the elevation measuring unit 12 and the track width measuring unit 13 are attached to the sensor module for the track geometry 20.
  • the measured values determined there are forwarded to the data acquisition unit 37, which is integrated in the reflector carriage 8.
  • the tripod 19 for receiving the reflector 10 and the power supply 18 are arranged thereon.
  • the described modules 20 and 22 can be connected to each other via screws to the module fitting 24 with other modules, so in any case with the running module 23 and, if necessary, with the extension track module for larger gauges 21.
  • the transverse struts A 25 and B 26 provide a dimensionally stable connection of the modules 20, 21 and 22 constructed transversely to the track direction with the running module 23 attached in the track direction.
  • FIG. 3 shows the reflector carriage in the rear view, in this case for small gauges, wherein the extension module 21 is omitted.
  • the sensor module for the track geometry 20 is connected directly to the surveying module 22 and the running module 23 via screws to the module screw 24.
  • the torsion measuring unit 11 and the elevation measuring unit 12 are arranged on the sensor module for the track geometry 20; the data acquisition unit 37 is likewise integrated in the sensor module for the track geometry 20.
  • the running module 23 and the surveying module 22 are secured to one another via the transverse strut B 26.
  • FIG. 4 is the reflector car 8, as he already in FIG. 3 is described, shown in plan view. It consists of sensor module for the track geometry 20, surveying module 22 and running module 23, which are connected to one another via screws to the module screw 24 and reinforced by the cross struts A 25 and B 26. On The sensor module for the track geometry, the torsion measuring unit 11 and the elevation measuring unit 12 are arranged. The data acquisition unit 37 is integrated. The surveying module has a power supply for the reflector carriage 18 and the tripod 19 for receiving the reflector 10.
  • the in the Fig. 2-4 illustrated reflector carriage 8 can be used with the same structure as Tachymeterwagen 4.
  • the reflector 10 is replaced by the total station 6 and placed on a second tripod of the rover.
  • the evaluation unit 14 and one or more output devices 16 are arranged here.
  • the tachymeter cart 4 has an integrated data acquisition unit 37.
  • FIG. 5 the long-chord measurement of the track body 31 is shown. After setting up the Tachymeterwagens 4 on the track body 31 of the reflector carriage 8 is placed at the position for the first base measurement 27. Until the reflector carriage 8 has reached the position of the second base measurement 28, many position measurements are triggered. Between the first and the second base position, a tendon is generated between the base points 29, to which the heights of the individual measurement positions 30 of the reflector carriage 8 are related.
  • FIG. 6 the synchronization process is shown schematically.
  • the located on the track reflector carriage 8 moves in the direction of movement 36 along the track body 31 along.
  • the reflector carriage 8 has already covered a certain distance.
  • an angle 34 is interpolated which corresponds to the data of the distance measurement 35.
  • FIG. 7 the schematic view of the data acquisition unit 37 is shown.
  • the data acquisition unit 37 acquires the data of the tachymeter 6, the various track geometry measuring devices (11, 12 and 13) and brings them into a synchronized form. Essentially, it is a computer system that is able to handle a specific task such as measuring, controlling and controlling via its interfaces.
  • the data acquisition unit 37 has no hard disk and only low CPU power to ensure low power consumption. High temperature resistance, stability and reliability are basic requirements.
  • the data acquisition unit 37 is supplied by the power supply of the Tachymeterwagens 17. Data of a rotary encoder are transmitted via a digital Pulse signal passed to the data acquisition unit 37, while provide temperature sensor, inclinometer and spring probe their data as an analog signal.
  • Additional sensors can be connected via a serial interface, a special interference-free bus system frequently used in railway systems or another fieldbus. In the future, a data exchange but also via a USB interface is conceivable.
  • the data of the tachymeter 6 also enter the data acquisition unit 37 via a serial interface, and the measuring pulse is triggered via the same path.
  • evaluation unit 14 computers of various types and power can be attached via a further serial interface for data exchange and command output, provided that they meet the requirements of the processing software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

Technisches GebietTechnical area

Die Patentanmeldung betrifft ein Verfahren zur Gleis Vermessung und ein hochgenaues Messsystem für kleine Baustellen im Gleisbau.The patent application relates to a method for track surveying and a highly accurate measuring system for small construction sites in track construction.

Stand der TechnikState of the art

Um optimale Fahrbedingungen für Gleisfahrzeuge und deren Insassen und dabei eine Gewährleistung der Entgleisungssicherheit in allen Situationen zu schaffen, ist es wichtig, dass der Gleiskörper sowohl beim Bau als auch bei einer Instandhaltung hochgenau erfasst wird.In order to create optimum driving conditions for track vehicles and their occupants while ensuring derailment safety in all situations, it is important that the track body is recorded with high precision during both construction and maintenance.

Die zu erfassenden Parameter setzen sich u.a. aus der Spurweite, der Verwindung und der Überhöhung zusammen, in Kurvenlagen werden die sogenannten Pfeilhöhen zur Bestimmung des Krümmungsverhaltens gemessen. Zusätzlich muss zu einem solchen Parametersatz die Position gemessen werden, an dem er erfasst worden ist.The parameters to be recorded are u.a. from the gauge, the torsion and the elevation together, in curves the so-called arrow heights are measured to determine the curvature behavior. In addition, the position at which it has been detected must be measured for such a parameter set.

Da in den vergangenen Jahren in nahezu allen Bereichen der Vermessung satellitengestützte Verfahren Einzug gehalten haben, liegt auch hier der Schritt nahe, Parameterdatensätze mit Hilfe vom Globalen Positionierungssystem (GPS) oder vergleichbaren Systemen (Glonass oder zukünftig Galileo) mit einer Koordinate zu versehen, um so beispielsweise Stopfmaschinen genaue Angaben für den Bearbeitungsprozess zu liefern.As satellite-based methods have been used in almost all areas of surveying in recent years, it is a good idea to assign a coordinate to parameter data sets with the aid of the Global Positioning System (GPS) or comparable systems (Glonass or, in the future, Galileo) For example, tamping machines to provide accurate information for the machining process.

Nach AT 403066 B ist ein Verfahren bekannt, über das die Ist-Lage eines Gleisabschnittes unter Verwendung von Satellitendaten mit Hilfe von differentiellem GPS ermittelt und mit den Solldaten aus dem Bauprojekt verglichen werden kann. Im Verfahren wird eine Messeinheit (Rover), die sowohl die Gleisgeometrie als auch die Position im Stop-and-Go-Verfahren bestimmt, auf eine zweite Messeinheit (Basis) in kleinen Schritten zugeschoben. Bei jedem Halt der ersten Messeinheit werden die Messdaten zur Gleisgeometrie mit einer Koordinate gemeinsam mit den Positionsdaten der zweiten Messeinheit abgelegt. Aus der Gesamtheit der Daten kann ein Protokoll für einen nachgelagerten Bearbeitungsvorgang erstellt werden.To AT 403066 B A method is known by which the actual position of a track section can be determined using satellite data using differential GPS and compared with the target data from the construction project. In the method, a measuring unit (rover), which determines both the track geometry and the position in the stop-and-go method, is moved to a second measuring unit (base) in small steps. At each stop of the first measuring unit, the measured data for the track geometry become one coordinate along with the position data of the second measuring unit stored. From the entirety of the data, a log for a downstream processing operation can be created.

Nachteil dieser Erfindung ist, dass die Messdaten für die Positionsbestimmung nur beim Halt der ersten Messeinheit mit einer ausreichenden Genauigkeit ermittelt werden können. So entstehen bei einem zu großen Abstand zwischen den Stopps Lücken in der Beobachtung, die interpoliert werden müssen. Hierbei entstehende Fehler sind jedoch nicht auszuschließen. Die Genauigkeit erhöht sich dann, wenn der Abstand zwischen den Stopps verkleinert wird, was das Verfahren hingegen wieder sehr zeitaufwändig und damit teuer macht. Außerdem ist zu beachten, dass eine Stopfmaschine, der die Messeinheit vorangestellt sein kann, für die Stopps immer wieder abbremsen und beschleunigen muss. Dies ist bei einer so schweren Maschine mit einem hohen Verbrauch und einer Belastung des Maschinenantriebs verbunden. Daneben können bei der Positionsbestimmung Abschattungen durch Bäume die Beobachtungen behindern oder hohe Mehrdeutigkeiten in Schluchten die ermittelten Koordinaten verfälschen.Disadvantage of this invention is that the measurement data for the position determination can be determined only with the stop of the first measuring unit with sufficient accuracy. Thus, if there is too much space between stops, there are gaps in the observation that need to be interpolated. This error can not be ruled out. The accuracy increases when the distance between the stops is reduced, which in turn makes the method very time-consuming and therefore expensive. It should also be noted that a tamping machine, which may precede the measuring unit, must stop and accelerate again and again for the stops. This is associated with such a heavy machine with a high consumption and a load on the machine drive. In addition, shadowing by trees can obstruct the observations during position determination, or high ambiguities in ravines can falsify the determined coordinates.

Ein ähnliches System wird in DE 20021678 U1 beschrieben. Hier arbeitet man ebenfalls mit einem differenziellen GPS, wobei ein stationärer Empfänger als Basis auf einem Festpunkt aufgestellt wird, während ein mobiler Empfänger (Rover) auf einer Draisine Koordinaten ermittelt, die mit den ermittelten Parametersätzen über ein inertiales Navigationssystem an der Draisine verbunden werden. Inertiales Navigationssystem und differentielles GPS werden hier auf einem Fahrzeug installiert, das eisenbahntypische Achslasten aufweist. Bei der Beobachtung über Satelliten entstehen die gleichen Probleme der Abschattung wie im zuvor genannten Beispiel.A similar system will be in DE 20021678 U1 described. Here one also works with a differential GPS, where a stationary receiver is set up as a base on a fixed point, while a mobile receiver (rover) on a draisine coordinates determined that are connected to the determined parameter sets via an inertial navigation system on the trolley. Inertial navigation system and differential GPS are installed here on a vehicle having typical railway axle loads. When observing via satellites, the same shading problems arise as in the example mentioned above.

Ein weiteres Verfahren, die Gleisgeometrie in Verbindung mit einer Position zu messen, ist in DE 3444723 C2 beschrieben. Hier wird über einen justierten Laserstrahl eine künstliche Basis über den zu vermessenden Gleisabschnitt gelegt. Veränderungen der Gleisgeometrie werden über einen Lasersensorfeld, das sich gegenüber der Basis verschiebt, dokumentiert. Die Parametersätze werden mit Messdaten verbunden, die eine Aussage über den zurückgelegten Weg machen. Das Lasersensorfeld ist in der Regel an einem schweren, schienengebundenen Fahrzeug angebracht.Another method to measure track geometry in conjunction with a position is in DE 3444723 C2 described. Here, an artificial base is placed over the track section to be measured via an adjusted laser beam. Track geometry changes are documented via a laser sensor field that shifts from the base. The parameter sets are connected to measurement data that provide information about the distance traveled. The laser sensor field is usually attached to a heavy, rail-bound vehicle.

Ein erheblicher Nachteil ist, dass hier nur Streckenabschnitte von 50 Metern, bei sehr guten Wetterlagen von maximal 200 Metern bearbeitet werden können, danach lässt die Genauigkeit nach. Daraus entsteht ein hoher Arbeitsaufwand da die Basis immer wieder neu eingerichtet werden muss. Ein erhöhter Arbeitsaufwand ist immer mit Kosten verbunden.A considerable disadvantage is that only sections of 50 meters can be worked here, with very good weather conditions of a maximum of 200 meters, after which the accuracy decreases. This results in a high workload because the base must be set up again and again. An increased workload is always associated with costs.

In EP 559850 B1 ist ein Verfahren zur Gleisvermessung beschrieben, bei dem die Parameter der Gleisgeometrie mit Hilfe eines Fahrzeuges erfasst, das die eigene Position mittels Laser und Messmarken ermittelt, die an Fahrleitungsmasten oder anderen unveränderlichen Punkten befestigt sind. Bei der Bewegung des Messfahrzeugs wird der Laser so nachgeführt, dass eine kontinuierliche Anzielung der Messmarke erfolgt. Die Nachführung kann über motorisierte Entfernungsmesser erfolgen, statt der Zielmarken können Reflektoren verwendet werden.In EP 559850 B1 A method for track measurement is described in which the parameters of the track geometry are detected with the aid of a vehicle, which determines its own position by means of lasers and measuring marks, which are attached to catenary masts or other immovable points. During the movement of the measuring vehicle, the laser is tracked so that a continuous alignment of the measuring mark takes place. The tracking can be done by motorized rangefinders, instead of the targets brands reflectors can be used.

Nachteil dieser Erfindung ist, dass die Messoptik auf dem Fahrzeug befestigt ist. Bei der Nachführung des Zielstrahls ist die Verstellung des Winkels zum Ziel für einen Beobachter sehr anstrengend. Ein motorisiertes Gerät verkürzt die Arbeitszeit der Messeinheit, da der hohe Stromverbrauch der Motorik die Batterien schnell ermüden lässt. Ein weiterer Nachteil ist, dass die angebrachten Messmarken in Bezug zum Gleis gesetzt werden müssen. Dies erfordert im Vorfeld Arbeit zur Positionsbestimmung dieser meist nur einige Meter auseinander liegenden Punkte und bedeutet gleichzeitig eine Abkehr vom von der Deutschen Bahn AG eingeleiteten Prozess zur Umstellung auf ein Festpunktfeld, dass sich nur noch durch eine geringe Zahl von Festpunkten im Kilometerabstand definiert.Disadvantage of this invention is that the measuring optics is mounted on the vehicle. When tracking the aiming beam, the adjustment of the angle to the target is very tiring for an observer. A motorized device shortens the working time of the measuring unit, as the high power consumption of the motor makes the batteries tire quickly. Another disadvantage is that the attached measuring marks must be placed in relation to the track. This requires work in advance to determine the position of these usually only a few meters apart points and means at the same time a departure from the initiated by Deutsche Bahn AG process to switch to a fixed point field that defines only a small number of fixed points in the mileage.

Die Systeme nach DE 20021678 U1 , DE 3444723 C2 und EP 559850 B1 haben gemeinsam, dass sie immer auf schwere schienengebundene Fahrzeuge zurückgreifen. Hierfür sind hohe Rüstzeiten nötig, die meist durch lange Anfahrten bedingt sind. Die Systeme machen daher einen Einsatz besonders für kleine und kleinste Baustellen extrem unwirtschaftlich.The systems after DE 20021678 U1 . DE 3444723 C2 and EP 559850 B1 have in common that they always rely on heavy rail-bound vehicles. For this purpose, high set-up times are necessary, which are usually due to long journeys. The systems are therefore extremely uneconomic, especially for small and very small construction sites.

In DE 2460618 C2 ist ein fahrbares Gerät zur Messung der Gleislage beschrieben, dass sich durch sein geringes Gewicht und einfache Konstruktion auszeichnet. Das Messprinzip gleicht der Methode in EP 559850 B1 , nur dass die Basis durch einen Theodolitenzielstrahl gebildet wird. Die Bewegung des auf einem Wagen befestigten Zielkreuzes gegenüber dieser Basis wird festgehalten und mit Messwerten zur Gleisgeometrie verknüpft. Nachteil ist, dass eine fehlende Automatisierung einen Beobachter nötig macht und die Fortbewegung des Messwagens auf einfache Weise ermittelt werden muss. Ein Beobachter macht nicht selten Fehler und die möglichen Positionsmessungen sind ebenfalls fehlerbehaftet, so dass die Genauigkeit hinter der Anforderung zurückbleibt. Moderne Maschinen für den Gleisbau sind zudem auf Datenprotokolle angewiesen, die in durch das System nach DE 2460618 C2 nicht geliefert werden können.In DE 2460618 C2 is described a mobile device for measuring the track position, which is characterized by its low weight and simple design. The measuring principle is similar to the method in EP 559850 B1 except that the base is formed by a theodolite target beam. The movement of the destination cross attached to a car opposite this base is recorded and linked to track geometry measurements. The disadvantage is that a lack of automation makes an observer necessary and the movement of the measuring carriage must be determined in a simple manner. An observer often makes mistakes and the possible position measurements are also faulty, so that the accuracy falls short of the requirement. Modern track laying machines also depend on data protocols that are in place through the system DE 2460618 C2 can not be delivered.

Die oben beschriebenen bisherigen Verfahren basieren auf einer aktiven Positionsbestimmung des Fahrzeugs, das auch die Gleisgeometrie erfasst. Nachteil dieser Verfahren ist, dass die Bestimmung der Position an die Gegebenheiten der Umgebung gebunden und durch die technischen Möglichkeiten in der Genauigkeit und Schnelligkeit eingeschränkt ist.The previous methods described above are based on an active position determination of the vehicle, which also detects the track geometry. Disadvantage of these methods is that the determination of the position is bound to the circumstances of the environment and limited by the technical possibilities in the accuracy and speed.

Ein demgegenüber modernes Messverfahren ist aus GB 2 403 861 A bekannt. Hier wird ein System zur Untersuchung und Messung der Positionen von Objekten entlang einer Gleisstrecke beschrieben. Das System umfasst einen Laserscanner, ein Datengatter und kann eine oder mehrere Positionsbestimmungseinheiten umfassen. Das System kann zum Vermessen von Eisenbahnlinien und streckenseitigen Objekten wie Brücken, Bahnsteigen, Signale und Tunnelwänden eingesetzt werden.In contrast, a modern measuring method is off GB 2 403 861 A known. Here, a system for inspecting and measuring the positions of objects along a rail track is described. The system includes a laser scanner, a data gate, and may include one or more position determination units. The system can be used to measure railway lines and trackside objects such as bridges, platforms, signals and tunnel walls.

Ein weiteres Verfahren zeichnet sich neben der aktiven Positionsbestimmung dadurch aus, dass die Gleisgeometrie durch Messung von Abweichungen gegenüber einer Basis erfasst wird. Die Position des Messfahrzeugs wird im besten Fall durch inertiale Messsysteme realisiert. Dieses Verfahren ist ebenfalls mit sehr großen Ungenauigkeiten behaftet und in der Schnelligkeit eingeschränkt.In addition to the active position determination, another method is characterized in that the track geometry is detected by measuring deviations from a base. The position of the measuring vehicle is realized in the best case by inertial measuring systems. This method is also subject to very large inaccuracies and limited in speed.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es, ein Messsystem für den Gleisbau zu entwickeln, das Daten der Gleisgeometrie unter Einhaltung der geforderten Genauigkeiten ermittelt und protokolliert, dabei allerdings eine sehr kompakte und leichte Bauweise aufweist, die einen Transport mit einem Pkw und das Bedienen durch eine Person ermöglicht. Daneben ist es Aufgabe der Erfindung, das Verfahren zur Bestimmung der Position der ermittelten Messwerte zur Gleisgeometrie so zu verbessern, dass die oben beschriebenen Nachteile entfallen.The object of the invention is to develop a measuring system for track construction, which determines the data of the track geometry in compliance with the required accuracies and logs, however, has a very compact and lightweight design that allows transport with a car and operated by a person , In addition, it is an object of the invention to improve the method for determining the position of the determined measured values to the track geometry so that the disadvantages described above are eliminated.

Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 und ein Messsystem gemäß Anspruch 4 gelöst. Bei dem erfindungsgemäßen Verfahren wird durch ein Tachymeter auf einem Tachymeterwagen kontinuierlich (On-the-fly) Entfernungsmessungen und Winkelmessungen zu einem Reflektor auf einem Reflektorwagen vorgenommen und diese einer Datenerfassungseinheit übergeben. Die ermittelten Koordinaten werden mit den auf dem Reflektorwagen ermittelten Messwerten der Gleisgeometrie verbunden und die Abweichungen zwischen der Soll- und der Ist-Lage werden digital oder analog über Ausgabegeräte zur Verfügung gestellt.This object is achieved by a method according to claim 1 and a measuring system according to claim 4. In the method according to the invention, distance measurements and angle measurements to a reflector on a reflector carriage are made continuously (on-the-fly) by a tachymeter on a tachymeter cart and transferred to a data acquisition unit. The determined coordinates are connected to the measured values of the track geometry determined on the reflector carriage, and the deviations between the desired position and the actual position are made available digitally or analogue via output devices.

Die Position des Tachymeterwagens erfolgt durch differenzielles GPS. Dazu wird eine Basisstation auf einem bekannten Punkt eines beliebigen Netzes, vorzugsweise einem Punkt des DBREF der Deutschen Bahn AG, aufgebaut und ein weiterer Empfänger (Rover) auf dem Tachymeterwagen aufgesetzt. Die Koordinatenermittlung des Tachymeterwagens erfolgt durch Verknüpfung der an der Basisstation ermittelten Korrekturdaten mit den Messwerten des Rovers.The position of the Tachymeterwagens by differential GPS. For this purpose, a base station on a known point of any network, preferably a point of the DBREF of Deutsche Bahn AG, built and another receiver (rover) on the Tachymeterwagen set. The coordinate determination of the tachymeter carriage is carried out by linking the correction data determined at the base station with the measured values of the rover.

Bei Verwendung eines Empfängers, der Korrekturdaten eines Referenznetzbetreibers empfangen kann, erfolgt die Ermittlung der Korrekturdaten nicht durch eine Basis Station sondern über das Referenznetz.When using a receiver that can receive correction data from a reference network operator, the correction data is not determined by a base station but via the reference network.

Das erfindungsgemäße hochgenaue Messsystem ist so aufgebaut, dass auf einem auf dem Gleis verfahrbaren Reflektorwagen, bestehend aus einem Gerätemodul, einem Vermessungsmodul, einem Laufmodul und/oder einem Verlängerungsmodul für größere Spurweiten, Messgeräte zur Abnahme der Gleisgeometrie sowie ein Reflektor angeordnet sind und auf einem auf dem Gleis gesicherten Tachymeterwagen, bestehend aus einem Gerätemodul, einem Vermessungsmodul, einem Laufmodul und/oder einem Verlängerungsmodul für größere Spurweiten, neben einem Rover zur satellitengestützten Bestimmung der Position ein Tachymeter, eine Datenerfassungseinheit und ein Ausgabegerät angeordnet sind.The high-precision measuring system according to the invention is constructed such that measuring devices for removing the track geometry as well as a reflector are arranged on a reflector carriage movable on the track, consisting of a device module, a surveying module, a running module and / or an extension module for larger gauges, and on top of one another the track secured tachymeter, consisting of a device module, a survey module, a running module and / or an extension module for larger gauges, next to a rover for satellite-based determination of the position of a tachymeter, a data acquisition unit and an output device are arranged.

Der Reflektorwagen und der Tachymeterwagen werden an unterschiedliche Spurweiten durch Verlängerungsmodule angepasst. Das Verlängerungsmodul wird mit Hilfe von ineinander verschiebbaren und dann fest einstellbaren Elementen variabel auf die benötigte Spurweite des Gleiskörpers eingestellt.The reflector trolley and the tachometer trolley are adapted to different gauges by extension modules. The extension module is adjusted by means of telescoping and then permanently adjustable elements variable to the required track width of the track body.

Zur Sicherung des Tachymeterwagens wird eine Totmannbremse verwendet.To secure the Tachymeterwagens a dead man's brake is used.

Die Datenerfassungseinheit und die Ausgabegeräte sind in wetterfesten Gehäusen untergebracht.The data acquisition unit and output devices are housed in weatherproof enclosures.

Das Verfahren wird dahingehend verändert, dass die Feststellung der Position eines Messdatensatzes nicht durch die messende Einheit erfolgt sondern durch eine externe Einrichtung. So können Gegebenheiten der Umwelt berücksichtigt werden indem z.B. der Standort des Tachymeterwagens so gewählt wird, dass eine Abschattung nicht zu befürchten ist und die Strecke trotzdem eingesehen werden kann. Man ist in der Vorbereitung der Messung viel freier und erzielt letztlich auch noch Messwerte, die in ihrer Genauigkeit die Anforderungen der Deutschen Bahn AG erfüllen.The method is modified so that the determination of the position of a measurement data set is not made by the measuring unit but by an external device. Thus, conditions of the environment can be taken into account by, for example, the location of the Tachymeterwagens is chosen so that shading is not to be feared and the route can still be viewed. One is much freer in the preparation of the measurement and ultimately also achieves measured values that meet the requirements of Deutsche Bahn AG in their accuracy.

Ein Vorteil des Messsystems ist, dass die die Position ermittelnden Satelliten-Empfänger über eine lange Zeit kontinuierlich an der gleichen Position verbleiben, so dass diese Positionen über eine Vielzahl von Messungen sehr präzise bestimmt werden können und diese Genauigkeit in den weiteren Bestimmungsprozess einfließen kann.An advantage of the measuring system is that the position-determining satellite receivers remain continuously in the same position for a long time, so that these positions can be determined very precisely over a large number of measurements and this accuracy can be incorporated into the further determination process.

Ein weiterer Vorteil der Erfindung ist, dass aus der Position des Tachymeters heraus auch andere Daten neben der Strecke zur Ergänzung der Messdaten aus der Gleisgeometrie erfasst werden können, ohne dass lange Rüstzeiten erforderlich sind.Another advantage of the invention is that from the position of the tachymeter out other data can be detected in addition to the track to supplement the measurement data from the track geometry without long setup times are required.

Ein erheblicher Vorteil ist das trotz der umfangreichen Gerätschaften geringe Gewicht der Wagen, die ohne Probleme von einer einzelnen Person bewegt werden können und so im Bedarfsfall schnell aus der Strecke genommen werden können. Eine Behinderung des Bahnverkehrs kann somit minimiert werden. Zudem entfallen lange Rüstzeiten für Fahrzeuge mit eisenbahntypischen Achslasten und deren Verbringen an den Einsatzort. Der Transport mit einem PKW ermöglicht eine flexiblere Nutzung.A considerable advantage is that despite the extensive equipment low weight of the car, which can be easily moved by a single person and so if necessary, can be quickly taken out of the way. Obstruction of rail traffic can thus be minimized. In addition, long makeready times for vehicles with railway-typical axle loads and their transfer to the place of use are eliminated. The transport by a car allows a more flexible use.

Durch den modularen Aufbau der beiden Wagen können die benötigten Elemente nach dem Transport an den Einsatzort ohne Berücksichtigung der Zugehörigkeit zu Tachymeter- oder Reflektorwagen zusammengesetzt werden, da der Grundaufbau beider Wagen identisch ist. Dies erleichtert den Einsatz und spart benötigte Rüstzeit.Due to the modular structure of the two cars, the required elements can be assembled after transport to the site without regard to belonging to Tachymeter- or reflector car, since the basic structure of both cars is identical. This facilitates the use and saves set-up time.

Durch die einfache Konstruktion der Wagen ist eine kostengünstige Produktion möglich. Kleine und mittelständische Betriebe können das Messsystem anschaffen, sofern die benötigten geodätischen Instrumente vorhanden sind. Die Datenerfassungseinheit kann über Standardschnittstellen angebunden werden.Due to the simple design of the car, a cost-effective production is possible. Small and medium-sized companies can purchase the measuring system if the required geodetic instruments are available. The data acquisition unit can be connected via standard interfaces.

Der Mensch als mögliche Fehlerquelle ausgeschlossen, da die Messdatenerhebung, die Positionsbestimmung und die Datenauswertung automatisiert erfolgen und die Messdaten in den Bearbeitungsprozess aufbereitet übergeben werden. Dies ist für die Gewährleistung der Sicherheitsansprüche von Vorteil.The human being excluded as a possible source of error, since the measurement data collection, the position determination and the data evaluation are automated and the measurement data are processed in the editing process. This is advantageous for ensuring the security requirements.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend werden erfindungsgemäße Vorrichtungen anhand von Figurenbeschreibungen näher erläutert.In the following, devices according to the invention will be explained in more detail with reference to description of the figures.

Dabei zeigen:

Figur 1:
eine Darstellung der Messanordnung
Figur 2:
eine Darstellung der Module eines Reflektorwagens
Figur 3:
eine Darstellung eines Reflektorwagens für kleine Spurweiten
Figur 4:
eine Draufsicht auf einen Reflektorwagen
Figur 5:
Darstellung des Messablaufs
Figur 6:
Darstellung des Synchronisationsvorganges
Figur 7:
Aufbau der Datenerfassungseinheit
Showing:
FIG. 1:
a representation of the measuring arrangement
FIG. 2:
a representation of the modules of a reflector carriage
FIG. 3:
a representation of a reflector carriage for small gauges
FIG. 4:
a plan view of a reflector carriage
FIG. 5:
Presentation of the measuring process
FIG. 6:
Presentation of the synchronization process
FIG. 7:
Structure of the data acquisition unit

Weg(e) zur Ausführung der ErfindungWay (s) for carrying out the invention

Das erfindungsgemäße Messsystem (Figur 1) besteht aus einem Tachymeterwagen 4, einem Reflektorwagen 8 und einer Basisstation 1 zur satellitengestützten Positionsermittlung. Die Basisstation 1 wird über einem bekannten Festpunkt 2 eines Referenznetzes aufgebaut und beginnt die Korrekturparameter zu senden. Auf einem in der Nähe des bekannten Punktes liegenden, zu überprüfenden Gleiskörpers 31 werden zwei Wagen aufgestellt.The measuring system according to the invention ( FIG. 1 ) consists of a Tachymeterwagen 4, a reflector carriage 8 and a base station 1 for satellite-based position determination. The base station 1 is set up over a known fixed point 2 of a reference network and begins to send the correction parameters. On a lying near the known point, to be checked track body 31 two cars are placed.

Der erste Wagen, der Reflektorwagen 8, umfasst Erfassungssysteme für die Verwindung der Gleise 11, die Überhöhung 12 und die Spurweite 13. Die Daten werden von einer Datenerfassungseinheit 37 erfasst. Außerdem sind eine Reflektorwagen-Funkantenne 9 zum Empfang von Messdaten und ein aus der Vermessung bekannter Reflektor 10 für Tachymeteraufnahmen angeordnet.The first carriage, the reflector carriage 8, comprises detection systems for the distortion of the tracks 11, the elevation 12 and the track width 13. The data are acquired by a data acquisition unit 37. In addition, a reflector car radio antenna 9 for receiving measurement data and a known from the measurement reflector 10 for Tachymeteraufnahmen are arranged.

Auf dem zweiten Wagen, dem Tachymeterwagen 4, befindet sich eine GPS-Antenne zum Empfang von Satellitendaten 5, die kontinuierlich die Position misst. In einer als Gerätekonstante abgelegten Entfernung dazu ist ein motorisiertes Tachymeter 6 angebracht, das über eine aus der Maschinensteuerung im Straßenbau bekannte Synchronisierung von Winkel- und Streckenmessungen verfügt, und kontinuierlich Winkel- und Streckenmessungen zum Reflektor auf dem Reflektorwagen vornimmt.On the second car, the speedometer car 4, there is a GPS antenna for receiving satellite data 5, which continuously measures the position. In a stored as a device constant distance to a motorized tachymeter 6 is mounted, which has a known from the machine control in road construction synchronization of angle and distance measurements, and makes continuous angle and distance measurements to the reflector on the reflector car.

Über die Tachymeterwagen-Funkantenne 7 werden die Daten der Basisstation 1 sowie die auf dem Reflektorwagen 8 ermittelten Daten empfangen. Die Messdaten des Tachymeters 6 und Positionsdaten des Rovers 5 werden mit den über Funk empfangenen Daten einer Auswertungseinheit 14 zur Berechnung übergeben.About the Tachymeterwagen radio antenna 7, the data of the base station 1 and the data determined on the reflector carriage 8 data are received. The measurement data of the tachymeter 6 and position data of the rover 5 are transferred with the data received via radio to an evaluation unit 14 for the calculation.

Die Auswertungseinheit 14 auf dem Tachymeterwagen 4 ermittelt aus den an der Basis 1 ermittelten Positionsdaten die Korrekturparameter für die Messung am Rover 5. Über die Gerätekonstante kann so auch die Position des Tachymeters im Koordinatensystem der Deutschen Bahn AG festgelegt werden. Über die Tachymetermessungen werden die Position des Reflektorwagens 8 und die Messwerte der Erfassungsgeräte für die Gleisgeometrie miteinander verknüpft. Diese Werte können direkt mit der vorher eingelesenen Soll-Geometrie des Gleises verglichen und so aufbereitet werden, dass sie von gängigen Stopfmaschinen eingelesen und verarbeitet werden können.The evaluation unit 14 on the tachometer trolley 4 determines the correction parameters for the measurement at the rover 5 from the position data determined at the base 1. The position of the tachymeter in the coordinate system of the Deutsche Bahn AG can thus also be determined via the device constant. The positions of the reflector carriage 8 and the measured values of the track geometry acquisition devices are linked with each other via the tachymeter measurements. These values can be directly compared with the previously read in target geometry of the track and processed so that they can be read in and processed by common stuffing machines.

Vor dem Beginn der Messung der Gleisgeometrie wird ein zuvor mit einem satellitengestützten Verfahren bestimmter Punkt als Orientierung angezielt. Der Tachymeterwagen 4 ist unter Nutzung einer so genannten Totmannbremse gegen ein Verändern seiner Position gesichert.Before starting the measurement of the track geometry, a point previously determined by a satellite-based method is aimed at as an orientation. The Tachymeterwagen 4 is secured using a so-called dead man's brake against changing its position.

Bei der Vermessung der Gleisgeometrie wird eine erste Basismessung an der Startposition des Reflektorwagens 27 vorgenommen. Danach wird der Reflektorwagen 8 von einer Bedienperson auf den Tachymeterwagen 4 zugeschoben. Das Tachymeter 6 verfügt über hohe Winkel- und Streckengenauigkeiten und einen Motor, der eine automatische Zielnachführung ermöglicht, so dass der Zielstrahl kontinuierlich auf den Reflektor 10 gerichtet ist. Die herkömmliche Methode der Step-by-step-Messungen, in der für eine Positionserfassung der Reflektorwagen 8 angehalten werden müsste, wird in der vorliegenden Erfindung durch eine kinematische Methode, die On- the-fly-Methode ersetzt, bei der kein Zwischenstopp mehr eingehalten werden muss. Grundlage für dieses Verfahren ist die Möglichkeit der Synchronisation.When measuring the track geometry, a first basic measurement is made at the start position of the reflector carriage 27. Thereafter, the reflector carriage 8 is pushed by an operator on the Tachymeterwagen 4. The tachymeter 6 has high angular and path accuracies and a motor that allows automatic Zielnachführung, so that the aiming beam is continuously directed to the reflector 10. The conventional method of step-by-step measurements, in which the reflector carriage 8 would have to be stopped for position detection, is replaced in the present invention by a kinematic method which replaces the on-the-fly method in which no intermediate stop is maintained must become. The basis for this procedure is the possibility of synchronization.

Eine abschließende zweite Basismessung erfolgt kurz bevor der Reflektorwagen 8 am Tachymeterwagen 4 ankommt. Die beiden Positionen 27 und 28 aus den Basismessungen stellen den Anfangs- und den Endpunkt einer Sehne dar, auf die alle Messwerte aus der vermessenen Strecke umgerechnet werden. Daraus erhält man die für den Gleisbau erforderlichen Pfeilhöhen der Gleislage.A final second basic measurement takes place shortly before the reflector carriage 8 arrives at the tachometer trolley 4. The two positions 27 and 28 from the basic measurements represent the beginning and the end point of a tendon, to which all measured values from the measured distance are converted. From this one obtains the required for the track construction arrow heights of the track position.

Figur 1 zeigt die erfindungsgemäße Messanordnung. Zur Positionsbestimmung wird eine Basisstation 1 für die satellitengestützte Positionsbestimmung über einem Festpunkt 2 aufgebaut. Über eine Referenz-Funkantenne 3 werden die hier ermittelten Korrekturdaten an die Tachymeterwagen-Funkantenne 7 gesendet und nachfolgend in der Auswertungseinheit 14 mit den über den Rover 5 ermittelten Daten abgelegt. Eine Verwindungsmesseinheit 11, eine Überhöhungsmesseinheit 12 und eine Spurweitenmesseinheit 13 messen auf dem Reflektorwagen 8 kontinuierlich die Parameter der Gleisgeometrie und geben diese an die integrierte Datenerfassungseinheit 37 ab. Gleichzeitig werden ununterbrochen Messungen zwischen dem Tachymeter 6 und dem Reflektor 10 über einen Messstrahl 15 automatisiert durchgeführt und der Auswertungseinheit 14 übergeben. In der Auswertungseinheit 14 werden die ermittelten Daten miteinander verknüpft und nach Ende der Messung als Protokoll in digitaler oder analoger Form der Auswertungseinheit 14 und in der Folge einem Ausgabegerät 16 zur Verfügung gestellt. Die Versorgung der elektrischen Einrichtungen erfolgt über die Stromversorgung am Tachymeterwagen 17 und die Stromversorgung am Reflektorwagen 18. Der Reflektor 10 ist auf einem herkömmlichen Dreifuß 19 angebracht, der wiederum mit dem Reflektorwagen 8 fest verbunden ist. FIG. 1 shows the measuring arrangement according to the invention. For determining the position, a base station 1 for satellite-based position determination is set up above a fixed point 2. Via a reference radio antenna 3, the correction data determined here are sent to the tachymeter car radio antenna 7 and subsequently stored in the evaluation unit 14 with the data determined via the rover 5. A torsion measuring unit 11, a superelevation measuring unit 12 and a gauge measuring unit 13 continuously measure the parameters on the reflector carriage 8 the track geometry and deliver it to the integrated data acquisition unit 37. At the same time measurements are continuously carried out between the total station 6 and the reflector 10 via a measuring beam 15 and passed to the evaluation unit 14. In the evaluation unit 14, the determined data are linked together and provided after the end of the measurement as a protocol in digital or analog form of the evaluation unit 14 and subsequently an output device 16 available. The supply of electrical equipment via the power supply to the tachometer trolley 17 and the power supply to the reflector carriage 18. The reflector 10 is mounted on a conventional tripod 19, which in turn is fixedly connected to the reflector carriage 8.

Figur 2 zeigt die Darstellung der Module eines Reflektorwagens 8. Dabei sind an dem Sensorikmodul für die Gleisgeometrie 20 die Verwindungsmesseinheit 11, die Überhöhungsmesseinheit 12 und die Spurweitenmesseinheit 13 angebracht. Die dort ermittelten Messwerte werden an die Datenerfassungseinheit 37 weitergegeben, die in dem Reflektorwagen 8 integriert ist. Neben der Datenerfassungseinheit 14 sind der Dreifuß 19 zur Aufnahme des Reflektors 10 und die Stromversorgung 18 darauf angeordnet. Die beschriebenen Module 20 und 22 können über Schrauben zur Modulverschraubung 24 mit weiteren Modulen, so in jedem Fall mit dem Laufmodul 23 und bei Bedarf mit dem Verlängerungsmodul für größere Spurweiten 21, miteinander verbunden werden. Die Querstreben A 25 und B 26 sorgen für eine formstabile Verbindung der quer zur Gleisrichtung aufgebauten Module 20, 21 und 22 mit dem in Gleisrichtung angesetzten Laufmodul 23. FIG. 2 shows the representation of the modules of a reflector carriage 8. In this case, the torsion measuring unit 11, the elevation measuring unit 12 and the track width measuring unit 13 are attached to the sensor module for the track geometry 20. The measured values determined there are forwarded to the data acquisition unit 37, which is integrated in the reflector carriage 8. In addition to the data acquisition unit 14, the tripod 19 for receiving the reflector 10 and the power supply 18 are arranged thereon. The described modules 20 and 22 can be connected to each other via screws to the module fitting 24 with other modules, so in any case with the running module 23 and, if necessary, with the extension track module for larger gauges 21. The transverse struts A 25 and B 26 provide a dimensionally stable connection of the modules 20, 21 and 22 constructed transversely to the track direction with the running module 23 attached in the track direction.

Figur 3 zeigt den Reflektorwagen in der Rückansicht, in diesem Fall für kleine Spurweiten, wobei auf das Verlängerungsmodul 21 verzichtet wird. Das Sensorikmodul für die Gleisgeometrie 20 ist direkt mit dem Vermessungsmodul 22 und dem Laufmodul 23 über Schrauben zur Modulverschraubung 24 verbunden. Auf dem Sensorikmodul für die Gleisgeometrie 20 sind die Verwindungsmesseinheit 11 und die Überhöhungsmesseinheit 12 angeordnet, im Sensorikmodul für die Gleisgeometrie 20 ist ebenfalls die Datenerfassungseinheit 37 integriert. Neben einer Stromversorgung des Reflektorwagens 18 ist der Dreifuß 19 zur Aufnahme des Reflektors 10 angebracht. Das Laufmodul 23 und das Vermessungsmodul 22 sind über die Querstrebe B 26 untereinander gesichert. FIG. 3 shows the reflector carriage in the rear view, in this case for small gauges, wherein the extension module 21 is omitted. The sensor module for the track geometry 20 is connected directly to the surveying module 22 and the running module 23 via screws to the module screw 24. The torsion measuring unit 11 and the elevation measuring unit 12 are arranged on the sensor module for the track geometry 20; the data acquisition unit 37 is likewise integrated in the sensor module for the track geometry 20. In addition to a power supply of the reflector carriage 18 of the tripod 19 for receiving the reflector 10 is attached. The running module 23 and the surveying module 22 are secured to one another via the transverse strut B 26.

In Figur 4 ist der Reflektorwagen 8, wie er auch schon in Figur 3 beschrieben ist, in der Draufsicht dargestellt. Er besteht aus Sensorikmodul für die Gleisgeometrie 20, Vermessungsmodul 22 und Laufmodul 23, die über Schrauben zur Modulverschraubung 24 miteinander verbunden und über die Querstreben A 25 und B 26 verstärkt sind. Auf dem Sensorikmodul für die Gleisgeometrie sind die Verwindungsmesseinheit 11 und die Überhöhungsmesseinheit 12 angeordnet. Die Datenerfassungseinheit 37 ist integriert. Das Vermessungsmodul weist eine Stromversorgung für den Reflektorwagen 18 und den Dreifuß 19 zur Aufnahme des Reflektors 10 auf.In FIG. 4 is the reflector car 8, as he already in FIG. 3 is described, shown in plan view. It consists of sensor module for the track geometry 20, surveying module 22 and running module 23, which are connected to one another via screws to the module screw 24 and reinforced by the cross struts A 25 and B 26. On The sensor module for the track geometry, the torsion measuring unit 11 and the elevation measuring unit 12 are arranged. The data acquisition unit 37 is integrated. The surveying module has a power supply for the reflector carriage 18 and the tripod 19 for receiving the reflector 10.

Der in den Fig. 2-4 dargestellte Reflektorwagen 8 kann bei gleichem Aufbau auch als Tachymeterwagen 4 verwendet werden. Dazu wird der Reflektor 10 durch das Tachymeter 6 ersetzt und auf einem zweiten Dreifuß der Rover aufgesetzt. Außerdem sind hier die Auswertungseinheit 14 und ein oder mehrere Ausgabegeräte 16 angeordnet. Der Tachymeterwagen 4 verfügt über eine integrierte Datenerfassungseinheit 37.The in the Fig. 2-4 illustrated reflector carriage 8 can be used with the same structure as Tachymeterwagen 4. For this purpose, the reflector 10 is replaced by the total station 6 and placed on a second tripod of the rover. In addition, the evaluation unit 14 and one or more output devices 16 are arranged here. The tachymeter cart 4 has an integrated data acquisition unit 37.

In Figur 5 ist die Langsehnenmessung des Gleiskörpers 31 dargestellt. Nach Aufstellen des Tachymeterwagens 4 auf dem Gleiskörper 31 wird der Reflektorwagen 8 an der Position für die erste Basismessung 27 platziert. Bis der Reflektorwagen 8 die Position der 2. Basismessung 28 erreicht hat, werden viele Positionsmessungen ausgelöst. Zwischen der ersten und der zweiten Basisposition wird rechnerisch eine Sehne zwischen den Basispunkten 29 erzeugt, auf die die Pfeilhöhen der einzelnen Messungspositionen 30 des Reflektorwagens 8 bezogen werden.In FIG. 5 the long-chord measurement of the track body 31 is shown. After setting up the Tachymeterwagens 4 on the track body 31 of the reflector carriage 8 is placed at the position for the first base measurement 27. Until the reflector carriage 8 has reached the position of the second base measurement 28, many position measurements are triggered. Between the first and the second base position, a tendon is generated between the base points 29, to which the heights of the individual measurement positions 30 of the reflector carriage 8 are related.

In Figur 6 ist der Synchronisationsvorgang schematisch dargestellt. Der auf dem Gleis befindliche Reflektorwagen 8 bewegt sich in der Bewegungsrichtung 36 auf dem Gleiskörper 31 entlang. Beim Auslösen der Streckenmessung 35 wird auch die Winkelmessung 32 durchgeführt, wenn das Signal der Streckenmessung empfangen wird, hat der Reflektorwagen 8 jedoch schon wieder eine bestimmte Entfernung zurückgelegt. Durch Verknüpfung der ersten Winkelmessung 32 mit einer zweiten Winkelmessung 33 wird ein Winkel 34 interpoliert, der den mit den Daten der Streckenmessung 35 korrespondiert.In FIG. 6 the synchronization process is shown schematically. The located on the track reflector carriage 8 moves in the direction of movement 36 along the track body 31 along. When triggering the distance measurement 35 and the angle measurement 32 is performed when the signal of the distance measurement is received, the reflector carriage 8 has already covered a certain distance. By linking the first angle measurement 32 with a second angle measurement 33, an angle 34 is interpolated which corresponds to the data of the distance measurement 35.

In Figur 7 ist der schematische Auibau der Datenerfassungseinheit 37 dargestellt. Die Datenerfassungseinheit 37 erfasst die Daten des Tachymeters 6, der verschiedenen Messgeräte für die Gleisgeometrie (11, 12 und 13) und bringt sie in eine synchronisierte Form. Es handelt es sich im Wesentlichen um ein Rechnersystem, das über seine Schnittstellen in der Lage ist, eine spezielle Aufgabe wie zum Beispiel Messen, Steuern und Regeln zu übernehmen. Die Datenerfassungseinheit 37 verfügt über keine Festplatte und eine nur geringe CPU-Leistung, um einen geringen Energieverbrauch zu gewährleisten. Eine hohe Temperaturbeständigkeit, Stabilität und Ausfallsicherheit sind Grundanforderungen. Die Datenerfassungseinheit 37 wird von der Stromversorgung des Tachymeterwagens 17 versorgt. Daten eines Drehgebers werden über ein digitales Impulssignal an die Datenerfassungseinheit 37 übergeben, während Temperatursensor, Inklinometer und Federtaster ihre Daten als analoges Signal bereitstellen. Weitere Sensoren können über eine serielle Schnittstelle, ein spezielles häufig in Bahnsystemen eingesetztes, störfestes Bussystem oder einen anderen Feldbus angeschlossen werden. Zukünftig ist ein Datenaustausch aber auch über eine USB -Schnittstelle denkbar. Ebenfalls über eine serielle Schnittstelle gelangen die Daten des Tachymeters 6 in die Datenerfassungseinheit 37, der Messimpuls wird über den gleichen Weg ausgelöst. Als Auswertungseinheit 14 können Computer verschiedenster Bauart und Leistung über eine weitere serielle Schnittstelle zum Datenaustausch und der Befehlsabgabe angebracht werden, sofern sie den Anforderungen der Bearbeitungssoftware entsprechen.In FIG. 7 the schematic view of the data acquisition unit 37 is shown. The data acquisition unit 37 acquires the data of the tachymeter 6, the various track geometry measuring devices (11, 12 and 13) and brings them into a synchronized form. Essentially, it is a computer system that is able to handle a specific task such as measuring, controlling and controlling via its interfaces. The data acquisition unit 37 has no hard disk and only low CPU power to ensure low power consumption. High temperature resistance, stability and reliability are basic requirements. The data acquisition unit 37 is supplied by the power supply of the Tachymeterwagens 17. Data of a rotary encoder are transmitted via a digital Pulse signal passed to the data acquisition unit 37, while provide temperature sensor, inclinometer and spring probe their data as an analog signal. Additional sensors can be connected via a serial interface, a special interference-free bus system frequently used in railway systems or another fieldbus. In the future, a data exchange but also via a USB interface is conceivable. The data of the tachymeter 6 also enter the data acquisition unit 37 via a serial interface, and the measuring pulse is triggered via the same path. As evaluation unit 14 computers of various types and power can be attached via a further serial interface for data exchange and command output, provided that they meet the requirements of the processing software.

[Bezugszeichenliste][REFERENCE LIST]

  1. 1. Basisstation1st base station
  2. 2. Festpunkt2nd benchmark
  3. 3. Referenz-Funkantenne3. Reference radio antenna
  4. 4. Tachymeterwagen4th Tachymeterwagen
  5. 5. Rover5. Rover
  6. 6. Tachymeter6. Tachymeter
  7. 7. Tachymeterwagen-Funkantenne7. Tachymeter car radio antenna
  8. 8. Reflektorwagen8. reflector carriage
  9. 9. Reflektorwagen-Funkantenne9. reflector car radio antenna
  10. 10. Reflektor10. Reflector
  11. 11. Verwindungsmessgerät11. torsion measuring device
  12. 12. Überhöhungsmessgerät12. Elevation meter
  13. 13. Spurweitenmessgerät13. Gauge
  14. 14. Auswertungseinheit14. Evaluation unit
  15. 15. Messstrahl15. Measuring beam
  16. 16. Ausgabegerät16. Output device
  17. 17. Stromversorgung des Tachymeterwagens17. Power supply of Tachymeterwagens
  18. 18. Stromversorgung des Reflektorwagens18. Power supply of the reflector trolley
  19. 19. Dreifuß19. Tripod
  20. 20. Sensorikmodul für die Gleisgeometrie20. Sensor module for the track geometry
  21. 21. Verlängerungsmodul für größere Spurweiten21. Extension module for larger gauges
  22. 22. Vermessungsmodul22. Surveying module
  23. 23. Laufmodul23. Running module
  24. 24. Schrauben zur Modulverschraubung24. Screws for module screwing
  25. 25. Querstrebe A25. Crossbar A
  26. 26. Querstrebe B26. Crossbar B
  27. 27. Reflektorwagenposition bei der ersten Basismessung27. Reflector carriage position at the first base measurement
  28. 28. Reflektorwagenposition bei der zweiten Basismessung28. Reflector carriage position at the second base measurement
  29. 29. Sehne zwischen den Basispunkten29. Tendon between the base points
  30. 30. Pfeilhöhen der einzelnen Messwagenpositionen30. Arrow heights of the individual measuring carriage positions
  31. 31. Gleiskörper31. Track body
  32. 32. Abgriff erste Winkelmessung32. Tap first angle measurement
  33. 33. Abgriff zweite Winkelmessung33. Tap second angle measurement
  34. 34. Interpolierter Winkel34. Interpolated angle
  35. 35. Empfang Streckenmessungsergebnis35. Reception of route measurement result
  36. 36. Bewegungsrichtung36. Direction of movement
  37. 37. Datenerfassungseinheit37. Data collection unit

Claims (9)

  1. Method for track calibration, characterised in that
    a) a tachymeter (6) on a tachymeter car (4) continuously takes distance measurements and angle measurements with respect to a reflector (10) on a reflector car (8) and passes them to a data collection unit (37),
    b) the reflector car (8) detects measurement values of the track geometry using a twist measurement device (11), an elevation measurement device (12) and a track gauge measurement device (13), the data determined on the reflector car being received by a tachymeter car radio antenna (7),
    c) the determined coordinates are linked to the measurement values of the track geometry which are determined on the reflector car (8), and
    d) a base station is constructed by way of a known fixed point of a reference network, satellite-assisted position determination is carried out, and these position data are transmitted to the tachymeter car,
    e) the tachymeter car receives data from the base station via a radio link and determines a position of the tachymeter car by differential GPS using a GPS antenna for continuous position measurement by receiving satellite data on the tachymeter car via an evaluation unit (14), and, from the position data determined at the base station, determines the correction parameters for the measurement of the position of the tachymeter car by means of an evaluation unit (14),
    f) the position of the reflector car is determined by way of the corrected position of the tachymeter car,
    g) the position of the reflector car is linked to the measurement values of the twist measurement device (11), the elevation measurement device (12) and the track gauge measurement device (13), and the differences between the target position and actual position of the track geometry are provided in digital or analogue by way of an output device (16).
  2. Method according to claim 1, characterised in that the base data are determined using a DGPS receiver system.
  3. Method according to claim 1, characterised in that the base data are determined by way of a GPS receiver which has a means for receiving correction data of a reference network operator.
  4. High-precision measurement system for small construction sites in track construction, characterised in that
    a) a twist measurement device (11), an elevation measurement device (12), a track gauge measurement device (13) and a reflector (10) are arranged on a reflector car (8), displaceable on the track, for determining measurement values of the track geometry, consisting of a reflector car radio antenna (9), a device module (20), a calibration module (22), an operating module (23) and/or an extension module for larger track gauges (21), and a data collection unit (37) is integrated, and
    b) on a tachymeter car (4), secured to the track, consisting of a device module (20), a calibration module (22), an evaluation unit (14) and an output device (16), a tachymeter car radio antenna (7) for receiving the data determined on the reflector car, an operating module (23) and/or an extension module for larger track gauges (21), in which, as well as a rover (5) for satellite-assisted position determination, a tachymeter (6) is arranged and a data collection unit (37) is integrated,
    c) a base station for satellite-assisted position determination, the tachymeter car radio antenna (7) being formed so as to receive data from the base station via radio,
    d) the evaluation unit (14) being suitable for determining the position of the tachymeter car by differential GPS and for determining the position of the reflector car by way of this position of the tachymeter car,
    e) and the evaluation unit (14) being suitable for linking the actual position of the reflector car to the measurement values of the track geometry, and
    f) the output device (16) being suitable for providing the difference between the target position and actual position of the track geometry.
  5. High-precision measurement system for small construction sites in track construction according to claim 4, characterised in that the reflector car (8) and the tachymeter car (4) comprise extension modules (21) by means of which they can be adapted to different track gauges.
  6. High-precision measurement system for small construction sites in track construction according to claim 5, characterised in that the extension module (21) is variably adjusted to the required track gauge of the track system by means of elements which can be displaced inside one another and subsequently rigidly adjusted.
  7. High-precision measurement system for small construction sites in track construction according to any one of claims 4 to 6, characterised by a dead man' s brake for securing the tachymeter car (4).
  8. High-precision measurement system for small construction sites in track construction according to any one of claims 4 to 7, characterised in that the evaluation unit (14) and the output device (16) are accommodated in weather-proof housings.
  9. High-precision measurement system for small construction sites in track construction according to any one of claims 4 to 8, characterised in that the data collection unit has a low power consumption, is resistant to shocks and weathering effects, and is integrated into the car (4) and (8).
EP07803147.3A 2006-09-07 2007-09-03 Track measurement method, and high-precision measuring system for small railway construction sites Active EP2064390B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610042496 DE102006042496A1 (en) 2006-09-07 2006-09-07 Track measuring system and high-precision measuring system for small construction sites in track construction
PCT/EP2007/059160 WO2008028880A2 (en) 2006-09-07 2007-09-03 Track measurement method, and high-precision measuring system for small railway construction sites

Publications (2)

Publication Number Publication Date
EP2064390A2 EP2064390A2 (en) 2009-06-03
EP2064390B1 true EP2064390B1 (en) 2017-03-22

Family

ID=38752559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803147.3A Active EP2064390B1 (en) 2006-09-07 2007-09-03 Track measurement method, and high-precision measuring system for small railway construction sites

Country Status (3)

Country Link
EP (1) EP2064390B1 (en)
DE (1) DE102006042496A1 (en)
WO (1) WO2008028880A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7929118B2 (en) 2009-01-06 2011-04-19 Thyssenkrupp Gft Gleistechnik Gmbh Method for geodetic monitoring of rails
CN101864709B (en) * 2010-03-26 2012-01-04 中铁第一勘察设计院集团有限公司 Point location movement control method of CPIII point on long-span continuous beam of high speed railway
CN102168396B (en) * 2011-03-18 2012-07-25 中铁第一勘察设计院集团有限公司 Real-time data acquisition and data processing integrated field measuring method of rail datum network
CN102953304B (en) * 2012-09-20 2015-04-08 中铁三局集团有限公司 Precision measurement control method of metro track structure construction
ITMI20130887A1 (en) * 2013-05-30 2014-12-01 Giorgio Pisani EQUIPMENT AND PROCEDURE FOR CONTROL OF RAILWAYS
AT514667B1 (en) * 2013-08-07 2015-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method for submerging a track
CN104420405A (en) * 2013-08-29 2015-03-18 中国铁道科学研究院铁道建筑研究所 Device for measuring static geometrical parameters of railway track
CN105316986B (en) * 2014-06-03 2017-05-24 北京星网宇达科技股份有限公司 Track parameter dynamic test car based on combination of inertial sensor and navigational satellite
CN105277129B (en) * 2014-06-03 2018-03-27 北京星网宇达科技股份有限公司 A kind of contactless gauge measuring system of laser range sensor dynamic
DE102015103054B3 (en) * 2015-03-03 2016-06-16 Dr. Hesse und Partner Ingenieure System for kinematic rail measurement
CN106522048A (en) * 2016-12-06 2017-03-22 山东北斗华宸导航技术股份有限公司 Rail geometric parameter measuring system and method
CN110986877B (en) * 2019-12-03 2021-09-24 中铁第一勘察设计院集团有限公司 Railway engineering clearance detection method based on high-precision vehicle-mounted laser mobile measurement system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403861A (en) * 2003-07-11 2005-01-12 Omnicom Engineering Ltd Laser scanning surveying and measurement system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT339357B (en) * 1974-12-09 1977-10-10 Plasser Bahnbaumasch Franz MOBILE DEVICE FOR MEASURING THE TRACK POSITION
DE3444723A1 (en) * 1984-12-07 1986-06-12 Richard Gehrcke Device for detecting the track geometry by means of a laser
DD301122A7 (en) * 1989-05-10 1992-10-08 Jenoptik Jena Gmbh METHOD AND ARRANGEMENT FOR AIMING
AT403066B (en) * 1991-07-12 1997-11-25 Plasser Bahnbaumasch Franz METHOD FOR DETERMINING THE DEVIATIONS OF THE ACTUAL LOCATION OF A TRACK SECTION
DE4441349C2 (en) * 1994-11-21 1999-07-01 Deutsche Bahn Ag Track-centered and rolling survey system carrier
WO2005103385A1 (en) * 2004-04-21 2005-11-03 J. Müller AG Method for measuring tracks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403861A (en) * 2003-07-11 2005-01-12 Omnicom Engineering Ltd Laser scanning surveying and measurement system

Also Published As

Publication number Publication date
WO2008028880A3 (en) 2008-06-12
DE102006042496A1 (en) 2008-04-24
EP2064390A2 (en) 2009-06-03
WO2008028880A2 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
EP2064390B1 (en) Track measurement method, and high-precision measuring system for small railway construction sites
AT403066B (en) METHOD FOR DETERMINING THE DEVIATIONS OF THE ACTUAL LOCATION OF A TRACK SECTION
EP1028325B1 (en) Method of surveying a train track
EP3040477B1 (en) Method and device for determining a volume milled by at least one construction machine or removal machine with a rotary cutter
EP2193333B1 (en) Positioning method
DE69616041T2 (en) METHOD AND DEVICE FOR THE CONTACT-FREE MEASUREMENT OF BENDING OF TRAILS OR RAILS
EP3442849B1 (en) Method and measuring system for sensing a fixed point next to a track
EP3106899B1 (en) Referenced vehicle control system
EP0511191B1 (en) System to measure the position of a rail track with respect to a fixed point
EP1738029A1 (en) Method for measuring tracks
EP3237266B1 (en) Method and positioning device for determining the position of a track-guided vehicle, in particular a rail vehicle
EP0112440A2 (en) Path surveying and monitoring system
AT516343B1 (en) Method for determining the position of the overhead line or the busbar for vehicles
AT523717B1 (en) Method for measuring a track position
WO2008122319A1 (en) Measuring arrangement for the contactless and continuous determination of routing and track layout of railroad tracks
EP0668988A1 (en) Process and device for acquiring profile and railway data
DE102006027852A1 (en) Track e.g. railroad track, measuring vehicle, has chassis with several wheels, where chassis has track width that is variably adjustable between five hundred and eighty millimeters and one thousand eight hundred and fifty millimeters
AT524435B1 (en) Method and system for determining correction values for a position correction of a track
WO2014146758A1 (en) Passenger bridge
DE10201095C1 (en) Device for the automatic laying of balises in the track bed
DE102006029845B4 (en) Device and method for securing track sections of a segmented track for a rail-bound vehicle body
AT503449A4 (en) METHOD OF RECORDING TOPOGRAPHIC DATA
WO2023094516A1 (en) Crane
DE102007000390B4 (en) Device and method for determining position correction data in the area of a traffic signal system
EP3455689A1 (en) Method and system for guiding mechanically coupled or freely following train and vehicle combinations without a mechanical rail

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090407

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015532

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015532

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 877924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230929

Year of fee payment: 17