EP2064390B1 - Procédé de mesure de la voie et système de mesure haute précision pour petits chantiers de pose de voie - Google Patents

Procédé de mesure de la voie et système de mesure haute précision pour petits chantiers de pose de voie Download PDF

Info

Publication number
EP2064390B1
EP2064390B1 EP07803147.3A EP07803147A EP2064390B1 EP 2064390 B1 EP2064390 B1 EP 2064390B1 EP 07803147 A EP07803147 A EP 07803147A EP 2064390 B1 EP2064390 B1 EP 2064390B1
Authority
EP
European Patent Office
Prior art keywords
car
track
tachymeter
reflector
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07803147.3A
Other languages
German (de)
English (en)
Other versions
EP2064390A2 (fr
Inventor
Günter GRASHOF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gbm Wiebe Gleisbaumaschinen GmbH
Original Assignee
Gbm Wiebe Gleisbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gbm Wiebe Gleisbaumaschinen GmbH filed Critical Gbm Wiebe Gleisbaumaschinen GmbH
Publication of EP2064390A2 publication Critical patent/EP2064390A2/fr
Application granted granted Critical
Publication of EP2064390B1 publication Critical patent/EP2064390B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes

Definitions

  • the patent application relates to a method for track surveying and a highly accurate measuring system for small construction sites in track construction.
  • the parameters to be recorded are u.a. from the gauge, the torsion and the elevation together, in curves the so-called arrow heights are measured to determine the curvature behavior.
  • the position at which it has been detected must be measured for such a parameter set.
  • GPS Global Positioning System
  • Galileo Galileo
  • a method is known by which the actual position of a track section can be determined using satellite data using differential GPS and compared with the target data from the construction project.
  • a measuring unit which determines both the track geometry and the position in the stop-and-go method, is moved to a second measuring unit (base) in small steps.
  • the measured data for the track geometry become one coordinate along with the position data of the second measuring unit stored. From the entirety of the data, a log for a downstream processing operation can be created.
  • the measurement data for the position determination can be determined only with the stop of the first measuring unit with sufficient accuracy.
  • the accuracy increases when the distance between the stops is reduced, which in turn makes the method very time-consuming and therefore expensive.
  • a tamping machine which may precede the measuring unit, must stop and accelerate again and again for the stops. This is associated with such a heavy machine with a high consumption and a load on the machine drive.
  • shadowing by trees can obstruct the observations during position determination, or high ambiguities in ravines can falsify the determined coordinates.
  • Another method to measure track geometry in conjunction with a position is in DE 3444723 C2 described.
  • an artificial base is placed over the track section to be measured via an adjusted laser beam.
  • Track geometry changes are documented via a laser sensor field that shifts from the base.
  • the parameter sets are connected to measurement data that provide information about the distance traveled.
  • the laser sensor field is usually attached to a heavy, rail-bound vehicle.
  • EP 559850 B1 A method for track measurement is described in which the parameters of the track geometry are detected with the aid of a vehicle, which determines its own position by means of lasers and measuring marks, which are attached to catenary masts or other immovable points. During the movement of the measuring vehicle, the laser is tracked so that a continuous alignment of the measuring mark takes place. The tracking can be done by motorized rangefinders, instead of the targets brands reflectors can be used.
  • the measuring optics is mounted on the vehicle.
  • the adjustment of the angle to the target is very tiring for an observer.
  • a motorized device shortens the working time of the measuring unit, as the high power consumption of the motor makes the batteries tire quickly.
  • the attached measuring marks must be placed in relation to the track. This requires work in advance to determine the position of these usually only a few meters apart points and means at the same time a departure from the initiated by Deutsche Bahn AG process to switch to a fixed point field that defines only a small number of fixed points in the mileage.
  • DE 2460618 C2 a mobile device for measuring the track position, which is characterized by its low weight and simple design.
  • the measuring principle is similar to the method in EP 559850 B1 except that the base is formed by a theodolite target beam.
  • the movement of the destination cross attached to a car opposite this base is recorded and linked to track geometry measurements.
  • the disadvantage is that a lack of automation makes an observer necessary and the movement of the measuring carriage must be determined in a simple manner. An observer often makes mistakes and the possible position measurements are also faulty, so that the accuracy falls short of the requirement.
  • Modern track laying machines also depend on data protocols that are in place through the system DE 2460618 C2 can not be delivered.
  • a modern measuring method is off GB 2 403 861 A known.
  • the system includes a laser scanner, a data gate, and may include one or more position determination units.
  • the system can be used to measure railway lines and trackside objects such as bridges, platforms, signals and tunnel walls.
  • Another method is characterized in that the track geometry is detected by measuring deviations from a base.
  • the position of the measuring vehicle is realized in the best case by inertial measuring systems. This method is also subject to very large inaccuracies and limited in speed.
  • the object of the invention is to develop a measuring system for track construction, which determines the data of the track geometry in compliance with the required accuracies and logs, however, has a very compact and lightweight design that allows transport with a car and operated by a person ,
  • distance measurements and angle measurements to a reflector on a reflector carriage are made continuously (on-the-fly) by a tachymeter on a tachymeter cart and transferred to a data acquisition unit.
  • the determined coordinates are connected to the measured values of the track geometry determined on the reflector carriage, and the deviations between the desired position and the actual position are made available digitally or analogue via output devices.
  • the position of the Tachymeterwagens by differential GPS.
  • a base station on a known point of any network preferably a point of the DBREF of Deutsche Bahn AG, built and another receiver (rover) on the Tachymeterwagen set.
  • the coordinate determination of the tachymeter carriage is carried out by linking the correction data determined at the base station with the measured values of the rover.
  • the correction data is not determined by a base station but via the reference network.
  • the high-precision measuring system is constructed such that measuring devices for removing the track geometry as well as a reflector are arranged on a reflector carriage movable on the track, consisting of a device module, a surveying module, a running module and / or an extension module for larger gauges, and on top of one another the track secured tachymeter, consisting of a device module, a survey module, a running module and / or an extension module for larger gauges, next to a rover for satellite-based determination of the position of a tachymeter, a data acquisition unit and an output device are arranged.
  • the reflector trolley and the tachometer trolley are adapted to different gauges by extension modules.
  • the extension module is adjusted by means of telescoping and then permanently adjustable elements variable to the required track width of the track body.
  • the data acquisition unit and output devices are housed in weatherproof enclosures.
  • the method is modified so that the determination of the position of a measurement data set is not made by the measuring unit but by an external device.
  • conditions of the environment can be taken into account by, for example, the location of the Tachymeterwagens is chosen so that shading is not to be feared and the route can still be viewed.
  • One is much freer in the preparation of the measurement and ultimately also achieves measured values that meet the requirements of Deutsche Bahn AG in their accuracy.
  • An advantage of the measuring system is that the position-determining satellite receivers remain continuously in the same position for a long time, so that these positions can be determined very precisely over a large number of measurements and this accuracy can be incorporated into the further determination process.
  • Another advantage of the invention is that from the position of the tachymeter out other data can be detected in addition to the track to supplement the measurement data from the track geometry without long setup times are required.
  • a considerable advantage is that despite the extensive equipment low weight of the car, which can be easily moved by a single person and so if necessary, can be quickly taken out of the way. Obstruction of rail traffic can thus be minimized. In addition, long makeready times for vehicles with railway-typical axle loads and their transfer to the place of use are eliminated. The transport by a car allows a more flexible use.
  • the required elements can be assembled after transport to the site without regard to belonging to Tachymeter- or reflector car, since the basic structure of both cars is identical. This facilitates the use and saves set-up time.
  • the data acquisition unit can be connected via standard interfaces.
  • the human being excluded as a possible source of error, since the measurement data collection, the position determination and the data evaluation are automated and the measurement data are processed in the editing process. This is advantageous for ensuring the security requirements.
  • the measuring system according to the invention ( FIG. 1 ) consists of a Tachymeterwagen 4, a reflector carriage 8 and a base station 1 for satellite-based position determination.
  • the base station 1 is set up over a known fixed point 2 of a reference network and begins to send the correction parameters.
  • the first carriage, the reflector carriage 8, comprises detection systems for the distortion of the tracks 11, the elevation 12 and the track width 13.
  • the data are acquired by a data acquisition unit 37.
  • a reflector car radio antenna 9 for receiving measurement data and a known from the measurement reflector 10 for Tachymeterfactn are arranged.
  • the speedometer car 4 On the second car, the speedometer car 4, there is a GPS antenna for receiving satellite data 5, which continuously measures the position.
  • a motorized tachymeter 6 In a stored as a device constant distance to a motorized tachymeter 6 is mounted, which has a known from the machine control in road construction synchronization of angle and distance measurements, and makes continuous angle and distance measurements to the reflector on the reflector car.
  • the data of the base station 1 and the data determined on the reflector carriage 8 data are received.
  • the measurement data of the tachymeter 6 and position data of the rover 5 are transferred with the data received via radio to an evaluation unit 14 for the calculation.
  • the evaluation unit 14 on the tachometer trolley 4 determines the correction parameters for the measurement at the rover 5 from the position data determined at the base 1.
  • the position of the tachymeter in the coordinate system of the Irish Bahn AG can thus also be determined via the device constant.
  • the positions of the reflector carriage 8 and the measured values of the track geometry acquisition devices are linked with each other via the tachymeter measurements. These values can be directly compared with the previously read in target geometry of the track and processed so that they can be read in and processed by common stuffing machines.
  • a point previously determined by a satellite-based method is aimed at as an orientation.
  • the Tachymeterwagen 4 is secured using a so-called dead man's brake against changing its position.
  • a first basic measurement is made at the start position of the reflector carriage 27. Thereafter, the reflector carriage 8 is pushed by an operator on the Tachymeterwagen 4.
  • the tachymeter 6 has high angular and path accuracies and a motor that allows automatic Zielnach adjustment, so that the aiming beam is continuously directed to the reflector 10.
  • the conventional method of step-by-step measurements, in which the reflector carriage 8 would have to be stopped for position detection, is replaced in the present invention by a kinematic method which replaces the on-the-fly method in which no intermediate stop is maintained must become.
  • the basis for this procedure is the possibility of synchronization.
  • a final second basic measurement takes place shortly before the reflector carriage 8 arrives at the tachometer trolley 4.
  • the two positions 27 and 28 from the basic measurements represent the beginning and the end point of a tendon, to which all measured values from the measured distance are converted. From this one obtains the required for the track construction arrow heights of the track position.
  • FIG. 1 shows the measuring arrangement according to the invention.
  • a base station 1 for satellite-based position determination is set up above a fixed point 2.
  • the correction data determined here are sent to the tachymeter car radio antenna 7 and subsequently stored in the evaluation unit 14 with the data determined via the rover 5.
  • a torsion measuring unit 11, a superelevation measuring unit 12 and a gauge measuring unit 13 continuously measure the parameters on the reflector carriage 8 the track geometry and deliver it to the integrated data acquisition unit 37. At the same time measurements are continuously carried out between the total station 6 and the reflector 10 via a measuring beam 15 and passed to the evaluation unit 14.
  • the determined data are linked together and provided after the end of the measurement as a protocol in digital or analog form of the evaluation unit 14 and subsequently an output device 16 available.
  • the supply of electrical equipment via the power supply to the tachometer trolley 17 and the power supply to the reflector carriage 18.
  • the reflector 10 is mounted on a conventional tripod 19, which in turn is fixedly connected to the reflector carriage 8.
  • FIG. 2 shows the representation of the modules of a reflector carriage 8.
  • the torsion measuring unit 11, the elevation measuring unit 12 and the track width measuring unit 13 are attached to the sensor module for the track geometry 20.
  • the measured values determined there are forwarded to the data acquisition unit 37, which is integrated in the reflector carriage 8.
  • the tripod 19 for receiving the reflector 10 and the power supply 18 are arranged thereon.
  • the described modules 20 and 22 can be connected to each other via screws to the module fitting 24 with other modules, so in any case with the running module 23 and, if necessary, with the extension track module for larger gauges 21.
  • the transverse struts A 25 and B 26 provide a dimensionally stable connection of the modules 20, 21 and 22 constructed transversely to the track direction with the running module 23 attached in the track direction.
  • FIG. 3 shows the reflector carriage in the rear view, in this case for small gauges, wherein the extension module 21 is omitted.
  • the sensor module for the track geometry 20 is connected directly to the surveying module 22 and the running module 23 via screws to the module screw 24.
  • the torsion measuring unit 11 and the elevation measuring unit 12 are arranged on the sensor module for the track geometry 20; the data acquisition unit 37 is likewise integrated in the sensor module for the track geometry 20.
  • the running module 23 and the surveying module 22 are secured to one another via the transverse strut B 26.
  • FIG. 4 is the reflector car 8, as he already in FIG. 3 is described, shown in plan view. It consists of sensor module for the track geometry 20, surveying module 22 and running module 23, which are connected to one another via screws to the module screw 24 and reinforced by the cross struts A 25 and B 26. On The sensor module for the track geometry, the torsion measuring unit 11 and the elevation measuring unit 12 are arranged. The data acquisition unit 37 is integrated. The surveying module has a power supply for the reflector carriage 18 and the tripod 19 for receiving the reflector 10.
  • the in the Fig. 2-4 illustrated reflector carriage 8 can be used with the same structure as Tachymeterwagen 4.
  • the reflector 10 is replaced by the total station 6 and placed on a second tripod of the rover.
  • the evaluation unit 14 and one or more output devices 16 are arranged here.
  • the tachymeter cart 4 has an integrated data acquisition unit 37.
  • FIG. 5 the long-chord measurement of the track body 31 is shown. After setting up the Tachymeterwagens 4 on the track body 31 of the reflector carriage 8 is placed at the position for the first base measurement 27. Until the reflector carriage 8 has reached the position of the second base measurement 28, many position measurements are triggered. Between the first and the second base position, a tendon is generated between the base points 29, to which the heights of the individual measurement positions 30 of the reflector carriage 8 are related.
  • FIG. 6 the synchronization process is shown schematically.
  • the located on the track reflector carriage 8 moves in the direction of movement 36 along the track body 31 along.
  • the reflector carriage 8 has already covered a certain distance.
  • an angle 34 is interpolated which corresponds to the data of the distance measurement 35.
  • FIG. 7 the schematic view of the data acquisition unit 37 is shown.
  • the data acquisition unit 37 acquires the data of the tachymeter 6, the various track geometry measuring devices (11, 12 and 13) and brings them into a synchronized form. Essentially, it is a computer system that is able to handle a specific task such as measuring, controlling and controlling via its interfaces.
  • the data acquisition unit 37 has no hard disk and only low CPU power to ensure low power consumption. High temperature resistance, stability and reliability are basic requirements.
  • the data acquisition unit 37 is supplied by the power supply of the Tachymeterwagens 17. Data of a rotary encoder are transmitted via a digital Pulse signal passed to the data acquisition unit 37, while provide temperature sensor, inclinometer and spring probe their data as an analog signal.
  • Additional sensors can be connected via a serial interface, a special interference-free bus system frequently used in railway systems or another fieldbus. In the future, a data exchange but also via a USB interface is conceivable.
  • the data of the tachymeter 6 also enter the data acquisition unit 37 via a serial interface, and the measuring pulse is triggered via the same path.
  • evaluation unit 14 computers of various types and power can be attached via a further serial interface for data exchange and command output, provided that they meet the requirements of the processing software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Claims (9)

  1. Procédé de mesure de voie, caractérisé en ce que
    a) un tachéomètre (6) sur un wagon de tachéomètre (4) entreprend en continu des mesures d'éloignement et des mesures angulaires par rapport à un réflecteur (10) sur un wagon de réflecteur (8) et les transmet à une unité d'enregistrement de données (37),
    b) le wagon de réflecteur (8) détermine, avec un appareil de mesure de torsion (11), un appareil de mesure de surhaussement (12) et un appareil de mesure d'écartement de voie (13), des valeurs de mesure de la géométrie de voie, dans lequel les données déterminées sur le wagon de réflecteur sont reçues à l'aide d'une antenne radio de wagon de tachéomètre (7),
    c) les coordonnées déterminées sont reliées aux valeurs de mesure déterminées sur le wagon de réflecteur (8) de la géométrie de voie et
    d) un poste de base est installé au-dessus d'un point fixe connu d'un réseau de référence, réalise une détermination de position par satellite et ces données de position sont envoyées au wagon de tachéomètre,
    e) le wagon de tachéomètre reçoit des données du poste de base par une liaison radio et détermine une position du wagon de tachéomètre à l'aide d'un GPS différentiel avec une antenne GPS pour la mesure de position continue par réception de données satellites sur le wagon de tachéomètre par une unité d'évaluation (14), et
    à partir des données de position déterminées sur le poste de base à l'aide d'une unité d'évaluation (14), détermine les paramètres de correction pour la mesure de la position du wagon de tachéomètre,
    f) la position du wagon de réflecteur est déterminée par la position corrigée du wagon de tachéomètre,
    g) la position du wagon de réflecteur est liée aux valeurs mesurées de l'appareil de mesure de torsion (11), de l'appareil de mesure de surhaussement (12) et de l'appareil de mesure d'écartement de voie (13), et les divergences entre la position de consigne et réelle de la géométrie de voie sont mises à disposition numériquement ou analogiquement par l'appareil de sortie (16).
  2. Procédé selon la revendication 1, caractérisé en ce que la détermination des données de base est effectuée en utilisant un système récepteur DGPS.
  3. Procédé selon la revendication 1, caractérisé en ce que la détermination des données de base est effectuée par un récepteur GPS qui dispose d'un dispositif pour la réception de données de correction d'un exploitant de réseau de référence.
  4. Système de mesure à haute précision pour de petits chantiers dans la construction de voie, caractérisé en ce que
    a) sur un wagon de réflecteur (8) déplaçable sur la voie, pour la détermination de valeurs de mesure de la géométrie de voie, se composant d'une antenne radio de wagon de réflecteur (9), un module d'appareil (20), un module de mesure (22), un module de roulement (23) et/ou un module de prolongement pour de plus grands écartements de voie (21), un appareil de mesure de torsion (11), un appareil de mesure de surhaussement (12), un appareil de mesure de d'écartement de voie (13) et un réflecteur (10) sont agencés et une unité d'enregistrement de données (37) est intégrée, et
    b) sur un wagon de tachéomètre (4) fixé sur la voie se composant d'un module d'appareil (20), d'un module de mesure (22), d'une unité d'évaluation (14) et d'un appareil de sortie (16), d'une antenne radio de wagon de tachéomètre (7) pour la réception des données déterminées sur le wagon de réflecteur, un module de roulement (23) et/ou un module de prolongement pour de plus grands écartements de voie (21), pour lequel à côté d'un rover (5) pour la détermination par satellite de la position, un tachéomètre (6) est agencé et une unité d'enregistrement de données (37) est intégrée,
    c) un poste de base pour la détermination de position par satellite,
    dans lequel l'antenne radio de wagon de tachéomètre (7) est réalisée de manière à recevoir des données du poste de base par radio,
    d) dans lequel l'unité d'évaluation (14) est appropriée afin de déterminer la position du wagon de tachéomètre par GPS différentiel et de déterminer par cette position du wagon de tachéomètre, la position du wagon de réflecteur,
    e) et dans lequel l'unité d'évaluation (14) est appropriée pour lier la position réelle du wagon de réflecteur aux valeurs de mesure de la géométrie de voie, et dans lequel
    f) l'appareil de sortie (16) est approprié afin de mettre à disposition la divergence entre la position de consigne et réelle de la géométrie de voie.
  5. Système de mesure à haute précision pour de petits chantiers dans la construction de voie selon la revendication 4, caractérisé en ce que le wagon de réflecteur (8) et le wagon de tachéomètre (4) présentent des modules de prolongement (21), par quoi ils peuvent être adaptés à différents écartements de voie.
  6. Système de mesure à haute précision pour de petits chantiers dans la construction de voie selon la revendication 5, caractérisé en ce que
    le module de prolongement (21) est réglé de manière variable à l'aide d'éléments insérables l'un dans l'autre et ensuite fixement réglables sur l'écartement de voie nécessaire du corps de voie.
  7. Système de mesure à haute précision pour de petits chantiers dans la construction de voie selon l'une quelconque des revendications 4 à 6, caractérisé par un frein d'homme mort pour la fixation du wagon de tachéomètre (4).
  8. Système de mesure à haute précision pour de petits chantiers dans la construction de voie selon l'une quelconque des revendications 4 à 7, caractérisé en ce que l'unité d'évaluation (14) et l'appareil de sortie (16) sont logés dans des boîtiers résistants aux intempéries.
  9. Système de mesure à haute précision pour de petits chantiers dans la construction de voie selon l'une quelconque des revendications 4 à 8, caractérisé en ce que l'unité d'enregistrement de données présente une consommation en courant faible, est résistante aux vibrations et influences météorologiques et est intégrée dans les wagons (4) et (8).
EP07803147.3A 2006-09-07 2007-09-03 Procédé de mesure de la voie et système de mesure haute précision pour petits chantiers de pose de voie Active EP2064390B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610042496 DE102006042496A1 (de) 2006-09-07 2006-09-07 Verfahren zur Gleisvermessung und hochgenaues Messsystem für kleine Baustellen im Gleisbau
PCT/EP2007/059160 WO2008028880A2 (fr) 2006-09-07 2007-09-03 Procédé de mesure de la voie et système de mesure haute précision pour petits chantiers de pose de voie

Publications (2)

Publication Number Publication Date
EP2064390A2 EP2064390A2 (fr) 2009-06-03
EP2064390B1 true EP2064390B1 (fr) 2017-03-22

Family

ID=38752559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803147.3A Active EP2064390B1 (fr) 2006-09-07 2007-09-03 Procédé de mesure de la voie et système de mesure haute précision pour petits chantiers de pose de voie

Country Status (3)

Country Link
EP (1) EP2064390B1 (fr)
DE (1) DE102006042496A1 (fr)
WO (1) WO2008028880A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7929118B2 (en) 2009-01-06 2011-04-19 Thyssenkrupp Gft Gleistechnik Gmbh Method for geodetic monitoring of rails
CN101864709B (zh) * 2010-03-26 2012-01-04 中铁第一勘察设计院集团有限公司 一种高速铁路大跨度连续梁上cpⅲ点位移动控制方法
CN102168396B (zh) * 2011-03-18 2012-07-25 中铁第一勘察设计院集团有限公司 轨道基准网数据采集与数据处理外业实时一体化测量方法
CN102953304B (zh) * 2012-09-20 2015-04-08 中铁三局集团有限公司 地铁轨道结构施工的精密测量控制方法
ITMI20130887A1 (it) * 2013-05-30 2014-12-01 Giorgio Pisani Apparecchiatura e procedimento di controllo per tracciati ferroviari
AT514667B1 (de) * 2013-08-07 2015-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zur Unterstopfung eines Gleises
CN104420405A (zh) * 2013-08-29 2015-03-18 中国铁道科学研究院铁道建筑研究所 一种测量铁路轨道静态几何参数的装置
CN105277129B (zh) * 2014-06-03 2018-03-27 北京星网宇达科技股份有限公司 一种激光测距传感器动态无接触轨距测量系统
CN105316986B (zh) * 2014-06-03 2017-05-24 北京星网宇达科技股份有限公司 一种基于惯性传感器与导航卫星组合的轨道参数动态检测小车
DE102015103054B3 (de) * 2015-03-03 2016-06-16 Dr. Hesse und Partner Ingenieure System zur kinematischen Schienenvermessung
CN106522048A (zh) * 2016-12-06 2017-03-22 山东北斗华宸导航技术股份有限公司 轨道几何参数测量系统及方法
CN110986877B (zh) * 2019-12-03 2021-09-24 中铁第一勘察设计院集团有限公司 基于高精度车载激光移动测量系统铁路工程限界检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403861A (en) * 2003-07-11 2005-01-12 Omnicom Engineering Ltd Laser scanning surveying and measurement system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT339357B (de) * 1974-12-09 1977-10-10 Plasser Bahnbaumasch Franz Fahrbares gerat zur messung der gleislage
DE3444723A1 (de) * 1984-12-07 1986-06-12 Richard Gehrcke Vorrichtung zum erfassen der gleisgeometrie mit einem laser
DD301122A7 (de) * 1989-05-10 1992-10-08 Jenoptik Jena Gmbh Verfahren und anordnung zur azimutbestimmung
AT403066B (de) * 1991-07-12 1997-11-25 Plasser Bahnbaumasch Franz Verfahren zum ermitteln der abweichungen der ist-lage eines gleisabschnittes
DE4441349C2 (de) * 1994-11-21 1999-07-01 Deutsche Bahn Ag Spurzentrierter und rollender Vermessungssystemträger
US7469479B2 (en) * 2004-04-21 2008-12-30 J. Müller AG Method for measuring tracks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403861A (en) * 2003-07-11 2005-01-12 Omnicom Engineering Ltd Laser scanning surveying and measurement system

Also Published As

Publication number Publication date
DE102006042496A1 (de) 2008-04-24
WO2008028880A3 (fr) 2008-06-12
WO2008028880A2 (fr) 2008-03-13
EP2064390A2 (fr) 2009-06-03

Similar Documents

Publication Publication Date Title
EP2064390B1 (fr) Procédé de mesure de la voie et système de mesure haute précision pour petits chantiers de pose de voie
AT403066B (de) Verfahren zum ermitteln der abweichungen der ist-lage eines gleisabschnittes
EP1028325B1 (fr) Procédé pour surveiller les rails d'une voie ferrée
EP1738029B1 (fr) Procede pour mesurer des voies de circulation
EP3040477B1 (fr) Procede et dispositif de determination d'un volume fraisee par au moins un engin ou d'abatteuse a l'aide d'un cylindre de fraisage
EP2193333B1 (fr) Procédé de détermination de la position
DE69616041T2 (de) Verfahren und gerät für das berührungsfreie messen der verbiegungen von wegen oder schienen
EP3442849B1 (fr) Procédé et système de mesure pour détecter un point fixe près d'une voie
EP3106899B1 (fr) Systeme de commande de vehicule reference
EP0511191B1 (fr) Système pour mesurer la position d'une voie ferroviaire envers un point fixe
EP3237266B1 (fr) Procédé et dispositif de localisation permettant de déterminer la position d'un véhicule guidé, en particulier d'un véhicule ferroviaire
WO1993006303A1 (fr) Procede de mesurage de voies de chemin de fer
EP0112440A2 (fr) Dispositif de surveillance et de détermination de trajectoire
AT516343B1 (de) Verfahren zum Ermitteln der Lage der Oberleitung bzw. der Stromschiene für Fahrzeuge
AT523717B1 (de) Verfahren zum Vermessen einer Gleislage
WO2008122319A1 (fr) Dispositif de mesure pour la détermination sans contact et continue du tracé et de l'assiette de voie de rails de chemins de fer
EP4251491B1 (fr) Procédé et système de détermination de valeurs de correction pour la correction de position d'une voie
DE102006027852A1 (de) Gleismeßfahrzeug
WO2014146758A1 (fr) Passerelle pour passagers
DE102016007182B4 (de) System und Verfahren zur Ermittlung und Speicherung von ortsbezogenen Problemstellen Navigationssatelliten-gestützter Positionsbestimmung
DE10201095C1 (de) Vorrichtung zur automatischen Verlegung von Balisen im Gleisbett
DE102006029845B4 (de) Vorrichtung und Verfahren zur Absicherung von Streckenabschnitten eines segmentierten Fahrweges für einen schienengebundenen Fahrzeugverband
AT503449A4 (de) Verfahren zur erfassung von topographiedaten
WO2023094516A1 (fr) Grue
DE102018007632A1 (de) System zur Bestimmung der Position von Verkehrsleiteinrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090407

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015532

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015532

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 877924

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230929

Year of fee payment: 17