EP2051027B1 - Heat pump assembly - Google Patents

Heat pump assembly Download PDF

Info

Publication number
EP2051027B1
EP2051027B1 EP08018307.2A EP08018307A EP2051027B1 EP 2051027 B1 EP2051027 B1 EP 2051027B1 EP 08018307 A EP08018307 A EP 08018307A EP 2051027 B1 EP2051027 B1 EP 2051027B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat exchanger
compressor
valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08018307.2A
Other languages
German (de)
French (fr)
Other versions
EP2051027A3 (en
EP2051027A2 (en
Inventor
Steffen Smollich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP2051027A2 publication Critical patent/EP2051027A2/en
Publication of EP2051027A3 publication Critical patent/EP2051027A3/en
Application granted granted Critical
Publication of EP2051027B1 publication Critical patent/EP2051027B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a heat pump system.
  • Heat pumps for heating heating water have been produced and marketed for years.
  • the provision of heating heat in heat pumps is done by the condensation of refrigerant under high pressure and thus at high temperature, while the heat to a heat transfer medium, such as heating water, will give.
  • the liquefied refrigerant is then in a throttle body, for example, an expansion valve, relaxed and then evaporates while absorbing ambient heat in the evaporator of the heat pump.
  • the refrigerant vapor is compressed by the compressor of the heat pump, so that it can then be liquefied again in the condenser of the heat pump.
  • the heat pump for cooling the heat transfer medium such as the "heating water” are used.
  • the "heating water” then flows as it flows through the space-heating surfaces, which are in cooling mode to space-cooling surfaces, heat from the room, which is then delivered to the working in the cooling operation as a condenser evaporator heat pump, so that the heating water is cooled.
  • a disadvantage of reversible heating heat pumps for heating and cooling is that the direction of flow of the heat exchangers on the refrigerant side changes when the refrigerant circuit is reversed.
  • the flow direction on the secondary side where either (heating) water or air flows, remains unchanged Reversing the refrigeration circuit from a countercurrent heat exchanger, a DC heat exchanger with reduced efficiency and increased mean temperature distance between the refrigerant and water or air. This reduces the coefficient of performance of the heat pump in one of the two operating modes.
  • Reversible heating heat pumps are therefore generally optimized for either heating or cooling operation and only achieve modest performance figures in the other operating mode.
  • DE 10 2005 061 480 B3 shows a heat pump system with a refrigerant circuit, a compressor, a first heat exchanger, a throttle body, a second heat exchanger and a 4-2-way valve unit for switching between a heating mode and a cooling mode.
  • the flow direction of the refrigerant located in the refrigerant circuit is switched such that the first heat exchanger in the heating mode for liquefying the refrigerant and in the cooling mode for vaporizing the refrigerant is used.
  • the second heat exchanger is used in the heating mode for evaporating the refrigerant and in the cooling mode for liquefying the refrigerant.
  • the first heat exchanger is connected in the refrigerant circuit such that it works in both modes as a countercurrent heat exchanger.
  • JP H10 73334 A discloses a heat pump system according to the preamble of claim 1. It is therefore an object of the invention to provide a heat pump system, both in heating and cooling operation works effectively.
  • a heat exchanger which operates in the heating mode as an evaporator and operates in the cooling mode as a condenser, are flowed through in both modes of both refrigerant and, for example, heating water in the same direction, so that the heat exchanger in both modes as ( Cross) countercurrent heat exchanger can work, which causes an improvement in the effectiveness.
  • Fig. 1 shows a schematic representation of a heat pump system according to an embodiment of the invention.
  • the heat pump system has a compressor 1, a first heat exchanger (condenser) 2, a second heat exchanger (evaporator) 3, a 4-2-way valve 4, optionally a recuperator or an internal heat exchanger 5, optionally an economizer 6, optionally an exchanger 7 , two expansion valves 9, 19, a filter drier 10, a collector 11, a sight glass 12, and valves 13-18, 20, and 21.
  • the valves 13-18, 20 and 21 may be designed as check valves, ie as a single-flow valve.
  • the output 1a of the compressor 1 is coupled to a first port 4a of the 4-2-way valve 4.
  • a second connection 4b of the 4-2-way valve 4 is coupled to a port of the recuperator 5.
  • a third port 4c of the 4-way valve 4 is coupled to an inlet 1b of the compressor 1.
  • a fourth port 4d of the 4-way valve 4 is coupled to a valve 13 and a valve 14.
  • the valve 14 is coupled to both the condenser 2 and the valve 16.
  • the valve 13 is coupled to both the condenser 2 and the valve 15.
  • a collector 11 and a filter drier 10 are arranged.
  • the filter drier 10 is coupled both to an electronic expansion valve 9 and to the recuperator 5.
  • a port 1 c of the compressor 1 is coupled to an economizer 6, which in turn is arranged in series with the electronic expansion valve 9.
  • the valve 16 is coupled to both a sight glass 12 and an electronic expansion valve 19.
  • the sight glass 12 is in turn coupled to the economizer 6 and in series thereto with a defrosting length 7.
  • the Ableylange 7 is in turn coupled to a port of the recuperator 5.
  • the electronic expansion valve 19 is coupled both to a valve 17 and to another sight glass 23.
  • injection capillaries 22 are provided, which are coupled to both the evaporator 3 and with a valve 20.
  • a valve 18 is arranged, which in turn is coupled to the evaporator and a valve 21.
  • the recuperator is coupled to both a valve 20 and a valve 21.
  • the heat pump system according to the first embodiment can be operated in two modes, namely, a heating mode HB and a cooling mode KU.
  • the heating mode HB the heating heat is provided by a condensation of refrigerant under a high pressure and thus a high temperature, while the heat contained in the refrigerant is discharged to a heat transfer medium such as heating water.
  • a heat transfer medium such as heating water.
  • the liquefied refrigerant is decompressed by the valve 19 and evaporates while absorbing ambient heat in the evaporator 3.
  • the refrigerant vapor is compressed in the compressor 1 and then forwarded to the condenser.
  • the valve 19 serves as an expansion valve in the cooling and heating modes.
  • Fig. 2 shows a schematic representation of a heat pump system of Fig. 1 in a heating mode.
  • the flow direction of the refrigerant is indicated by arrows.
  • the compressor 1 the refrigerant flows to the left in the port 4a of the 4-way valve 4, where it emerges from the right port 4d and flows upward to the check valve 14.
  • the check valve 13 is closed.
  • the refrigerant flows through the first heat exchanger 2, which operates in the heating operation HB as a condenser.
  • the refrigerant flows to the check valve 15 and from there to the collector 11, via the filter drier 10 and on to a connection of the recuperator 5. From there, the refrigerant flows through the Ab (2004)lange 7, through the economizer.
  • the refrigerant flows through the check valve 17 and the injection capillaries 22 through the second heat exchanger 3, which operates in the heating operation as an evaporator. Subsequently, the refrigerant flows through the check valve 21 and again through the recuperator 5 and into the left inlet 4b of the 4-2 valve 4 and from there again through the central outlet 4c and finally to the compressor 1.
  • Fig. 3 shows a schematic representation of the heat pump system of Fig. 1 in a cooling mode.
  • the flow direction of the coolant is again through Arrows displayed.
  • the coolant flows out of the port 1a and bends to the left. to get into the port 4a of the 4-2-way valve 4, where it exits from the left outlet 4b again and flows through the recuperator 5 via the check valve 20 to the second heat exchanger 3, which serves as a condenser in the cooling operation.
  • the refrigerant flows via the check valve 18 and the sight glass 23 to the electronic expansion valve 19 to the valve 16.
  • the coolant flows to the first heat exchanger 2, which operates as an evaporator in the cooling mode.
  • the coolant can not turn right to the check valve 14 and flow through there, because the check valve 14 is blocked for this flow direction.
  • the refrigerant flows through the first heat exchanger 2 and from there through the check valve 13 back to the right input 4d of the 4-2-way valve 4 to again flow through the central outlet 4c back to the inlet 1b of the compressor 1.
  • a switching of the refrigerant circuit can be effected without causing a reversal of the refrigerant flow through the evaporator, so that the evaporator always works as a countercurrent evaporator.
  • a Umschafteeininheit is arranged in front of the evaporator and a switching unit after the evaporator.
  • the switching unit before the evaporator can be composed of the two check valves 20, 21, while the second switching unit behind the evaporator can be composed of the check valves 17 and 18.
  • the two paths B. C are each arranged parallel to the evaporator, By the first and second switching unit can ensure that the refrigerant flows through the evaporator always in one direction.
  • Another mode namely the Kreisumlotabtauung can be activated in the same manner as the cooling operation during the heating operation, while the fan L1 of the second heat exchanger 3 is turned off.
  • the internal heat exchanger described during the heating operation namely the economizer 6, the recuperator 5 and the Ableylange are only optional.
  • the recuperator 5 serves to overheat the suction gas flowing to the compressor 1 during the heating operation.
  • the economizer 6 is used during the heating operation to evaporate a partial volume flow of the liquid refrigerant by absorbing energy from the main volume flow of the supercooled refrigerant before it is injected into the compressor 1.
  • the already compressed by a portion of the total pressure ratio pc / p0 main volume flow of the refrigerant can be intercooled, If the inner heat exchanger is not needed, then a direct connection between the filter drier and the sight glass must be provided.
  • the two heat exchangers 2, 3 described above can each be used as a plate heat exchanger, which is acted upon by water or a heat-antifreeze mixture on the secondary side, as a fin tube heat exchanger, which is acted upon by air on the secondary side, or as any air Be configured refrigerant heat exchanger.
  • the compressor 1 described above may be a scroll compressor or a scroll compressor designed for post-injection of vapor refrigerant.
  • the compressor may also be configured as a single-stage reciprocating compressor, as a two-stage reciprocating compressor, as a single-stage rotary piston compressor, or as a two-stage rotary piston compressor.
  • the heat pump system described above may be configured as an air / water heat pump, an air / air heat pump, a brine / water heat pump, or a water / water heat pump.
  • the refrigerant used can be HFC refrigerants, hydrocarbons or CO 2 .
  • the described 4-2-way unit or 4-2-way valve unit 4 may also be formed by individual valves with appropriate diversion such as pipes and T-pieces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

Die vorliegende Erfindung betrifft eine Wärmepumpenanlage.The present invention relates to a heat pump system.

Wärmepumpen zur Erwärmung von Heizungswasser werden seit Jahren produziert und vermarktet. Die Bereitstellung der Heizwärme bei Wärmepumpen erfolgt durch die Kondensation von Kältemittel unter hohem Druck und damit bei hoher Temperatur, während die Wärme an ein Wärmeträgermedium, beispielsweise Heizungswasser, abgeben wird. Das verflüssigte Kältemittel wird anschließend in einem Drosselorgan, zum Beispiel einem Expansionsventil, entspannt und verdampft daraufhin unter Aufnahme von Umgebungswärme im Verdampfer der Wärmepumpe. Der Kältemitteldampf wird vom Verdichter der Wärmepumpe komprimiert, so dass er anschließend wieder im Kondensator der Wärmepumpe verflüssigt werden kann.Heat pumps for heating heating water have been produced and marketed for years. The provision of heating heat in heat pumps is done by the condensation of refrigerant under high pressure and thus at high temperature, while the heat to a heat transfer medium, such as heating water, will give. The liquefied refrigerant is then in a throttle body, for example, an expansion valve, relaxed and then evaporates while absorbing ambient heat in the evaporator of the heat pump. The refrigerant vapor is compressed by the compressor of the heat pump, so that it can then be liquefied again in the condenser of the heat pump.

Wird der Kreislauf des Kältemittels umgekehrt, d. h., wird das Kältemittel in dem Wärmeaustauscher, der im Heizbetrieb als Verdampfer dient, unter Wärmeabgabe verflüssigt und in dem Wärmeaustauscher, der im Heizbetrieb als Verflüssiger dient, unter Wärmeaufnahme verdampft, so kann die Wärmepumpe zum Kühlen des Wärmeträgermediums wie beispielsweise des "Heizungswassers" eingesetzt werden. Im Kühlbetrieb nimmt das "Heizungswasser" dann beim Durchströmen der Raum-Heizflächen, die im Kühlbetrieb zu Raum-Kühlflächen werden, Wärme aus dem Raum auf, die dann an den im Kühlbetrieb als Verflüssiger funktionierenden Verdampfer der Wärmepumpe abgegeben wird, so dass das Heizungswasser gekühlt wird.If the cycle of the refrigerant is reversed, that is, the refrigerant in the heat exchanger, which serves as an evaporator in the heating mode, liquefied under heat and evaporated in the heat exchanger, which serves as a condenser in the heating, heat absorption, the heat pump for cooling the heat transfer medium such as the "heating water" are used. In cooling mode, the "heating water" then flows as it flows through the space-heating surfaces, which are in cooling mode to space-cooling surfaces, heat from the room, which is then delivered to the working in the cooling operation as a condenser evaporator heat pump, so that the heating water is cooled.

Ein Nachteil reversibler Heizungswärmepumpen zum Heizen und Kühlen besteht darin, dass sich beim Umkehren des Kältekreises die Durchströmungsrichtung der Wärmeaustauscher auf der Kältemittelseite ändert Da die Strömungsrichtung auf der Sekundärseite, auf der entweder (Heizungs)wasser oder Luft strömt, unverändert bleibt, wird dadurch mit der Umkehr des Kältekreises aus einem Gegenstrom-Wärmeaustauscher ein Gleichstromwärmeaustauscher mit verminderter Effizienz und vergrößertem mittleren Temperaturabstand zwischen Kältemittel und Wasser bzw. Luft. Dadurch sinkt die Leistungszahl der Wärmepumpe in einer der beiden Betriebsarten. Reversible Heizungswärmepumpen sind daher im Allgemeinen entweder für den Heiz- oder den Kühlbetrieb optimiert und erreichen in der jeweils anderen Betriebsart nur bescheidene Leistungszahlen.A disadvantage of reversible heating heat pumps for heating and cooling is that the direction of flow of the heat exchangers on the refrigerant side changes when the refrigerant circuit is reversed. The flow direction on the secondary side, where either (heating) water or air flows, remains unchanged Reversing the refrigeration circuit from a countercurrent heat exchanger, a DC heat exchanger with reduced efficiency and increased mean temperature distance between the refrigerant and water or air. This reduces the coefficient of performance of the heat pump in one of the two operating modes. Reversible heating heat pumps are therefore generally optimized for either heating or cooling operation and only achieve modest performance figures in the other operating mode.

DE 10 2005 061 480 B3 zeigt eine Wärmepumpenanlage mit einem Kältemittelkreislauf, einem Verdichter, einem ersten Wärmeüberträger, einem Drosselorgan, einem zweiten Wärmeüberträger und einer 4-2-Wege-Ventileinheit zum Umschalten zwischen einer Heizbetriebsart und einer Kühlbetriebsart. Hierbei wird die Strömungsrichtung des in dem Kältemittelkreislaufs befindlichen Kältemittels derart umgeschaltet, dass der erste Wärmeüberträger in der Heizbetriebsart zum Verflüssigen des Kältemittels und in der Kühlbetriebsart zum Verdampfen des Kältemittels dient. Der zweite Wärmeüberträger dient in der Heizbetriebsart zum Verdampfen des Kältemittels und in der Kühlbetriebsart zum Verflüssigen des Kältemittels. Der erste Wärmeüberträger ist im Kältemittelkreislauf derart verschaltet, dass er in beiden Betriebsarten als Gegenstrom-Wärmeüberträger arbeitet. DE 10 2005 061 480 B3 shows a heat pump system with a refrigerant circuit, a compressor, a first heat exchanger, a throttle body, a second heat exchanger and a 4-2-way valve unit for switching between a heating mode and a cooling mode. Here, the flow direction of the refrigerant located in the refrigerant circuit is switched such that the first heat exchanger in the heating mode for liquefying the refrigerant and in the cooling mode for vaporizing the refrigerant is used. The second heat exchanger is used in the heating mode for evaporating the refrigerant and in the cooling mode for liquefying the refrigerant. The first heat exchanger is connected in the refrigerant circuit such that it works in both modes as a countercurrent heat exchanger.

JP H10 73334 A offenbart eine Wärmepumpeanlage gemäß dem Oberbegriff des Anspruchs 1. Es ist somit Aufgabe der Erfindung, eine Wärmepumpenanlage vorzusehen, sowohl im Heiz- als auch im Kühlbetrieb effektiv arbeitet. JP H10 73334 A discloses a heat pump system according to the preamble of claim 1. It is therefore an object of the invention to provide a heat pump system, both in heating and cooling operation works effectively.

Diese Aufgabe wird durch eine Wärmepumpenanlage gemäß Anspruch 1 gelöst.This object is achieved by a heat pump system according to claim 1.

Durch eine geeignete Anordnung von Rückschlagventilen kann ein Wärmeüberträger, der im Heizbetrieb als Verdampfer arbeitet und im Kühlbetrieb als Verflüssiger arbeitet, in beiden Betriebsarten sowohl von Kältemittel als auch beispielsweise von Heizungswasser in der gleichen Richtung durchströmt werden, so dass der Wärmeüberträger in beiden Betriebsarten als (Kreuz)-Gegenstromwärmeüberträger arbeiten kann, was eine Verbesserung der Effektivität bewirkt.By a suitable arrangement of check valves, a heat exchanger, which operates in the heating mode as an evaporator and operates in the cooling mode as a condenser, are flowed through in both modes of both refrigerant and, for example, heating water in the same direction, so that the heat exchanger in both modes as ( Cross) countercurrent heat exchanger can work, which causes an improvement in the effectiveness.

Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Further embodiments of the invention are the subject of the dependent claims.

Nachfolgend werden die Ausführungsbeispiele der vorliegenden Erfindung detailliert unter Bezugnahme auf die Zeichnung näher erläutert.

Fig. 1
zeigt eine schematische Darstellung einer Wärmepumpenanlage gemäß einem Ausführungsbeispiel der Erfindung,
Fig. 2
zeigt eine schematische Darstellung einer Wärmepumpenanlage von Fig. 1 in einem Heizbetrieb, und
Fig.3
zeigt eine schematische Darstellung einer Wärmepumpenanlage von Fig. 1 in einem Kühlbetrieb.
Hereinafter, the embodiments of the present invention will be explained in detail with reference to the drawings.
Fig. 1
shows a schematic representation of a heat pump system according to an embodiment of the invention,
Fig. 2
shows a schematic representation of a heat pump system of Fig. 1 in a heating mode, and
Figure 3
shows a schematic representation of a heat pump system of Fig. 1 in a cooling mode.

Fig. 1 zeigt eine schematische Darstellung einer Wärmepumpenanlage gemäß einem Ausführungsbeispiel der Erfindung. Die Wärmepumpenanlage weist einen Verdichter 1, einen ersten Wärmeüberträger (Verflüssiger) 2, einen zweiten Wärmeüberträger (Verdampfer) 3, ein 4-2-Wegeventil 4, optional einen Rekuperator bzw. einen inneren Wärmeüberträger 5, optional einen Economizer 6, optional eine Abtauschlange 7, zwei Expansionsventile 9,19, einen Filtertrockner 10, einen Sammler 11, ein Schauglas 12, und Ventile 13-18, 20 und 21 auf. Die Ventile 13-18, 20 und 21 können als Rückschlagventile, d. h. als einseitig durchströmbares Ventil ausgestaltet sein. Der Ausgang 1a des Verdichters 1 ist mit einem ersten Anschluss 4a des 4-2-Wege-Ventils 4 gekoppelt. Ein zweiter Anschluss 4b des 4-2-Wege-Ventils 4 ist mit einem Anschluss des Rekuperators 5 gekoppelt. Ein dritter Anschluss 4c des 4-2-Wege-Ventils 4 ist mit einem Eingang 1b des Verdichters 1 gekoppelt. Ein vierter Anschluss 4d des 4-2-Wege-Ventils 4 ist mit einem Ventil 13 und einem Ventil 14 gekoppelt. Das Ventil 14 ist sowohl mit dem Verflüssiger 2 als auch mit dem Ventil 16 gekoppelt. Das Ventil 13 ist sowohl mit dem Verflüssiger 2 als auch mit dem Ventil 15 gekoppelt. In Reihe zu dem Ventil 15 ist ein Sammler 11 und ein Filtertrockner 10 angeordnet. Der Filtertrockner 10 ist sowohl mit einem elektronischen Expansionsventil 9 als auch mit dem Rekuperator 5 gekoppelt. Ein Anschluss 1c des Verdichters 1 ist mit einem Economizer 6 gekoppelt, welcher wiederum in Reihe mit dem elektronischen Expansionsventil 9 angeordnet ist. Fig. 1 shows a schematic representation of a heat pump system according to an embodiment of the invention. The heat pump system has a compressor 1, a first heat exchanger (condenser) 2, a second heat exchanger (evaporator) 3, a 4-2-way valve 4, optionally a recuperator or an internal heat exchanger 5, optionally an economizer 6, optionally an exchanger 7 , two expansion valves 9, 19, a filter drier 10, a collector 11, a sight glass 12, and valves 13-18, 20, and 21. The valves 13-18, 20 and 21 may be designed as check valves, ie as a single-flow valve. The output 1a of the compressor 1 is coupled to a first port 4a of the 4-2-way valve 4. A second connection 4b of the 4-2-way valve 4 is coupled to a port of the recuperator 5. A third port 4c of the 4-way valve 4 is coupled to an inlet 1b of the compressor 1. A fourth port 4d of the 4-way valve 4 is coupled to a valve 13 and a valve 14. The valve 14 is coupled to both the condenser 2 and the valve 16. The valve 13 is coupled to both the condenser 2 and the valve 15. In series with the valve 15, a collector 11 and a filter drier 10 are arranged. The filter drier 10 is coupled both to an electronic expansion valve 9 and to the recuperator 5. A port 1 c of the compressor 1 is coupled to an economizer 6, which in turn is arranged in series with the electronic expansion valve 9.

Das Ventil 16 ist sowohl mit einem Schauglas 12 als auch mit einem elektronischen Expansionsventil 19 gekoppelt. Das Schauglas 12 ist wiederum mit dem Economizer 6 und in Reihe dazu mit einer Abtauschlange 7 gekoppelt. Die Abtauschlange 7 ist wiederum mit einem Anschluss des Rekuperators 5 gekoppelt. Das elektronische Expansionsventil 19 ist sowohl mit einem Ventil 17 als auch mit einem weiteren Schauglas 23 gekoppelt. In Reihe zu dem Expansionsventil 17 sind Einspritzkapillaren 22 vorgesehen, welche sowohl mit dem Verdampfer 3 als auch mit einem Ventil 20 gekoppelt sind. In Reihe zu dem Schauglas 23 ist ein Ventil 18 angeordnet, welches wiederum mit dem Verdampfer und einem Ventil 21 gekoppelt ist. Der Rekuperator ist sowohl mit einem Ventil 20 als auch mit einem Ventil 21 gekoppelt.The valve 16 is coupled to both a sight glass 12 and an electronic expansion valve 19. The sight glass 12 is in turn coupled to the economizer 6 and in series thereto with a defrosting length 7. The Abtauschlange 7 is in turn coupled to a port of the recuperator 5. The electronic expansion valve 19 is coupled both to a valve 17 and to another sight glass 23. In line with the expansion valve 17 injection capillaries 22 are provided, which are coupled to both the evaporator 3 and with a valve 20. In series with the sight glass 23, a valve 18 is arranged, which in turn is coupled to the evaporator and a valve 21. The recuperator is coupled to both a valve 20 and a valve 21.

Die Wärmepumpenanlage gemäß dem ersten Ausführungsbeispiel kann in zwei Betriebsarten, nämlich einer Heizbetriebsart HB und einer Kühlbetriebsart KU betrieben werden. Bei der Heizbetriebsart HB erfolgt eine Bereitstellung der Heizwärme durch eine Kondensation von Kältemittel unter einem hohen Druck und somit einer hohen Temperatur, während die sich in dem Kältemittel befindliche Wärme an ein Wärmeträgermedium wie beispielsweise Heizungswasser abgegeben wird. Dies erfolgt in dem Verflüssiger 2, wobei das Wärmeträgermedium durch den Eingang E eintritt und den Ausgang A austritt, und das austretende Wärmeträgermedium die Wärme von dem Kältemittel zumindest teilweise aufgenommen hat. Das verflüssigte Kältemittel wird durch das Ventil 19 entspannt und verdampft unter Aufnahme von Umgebungswärme im Verdampfer 3. Der Kältemitteldampf wird in dem Verdichter 1 komprimiert und anschließend an den Verflüssiger weitergeleitet.The heat pump system according to the first embodiment can be operated in two modes, namely, a heating mode HB and a cooling mode KU. In the heating mode HB, the heating heat is provided by a condensation of refrigerant under a high pressure and thus a high temperature, while the heat contained in the refrigerant is discharged to a heat transfer medium such as heating water. This takes place in the condenser 2, wherein the heat transfer medium enters through the inlet E and the outlet A exits, and the exiting heat transfer medium, the heat from the refrigerant at least partially has recorded. The liquefied refrigerant is decompressed by the valve 19 and evaporates while absorbing ambient heat in the evaporator 3. The refrigerant vapor is compressed in the compressor 1 and then forwarded to the condenser.

Das Ventil 19 dient als Expansionsventil in der Kühl- und der Heizbetriebsart.The valve 19 serves as an expansion valve in the cooling and heating modes.

Fig. 2 zeigt eine schematische Darstellung einer Wärmepumpenanlage von Fig. 1 in einem Heizbetrieb. Die Strömungsrichtung des Kältemittels ist durch Pfeile angezeigt. Von dem Verdichter 1 aus fließt das Kältemittel nach links in den Anschluss 4a des 4-2-Wegeventils 4, wo es aus dem rechten Ausgang 4d heraustritt und nach oben zu dem Rückschlagventil 14 fließt. Hierbei ist das Rückschlagventil 13 geschlossen. Von dem Rückschlagventil 14 aus fließt das Kältemittel durch den ersten Wärmeüberträger 2, welcher in dem Heizbetrieb HB als ein Verflüssiger arbeitet. Von dem ersten Wärmeüberträger 2 fließt das Kältemittel zu dem Rückschlagventil 15 und von dort aus weiter zu dem Sammler 11, über den Filtertrockner 10 und weiter zu einem Anschluss des Rekuperators 5. Von dort aus fließt das Kältemittel durch die Abtauschlange 7, durch den Economizer 6 und durch das Schauglas 12 und wird durch das elektronische Expansionsventil 19 entspannt. Danach fließt das Kältemittel über das Rückschlagventil 17 und die Einspritzkapillaren 22 durch den zweiten Wärmeüberträger 3, der in dem Heizbetrieb als Verdampfer arbeitet. Anschließend fließt das Kältemittel durch das Rückschlagventil 21 und wiederum durch den Rekuperator 5 und in den linken Eingang 4b des 4-2-Ventils 4 und von dort wiederum durch den mittleren Ausgang 4c hinaus und schließlich zu dem Verdichter 1. Fig. 2 shows a schematic representation of a heat pump system of Fig. 1 in a heating mode. The flow direction of the refrigerant is indicated by arrows. From the compressor 1, the refrigerant flows to the left in the port 4a of the 4-way valve 4, where it emerges from the right port 4d and flows upward to the check valve 14. Here, the check valve 13 is closed. From the check valve 14, the refrigerant flows through the first heat exchanger 2, which operates in the heating operation HB as a condenser. From the first heat exchanger 2, the refrigerant flows to the check valve 15 and from there to the collector 11, via the filter drier 10 and on to a connection of the recuperator 5. From there, the refrigerant flows through the Abtauschlange 7, through the economizer. 6 and through the sight glass 12 and is relaxed by the electronic expansion valve 19. Thereafter, the refrigerant flows through the check valve 17 and the injection capillaries 22 through the second heat exchanger 3, which operates in the heating operation as an evaporator. Subsequently, the refrigerant flows through the check valve 21 and again through the recuperator 5 and into the left inlet 4b of the 4-2 valve 4 and from there again through the central outlet 4c and finally to the compressor 1.

Da der Sekundärkreislauf in dem ersten Wärmeüberträger 2 (Wasser) die entgegengesetzte Strömungsrichtung aufweist wie das Kältemittel, wird ein Gegenstrom-Wärmeüberträger realisiert, welcher eine verbesserte Effizienz im Vergleich zu einem Gleichstrom-Wärmeüberträger aufweist,Since the secondary circuit in the first heat exchanger 2 (water) has the opposite flow direction as the refrigerant, a countercurrent heat exchanger is realized, which has an improved efficiency compared to a DC heat exchanger,

Fig. 3 zeigt eine schematische Darstellung der Wärmepumpenanlage von Fig. 1 in einem Kühlbetrieb. Die Strömungsrichtung des Kühlmittels ist wiederum durch Pfeile angezeigt. Von dem Verdichter 1 fließt das Kühlmittel aus dem Anschluss 1a und biegt nach links ab. um in den Anschluss 4a des 4-2-Wegeventils 4 zu gelangen, wo es aus dem linken Ausgang 4b wieder austritt und durch den Rekuperator 5 über das Rückschlagventil 20 zu dem zweiten Wärmeüberträger 3 fließt, welcher in dem Kühlbetrieb als Verflüssiger dient. Anschließend fließt das Kältemittel über das Rückschlagventil 18 und das Schauglas 23 zu dem elektronischen Expansionsventil 19 zu dem Ventil 16. Von dem Ventil 16 fließt das Kühlmittel zu dem ersten Wärmeüberträger 2, welcher im Kühlbetrieb als Verdampfer arbeitet. Das Kühlmittel kann nicht nach rechts zu dem Rückschlagventil 14 abbiegen und dort durchfließen, weil das Rückschlagventil 14 für diese Strömungsrichtung gesperrt ist. Somit fließt das Kältemittel durch den ersten Wärmeüberträger 2 und von dort durch das Rückschlagventil 13 zurück zu dem rechten Eingang 4d des 4-2-Wegeventils 4, um wiederum durch den mittleren Ausgang 4c zurück zu dem Eingang 1b des Verdichters 1 zu fließen. Fig. 3 shows a schematic representation of the heat pump system of Fig. 1 in a cooling mode. The flow direction of the coolant is again through Arrows displayed. From the compressor 1, the coolant flows out of the port 1a and bends to the left. to get into the port 4a of the 4-2-way valve 4, where it exits from the left outlet 4b again and flows through the recuperator 5 via the check valve 20 to the second heat exchanger 3, which serves as a condenser in the cooling operation. Subsequently, the refrigerant flows via the check valve 18 and the sight glass 23 to the electronic expansion valve 19 to the valve 16. From the valve 16, the coolant flows to the first heat exchanger 2, which operates as an evaporator in the cooling mode. The coolant can not turn right to the check valve 14 and flow through there, because the check valve 14 is blocked for this flow direction. Thus, the refrigerant flows through the first heat exchanger 2 and from there through the check valve 13 back to the right input 4d of the 4-2-way valve 4 to again flow through the central outlet 4c back to the inlet 1b of the compressor 1.

Durch die Verschaltung des Verdampfers 3 mit den beiden Pfaden B, C kann ein Umschalten des Kältemittelkreislaufes bewirkt werden, ohne dass es zu einer Umkehrung des Kältemittelflusses durch den Verdampfer kommt, so dass der Verdampfer immer als ein Gegenstrom-Verdampfer arbeitet. Erfindungsgemäß wird eine Umschafteineinheit vor dem Verdampfer und eine Umschalteinheit nach dem Verdampfer angeordnet. Die Umschalteinheit vor dem Verdampfer kann sich aus den beiden Rückschlagventilen 20, 21 zusammensetzen, während die zweite Umschalteinheit hinter dem Verdampfer sich aus den Rückschlagventilen 17 und 18 zusammensetzen kann. Die beiden Pfade B. C sind jeweils parallel zu dem Verdampfer angeordnet, Durch die erste und zweite Umschalteinheit kann sichergestellt werden, dass das Kältemittel durch den Verdampfer immer nur in eine Richtung fließt.By the connection of the evaporator 3 with the two paths B, C, a switching of the refrigerant circuit can be effected without causing a reversal of the refrigerant flow through the evaporator, so that the evaporator always works as a countercurrent evaporator. According to the invention a Umschafteeininheit is arranged in front of the evaporator and a switching unit after the evaporator. The switching unit before the evaporator can be composed of the two check valves 20, 21, while the second switching unit behind the evaporator can be composed of the check valves 17 and 18. The two paths B. C are each arranged parallel to the evaporator, By the first and second switching unit can ensure that the refrigerant flows through the evaporator always in one direction.

Eine weitere Betriebsart, nämlich die Kreisumkehrabtauung, kann auf die gleiche Art und Weise wie der Kühlbetrieb während des Heizbetriebs aktiviert werden, wobei dabei der Lüfter L1 des zweiten Wärmeüberträgers 3 ausgeschaltet wird.Another mode, namely the Kreisumkehrabtauung can be activated in the same manner as the cooling operation during the heating operation, while the fan L1 of the second heat exchanger 3 is turned off.

Der während des Heizbetriebs beschriebene innere Wärmetauscher, nämlich der Economizer 6, der Rekuperator 5 und die Abtauschlange sind lediglich optional. Der Rekuperator 5 dient dabei dazu, das zum Verdichter 1 strömende Sauggas während des Heizbetriebs weiter zu überhitzen. Der Economizer 6 dient während des Heizbetriebs dazu, einen Teilvolumenstrom des flüssigen Kältemittels unter Aufnahme von Energie aus dem Hauptvolumenstrom des unterkühlten Kältemittels zu verdampfen, bevor es in den Verdichter 1 eingespritzt wird. Somit kann der bereits um einen Teil des gesamten Druckverhältnisses pc/p0 komprimierte Hauptvolumenstrom des Kältemittels zwischengekühlt werden, Falls der innere Wärmetauscher nicht benötigt wird, dann muss eine direkte Verbindung zwischen dem Filtertrockner und dem Schauglas vorgesehen werden.The internal heat exchanger described during the heating operation, namely the economizer 6, the recuperator 5 and the Abtauschlange are only optional. The recuperator 5 serves to overheat the suction gas flowing to the compressor 1 during the heating operation. The economizer 6 is used during the heating operation to evaporate a partial volume flow of the liquid refrigerant by absorbing energy from the main volume flow of the supercooled refrigerant before it is injected into the compressor 1. Thus, the already compressed by a portion of the total pressure ratio pc / p0 main volume flow of the refrigerant can be intercooled, If the inner heat exchanger is not needed, then a direct connection between the filter drier and the sight glass must be provided.

Die beiden oben beschriebenen Wärmeüberträger 2, 3 können jeweils als Platten-Wärmeüberträger, welcher auf der Sekundärseite von Wasser oder einem Wärme-Frostschutzgemisch beaufschlagt wird, als ein Lamellenrohr-Wärmeüberträger, welcher auf der Sekundärseite von Luft beaufschlagt wird, oder als ein beliebiger Luft-Kältemittel-Wärmeüberträger ausgestaltet sein.The two heat exchangers 2, 3 described above can each be used as a plate heat exchanger, which is acted upon by water or a heat-antifreeze mixture on the secondary side, as a fin tube heat exchanger, which is acted upon by air on the secondary side, or as any air Be configured refrigerant heat exchanger.

Der oben beschriebene Verdichter 1 kann einen Scroll-Verdichter darstellen oder einen Scroll-Verdichter, der für die Nacheinspritzung von dampfförmigem Kältemittel ausgestaltet ist. Der Verdichter kann ferner als ein einstufiger Hubkolben-Verdichter, als ein zweistufiger Hubkolben-Verdichter, als ein einstufiger Rollkolben-Verdichter oder als ein zweistufiger Rollkolben-Verdichter ausgestaltet sein.The compressor 1 described above may be a scroll compressor or a scroll compressor designed for post-injection of vapor refrigerant. The compressor may also be configured as a single-stage reciprocating compressor, as a two-stage reciprocating compressor, as a single-stage rotary piston compressor, or as a two-stage rotary piston compressor.

Die oben beschriebene Wärmepumpenanlage kann als eine Luft/Wasserwärmepumpe, als eine Luft/Luftwärmepumpe, als eine Sole/Wasserwärmepumpe oder als eine Wasser/Wasserwärmepumpe ausgestaltet sein.The heat pump system described above may be configured as an air / water heat pump, an air / air heat pump, a brine / water heat pump, or a water / water heat pump.

Als Kältemittel kann H-FKW-Kältemittel, Kohlenwasserstoffe oder CO2 verwendet werden.The refrigerant used can be HFC refrigerants, hydrocarbons or CO 2 .

Die beschriebene 4-2-Wegeeinheit bzw. 4-2-Wegeventileinheit 4 kann auch durch einzelne Ventile mit entsprechender Umleitung wie beispielsweise Rohrleitungen und T-Stücken ausgebildet sein.The described 4-2-way unit or 4-2-way valve unit 4 may also be formed by individual valves with appropriate diversion such as pipes and T-pieces.

Claims (6)

  1. Heat pumping systems with
    a compressor (1), a heat exchanger (2), a second heat exchanger (3) and a 4/2-way unit (4) to switch between a first and a second mode of operation, whereby the flow direction of the refrigerant found in the refrigerant circuit can be changed in such a way that the first heat exchanger (2) serves to liquify the refrigerant in the first mode of operation and vaporise it in the second mode of operation, and the second heat exchanger serves to vaporise the refrigerant in the first mode of operation and liquify it in the second mode of operation
    characterised in that a first switching unit (20, 21) in front of and a second switching unit (18, 17) behind the second heat exchanger (3) and a first and second track (A, B) parallel to the second heat exchanger, whereby the first and second switching unit (20, 21,17,18) are arranged in such a way that the flow direction of the second heat exchanger (3) remains unchanged, independent of a change in the flow direction of the refrigerant in the heat exchanger (3).
    whereby the compressor is designed as a scroll compressor or as a scroll compressor which is designed for the after-injection of vaporous refrigerant,
    a recuperator (5) to superheat, the suction gas flowing to the compressor during the first and/or second mode of operation, and
    an economiser (6) to vaporise a partial flow rate of the refrigerant in the first or second mode of operation for the absorption of energy from the main flow rate of the cooled refrigerant before it is injected into the compressor (1).
  2. Heat pumping systems according to Claim 1, whereby the first switching unit has a first valve (20) in the first track (A) and a second valve (21), whereby the first and second valve (20, 21) are coordinated.
  3. Heat pumping systems according to one of the previous claims, whereby the second switching unit has a third valve (17) and a fourth valve (18) in the second track (B), whereby the third and fourth valve (17, 18) are coordinated.
  4. Heat pumping systems according to one of the Claims 1 to 3, whereby the first or the second heat exchanger (2, 3) features a plate heat exchanger, which is impinged by water or a water-antifreeze mixture on the secondary circuit, a lamella heat exchanger, which is impinged by air on the secondary circuit or an optional air-to-refrigerant heat exchanger.
  5. Heat pumping systems according to one of the Claims 1 to 4, whereby the compressor (1) is designed as a single-stage or two-stage reciprocating compressor, as a two-stage reciprocating compressor, or as a one-stage or two-stage rotary compressor.
  6. Heat pumping systems according to one of the previous claims, whereby the refrigerant constitutes a HCFC refrigerant, a hydrocarbon or CO2.
EP08018307.2A 2007-10-19 2008-10-20 Heat pump assembly Active EP2051027B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007050469A DE102007050469A1 (en) 2007-10-19 2007-10-19 heat pump system

Publications (3)

Publication Number Publication Date
EP2051027A2 EP2051027A2 (en) 2009-04-22
EP2051027A3 EP2051027A3 (en) 2014-11-19
EP2051027B1 true EP2051027B1 (en) 2018-05-16

Family

ID=40239791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018307.2A Active EP2051027B1 (en) 2007-10-19 2008-10-20 Heat pump assembly

Country Status (2)

Country Link
EP (1) EP2051027B1 (en)
DE (1) DE102007050469A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494439B (en) * 2011-12-07 2013-07-24 南京大学 Photovoltaic photo-thermal energy-storage heat pump system
CN110645736A (en) * 2019-06-28 2020-01-03 江苏雪龙新能源科技有限公司 Direct-current variable-frequency carbon dioxide heat pump cold and hot unit
DE102022211369A1 (en) 2022-10-26 2024-05-02 Robert Bosch Gesellschaft mit beschränkter Haftung Device for air conditioning a building

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324844A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Six-way switching valve and refrigerator using the same
JPH1073334A (en) * 1996-08-28 1998-03-17 Sanyo Electric Co Ltd Refrigerator
JP4273588B2 (en) * 1999-08-30 2009-06-03 ダイキン工業株式会社 Air conditioner refrigerant circuit
JP2003042583A (en) * 2001-07-27 2003-02-13 Saginomiya Seisakusho Inc Air conditioner and controller therefor
US7257955B2 (en) * 2004-09-08 2007-08-21 Carrier Corporation Discharge valve to increase heating capacity of heat pumps
DE102005061480B3 (en) 2005-12-22 2007-04-05 Stiebel Eltron Gmbh & Co. Kg Heat pump system e.g. air/water-heat pump, for warming heater water, has one of heat exchangers interconnected in cooling medium circuit, so that exchanger is operated as reverse current- exchanger in cooling and heating operation modes
JP5309424B2 (en) * 2006-03-27 2013-10-09 ダイキン工業株式会社 Refrigeration equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102007050469A1 (en) 2009-04-23
EP2051027A3 (en) 2014-11-19
EP2051027A2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
DE102005061480B3 (en) Heat pump system e.g. air/water-heat pump, for warming heater water, has one of heat exchangers interconnected in cooling medium circuit, so that exchanger is operated as reverse current- exchanger in cooling and heating operation modes
DE102007028252B4 (en) Refrigerant cycle device with ejector
DE102007001878B4 (en) Ejector refrigerant cycle device
DE60123816T2 (en) REVERSABLE STEAM COMPACTION ASSEMBLY
DE19813674C1 (en) Air conditioner for motor vehicle interior
DE102006014867A1 (en) Ejector pump cooling circuit for air conditioners comprises a compressor for suctioning and compressing a coolant, a heat radiating unit, an ejector pump, vaporizing units, a bypass channel, a throttle unit and an inner heat exchanger
DE102007051193A1 (en) Refrigeration cycle device
EP1876402A2 (en) Heat pump with temperature control unit
DE102007019563A1 (en) Pipe construction with indoor heat exchanger and cooling circuit device with it
DE102017211256B4 (en) Refrigeration system for a vehicle with a refrigerant circuit having a heat exchanger
EP3344931B1 (en) Refrigeration device comprising multiple storage chambers
DE3422391A1 (en) COLD GENERATING DEVICE
EP2026019A2 (en) Tempering unit on a heat pump basis
DE3600075A1 (en) REFRIGERATOR WITH REFRIGERANT COOLING
WO2009141282A2 (en) Cooling appliance storing coolant in the condenser, and corresponding method
DE10213339A1 (en) Heat pump for simultaneous cooling and heating
EP2051027B1 (en) Heat pump assembly
EP0021205A2 (en) Hybrid compression-absorption method for operating heat pumps or refrigeration machines
DE3843045A1 (en) AIR CONDITIONING SYSTEM
EP1882888A1 (en) Heat pump system, in particular for air conditioning a building
DE102008051510A1 (en) Refrigeration cycle device
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner
EP3491302B1 (en) Heat pump system having co2 as first heat pump medium and water as second heat pump medium
DE102008049896A1 (en) Lamella air heat exchanger for use in air heat pump for receiving heat energy from ambient air, comprises multiple lamellae and pipeline, where another pipeline runs separately from former pipeline which is guided through lamellae
DE102005001928A1 (en) Heat pump type hot water supply apparatus has auxiliary heat exchanger arranged for exchanging heat between water circulating through path and low pressure refrigerant before sucking into compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 13/00 20060101AFI20141014BHEP

17P Request for examination filed

Effective date: 20150519

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: MK

Extension state: AL

Extension state: RS

Extension state: BA

17Q First examination report despatched

Effective date: 20170215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016080

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 999953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181020

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231019

Year of fee payment: 16

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20231020

Year of fee payment: 16

Ref country code: CH

Payment date: 20231102

Year of fee payment: 16

Ref country code: AT

Payment date: 20231020

Year of fee payment: 16