EP2063981A1 - Microscreen for filtering particles in microfluidics applications and production thereof - Google Patents

Microscreen for filtering particles in microfluidics applications and production thereof

Info

Publication number
EP2063981A1
EP2063981A1 EP07787543A EP07787543A EP2063981A1 EP 2063981 A1 EP2063981 A1 EP 2063981A1 EP 07787543 A EP07787543 A EP 07787543A EP 07787543 A EP07787543 A EP 07787543A EP 2063981 A1 EP2063981 A1 EP 2063981A1
Authority
EP
European Patent Office
Prior art keywords
layer
membrane
substrate
macroporous
etching process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07787543A
Other languages
German (de)
French (fr)
Inventor
Ando Feyh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2063981A1 publication Critical patent/EP2063981A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0062Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/081Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/088Microfluidic devices comprising semi-permeable flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00828Silicon wafers or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00844Comprising porous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00907Separation using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00909Separation using filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation

Definitions

  • microfluidic applications many microstructured components have already been proposed.
  • microsieves for filtering particles have also been described. For example, from US
  • 2005/0092676 Al a microfilter known, which consists of a separation layer and a supporting support layer. Both layers may be porous, wherein an inorganic material such as silicon or organic material such as polymer is proposed for the filter membrane. While the actual separation layer is applied as a filter membrane on the upper side of the carrier layer, the back side of the
  • Such filters which are open at the bottom, can not readily be integrated into corresponding microfluidic systems, such as the "lab-on-chip” approach.
  • membranes of porous silicon are known with a cavern arranged underneath, which are provided for sensory components.
  • a membrane sensor unit with a carrier is known, in which the thermocouples are arranged on a silicon membrane.
  • the membrane has nano- or mesoporous areas.
  • an insulation trough for thermal insulation is provided underneath the membrane, wherein the insulation trough can also be designed as a cavern.
  • Nanopores are generally understood to mean pores with average pore diameters of 2-5 nm. Mesopores, however, have average pore diameters of up to 50 nm. Pores with average pore diameters greater than 50 nm are referred to as macropores. These designations also apply in this present document.
  • microfilters known hitherto it has features optimized for applications in microfluidics, such as relatively large pore diameters greater than 50 nm, preferably in the ⁇ m range, in particular 1-5 ⁇ m, in a membrane having.
  • the macroporous membrane with a cavity located therebelow can be used as an upstream particulate filter in sensitive fluidic systems.
  • Figures Ia and Ib a first embodiment of a manufacturing method of a microsieve
  • Figures 2a and 2b show a further embodiment of a manufacturing method of a microsieve in the side view.
  • a method is proposed by means of a two-stage etching process with a first and a second etching process: a) provision of an at least partially p-doped Si substrate, b) at least partial formation of a layer of n-doped regions on the Si substrate, c) producing a macroporous layer on the Si substrate by a first
  • Etching process and d) transferring the macroporous layer through a second, different from the first, etching process into a cantilevered membrane by creating a cavity under the macroporous layer, the second etching process being electropolishing.
  • an at least partially p-doped Si substrate 3 is provided.
  • the substrate material preferably has a resistivity of p> 1 ⁇ cm.
  • a layer 5 of n-doped regions 5 a, 5 b is formed in regions on the Si substrate 3.
  • the layer 5 is a mask, more precisely an n-depth mask, and is arranged around the later membrane area.
  • One possibility for forming the n-doped regions 5a, 5b is an implantation process. The implantation zone achieved thereby is inert in the further process steps and serves to suspend the later membrane.
  • a macroporous layer 10 is produced on the Si substrate 3 by a first etching process, the electrochemical etching in a hydrofluoric acid-containing (HF) electrolyte being provided here as the first etching process.
  • HF hydrofluoric acid-containing
  • the macroporous layer 10 is produced in a region not protected by the mask, the later filter region 6.
  • the final thickness of the macroporous layer 10 is not yet reached in Fig. 1a, i. the figure in Fig. Ia is a snapshot during the first etching process.
  • etching methods such as wet chemical etching in potassium hydroxide (KOH) or reactive ion etching (RIE) ⁇ tzkeime, in particular small depressions, provided for pre-structuring of the macropores to be generated.
  • KOH potassium hydroxide
  • RIE reactive ion etching
  • the macroporous layer 10 itself is then, as already mentioned above, produced by electrochemical etching in a hydrofluoric acid (HF) electrolyte.
  • HF hydrofluoric acid
  • an organic solvent is used as the wetting agent.
  • This organic additive allows the adjustment of the HF concentration as well as a targeted influencing of the formation of the macropores in p-doped silicon substrate 3.
  • Suitable solvents are, for example, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) or acetonitrile (MeCN).
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • MeCN acetonitrile
  • the formation of the macropores takes place on the previously provided nucleation nuclei.
  • an HF concentration in the range of 1 to 20% m (weight percent) is preferably used.
  • the final thickness of the macroporous layer 10, which is converted into a self-supporting membrane 15 in a step d), is preferably in the range between 10 and 50 ⁇ m.
  • the transfer of the macroporous layer 10 into a cantilevered membrane 15 is achieved by creating a cavity 20 under the layer 10. It is the
  • Cavity 20 by a further electrochemical etching step namely generated by an electropolishing.
  • This etching step can advantageously be carried out in the same etching medium as for the production of the macroporous layer 10 by a specific increase in the electrical current density.
  • mixtures of highly concentrated HF, alcohol and H 2 O are available, preferably with an HF concentration of 20% m or greater.
  • etching rates of over 200 nm / s are achieved.
  • the depth of the cavity 20, ie the cavern depth can be adjusted within wide ranges.
  • cavities 20 or caverns with a depth of a few microns to over 100 microns are possible.
  • etching by means of electropolishing is an isotropic process, it must be prevented by a suitable measure that the membrane 15 is simply dissolved out of the substrate 3 in this etching step.
  • a suitable measure is the inert n-doped mask as formed in step b).
  • a layer 5 of n-doped regions 5a, 5b is again formed on the Si substrate 3 in step b), wherein now first in the
  • the n-doped regions 5a, 5b are applied over the entire surface of the Si substrate 3.
  • This intermediate state is not shown in the figures.
  • a dry layer is formed Etching method used.
  • trench openings are defined by means of an additional mask not shown in the figures, typically resist mask. Trench structures that run the entire thickness of the layer 10 are realized via the trench openings. In this trench process, the openings are etched at least until they reach into the substrate 3.
  • openings which in this document are also understood as pores and are essential for the subsequent filter function, are defined solely by the trench structuring.
  • any torture geometries are possible because the trimmed n-doped filter region 6 is not attacked in the now to be carried out electropolishing.
  • the geometric configuration of the openings such as the width of the openings or their distribution in the macroporous layer 10, so it can be controlled controlled. This procedure is particularly suitable for the production of a very thin sieve.
  • a cavity 20 is generated under the macroporous layer 10 by means of electropolishing.
  • the membrane 15 after its production with a functional layer, not shown in the figures.
  • the membrane 15 can be hydrophilized by a slight oxidation.
  • a functional layer a reactive layer or a layer with catalytic properties can also be used.
  • the sieve then serves - in addition to the filter function - as a microreactor.
  • the functional layer can for this example consist of platinum, palladium or nanocrystalline iron.
  • nanocrystalline iron As a functional layer, there are interesting applications in the field of neutralization of environmental toxins. Such nanoparticles have been reported to neutralize heavy metals, dioxin, PCBs and a variety of other toxicants. As a result, such in the input area of a lab-on-chip system
  • microsieve 1 for use in microfluidics, the finished microsieve 1 comprising: an at least partially p-doped Si substrate 3 with a cutout, a macroporous, n-doped regions 5a, 5b connected to the Si substrate 3 membrane 15, wherein the recess of the Si substrate 3 is arranged to form a cavity 20 directly under the membrane 15.
  • the macroporous membrane 15 preferably has pores or openings with a
  • the macroporous membrane 15 may have trench structures extending across the entire thickness of the membrane 15. It is also possible that the membrane 15 is provided with a functional layer, in particular a reactive layer and / or a catalytically active layer.
  • a functional layer for example, platinum, palladium or nanocrystalline iron is suitable.
  • the manufacture of the microsieve 1 comprises a two-stage etching process, wherein the first etching process is not an electropolishing and creates a macroporous layer 10 on the Si substrate 3, while the second etching process is an electropolishing and a
  • microsieve 1 described above makes it possible to use it in microfluidic systems, such as in lab-on-chip systems, in particular if samples are to be examined directly and without prior processing. Such is the use of the
  • Microsieve 1 suitable for samples especially from (bio) chemical, medical or clinical areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Micromachines (AREA)

Abstract

A microscreen (1) is proposed for filtering particles in microfluidics applications, and a production process thereof. The microscreen (1) comprises an Si substrate (3) which has been p-doped at least in some regions and has a cutout, a macroporous membrane (15) connected to the Si substrate (3) via n-doped regions (5a, 5b), wherein the cutout of the Si substrate (3) is arranged directly below the membrane (15) to form a cavity (20).

Description

Beschreibung description
Titeltitle
Mikrosieb zur Filterung von Partikeln in Mikrofluidik- Anwendungen und dessen HerstellungMicrosieve for filtering particles in microfluidic applications and its production
Stand der TechnikState of the art
Für Anwendungen in Mikrofluidik sind bereits viele mikrostrukturierte Bauteile vorgeschlagen worden. Neben Mikropumpen und Mikroventilen sind weiter auch Mikrosiebe zur Filterung von Partikeln beschrieben worden. So ist beispielsweise aus USFor microfluidic applications many microstructured components have already been proposed. In addition to micropumps and microvalves, microsieves for filtering particles have also been described. For example, from US
2005/0092676 Al ein Mikrofilter bekannt, der aus einer Trennungsschicht und einer diese unterstützenden Trägerschicht besteht. Beide Schichten können dabei porös sein, wobei für die Filtermembran ein anorganisches Material wie Silizium oder organisches Material wie Polymer vorgeschlagen wird. Während auf der Oberseite der Trägerschicht die eigentliche Trennungsschicht als Filtermembran aufgebracht ist, ist die Rückseite der2005/0092676 Al a microfilter known, which consists of a separation layer and a supporting support layer. Both layers may be porous, wherein an inorganic material such as silicon or organic material such as polymer is proposed for the filter membrane. While the actual separation layer is applied as a filter membrane on the upper side of the carrier layer, the back side of the
Trägerschicht offen.Carrier layer open.
Solche nach unten hin offenen Filter können nicht ohne weiteres in entsprechende Mikrofluidiksysteme, etwa wie beim „Lab-on-Chip"-Ansatz, integriert werden.Such filters, which are open at the bottom, can not readily be integrated into corresponding microfluidic systems, such as the "lab-on-chip" approach.
Andererseits sind Membrane aus porösem Silizium mit einer darunter angeordneten Kaverne bekannt, die für sensorische Bauteile vorgesehen sind. Aus der DE 100 46 622 Al ist beispielsweise eine Membransensoreinheit mit einem Träger bekannt, bei der die Thermoelemente auf einer Siliziummembran angeordnet sind. Die Membran weist dabei nano- oder mesoporöse Bereiche auf. Weiter ist unter der Membran eine Isolationswanne zur thermischen Isolierung vorgesehen, wobei die Isolationswanne auch als eine Kaverne ausgebildet sein kann.On the other hand, membranes of porous silicon are known with a cavern arranged underneath, which are provided for sensory components. From DE 100 46 622 Al, for example, a membrane sensor unit with a carrier is known, in which the thermocouples are arranged on a silicon membrane. The membrane has nano- or mesoporous areas. Furthermore, an insulation trough for thermal insulation is provided underneath the membrane, wherein the insulation trough can also be designed as a cavern.
Auch ist es bekannt, unter einer nano- oder mesoporösen Membran eingegrabene Mikrokanäle zu realisieren. So wird ihre Herstellung durch einen zweistufigen elektrochemischen Prozess etwa in der Arbeit „Planar CMOS Compatible Process for the Fabrication of Buried Microchannels in Silicon, Using Porous-Silicon Technology", G. Kaltsas et al., J. MEMS, Vol. 12, No. 6, 2003, 863-872, beschrieben. Dabei wurden die Einzelprozesse „Bildung von porösem Silizium" und „Elektropolitur" nacheinander durchgeführt. Die Porendurchmesser in der Membran waren im Bereich von einigen nm.It is also known to realize buried under a nano- or mesoporous membrane microchannels. So their production is characterized by a two-stage electrochemical process, for example in the work "Planar CMOS Compatible Process for the Fabrication of Buried Microchannels in Silicon, Using Porous-Silicon Technology", G. Kaltsas et al., J. MEMS, Vol. 12, No. 6, 2003, 863- 872. The individual processes "formation of porous silicon" and "electropolishing" were carried out successively, and the pore diameters in the membrane were in the range of a few nm.
Ähnlich wurden in der Arbeit „Multi- Walled Microchannels: Free-Standing Porous Silicon Membranes for Use in μTAS", R. Tjerkstra et al., J. MEMS, Vol. 9, No. 4, 2000, 495-501, Mikrokanäle unter einer mesoporösen Membran hergestellt. Laut der genannten Arbeit waren die Porendurchmesser in der Membran maximal 14 nm groß.Similarly, in the work "Multi-walled Microchannels: Free-Standing Porous Silicon Membranes for Use in μTAS", R. Tjerkstra et al., J. MEMS, Vol. 9, No. 4, 2000, 495-501, microchannels have been disclosed According to the work mentioned, the pore diameters in the membrane were at most 14 nm in size.
Jedoch eignen sich solche, bisher beschriebene nano- oder mesoporöse Membrane nicht oder nur bedingt als mechanische Partikelfilter in mikrofluidischen Systemen. Unter Nanoporen werden allgemein Poren mit durchschnittlichen Porendurchmessern von 2-5 nm verstanden. Mesoporen weisen hingegen durchschnittliche Porendurchmesser von bis zu 50 nm auf. Poren mit durchschnittlichen Porendurchmessern größer als 50 nm werden als Makroporen bezeichnet. Diese Bezeichnungen gelten auch in dieser vorliegenden Schrift.However, such previously described nano- or mesoporous membranes are not or only partially suitable as mechanical particle filters in microfluidic systems. Nanopores are generally understood to mean pores with average pore diameters of 2-5 nm. Mesopores, however, have average pore diameters of up to 50 nm. Pores with average pore diameters greater than 50 nm are referred to as macropores. These designations also apply in this present document.
Bisher bekannte nano- oder mesoporöse Membrane mit kleinen Porendurchmessern von typischerweise unter 2-5 bzw. 14 nm neigen schnell zu Verstopfungen oder Beschädigungen. Eine einfache Elektropolitur unter einer makroporösen Si-Schicht zur Bildung eines Hohlraums unter einer makroporösen Membran ist jedoch nicht ohne weiteres möglich: In Falle von nano- oder mesoporösem Silizium ist der elektrische Widerstand der Si-Struktur (Skelettstruktur) des porösen Gefüges relativ hoch, so dass diese Struktur während eines nachfolgenden Elektropoliturschrittes nicht angegriffen wird. Die Membran bleibt daher erhalten. Hingegen sind im Falle von makroporösem Silizium der elektrische Widerstand geringer. Dadurch kann es während der Elektropolitur zu einem Angriff des porösen Si-Gefüges kommen, und die eigentliche Membran wird zerstört. Die mechanische Stabilität ist also nicht gewährleistet.Previously known nano- or mesoporous membranes with small pore diameters of typically below 2-5 or 14 nm are prone to clogging or damage. However, a simple electropolishing under a macroporous Si layer to form a cavity under a macroporous membrane is not readily possible: in the case of nano- or mesoporous silicon, the electrical resistance of the Si structure (skeletal structure) of the porous structure is relatively high that this structure is not attacked during a subsequent electropolishing step. The membrane is therefore retained. On the other hand, in the case of macroporous silicon, the electrical resistance is lower. This can lead to an attack of the porous Si structure during the electropolishing, and the actual membrane is destroyed. The mechanical stability is therefore not guaranteed.
Es ist Aufgabe der vorliegenden Erfindung, einen Mikrofilter sowie dessen Herstellungsverfahren bereitzustellen, die für Anwendungen in Mikrofluidik, insbesondere für die Integration in Mikrofluidiksysteme, geeignet ist. Diese Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Offenbarang der ErfindungIt is an object of the present invention to provide a microfilter and its production method which is suitable for applications in microfluidics, in particular for integration into microfluidic systems. This object is solved by the features of the independent claims. Obviously the invention
Der Gegenstand mit den Merkmalen der unabhängigen Ansprüche hat gegenüber den bisher bekannten Mikrofiltern den Vorteil, dass er für Anwendungen in der Mikrofluidik optimierte Merkmale wie relativ grosse Porendurchmesser größer als 50 nm, bevorzugterweise im μm-Bereich, insbesondere 1 -5 μm, in einer Membran aufweist. So kann die Makroporen aufweisende Membran mit einem darunterangeordneten Hohlraum als vorgeschalteter Partikelfilter in empfindlichen Fluidiksystemen verwendet werden.The subject matter with the features of the independent claims has the advantage over microfilters known hitherto that it has features optimized for applications in microfluidics, such as relatively large pore diameters greater than 50 nm, preferably in the μm range, in particular 1-5 μm, in a membrane having. Thus, the macroporous membrane with a cavity located therebelow can be used as an upstream particulate filter in sensitive fluidic systems.
Zweckmäßige Weiterbildungen der Erfindung ergeben sich aus weiteren anhängigenAdvantageous developments of the invention will become apparent from other pending
Ansprüchen und aus der Beschreibung.Claims and from the description.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden nachfolgend näher erläutert. Es zeigen:Embodiments of the invention are illustrated in the drawings and are explained in more detail below. Show it:
Die Figuren Ia und Ib ein erstes Ausführungsbeispiel für ein Herstellungsverfahren eines Mikrosiebes, undFigures Ia and Ib a first embodiment of a manufacturing method of a microsieve, and
die Figuren 2a und 2b ein weiteres Ausführungsbeispiel für ein Herstellungsverfahren eines Mikrosiebes in der Seitenansicht.Figures 2a and 2b show a further embodiment of a manufacturing method of a microsieve in the side view.
Es wird für die Herstellung eines Mikrosiebes zur Filterung von Partikeln in Mikrofluidik- Anwendungen ein Verfahren mittels eines zweistufigen Ätzvorgangs mit einem ersten und einem zweiten Ätzprozess vorgeschlagen: a) Bereitstellen eines zumindest bereichsweise p-dotierten Si-Substrates, b) Zumindest bereichsweises Bilden einer Schicht aus n-dotierten Bereichen auf dem Si-Substrat, c) Herstellen einer makroporösen Schicht auf dem Si-Substrat durch einen erstenFor the production of a micro sieve for filtering particles in microfluidic applications, a method is proposed by means of a two-stage etching process with a first and a second etching process: a) provision of an at least partially p-doped Si substrate, b) at least partial formation of a layer of n-doped regions on the Si substrate, c) producing a macroporous layer on the Si substrate by a first
Ätzprozess, und d) Überführen der makroporösen Schicht durch einen zweiten, vom ersten verschiedenen Ätzprozess in eine freitragende Membran durch Erzeugen eines Hohlraums unter der makroporösen Schicht, wobei der zweite Ätzprozess eine Elektropolitur ist. - A -Etching process, and d) transferring the macroporous layer through a second, different from the first, etching process into a cantilevered membrane by creating a cavity under the macroporous layer, the second etching process being electropolishing. - A -
Das grundsätzliche Verfahren wird nun mit einem ersten Ausführungsbeispiel und Fig. Ia und Ib erläutert. Zunächst wird gemäß Schritt a) ein zumindest bereichsweise p- dotiertes Si-Substrat 3 bereitgestellt. Das Subtratmaterial weist bevorzugterweise einen spezifischen Widerstand von p > 1 Ω cm auf.The basic method will now be explained with a first embodiment and Fig. Ia and Ib. First, according to step a), an at least partially p-doped Si substrate 3 is provided. The substrate material preferably has a resistivity of p> 1 Ω cm.
In einem nächsten Schritt b) wird bereichsweise eine Schicht 5 aus n-dotierten Bereichen 5a, 5b auf dem Si-Substrat 3 gebildet. In diesem Fall ist die Schicht 5 eine Maske, genauer eine n-Tiefenmaske, und wird um den späteren Membranbereich angeordnet. Eine Möglichkeit zur Bildung der n-dotierten Bereiche 5a, 5b ist ein Implantationsprozess. Die dadurch erzielte Implantationszone verhält sich in den weiteren Prozessschritten inert und dient zur Aufhängung der späteren Membran.In a next step b), a layer 5 of n-doped regions 5 a, 5 b is formed in regions on the Si substrate 3. In this case, the layer 5 is a mask, more precisely an n-depth mask, and is arranged around the later membrane area. One possibility for forming the n-doped regions 5a, 5b is an implantation process. The implantation zone achieved thereby is inert in the further process steps and serves to suspend the later membrane.
Weiter wird in einem Schritt c) eine makroporöse Schicht 10 auf dem Si-Substrat 3 durch einen ersten Ätzprozess hergestellt, wobei hier als erster Ätzprozess das elektrochemische Ätzen in einem flusssäurehaltigen (HF) Elektrolyten vorgesehen ist.Furthermore, in a step c), a macroporous layer 10 is produced on the Si substrate 3 by a first etching process, the electrochemical etching in a hydrofluoric acid-containing (HF) electrolyte being provided here as the first etching process.
Wie aus Fig. 1 erkennbar, wird dabei die makroporöse Schicht 10 in einem nicht durch die Maske geschützten Bereich, dem späteren Filterbereich 6, hergestellt. Die entgültige Dicke der makroporösen Schicht 10 ist in Fig. 1 a noch nicht erreicht, d.h. die Abbildung in Fig. Ia ist eine Momentaufnahme während des ersten Ätzprozesses.As can be seen from FIG. 1, the macroporous layer 10 is produced in a region not protected by the mask, the later filter region 6. The final thickness of the macroporous layer 10 is not yet reached in Fig. 1a, i. the figure in Fig. Ia is a snapshot during the first etching process.
Bevorzugterweise werden vor der eigentlichen Herstellung der makroporösen Schicht 10 durch Ätzverfahren wie beispielsweise nasschemisches Ätzen in Kalilauge (KOH) oder Reaktives Ionen Ätzen (RIE) Ätzkeime, insbesondere kleine Vertiefungen, bereitgestellt zur Vorstrukturierung der zu erzeugenden Makroporen. Die Ätzkeime als Nukleationskeime unterstützen dabei, dass die Poren die gewünschte Orientierung undPreferably, before the actual production of the macroporous layer 10 by etching methods such as wet chemical etching in potassium hydroxide (KOH) or reactive ion etching (RIE) Ätzkeime, in particular small depressions, provided for pre-structuring of the macropores to be generated. The etch germs as Nukleationskeime support that the pores the desired orientation and
Packungsdichte einnehmen. Auch kann durch diese Vorstrukturierung Einfluss auf den späteren Filtergrad, also auf den mittleren Porendurchmesser, genommen werden. Daneben kann der mittlere Porendurchmesser - wie auch die spätere mittlere Wandstärke -je nach Wahl bzw. Stärke der Substratdotierung eingestellt werden.Occupy packing density. This pre-structuring can also influence the later filter degree, ie the average pore diameter. In addition, the average pore diameter - as well as the later average wall thickness - depending on the choice or strength of Substratdotierung be adjusted.
Die makroporöse Schicht 10 selbst wird dann, wie bereits oben erwähnt, mittels elektrochemischen Ätzens in einem flusssäurehaltigen (HF) Elektrolyten hergestellt. Vorzugsweise wird hierbei als Netzmittel ein organisches Lösungsmittel verwendet. Dieser organische Zusatz erlaubt das Einstellen der HF-Konzentration sowie eine gezielte Beeinflussung der Ausbildung der Makroporen in p-dotiertem Siliziumsubstrat 3. Geeignete Lösungsmitteln sind beispielsweise Dimethylformamid (DMF), Dimethylsulfoxid (DMSO) oder Acetonitril (MeCN). Die Ausbildung der Makroporen erfolgt an den zuvor bereitgestellten Nukleationskeime. Im übrigen wird bevorzugterweise eine HF-Konzentration im Bereich von 1 bis 20 %m (Gewichtsprozent) verwendet.The macroporous layer 10 itself is then, as already mentioned above, produced by electrochemical etching in a hydrofluoric acid (HF) electrolyte. Preferably, an organic solvent is used as the wetting agent. This organic additive allows the adjustment of the HF concentration as well as a targeted influencing of the formation of the macropores in p-doped silicon substrate 3. Suitable solvents are, for example, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) or acetonitrile (MeCN). The formation of the macropores takes place on the previously provided nucleation nuclei. Incidentally, an HF concentration in the range of 1 to 20% m (weight percent) is preferably used.
Die entgültige Dicke der makroporösen Schicht 10, die in einem Schritt d) in eine freitragende Membran 15 überführt wird, liegt bevorzugt im Bereich zwischen 10 und 50 μm. Das Überführen der makroporösen Schicht 10 in eine freitragende Membran 15 wird durch Erzeugen eines Hohlraums 20 unter der Schicht 10 erreicht. Dabei wird derThe final thickness of the macroporous layer 10, which is converted into a self-supporting membrane 15 in a step d), is preferably in the range between 10 and 50 μm. The transfer of the macroporous layer 10 into a cantilevered membrane 15 is achieved by creating a cavity 20 under the layer 10. It is the
Hohlraum 20 durch einen weiteren elektrochemischen Ätzschritt, nämlich durch eine Elektropolitur, erzeugt. Dieser Ätzschritt kann vorteilhaft im selben Ätzmedium wie für die Herstellung der makroporösen Schicht 10 durch eine gezielte Erhöhung der elektrischen Stromdichte durchgeführt werden. Alternativ ist es aber auch möglich, die Elektropolitur in einem speziell auf die Elektropolitur angepassten Ätzmedium durchzuführen. Hierfür bieten sich Mischungen aus höher konzentriertem HF, Alkohol und H2O an, bevorzugterweise mit einer HF-Konzentration um 20 %m oder größer. Dadurch werden Ätzraten von über 200 nm/s erreicht. Mittels der Ätzdauer kann die Tiefe des Hohlraums 20, also die Kavernentiefe, in weiten Bereichen eingestellt werden. So werden Hohlräume 20 bzw. Kavernen mit einer Tiefe von wenigen μm bis über 100 μm möglich.Cavity 20 by a further electrochemical etching step, namely generated by an electropolishing. This etching step can advantageously be carried out in the same etching medium as for the production of the macroporous layer 10 by a specific increase in the electrical current density. Alternatively, it is also possible to carry out the electropolishing in a specially adapted to the electropolishing etching medium. For this purpose, mixtures of highly concentrated HF, alcohol and H 2 O are available, preferably with an HF concentration of 20% m or greater. As a result, etching rates of over 200 nm / s are achieved. By means of the etching time, the depth of the cavity 20, ie the cavern depth, can be adjusted within wide ranges. Thus cavities 20 or caverns with a depth of a few microns to over 100 microns are possible.
Da das Ätzen mittels Elektropolitur ein isotroper Prozess ist, muss durch eine geeignete Maßnahme verhindert werden, dass die Membran 15 bei diesem Ätzschritt einfach vom Substrat 3 herausgelöst wird. Eine solche geeignete Maßnahme stellt die inerte n-dotierte Maske dar, wie sie im Schritt b) gebildet wurde.Since the etching by means of electropolishing is an isotropic process, it must be prevented by a suitable measure that the membrane 15 is simply dissolved out of the substrate 3 in this etching step. One such suitable measure is the inert n-doped mask as formed in step b).
Mit Hilfe der Fig. 2a und 2b wird ein weiteres Ausführungsbeispiel erläutert. Ausgehend von bereits erläutertem Schritt a) wird im Schritt b) wieder eine Schicht 5 aus n-dotierten Bereichen 5a, 5b auf dem Si-Substrat 3 gebildet, wobei nun zunächst imWith the aid of Fig. 2a and 2b, a further embodiment will be explained. Starting from step a) already explained above, a layer 5 of n-doped regions 5a, 5b is again formed on the Si substrate 3 in step b), wherein now first in the
Gegensatz zum ersten Ausführungsbeispiel die n-dotierten Bereiche 5a, 5b ganzflächig auf dem Si-Substrat 3 aufgebracht werden. Dieser Zwischenzustand ist in den Fig. nicht dargestellt. Um das Substrat 3 in den wie in Fig. 2a dargestellten Zustand zu überführen, d.h. in einem Schritt c) eine makroporöse Schicht 10 bereichsweise in der obersten Schichtebene durch einen ersten Ätzprozess herzustellen, wird ein trockenes Ätzverfahren verwendet. Dabei werden mittels einer in den Fig. nicht eingezeichneten zusätzlichen Maske, typischerweise Lackmaske, Trenchöffhungen definiert. Über die Trenchöffhungen werden Trenchstrukturen, die über die gesamte Dicke der Schicht 10 verlaufen, realisiert. Bei diesem Trenchprozess werden die Öffnungen mindestens soweit geätzt, bis sie in das Substrat 3 reichen. Diese Öffnungen, die in dieser Schrift auch als Poren verstanden werden und für die spätere Filterfunktion wesentlich sind, werden alleine durch die Trenchstrukturierung definiert. Mit dieser Vorgehensweise sind beliebige Foltergeometrien möglich, da der getrenchte n-dotierte Filterbereich 6 bei der nun zu erfolgenden Elektropolitur nicht angegriffen wird. Die geometrische Ausgestaltung der Öffnungen, wie etwa die Breite der Öffnungen oder ihre Verteilung in der makroporösen Schicht 10, kann also kontrolliert gesteuert werden. Diese Vorgehensweise eignet sich besonders für die Erzeugung von einem sehr dünnen Sieb.Contrary to the first embodiment, the n-doped regions 5a, 5b are applied over the entire surface of the Si substrate 3. This intermediate state is not shown in the figures. In order to convert the substrate 3 into the state shown in FIG. 2 a, ie to produce a macroporous layer 10 in regions in the uppermost layer plane by a first etching process in a step c), a dry layer is formed Etching method used. In this case, trench openings are defined by means of an additional mask not shown in the figures, typically resist mask. Trench structures that run the entire thickness of the layer 10 are realized via the trench openings. In this trench process, the openings are etched at least until they reach into the substrate 3. These openings, which in this document are also understood as pores and are essential for the subsequent filter function, are defined solely by the trench structuring. With this approach, any torture geometries are possible because the trimmed n-doped filter region 6 is not attacked in the now to be carried out electropolishing. The geometric configuration of the openings, such as the width of the openings or their distribution in the macroporous layer 10, so it can be controlled controlled. This procedure is particularly suitable for the production of a very thin sieve.
Anschließend wird, wie aus dem ersten Ausführungsbeispiel bekannt, in einem Schritt d) ein Hohlraum 20 unter der makroporösen Schicht 10 mittels Elektropolitur generiert.Subsequently, as is known from the first exemplary embodiment, in a step d) a cavity 20 is generated under the macroporous layer 10 by means of electropolishing.
In allen Ausführungsbeispielen ist es je nach Bedarf sinnvoll und möglich, zusätzlich zu den Schritten a) bis d) die Membran 15 nach ihrer Herstellung mit einer in den Figuren nicht dargestellten Funktionsschicht zu versehen. Weiter kann die Membran 15 durch eine leichte Oxidation hydrophilisiert werden. Als Funktionsschicht kann auch eine reaktive Schicht bzw. eine Schicht mit katalytischen Eigenschaften verwendet werden. Das Sieb dient dann - zusätzlich zur Filterfunktion - als ein Mikroreaktor. Die Funktionsschicht kann hierfür beispielsweise aus Platin, Paladium oder nanokristallinem Eisen bestehen.In all embodiments, it is useful and possible depending on requirements, in addition to the steps a) to d) to provide the membrane 15 after its production with a functional layer, not shown in the figures. Further, the membrane 15 can be hydrophilized by a slight oxidation. As a functional layer, a reactive layer or a layer with catalytic properties can also be used. The sieve then serves - in addition to the filter function - as a microreactor. The functional layer can for this example consist of platinum, palladium or nanocrystalline iron.
Im Falle der Verwendung von nanokristallinem Eisen als Funktionsschicht bieten sich interessante Anwendungsmöglichkeiten im Bereich der Neutralisierung von Umweltgiften an. Es wurde berichtet, dass derartige Nanopartikeln neutralisierend auf Schwermetalle, Dioxin, PCB und eine Vielzahl von weiteren Giftstoffen wirken. Hierdurch können sowohl im Eingangsbereich eines Lab-on-Chip Systems derartigeIn the case of the use of nanocrystalline iron as a functional layer, there are interesting applications in the field of neutralization of environmental toxins. Such nanoparticles have been reported to neutralize heavy metals, dioxin, PCBs and a variety of other toxicants. As a result, such in the input area of a lab-on-chip system
Gifte neutralisiert werden, als auch eventuell während der Analyse entstehende giftige Reaktionsprodukte. Es wird festgestellt, dass mit dem erläuterten Verfahren ein Mikrosieb 1 zur Anwendung in der Mikrofluidik hergestellt wird, wobei das fertige Mikrosieb 1 umfasst: ein zumindest bereichsweise p-dotiertes Si-Substrat 3 mit einer Aussparung, - eine makroporöse, über n-dotierte Bereiche 5a, 5b mit dem Si-Substrat 3 verbundene Membran 15, wobei die Aussparung des Si-Substrates 3 zur Bildung eines Hohlraums 20 direkt unter der Membran 15 angeordnet ist.Poisons are neutralized as well as any resulting during the analysis toxic reaction products. It is stated that the method described produces a microsieve 1 for use in microfluidics, the finished microsieve 1 comprising: an at least partially p-doped Si substrate 3 with a cutout, a macroporous, n-doped regions 5a, 5b connected to the Si substrate 3 membrane 15, wherein the recess of the Si substrate 3 is arranged to form a cavity 20 directly under the membrane 15.
Die makroporöse Membran 15 weist dabei bevorzugt Poren bzw. Öffnungen mit einemThe macroporous membrane 15 preferably has pores or openings with a
Durchmesser von 1 bis 5 μm auf. In einer besonderen Ausführungsform kann die makroporöse Membran 15 Trenchstrukturen, die über die gesamte Dicke der Membran 15 verlaufen, aufweisen. Auch ist es möglich, dass die Membran 15 mit einer Funktionsschicht, insbesondere einer reaktiven Schicht und/oder einer katalytisch wirkenden Schicht, versehen ist. Als Material der Funktionsschicht eignet sich beispielsweise Platin, Paladium oder nanokristallines Eisen.Diameter of 1 to 5 microns. In a particular embodiment, the macroporous membrane 15 may have trench structures extending across the entire thickness of the membrane 15. It is also possible that the membrane 15 is provided with a functional layer, in particular a reactive layer and / or a catalytically active layer. As a material of the functional layer, for example, platinum, palladium or nanocrystalline iron is suitable.
Die Herstellung des Mikrosiebs 1 umfasst ein zweistufiges Ätzverfahren, wobei der erste Ätzprozess keine Elektropolitur ist und eine makroporöse Schicht 10 auf dem Si- Substrat 3 schafft, während der zweite Ätzprozess eine Elektropolitur ist und eineThe manufacture of the microsieve 1 comprises a two-stage etching process, wherein the first etching process is not an electropolishing and creates a macroporous layer 10 on the Si substrate 3, while the second etching process is an electropolishing and a
Aussparung unter der makroporösen Schicht 10 bildet.Recess under the macroporous layer 10 forms.
Mit dem oben beschriebenen Mikrosieb 1 wird seine Anwendung in mikrofluidischen Systemen, wie in Lab-on-Chip Systemen, ermöglicht, insbesondere wenn Proben direkt und ohne vorherige Aufbereitung untersucht werden sollen. So ist der Einsatz desThe microsieve 1 described above makes it possible to use it in microfluidic systems, such as in lab-on-chip systems, in particular if samples are to be examined directly and without prior processing. Such is the use of the
Mikrosiebes 1 für Proben besonders aus (bio-)chemischen, medizinischen bzw. klinischen Bereichen geeignet. Microsieve 1 suitable for samples especially from (bio) chemical, medical or clinical areas.

Claims

Ansprüche claims
1. Mikrosieb (1) zur Filterung von Partikeln in Mikrofluidik- Anwendungen, umfassend ein zumindest bereichsweise p-dotiertes Si-Substrat (3) mit einer Aussparung, - eine makroporöse, über n-dotierte Bereiche (5a, 5b) mit dem Si-Substrat (3) verbundene Membran (15), wobei die Aussparung des Si-Substrates (3) zur Bildung eines Hohlraums (20) direkt unter der Membran (15) angeordnet ist.1. microsieve (1) for filtering particles in microfluidic applications, comprising an at least partially p-doped Si substrate (3) with a recess, - a macroporous, over n-doped regions (5a, 5b) with the Si Substrate (3) connected membrane (15), wherein the recess of the Si substrate (3) for forming a cavity (20) directly under the membrane (15) is arranged.
2. Mikrosieb nach Anspruch 1, dadurch gekennzeichnet, dass die makroporöse Membran2. microsieve according to claim 1, characterized in that the macroporous membrane
(15) Poren mit einem Durchmesser von 1 bis 5 μm aufweist.(15) has pores with a diameter of 1 to 5 microns.
3. Mirkosieb nach Anspruch 1, dadurch gekennzeichnet, dass die makroporöse Membran (15) Trenchstrukturen, die über die gesamte Dicke der Membran (15) verlaufen, aufweist.3. Mirkosieb according to claim 1, characterized in that the macroporous membrane (15) has trench structures which extend over the entire thickness of the membrane (15).
4. Mikrosieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Membran (15) mit einer Funktionsschicht, insbesondere einer reaktiven Schicht und/oder einer katalytisch wirkenden Schicht, versehen ist.4. Microsieve according to one of claims 1 to 3, characterized in that the membrane (15) is provided with a functional layer, in particular a reactive layer and / or a catalytically active layer.
5. Mikrosieb nach Anspruch 4, dadurch gekennzeichnet, dass die Funktionsschicht aus Platin, Paladium oder nanokristallines Eisen besteht.5. microsieve according to claim 4, characterized in that the functional layer consists of platinum, palladium or nanocrystalline iron.
6. Verfahren zur Herstellung eines Mikrosiebs (1) zur Anwendung in der Mikrofluidik mittels eines zweistufigen Ätzvorgangs mit einem ersten und einem zweiten6. A method for producing a microsieve (1) for use in microfluidics by means of a two-stage etching process with a first and a second
Ätzprozess: a) Bereitstellen eines zumindest bereichsweise p-dotierten Si-Substrates (3), b) Zumindest bereichsweises Bilden einer Schicht (5) aus n-dotierten Bereichen (5a, 5b) auf dem Si-Substrat (3), c) Herstellen einer makroporösen Schicht (10) auf dem Si-Substrat (3) durch einen ersten Ätzprozess, und d) Überführen der makroporösen Schicht (10) durch einen zweiten, vom ersten verschiedenen Ätzprozess in eine freitragende Membran (15) durch Erzeugen eines Hohlraums (20) unter der makroporösen Schicht (10), wobei der zweite Ätzprozess eine Elektropolitur ist. Etching process: a) providing an at least partially p-doped Si substrate (3), b) at least partially forming a layer (5) of n-doped regions (5a, 5b) on the Si substrate (3), c) producing a macroporous layer (10) on the Si substrate (3) by a first etching process, and d) transferring the macroporous layer (10) through a second, different from the first etching process into a cantilevered membrane (15) by creating a cavity (20 ) under the macroporous layer (10), the second etching process being electropolishing.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zwischen den Schritten b) und c) durch zusätzliche Ätzverfahren wie beispielsweise nasschemisches Ätzen in KOH oder Reaktives Ionen Ätzen (RIE) Ätzkeime, insbesondere kleine Vertiefungen, bereitgestellt werden zur Vorstrukturierung der zu erzeugenden Makroporen vor der eigentlichen Herstellung der makroporösen Schicht (10).7. The method according to claim 6, characterized in that between the steps b) and c) by additional etching methods such as wet chemical etching in KOH or reactive ion etching (RIE) Ätzkeime, in particular small depressions are provided for pre-structuring of the macropores to be generated before the actual production of the macroporous layer (10).
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass im Schritt b) die Schicht (5) aus n-dotierten Bereichen zur Erzeugung einer Maske nur bereichsweise auf dem Si-Substrat (3) gebildet wird, und im Schritt c) die makroporöse Schicht (10) mittels elektrochemischen Ätzens in einem flusssäurehaltigen Elektrolyten hergestellt wird, wobei ein organisches Lösungsmittel wie beispielsweise Dimethylformamid (DMF), Dimethylsulfoxid (DMSO) oder Acetonitril (MeCN) als Netzmittel verwendet wird.8. The method according to claim 6 or 7, characterized in that in step b) the layer (5) of n-doped regions for generating a mask only partially on the Si substrate (3) is formed, and in step c) the macroporous layer (10) is produced by means of electrochemical etching in a hydrofluoric acid-containing electrolyte, wherein an organic solvent such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO) or acetonitrile (MeCN) is used as wetting agent.
9. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass im Schritt b) die Schicht (5) aus n-dotierten Bereichen durchgängig auf dem Si-Substrat (3) gebildet wird und anschließend eine Maske aus beispielsweise Lack aufgebracht wird, und im Schritt c) die makroporöse Schicht (10) mittels eines trockenen Ätzverfahrens hergestellt wird, wobei Trenchstrukturen, die über die gesamte Dicke der Schicht (10) verlaufen, realisiert werden.9. The method according to claim 6 or 7, characterized in that in step b) the layer (5) of n-doped regions is formed continuously on the Si substrate (3) and then a mask of, for example, paint is applied, and in Step c) the macroporous layer (10) is produced by means of a dry etching process, whereby trench structures which extend over the entire thickness of the layer (10) are realized.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichet, dass zusätzlich zu den Schritten a) bis d) die Membran (15) mit einer Funtionsschicht aus beispielsweise Platin, Paladium oder nanokristallinem Eisen versehen wird. 10. The method according to any one of claims 6 to 9, characterized in that in addition to the steps a) to d), the membrane (15) is provided with a funtionsschicht of, for example, platinum, palladium or nanocrystalline iron.
EP07787543A 2006-09-04 2007-07-13 Microscreen for filtering particles in microfluidics applications and production thereof Withdrawn EP2063981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006041396A DE102006041396A1 (en) 2006-09-04 2006-09-04 Microsieve for filtering particles in microfluidic applications and its production
PCT/EP2007/057275 WO2008028717A1 (en) 2006-09-04 2007-07-13 Microscreen for filtering particles in microfluidics applications and production thereof

Publications (1)

Publication Number Publication Date
EP2063981A1 true EP2063981A1 (en) 2009-06-03

Family

ID=38537799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787543A Withdrawn EP2063981A1 (en) 2006-09-04 2007-07-13 Microscreen for filtering particles in microfluidics applications and production thereof

Country Status (4)

Country Link
US (1) US20100296986A1 (en)
EP (1) EP2063981A1 (en)
DE (1) DE102006041396A1 (en)
WO (1) WO2008028717A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
WO2011060193A1 (en) * 2009-11-11 2011-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
JP2014512673A (en) 2011-03-08 2014-05-22 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Efficient black silicon photovoltaic device with improved blue sensitivity
DE102014207774B4 (en) * 2014-04-25 2015-12-31 Robert Bosch Gmbh Method and device for purifying biological molecules
DE102014209193B4 (en) * 2014-05-15 2015-12-31 Robert Bosch Gmbh A microfluidic device for detecting cells from a fluid, method of operating such a device and methods of making such a device
DE102014209188B4 (en) 2014-05-15 2016-01-14 Robert Bosch Gmbh Apparatus and method for processing a biological sample and analysis system for analyzing a biological sample
US11161066B2 (en) 2018-09-13 2021-11-02 International Business Machines Corporation Micro-machined filter for magnetic particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100106C1 (en) * 1991-01-04 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752208A1 (en) 1997-11-25 1999-06-02 Bosch Gmbh Robert Thermal membrane sensor and method for its manufacture
DE10030352A1 (en) 2000-06-21 2002-01-10 Bosch Gmbh Robert Micromechanical component, in particular sensor element, with a stabilized membrane and method for producing such a component
DE10046622B4 (en) * 2000-09-20 2010-05-20 Robert Bosch Gmbh Method for producing a membrane sensor unit and membrane sensor unit
DE10138759A1 (en) * 2001-08-07 2003-03-06 Bosch Gmbh Robert Method for producing a semiconductor component and semiconductor component, in particular membrane sensor
US7282148B2 (en) * 2003-10-30 2007-10-16 International Business Machines Corporation Porous silicon composite structure as large filtration array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100106C1 (en) * 1991-01-04 1992-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De

Also Published As

Publication number Publication date
US20100296986A1 (en) 2010-11-25
DE102006041396A1 (en) 2008-03-06
WO2008028717A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
DE69434999T2 (en) METHOD FOR PRODUCING A MEMBRANE
EP2063981A1 (en) Microscreen for filtering particles in microfluidics applications and production thereof
DE602005000397T2 (en) Nanostructured surfaces with variable permeability
Sumida et al. Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids
EP3215895A2 (en) Device for carrying out a capillary nanoprinting method, a method for carrying out capillary nanoprinting using the device, products obtained according to the method and use of the device
EP1423330B1 (en) Semiconductor component, especially a membrane sensor, and method for manufacturing it
EP2260126A2 (en) Nanowires and method for the production thereof
DE102012021222B4 (en) Process for producing a nanoporous layer on a substrate
DE19752208A1 (en) Thermal membrane sensor and method for its manufacture
EP1167934A1 (en) Micromechanical component, especially sensorelement, with a stabilized membrane and method for making it
EP2696963A1 (en) Macroporous filtration membrane
KR102169831B1 (en) A substrate for surface enhanced raman scattering and fabricating method of the same
WO2002084272A2 (en) Pair of measuring electrodes, biosensor comprising such a pair of measuring electrodes and method for the production thereof
EP3056260A1 (en) Method for producing a separating membrane and separating membrane that can be produced by said method
DE102015101425B4 (en) Process for producing a component based on a structurable substrate with a three-dimensional membrane structure having pores in the nm range
WO2003013708A2 (en) Hybrid membrane, method for the production thereof and use of said membrane
EP1858629B1 (en) Process for producing a polymer membrane, and polymer membrane
EP2496938A1 (en) Chip produced at wafer level for liquid chromatography and method for the production thereof
WO2011064716A2 (en) Method for producing at least one cavity in a microelectronic and/or micromechanical structure and a sensor or actuator comprising such a cavity
DE10046621B4 (en) Method for producing a membrane sensor array and membrane sensor array
DE102004046310A1 (en) Device for gas separation and method for producing such a device
DE10229339B4 (en) Chromatographic separation device
DE102009006065A1 (en) Microfluidic device used for separating organic matter from biological material surrounding fluid or cells from biological fluids, preferably blood, comprises structured substrate and microporous membrane
DE19628052C1 (en) Sensor and / or separating element and method for its production and use thereof
DE10157070A1 (en) Arrangement used as a biochip for the simultaneous detection of different biochemical materials, comprises thin polymer layer passages in which ion channels are anchored using a thin planar membrane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203