EP2051027B1 - Installation de pompe à chaleur - Google Patents

Installation de pompe à chaleur Download PDF

Info

Publication number
EP2051027B1
EP2051027B1 EP08018307.2A EP08018307A EP2051027B1 EP 2051027 B1 EP2051027 B1 EP 2051027B1 EP 08018307 A EP08018307 A EP 08018307A EP 2051027 B1 EP2051027 B1 EP 2051027B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat exchanger
compressor
valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08018307.2A
Other languages
German (de)
English (en)
Other versions
EP2051027A2 (fr
EP2051027A3 (fr
Inventor
Steffen Smollich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP2051027A2 publication Critical patent/EP2051027A2/fr
Publication of EP2051027A3 publication Critical patent/EP2051027A3/fr
Application granted granted Critical
Publication of EP2051027B1 publication Critical patent/EP2051027B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a heat pump system.
  • Heat pumps for heating heating water have been produced and marketed for years.
  • the provision of heating heat in heat pumps is done by the condensation of refrigerant under high pressure and thus at high temperature, while the heat to a heat transfer medium, such as heating water, will give.
  • the liquefied refrigerant is then in a throttle body, for example, an expansion valve, relaxed and then evaporates while absorbing ambient heat in the evaporator of the heat pump.
  • the refrigerant vapor is compressed by the compressor of the heat pump, so that it can then be liquefied again in the condenser of the heat pump.
  • the heat pump for cooling the heat transfer medium such as the "heating water” are used.
  • the "heating water” then flows as it flows through the space-heating surfaces, which are in cooling mode to space-cooling surfaces, heat from the room, which is then delivered to the working in the cooling operation as a condenser evaporator heat pump, so that the heating water is cooled.
  • a disadvantage of reversible heating heat pumps for heating and cooling is that the direction of flow of the heat exchangers on the refrigerant side changes when the refrigerant circuit is reversed.
  • the flow direction on the secondary side where either (heating) water or air flows, remains unchanged Reversing the refrigeration circuit from a countercurrent heat exchanger, a DC heat exchanger with reduced efficiency and increased mean temperature distance between the refrigerant and water or air. This reduces the coefficient of performance of the heat pump in one of the two operating modes.
  • Reversible heating heat pumps are therefore generally optimized for either heating or cooling operation and only achieve modest performance figures in the other operating mode.
  • DE 10 2005 061 480 B3 shows a heat pump system with a refrigerant circuit, a compressor, a first heat exchanger, a throttle body, a second heat exchanger and a 4-2-way valve unit for switching between a heating mode and a cooling mode.
  • the flow direction of the refrigerant located in the refrigerant circuit is switched such that the first heat exchanger in the heating mode for liquefying the refrigerant and in the cooling mode for vaporizing the refrigerant is used.
  • the second heat exchanger is used in the heating mode for evaporating the refrigerant and in the cooling mode for liquefying the refrigerant.
  • the first heat exchanger is connected in the refrigerant circuit such that it works in both modes as a countercurrent heat exchanger.
  • JP H10 73334 A discloses a heat pump system according to the preamble of claim 1. It is therefore an object of the invention to provide a heat pump system, both in heating and cooling operation works effectively.
  • a heat exchanger which operates in the heating mode as an evaporator and operates in the cooling mode as a condenser, are flowed through in both modes of both refrigerant and, for example, heating water in the same direction, so that the heat exchanger in both modes as ( Cross) countercurrent heat exchanger can work, which causes an improvement in the effectiveness.
  • Fig. 1 shows a schematic representation of a heat pump system according to an embodiment of the invention.
  • the heat pump system has a compressor 1, a first heat exchanger (condenser) 2, a second heat exchanger (evaporator) 3, a 4-2-way valve 4, optionally a recuperator or an internal heat exchanger 5, optionally an economizer 6, optionally an exchanger 7 , two expansion valves 9, 19, a filter drier 10, a collector 11, a sight glass 12, and valves 13-18, 20, and 21.
  • the valves 13-18, 20 and 21 may be designed as check valves, ie as a single-flow valve.
  • the output 1a of the compressor 1 is coupled to a first port 4a of the 4-2-way valve 4.
  • a second connection 4b of the 4-2-way valve 4 is coupled to a port of the recuperator 5.
  • a third port 4c of the 4-way valve 4 is coupled to an inlet 1b of the compressor 1.
  • a fourth port 4d of the 4-way valve 4 is coupled to a valve 13 and a valve 14.
  • the valve 14 is coupled to both the condenser 2 and the valve 16.
  • the valve 13 is coupled to both the condenser 2 and the valve 15.
  • a collector 11 and a filter drier 10 are arranged.
  • the filter drier 10 is coupled both to an electronic expansion valve 9 and to the recuperator 5.
  • a port 1 c of the compressor 1 is coupled to an economizer 6, which in turn is arranged in series with the electronic expansion valve 9.
  • the valve 16 is coupled to both a sight glass 12 and an electronic expansion valve 19.
  • the sight glass 12 is in turn coupled to the economizer 6 and in series thereto with a defrosting length 7.
  • the Ableylange 7 is in turn coupled to a port of the recuperator 5.
  • the electronic expansion valve 19 is coupled both to a valve 17 and to another sight glass 23.
  • injection capillaries 22 are provided, which are coupled to both the evaporator 3 and with a valve 20.
  • a valve 18 is arranged, which in turn is coupled to the evaporator and a valve 21.
  • the recuperator is coupled to both a valve 20 and a valve 21.
  • the heat pump system according to the first embodiment can be operated in two modes, namely, a heating mode HB and a cooling mode KU.
  • the heating mode HB the heating heat is provided by a condensation of refrigerant under a high pressure and thus a high temperature, while the heat contained in the refrigerant is discharged to a heat transfer medium such as heating water.
  • a heat transfer medium such as heating water.
  • the liquefied refrigerant is decompressed by the valve 19 and evaporates while absorbing ambient heat in the evaporator 3.
  • the refrigerant vapor is compressed in the compressor 1 and then forwarded to the condenser.
  • the valve 19 serves as an expansion valve in the cooling and heating modes.
  • Fig. 2 shows a schematic representation of a heat pump system of Fig. 1 in a heating mode.
  • the flow direction of the refrigerant is indicated by arrows.
  • the compressor 1 the refrigerant flows to the left in the port 4a of the 4-way valve 4, where it emerges from the right port 4d and flows upward to the check valve 14.
  • the check valve 13 is closed.
  • the refrigerant flows through the first heat exchanger 2, which operates in the heating operation HB as a condenser.
  • the refrigerant flows to the check valve 15 and from there to the collector 11, via the filter drier 10 and on to a connection of the recuperator 5. From there, the refrigerant flows through the Ab (2004)lange 7, through the economizer.
  • the refrigerant flows through the check valve 17 and the injection capillaries 22 through the second heat exchanger 3, which operates in the heating operation as an evaporator. Subsequently, the refrigerant flows through the check valve 21 and again through the recuperator 5 and into the left inlet 4b of the 4-2 valve 4 and from there again through the central outlet 4c and finally to the compressor 1.
  • Fig. 3 shows a schematic representation of the heat pump system of Fig. 1 in a cooling mode.
  • the flow direction of the coolant is again through Arrows displayed.
  • the coolant flows out of the port 1a and bends to the left. to get into the port 4a of the 4-2-way valve 4, where it exits from the left outlet 4b again and flows through the recuperator 5 via the check valve 20 to the second heat exchanger 3, which serves as a condenser in the cooling operation.
  • the refrigerant flows via the check valve 18 and the sight glass 23 to the electronic expansion valve 19 to the valve 16.
  • the coolant flows to the first heat exchanger 2, which operates as an evaporator in the cooling mode.
  • the coolant can not turn right to the check valve 14 and flow through there, because the check valve 14 is blocked for this flow direction.
  • the refrigerant flows through the first heat exchanger 2 and from there through the check valve 13 back to the right input 4d of the 4-2-way valve 4 to again flow through the central outlet 4c back to the inlet 1b of the compressor 1.
  • a switching of the refrigerant circuit can be effected without causing a reversal of the refrigerant flow through the evaporator, so that the evaporator always works as a countercurrent evaporator.
  • a Umschafteeininheit is arranged in front of the evaporator and a switching unit after the evaporator.
  • the switching unit before the evaporator can be composed of the two check valves 20, 21, while the second switching unit behind the evaporator can be composed of the check valves 17 and 18.
  • the two paths B. C are each arranged parallel to the evaporator, By the first and second switching unit can ensure that the refrigerant flows through the evaporator always in one direction.
  • Another mode namely the Kreisumlotabtauung can be activated in the same manner as the cooling operation during the heating operation, while the fan L1 of the second heat exchanger 3 is turned off.
  • the internal heat exchanger described during the heating operation namely the economizer 6, the recuperator 5 and the Ableylange are only optional.
  • the recuperator 5 serves to overheat the suction gas flowing to the compressor 1 during the heating operation.
  • the economizer 6 is used during the heating operation to evaporate a partial volume flow of the liquid refrigerant by absorbing energy from the main volume flow of the supercooled refrigerant before it is injected into the compressor 1.
  • the already compressed by a portion of the total pressure ratio pc / p0 main volume flow of the refrigerant can be intercooled, If the inner heat exchanger is not needed, then a direct connection between the filter drier and the sight glass must be provided.
  • the two heat exchangers 2, 3 described above can each be used as a plate heat exchanger, which is acted upon by water or a heat-antifreeze mixture on the secondary side, as a fin tube heat exchanger, which is acted upon by air on the secondary side, or as any air Be configured refrigerant heat exchanger.
  • the compressor 1 described above may be a scroll compressor or a scroll compressor designed for post-injection of vapor refrigerant.
  • the compressor may also be configured as a single-stage reciprocating compressor, as a two-stage reciprocating compressor, as a single-stage rotary piston compressor, or as a two-stage rotary piston compressor.
  • the heat pump system described above may be configured as an air / water heat pump, an air / air heat pump, a brine / water heat pump, or a water / water heat pump.
  • the refrigerant used can be HFC refrigerants, hydrocarbons or CO 2 .
  • the described 4-2-way unit or 4-2-way valve unit 4 may also be formed by individual valves with appropriate diversion such as pipes and T-pieces.

Claims (6)

  1. Système de pompe à chaleur avec
    un compresseur (1), un premier échangeur thermique (2), un deuxième échangeur thermique (3) et un répartiteur 4/2 voies (4) pour la commutation entre un premier et un deuxième mode de fonctionnement, lorsque le sens d'écoulement du liquide de refroidissement circulant dans le circuit de refroidissement peut être commuté de sorte que le premier échangeur thermique (2) liquéfie le liquide de refroidissement dans le premier mode de fonctionnement et le vaporise dans le deuxième mode de fonctionnement et que le deuxième échangeur thermique (3) vaporise le liquide de refroidissement dans le premier mode de fonctionnement et le liquéfie dans le deuxième mode de fonctionnement,
    caractérisé en ce que, un premier appareil de commutation (20, 21) est situé devant et un deuxième appareil de commutation (18, 17) derrière le deuxième échangeur thermique (3) et une première et une deuxième voie (A, B) sont parallèles au deuxième échangeur thermique,
    où le premier et le deuxième appareil de commutation (20, 21, 17, 18) sont configurés de sorte que le sens d'écoulement au niveau du deuxième échangeur thermique (3) reste inchangé indépendamment du sens d'écoulement du liquide de refroidissement dans l'échangeur thermique 3,
    où le compresseur est configuré en tant que compresseur Scroll ou compresseur Scroll conçu pour la post-injection de liquide de refroidissement vaporisé,
    un récupérateur (5) pour la surchauffe du gaz d'aspiration s'écoulant vers le compresseur (1) au cours du premier et/ou du deuxième mode de fonctionnement
    et un économiseur (6) pour la compression d'un débit volumique partiel du liquide de refroidissement s'écoulant dans le premier ou le deuxième mode de fonctionnement pour l'absorption de l'énergie du débit volumique principal du liquide de refroidissement sous-refroidi, avant son injection dans le compresseur (1).
  2. Système de pompe à chaleur selon la revendication 1, où le premier appareil de commutation est doté d'une première soupape (20) et d'une deuxième soupape (21) dans la première voie (A) et où la première et la deuxième soupape (20, 21) sont synchronisées.
  3. Système de pompe à chaleur selon les revendications précédentes, où le deuxième appareil de commutation est doté d'une troisième soupape (17) et d'une quatrième soupape (18) dans la deuxième voie (B) et où la troisième et la quatrième soupape (17, 18) sont synchronisées.
  4. Système de pompe à chaleur selon l'une des revendications 1-3, où le premier ou le deuxième échangeur thermique (2, 3) est un échangeur thermique à plaques entraîné à l'eau ou un mélange eau-antigel du côté secondaire, un échangeur thermique à tube-ailettes entraîné à l'air du côté secondaire ou encore un échangeur thermique air/liquide de refroidissement au choix.
  5. Système de pompe à chaleur selon d'une des revendications 1 à 4, où le compresseur (1) est configuré en tant que compresseur à piston à un ou deux étages, en tant que compresseur à piston à deux étages ou en tant que compresseur à piston rotatif à un ou deux étages.
  6. Système de pompe à chaleur selon l'une des revendications précédentes, où le liquide de refroidissement est un liquide de refroidissement H-HFC, un hydrocarbure ou du CO2.
EP08018307.2A 2007-10-19 2008-10-20 Installation de pompe à chaleur Active EP2051027B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007050469A DE102007050469A1 (de) 2007-10-19 2007-10-19 Wärmepumpenanlage

Publications (3)

Publication Number Publication Date
EP2051027A2 EP2051027A2 (fr) 2009-04-22
EP2051027A3 EP2051027A3 (fr) 2014-11-19
EP2051027B1 true EP2051027B1 (fr) 2018-05-16

Family

ID=40239791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018307.2A Active EP2051027B1 (fr) 2007-10-19 2008-10-20 Installation de pompe à chaleur

Country Status (2)

Country Link
EP (1) EP2051027B1 (fr)
DE (1) DE102007050469A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494439B (zh) * 2011-12-07 2013-07-24 南京大学 一种光伏光热蓄能热泵系统
CN110645736A (zh) * 2019-06-28 2020-01-03 江苏雪龙新能源科技有限公司 直流变频二氧化碳热泵冷热机组
DE102022211369A1 (de) 2022-10-26 2024-05-02 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zur Klimatisierung eines Gebäudes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324844A (ja) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd 6方向切替弁及びそれを用いた冷凍装置
JPH1073334A (ja) * 1996-08-28 1998-03-17 Sanyo Electric Co Ltd 冷凍装置
JP4273588B2 (ja) * 1999-08-30 2009-06-03 ダイキン工業株式会社 空気調和装置の冷媒回路
JP2003042583A (ja) * 2001-07-27 2003-02-13 Saginomiya Seisakusho Inc 空気調和機の制御装置及び空気調和機
US7257955B2 (en) * 2004-09-08 2007-08-21 Carrier Corporation Discharge valve to increase heating capacity of heat pumps
DE102005061480B3 (de) 2005-12-22 2007-04-05 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenanlage
JP5309424B2 (ja) * 2006-03-27 2013-10-09 ダイキン工業株式会社 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102007050469A1 (de) 2009-04-23
EP2051027A2 (fr) 2009-04-22
EP2051027A3 (fr) 2014-11-19

Similar Documents

Publication Publication Date Title
DE102005061480B3 (de) Wärmepumpenanlage
DE102007028252B4 (de) Kältemittelkreisvorrichtung mit Ejektorpumpe
DE102007001878B4 (de) Ejektorpumpen-Kühlkreisvorrichtung
DE60123816T2 (de) Umkehrbare dampfverdichtungsanordnung
DE19813674C1 (de) Vorrichtung und Verfahren zum Heizen und Kühlen eines Nutzraumes eines Kraftfahrzeuges
DE102006014867A1 (de) Ejektorpumpenkühlkreis
DE102007051193A1 (de) Kältekreislaufvorrichtung
DE102007019563A1 (de) Rohrleitungskonstruktion mit Innenwärmetauscher und Kühlkreisvorrichtung damit
EP1876402A2 (fr) Pompe à chaleur avec un dispositif de thermorégulation
EP3344931B1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
DE3422391A1 (de) Kaelte erzeugende vorrichtung
DE102017211256B4 (de) Kälteanlage für ein Fahrzeug mit einem einen Wärmeübertrager aufweisenden Kältemittelkreislauf
EP2026019A2 (fr) Installation d'équilibrage de la température à base de pompe thermique
DE3600075A1 (de) Kaeltemaschine mit kaeltemittelvorkuehlung
WO2009141282A2 (fr) Appareil frigorifique à stockage du fluide frigorigène dans le condenseur et procédé correspondant
DE10213339A1 (de) Wärmepumpe zum gleichzeitigen Kühlen und Heizen
EP2051027B1 (fr) Installation de pompe à chaleur
EP0021205A2 (fr) Procédé de compression-absorption hybride pour pompes à chaleur ou machine frigorifique
DE102008051510B4 (de) Kältekreislaufvorrichtung
DE3843045A1 (de) Klimatisierungssystem
EP1882888A1 (fr) Système de pompe à chaleur, notamment pour climatisation d'un bâtiment
DE19832682C2 (de) Abtaueinrichtung für einen Verdampfer einer Wärmepumpe oder eines Klimageräts
EP3491302B1 (fr) Système de pompe à chaleur utilisant du co2 comme premier fluide de pompe à chaleur et de l'eau comme deuxième fluide de pompe à chaleur
DE102008049896A1 (de) Luftwärmepumpe und Lamellenluftwärmetauscher sowie Verfahren zu deren Betrieb
DE102005001928A1 (de) Heisswasserliefervorrichtung mit einem Wärmepumpenkreis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 13/00 20060101AFI20141014BHEP

17P Request for examination filed

Effective date: 20150519

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: MK

Extension state: AL

Extension state: RS

Extension state: BA

17Q First examination report despatched

Effective date: 20170215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016080

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 999953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181020

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231019

Year of fee payment: 16

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20231020

Year of fee payment: 16

Ref country code: CH

Payment date: 20231102

Year of fee payment: 16

Ref country code: AT

Payment date: 20231020

Year of fee payment: 16