EP2063981A1 - Microtamis pour la filtration de particules dans des applications microfluides, et sa fabrication - Google Patents

Microtamis pour la filtration de particules dans des applications microfluides, et sa fabrication

Info

Publication number
EP2063981A1
EP2063981A1 EP07787543A EP07787543A EP2063981A1 EP 2063981 A1 EP2063981 A1 EP 2063981A1 EP 07787543 A EP07787543 A EP 07787543A EP 07787543 A EP07787543 A EP 07787543A EP 2063981 A1 EP2063981 A1 EP 2063981A1
Authority
EP
European Patent Office
Prior art keywords
layer
membrane
substrate
macroporous
etching process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07787543A
Other languages
German (de)
English (en)
Inventor
Ando Feyh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2063981A1 publication Critical patent/EP2063981A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0062Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/081Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/088Microfluidic devices comprising semi-permeable flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00828Silicon wafers or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00844Comprising porous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00907Separation using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00909Separation using filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation

Definitions

  • microfluidic applications many microstructured components have already been proposed.
  • microsieves for filtering particles have also been described. For example, from US
  • 2005/0092676 Al a microfilter known, which consists of a separation layer and a supporting support layer. Both layers may be porous, wherein an inorganic material such as silicon or organic material such as polymer is proposed for the filter membrane. While the actual separation layer is applied as a filter membrane on the upper side of the carrier layer, the back side of the
  • Such filters which are open at the bottom, can not readily be integrated into corresponding microfluidic systems, such as the "lab-on-chip” approach.
  • membranes of porous silicon are known with a cavern arranged underneath, which are provided for sensory components.
  • a membrane sensor unit with a carrier is known, in which the thermocouples are arranged on a silicon membrane.
  • the membrane has nano- or mesoporous areas.
  • an insulation trough for thermal insulation is provided underneath the membrane, wherein the insulation trough can also be designed as a cavern.
  • Nanopores are generally understood to mean pores with average pore diameters of 2-5 nm. Mesopores, however, have average pore diameters of up to 50 nm. Pores with average pore diameters greater than 50 nm are referred to as macropores. These designations also apply in this present document.
  • microfilters known hitherto it has features optimized for applications in microfluidics, such as relatively large pore diameters greater than 50 nm, preferably in the ⁇ m range, in particular 1-5 ⁇ m, in a membrane having.
  • the macroporous membrane with a cavity located therebelow can be used as an upstream particulate filter in sensitive fluidic systems.
  • Figures Ia and Ib a first embodiment of a manufacturing method of a microsieve
  • Figures 2a and 2b show a further embodiment of a manufacturing method of a microsieve in the side view.
  • a method is proposed by means of a two-stage etching process with a first and a second etching process: a) provision of an at least partially p-doped Si substrate, b) at least partial formation of a layer of n-doped regions on the Si substrate, c) producing a macroporous layer on the Si substrate by a first
  • Etching process and d) transferring the macroporous layer through a second, different from the first, etching process into a cantilevered membrane by creating a cavity under the macroporous layer, the second etching process being electropolishing.
  • an at least partially p-doped Si substrate 3 is provided.
  • the substrate material preferably has a resistivity of p> 1 ⁇ cm.
  • a layer 5 of n-doped regions 5 a, 5 b is formed in regions on the Si substrate 3.
  • the layer 5 is a mask, more precisely an n-depth mask, and is arranged around the later membrane area.
  • One possibility for forming the n-doped regions 5a, 5b is an implantation process. The implantation zone achieved thereby is inert in the further process steps and serves to suspend the later membrane.
  • a macroporous layer 10 is produced on the Si substrate 3 by a first etching process, the electrochemical etching in a hydrofluoric acid-containing (HF) electrolyte being provided here as the first etching process.
  • HF hydrofluoric acid-containing
  • the macroporous layer 10 is produced in a region not protected by the mask, the later filter region 6.
  • the final thickness of the macroporous layer 10 is not yet reached in Fig. 1a, i. the figure in Fig. Ia is a snapshot during the first etching process.
  • etching methods such as wet chemical etching in potassium hydroxide (KOH) or reactive ion etching (RIE) ⁇ tzkeime, in particular small depressions, provided for pre-structuring of the macropores to be generated.
  • KOH potassium hydroxide
  • RIE reactive ion etching
  • the macroporous layer 10 itself is then, as already mentioned above, produced by electrochemical etching in a hydrofluoric acid (HF) electrolyte.
  • HF hydrofluoric acid
  • an organic solvent is used as the wetting agent.
  • This organic additive allows the adjustment of the HF concentration as well as a targeted influencing of the formation of the macropores in p-doped silicon substrate 3.
  • Suitable solvents are, for example, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) or acetonitrile (MeCN).
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • MeCN acetonitrile
  • the formation of the macropores takes place on the previously provided nucleation nuclei.
  • an HF concentration in the range of 1 to 20% m (weight percent) is preferably used.
  • the final thickness of the macroporous layer 10, which is converted into a self-supporting membrane 15 in a step d), is preferably in the range between 10 and 50 ⁇ m.
  • the transfer of the macroporous layer 10 into a cantilevered membrane 15 is achieved by creating a cavity 20 under the layer 10. It is the
  • Cavity 20 by a further electrochemical etching step namely generated by an electropolishing.
  • This etching step can advantageously be carried out in the same etching medium as for the production of the macroporous layer 10 by a specific increase in the electrical current density.
  • mixtures of highly concentrated HF, alcohol and H 2 O are available, preferably with an HF concentration of 20% m or greater.
  • etching rates of over 200 nm / s are achieved.
  • the depth of the cavity 20, ie the cavern depth can be adjusted within wide ranges.
  • cavities 20 or caverns with a depth of a few microns to over 100 microns are possible.
  • etching by means of electropolishing is an isotropic process, it must be prevented by a suitable measure that the membrane 15 is simply dissolved out of the substrate 3 in this etching step.
  • a suitable measure is the inert n-doped mask as formed in step b).
  • a layer 5 of n-doped regions 5a, 5b is again formed on the Si substrate 3 in step b), wherein now first in the
  • the n-doped regions 5a, 5b are applied over the entire surface of the Si substrate 3.
  • This intermediate state is not shown in the figures.
  • a dry layer is formed Etching method used.
  • trench openings are defined by means of an additional mask not shown in the figures, typically resist mask. Trench structures that run the entire thickness of the layer 10 are realized via the trench openings. In this trench process, the openings are etched at least until they reach into the substrate 3.
  • openings which in this document are also understood as pores and are essential for the subsequent filter function, are defined solely by the trench structuring.
  • any torture geometries are possible because the trimmed n-doped filter region 6 is not attacked in the now to be carried out electropolishing.
  • the geometric configuration of the openings such as the width of the openings or their distribution in the macroporous layer 10, so it can be controlled controlled. This procedure is particularly suitable for the production of a very thin sieve.
  • a cavity 20 is generated under the macroporous layer 10 by means of electropolishing.
  • the membrane 15 after its production with a functional layer, not shown in the figures.
  • the membrane 15 can be hydrophilized by a slight oxidation.
  • a functional layer a reactive layer or a layer with catalytic properties can also be used.
  • the sieve then serves - in addition to the filter function - as a microreactor.
  • the functional layer can for this example consist of platinum, palladium or nanocrystalline iron.
  • nanocrystalline iron As a functional layer, there are interesting applications in the field of neutralization of environmental toxins. Such nanoparticles have been reported to neutralize heavy metals, dioxin, PCBs and a variety of other toxicants. As a result, such in the input area of a lab-on-chip system
  • microsieve 1 for use in microfluidics, the finished microsieve 1 comprising: an at least partially p-doped Si substrate 3 with a cutout, a macroporous, n-doped regions 5a, 5b connected to the Si substrate 3 membrane 15, wherein the recess of the Si substrate 3 is arranged to form a cavity 20 directly under the membrane 15.
  • the macroporous membrane 15 preferably has pores or openings with a
  • the macroporous membrane 15 may have trench structures extending across the entire thickness of the membrane 15. It is also possible that the membrane 15 is provided with a functional layer, in particular a reactive layer and / or a catalytically active layer.
  • a functional layer for example, platinum, palladium or nanocrystalline iron is suitable.
  • the manufacture of the microsieve 1 comprises a two-stage etching process, wherein the first etching process is not an electropolishing and creates a macroporous layer 10 on the Si substrate 3, while the second etching process is an electropolishing and a
  • microsieve 1 described above makes it possible to use it in microfluidic systems, such as in lab-on-chip systems, in particular if samples are to be examined directly and without prior processing. Such is the use of the
  • Microsieve 1 suitable for samples especially from (bio) chemical, medical or clinical areas.

Abstract

L'invention concerne un microtamis (1) pour la filtration des particules dans des applications microfluides ainsi qu'un procédé pour sa fabrication. Le microtamis (1) comprend un substrat (3) en Si dont au moins certaines parties sont dopées positivement et doté d'une découpe et une membrane macroporeuse (15) reliée au substrat (3) en Si par des zones (5a, 5b) dopées négativement. La découpe du substrat (3) en Si est disposée directement en dessous de la membrane (15) de manière à former un espace creux (20).
EP07787543A 2006-09-04 2007-07-13 Microtamis pour la filtration de particules dans des applications microfluides, et sa fabrication Withdrawn EP2063981A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006041396A DE102006041396A1 (de) 2006-09-04 2006-09-04 Mikrosieb zur Filterung von Partikeln in Mikrofluidik-Anwendungen und dessen Herstellung
PCT/EP2007/057275 WO2008028717A1 (fr) 2006-09-04 2007-07-13 Microtamis pour la filtration de particules dans des applications microfluides, et sa fabrication

Publications (1)

Publication Number Publication Date
EP2063981A1 true EP2063981A1 (fr) 2009-06-03

Family

ID=38537799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787543A Withdrawn EP2063981A1 (fr) 2006-09-04 2007-07-13 Microtamis pour la filtration de particules dans des applications microfluides, et sa fabrication

Country Status (4)

Country Link
US (1) US20100296986A1 (fr)
EP (1) EP2063981A1 (fr)
DE (1) DE102006041396A1 (fr)
WO (1) WO2008028717A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
US9034216B2 (en) * 2009-11-11 2015-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
US11251318B2 (en) 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
DE102014207774B4 (de) * 2014-04-25 2015-12-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Aufreinigung von biologischen Molekülen
DE102014209193B4 (de) * 2014-05-15 2015-12-31 Robert Bosch Gmbh Mikrofluidische Vorrichtung zum Nachweisen von Zellen aus einem Fluid, Verfahren zum Betreiben einer solchen Vorrichtung und Verfahren zum Herstellen einer solchen Vorrichtung
DE102014209188B4 (de) 2014-05-15 2016-01-14 Robert Bosch Gmbh Vorrichtung und Verfahren zum Aufbereiten einer biologischen Probe und Analysesystem zum Analysieren einer biologischen Probe
US11161066B2 (en) 2018-09-13 2021-11-02 International Business Machines Corporation Micro-machined filter for magnetic particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100106C1 (fr) * 1991-01-04 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752208A1 (de) 1997-11-25 1999-06-02 Bosch Gmbh Robert Thermischer Membransensor und Verfahren zu seiner Herstellung
DE10030352A1 (de) 2000-06-21 2002-01-10 Bosch Gmbh Robert Mikromechanisches Bauelement, insbesondere Sensorelement, mit einer stabilisierten Membran und Verfahren zur Herstellung eines derartigen Bauelements
DE10046622B4 (de) * 2000-09-20 2010-05-20 Robert Bosch Gmbh Verfahren zur Herstellung einer Membransensoreinheit sowie Membransensoreinheit
DE10138759A1 (de) * 2001-08-07 2003-03-06 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement, insbesondere Membransensor
US7282148B2 (en) * 2003-10-30 2007-10-16 International Business Machines Corporation Porous silicon composite structure as large filtration array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100106C1 (fr) * 1991-01-04 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De

Also Published As

Publication number Publication date
US20100296986A1 (en) 2010-11-25
WO2008028717A1 (fr) 2008-03-13
DE102006041396A1 (de) 2008-03-06

Similar Documents

Publication Publication Date Title
DE69434999T2 (de) Verfahren zur herstellung einer membran
EP2063981A1 (fr) Microtamis pour la filtration de particules dans des applications microfluides, et sa fabrication
EP2252727B1 (fr) Élément structurel à nanofils
Sumida et al. Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids
DE60306336T2 (de) Mikrofluider antimikrobieller filter
EP1423330B1 (fr) Composant semi-conducteur, notamment detecteur a membrane, et son procédé de production.
WO2016070869A2 (fr) Dispositif pour la mise en oeuvre d'un procédé de nanoimpression capillaire, procédé de réalisation d'une nanoimpression capillaire faisant appel audit dispositif, produits pouvant être obtenus par ledit procédé et utilisation dudit dispositif
DE19752208A1 (de) Thermischer Membransensor und Verfahren zu seiner Herstellung
EP1167934A1 (fr) Composant micromécanique, en particulier élément capteur, ayant une membrane stabilisée et procédé pour le produire
DE102015101425B4 (de) Verfahren zur Herstellung eines Bauelements auf Basis eines strukturierbaren Substrats mit dreidimensionaler, Poren im nm-Bereich aufweisender Membranstruktur
WO2002084272A2 (fr) Paire d'electrodes de mesure, biodetecteur comportant une telle paire d'electrodes de mesure et procede de production de cette derniere
EP3056260A1 (fr) Procédé de fabrication d'une membrane de séparation et membrane de séparation fabriquée selon ledit procédé
DE102012021222A1 (de) Verfahren zur Herstellung einer nanoporösen Schicht auf einem Substrat
EP1858629B1 (fr) Procede pour produire une membrane polymere, et membrane polymere
EP2496938A1 (fr) Puce fabriquée sur un plan de tranche pour chromatographie liquide et son procédé de fabrication
DE102009044645A1 (de) Verfahren zur Herstellung wenigstens einer Kavität in einer mikroelektronischen und/oder mikromechanischen Struktur und Sensor oder Aktor mit einer solchen Kavität
EP2663860B1 (fr) Dispositif microstructuré pour mesure sur des membranes moléculaires et procédé de fabrication de ce dispositif microstructuré
DE102004046310A1 (de) Vorrichtung zur Gasseparation sowie Verfahren zur Herstellung einer solchen Vorrichtung
DE10046621A1 (de) Verfahren zur Herstellung eines Membransensor-Arrays sowie Membransensor-Array
DE10229339B4 (de) Chromatographische Trennvorrichtung
DE102009006065A1 (de) Mikrofluidische Einrichtung und Verfahren zur Herstellung einer mikrofluidischen Einrichtung
DE19628052C1 (de) Sensor- und/oder Trennelement sowie Verfahren zu dessen Herstellung und Anwendung desselben
DE10159192B4 (de) Nanodrähte und Verfahren zu ihrer Herstellung
DE10157070A1 (de) Anordnung zur Messung von durch Ionenkanäle fließende Ionenströme, sowie Verfahren zur Herstellung dieser und Messverfahren
DE102006015386A1 (de) Nanostrukturierte oder mikrostrukturierte Vorrichtung, Filter, Verwendung einer Vorrichtung und Verfahren zur Herstellung einer Vorrichtung oder eines Filters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203