EP0021205A2 - Hybrid compression-absorption method for operating heat pumps or refrigeration machines - Google Patents

Hybrid compression-absorption method for operating heat pumps or refrigeration machines Download PDF

Info

Publication number
EP0021205A2
EP0021205A2 EP80103173A EP80103173A EP0021205A2 EP 0021205 A2 EP0021205 A2 EP 0021205A2 EP 80103173 A EP80103173 A EP 80103173A EP 80103173 A EP80103173 A EP 80103173A EP 0021205 A2 EP0021205 A2 EP 0021205A2
Authority
EP
European Patent Office
Prior art keywords
heat
working medium
compressor
circuit
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80103173A
Other languages
German (de)
French (fr)
Other versions
EP0021205A3 (en
EP0021205B1 (en
Inventor
Géza Dipl.-Ing. Hivessy
Péter Dipl.-Ing. Pecz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energiagazdalkodasi Intezet
Original Assignee
Energiagazdalkodasi Intezet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energiagazdalkodasi Intezet filed Critical Energiagazdalkodasi Intezet
Priority to DE8383101481T priority Critical patent/DE3071785D1/en
Priority to AT80103173T priority patent/ATE6387T1/en
Priority to AT83101481T priority patent/ATE22490T1/en
Publication of EP0021205A2 publication Critical patent/EP0021205A2/en
Publication of EP0021205A3 publication Critical patent/EP0021205A3/en
Application granted granted Critical
Publication of EP0021205B1 publication Critical patent/EP0021205B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the invention relates to a hybrid refrigeration machine or heat pump, which is provided with a mechanical compressor and which in its thermodynamic system contains a working fluid pair, known or similar in the case of absorption refrigerators, of a refrigerant and a solvent for the refrigerant, so that a solution or sorption cycle is interconnected with a compressor.
  • the possible uses of heat pumps and the increase in their effectiveness are being investigated with increased intensity all over the world due to the energy crisis.
  • the heat pump is actually a reversed chiller that transfers the energy from the environment into a functionally closed space.
  • a medium with variable temperature a cooling medium
  • the extracted energy should also be transferred to a medium with variable temperature (e.g. cooling water).
  • a medium with variable temperature e.g. cooling water
  • the conventional compression refrigeration machines have the major disadvantage that the evaporation and condensation temperatures of the refrigeration machine on the side of the heat exhaust are below the lowest temperature of the medium to be cooled, and on the side of the heat output the highest temperature of the heat-absorbing medium must, and that - which is closely related - the pressures of the heat exchanger vessels must be determined with an unnecessarily large deviation. So the value of the pressure ratio, which basically determines the operation of the compressor, becomes rather unfavorable. The same problem also occurs with heat pumps.
  • the essence of the invention and at the same time the object to be achieved is the creation of a hybrid system which combines the advantageous properties of the sorption chillers and the chillers provided with mechanical compressors (compression chillers), without the disadvantages of the starting types.
  • the heat exchanger vessels which enable a variable temperature sequence due to the sorption principle, are combined with the compressor of the compression refrigeration machines, and as a working medium not a pure refrigerant, but a pair of agents that is already known or similar in the absorption (or absorption) refrigeration machines circulated from a refrigerant and a sorption liquid in the thermodynamic circuit of the system according to the invention.
  • At least one of the heat exchanger vessels enabling heat exchange with the surroundings is a so-called “dry" construction, suitably consisting of pipes or plates which are guaranteed along the heat exchange surface with respect to both phases of the working medium between the initial and final state of continuously changing concentration ratios or clearly assigned continuously changing temperature conditions.
  • the system according to the invention has the vapor and liquid phase of the working medium in the working space of its compressor simultaneously and together.
  • a phase separator is installed behind the degasser of the system.
  • a rectifier is installed behind the phase separator in the vapor phase line of the working medium.
  • a phase separator is installed downstream of the compressor, and a condenser with an aftercooler on the vapor phase side, and an internal heat exchanger on the liquid phase side, the two separate working medium circuits thus created having at least one common section.
  • the cold is in the steam line behind the phase separator and in front of the condenser Rectifier increasing the medium concentration of the vapor phase is installed.
  • a drive circuit consisting of a boiler, an expansion machine, an absorber, an internal heat exchanger and a solution pump is connected to the base system, the expansion machine and the compressor of the base system being connected to one another by means of a power transmission element.
  • the heat pump according to the invention has, at the same pressure conditions, roughly the same, but at the same temperature conditions a 1.5 to 2 times higher performance coefficient e than the conventional systems.
  • This value can be increased further with goal-oriented research and by using working media with a higher specific solution heat.
  • the system in the thermodynamic system of which a solution is circulated as the working medium, has an absorber 1 and a degasser 4 as heat exchanger vessels.
  • An internal heat exchanger 2 temperature changer
  • a pressure-reducing expansion valve 3 expediently a throttle valve
  • Behind the degasser 4 is a phase separator 5, in which the two-phase working solution is separated.
  • the path of the liquid leads back into the absorber 1 with the aid of a liquid pump 6 via the internal heat exchanger 2, where it preferably flows in countercurrent to the solution emerging from the absorber 1.
  • the path of the vapor phase leads via a rectifier 7 to a mechanical compressor 8, the output of which is also connected to the absorber 1.
  • the solution emerging from the absorber 1 flows through one side of the inner heat exchanger 2 and through the expansion valve 3. After flowing through the pressure-reducing expansion valve 3, a solution of low pressure enters the degasser 4, which draws heat from the medium to be cooled. Due to the amount of heat q extracted from the medium to be cooled, a significant proportion of the refrigerant components of the solution are converted into the vapor phase, which means that this amount of heat drives the refrigerant out of the solution and provides the necessary heat of solution and evaporation.
  • the two-phase mixture emerging from the degasifier 4 enters the phase separator 5, where the liquid and the vapor phase are separated from one another. From here, the liquid flows back with the help of the liquid pump 6 over the other side of the internal heat exchanger 2 into the absorber 1, where it comes into contact with the vapor phase again.
  • the vapor phase passes through the rectifier 7, which can be included in the degasser 4 according to FIG. 1, into the compressor 8, which compresses the vapor phase to the higher pressure level of the absorber 1 through the use of mechanical work q k .
  • the absorber 1 In the absorber 1, the vapor phase and the sorption liquid containing little refrigerant, the so-called poor solution, are mixed, the refrigerant is dissolved in the sorption liquid and the heat of evaporation and the heat of solution are extracted, i.e. the amount of heat q, with changing temperature parameters.
  • the heat exchange surface of the absorber can also be uniquely assigned a temperature field that changes along the same; the heat given off can therefore really be used with changing temperature parameters.
  • the use of the internal heat exchanger 2 improves the thermal efficiency of the system.
  • Fig. 2 shows another advantageous embodiment of the combined heat pump according to the invention.
  • This embodiment differs from that of Fig. 1 essentially in that the phases of the two-phase working medium emerging from the degasser 4 are not separated, but - after passing through the internal heat exchanger 2 - come together and simultaneously into the working space of the compressor 8, where in addition to compression, the physical processes determined by the thermodynamics of the solutions also take place.
  • the liquid can even be present in two different forms.
  • the liquid phase can occur in its specifically liquid form.
  • it can also be present in the form of aerosol in the steam.
  • a suitable pump and also an atomizer are of course also required for the latter embodiment.
  • the high pressure liquid-vapor mixture flows into the absorber 1, where the heat of vaporization of the vapor and the heat of solution of the refrigerant, i.e. the amount of heat q is withdrawn when the temperature changes or is used for heating purposes.
  • the liquid passes under high pressure into the pressure-reducing expansion valve 3 (e.g. into a throttle valve), in which the working medium expands.
  • the pressure-reducing expansion valve 3 e.g. into a throttle valve
  • a very great advantage of this embodiment is the so-called "wet compression".
  • the mixing of the vapor and the liquid phase and the dissolving of the vapor take place in parallel with the pressure increase, whereby the vapor phase and the liquid phase are endeavored to function as a function of time and the reaction rates - in accordance with the laws of the thermodynamics of the solutions To achieve balance.
  • the temperature values belonging to these equilibrium states are always significantly lower than the temperature values belonging to a given pressure in the case of adiabatic compression.
  • the final temperature of the compression also decreases, which is of crucial importance with regard to the structural features of the compressor and the materials that can be used.
  • the pressure ratio of the single-stage compression can be increased significantly, whereby the set goal can be achieved with simpler and cheaper means.
  • FIG. 3 Another possible embodiment of the heat pump according to the invention is shown in FIG. 3.
  • This embodiment is particularly expedient in such cases when the use of a heat exchanger vessel of constant or almost constant temperature is more advantageous when exchanging heat with the surroundings, be it on the low-pressure side or on the high-pressure side, or even at both pressures.
  • This latter case which is also shown in the figure, can actually be seen as a further development of the conventional chiller.
  • the machine presented here thus combines the advantages that the heat exchanger vessels have a constant temperature profile and the "wet compression", i.e. offer the thermodynamics of the solutions.
  • the two-phase, high-pressure working medium emerging from the compressor 8 passes into a phase separator 16, where the path of the liquid and the vapor are separated from one another.
  • the steam is fed from here into a condenser 9 known per se, where it emits its heat of vaporization q ko , and then passes via an aftercooler 10 and a pressure-reducing expansion valve 14 into an evaporator 15, in which heat from the environment at an almost constant temperature is withdrawn, so that the working medium evaporates in connection therewith.
  • the liquid flows out of the phase separator 16 into a liquid cooler 13, in which it is physically usable or still usable or in the operation of the refrigerator extractable heat content is exempted.
  • the liquid then flows through one side of an internal heat exchanger 12 and a pressure-reducing expansion valve 11 into the other side of the aftercooler 10, in which the liquid refrigerant cools further. From here, the liquid reaches the suction side of the compressor 8 via the other side of the internal heat exchanger 12, where it mixes with the steam coming from the evaporator 15.
  • a rectifier (not shown) can optionally be installed upstream of the condenser 9, by means of which the refrigerant concentration of the vapor phase is increased.
  • the embodiment according to FIG. 3 can primarily be used advantageously for such cooling tasks where a large pressure difference is necessary (e.g. freezing, heating with a heat pump); but it can also be used in an energetically effective manner in conventional cooling conditions.
  • the embodiment according to FIG. 4 has the advantage that it combines the good properties of the previously discussed embodiments and the absorption machines, since this embodiment works without external mechanical energy expenditure by introducing thermal energy.
  • the liquid working medium flows out of the absorber 1 in the already known manner via one side of the inner heat exchanger 2 and the pressure-reducing expansion valve 3 into the degasser 4, in which the working medium extracts thermal energy q, as a result of which part of the working medium evaporates .
  • the working medium is pressed by the compressor 8 into the absorber 19 of the drive circuit.
  • the working medium is dissolved in a poor solution coming from a boiler 18, during which the working medium releases its heat of evaporation and solution q02.
  • the rich solution flows out of the absorber 19 with the help of a solution pump 6 via one side of the inner heat exchanger 2 of the drive circuit into the boiler 18, in which the rich refrigerant vapor is expelled again from this rich solution with the help of an external amount of energy q ka high temperature levels becomes.
  • the poor solution flows back over the other side of the inner heat exchanger 2 and the pressure-reducing expansion valve 3 into the drive-side absorber 19.
  • the steam leaving the boiler 18 flows into a mechanical expansion machine 17, in which part of the enthalpy of the steam is converted into mechanical energy.
  • the compressor 8 is driven by this mechanical energy.
  • the working medium emerging from the compressor 8 could also be conducted into the absorber 1, the steam emerging from the expansion machine 17 having to be conducted into the drive-side absorber 19. This could thermodynamically separate the working side and the drive side.
  • This way of switching is less interesting because it means no further advantages in terms of function; it even results in a certain deterioration of the specific characteristic values, because in the former case higher temperatures can be achieved by appropriately selecting the concentration ratios on the drive side in the absorber 19, as a result of which a larger proportion of the energy expended can be obtained at a higher temperature level.
  • the heat pump according to the invention has a very wide field of application because, from the deep-freezing tasks up to the heating purposes, it guarantees more energy-efficient operation than the previous systems.
  • Another advantage of the system according to the invention is that it can be adapted very flexibly to the task to be solved, depending on the concentration ratios of the solution used, and in this way its operating characteristic can be optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Hybride Kältemaschine oder Wärmepumpe, welche als Arbeitsmedium ein Arbeitsstoffpaar aus einem Kältemittel und einem Lösungsmittel enthält und deren Basiskreislauf einen Lösungskreislauf (1-6) und einen mit diesem zusammengeschalteten mechanischen Verdichter (8) aufweist. Dadurch entsteht sowohl an der wärmeaufnehmenden, als auch an der wärmeabgebenden Seite des Kreislaufs ein sich ändernder Temperaturverlauf. Falls auf der Antriebsseite ebenfalls ein System mit veränderlichem Temperaturverlauf vorhanden ist, kann eine mehrfache spezifische Kälteleistung bei gleichen Temperaturparametern erzielt werden. Wenn durch den mechanischen Verdichter (8) eine nasse Kompression dadurch herbeigeführt wird, daß während des Arbeitstaktes beide Phasen des Arbeitsmediums als solche gemeinsam und gleichzeitig im Arbeitsraum des Verdichters (8) vorhanden sind, kann die spezifische Kälteleistung (die Leistungsziffer) weiter erhöht werden.Hybrid refrigeration machine or heat pump which contains a working medium consisting of a refrigerant and a solvent as the working medium and whose basic circuit has a solution circuit (1-6) and a mechanical compressor (8) connected to it. This creates a changing temperature curve on both the heat-absorbing and the heat-emitting side of the circuit. If there is also a system with a variable temperature profile on the drive side, a multiple specific cooling capacity can be achieved with the same temperature parameters. If the mechanical compressor (8) brings about a wet compression in that both phases of the working medium are present as such together and simultaneously in the working space of the compressor (8) during the work cycle, the specific cooling capacity (the power factor) can be increased further.

Description

Die Erfindung betrifft eine hybride Kältemaschine oder Wärmepumpe, die mit einem mechanischen Verdichter versehen ist und die in ihrem thermodynamischen System ein bei den Absorptionskältemaschinen schon bekanntes oder ähnlich zusammengestelltes Arbeitsstoffpaar aus einem Kältemittel und einem Lösungsmittel für das Kältemittel enthält, so daß ein Lösungs- oder Sorptionskreislauf mit einem Verdichter zusammengeschaltet ist.The invention relates to a hybrid refrigeration machine or heat pump, which is provided with a mechanical compressor and which in its thermodynamic system contains a working fluid pair, known or similar in the case of absorption refrigerators, of a refrigerant and a solvent for the refrigerant, so that a solution or sorption cycle is interconnected with a compressor.

Die Anwendungsmöglichkeiten der Wärmepumpen und die Erhöhung ihrer Effektivität werden infolge der Energiekrise überall in der Welt mit erhöhter Intensität untersucht. Die Wärmepumpe ist eigentlich eine umgekehrt betriebene Kältemaschine, welche die Energie der Umgebung in einen funktionell geschlossenen Raum überführt.The possible uses of heat pumps and the increase in their effectiveness are being investigated with increased intensity all over the world due to the energy crisis. The heat pump is actually a reversed chiller that transfers the energy from the environment into a functionally closed space.

Die zur Zeit bekannten Kompressions-Wärmepumpen werden meistens mit in der Kältetechnik allgemein verwendeten Kältemitteln betrieben. Der Trend der Forschungen weist ebenfalls in Richtung der Verfeinerung der in der Kältetechnik schon bewährten Methoden bzw. der Anwendung dieser Methoden für die Wärmepumpen. Einen wesentlichen Durchbruch kann man allerdings von diesem Entwicklungstrend nicht erwarten.The currently known compression heat pumps are mostly operated with refrigerants commonly used in refrigeration technology. The trend of the research also points towards the refinement of the methods already proven in refrigeration technology or the application of these methods for the heat pumps. However, one cannot expect a significant breakthrough from this development trend.

Es gibt auch solche Kühlungsaufgaben, wo ein Medium mit veränderlicher Temperatur (ein sich abkühlendes Medium) gekühlt werden soll und die abgezogene Energie ebenfalls einem Medium mit veränderlicher Temperatur (z.B. Kühlwasser) übergeben werden soll. In solchen Fällen haben die herkömmlichen Kompressions-Kältemaschinen den großen Nachteil, daß man mit den Verdampfungs-und Kondensationstemperaturen der Kältemaschine an der Seite des Wärmeabzuges unter die tiefste Temperatur des abzukühlenden Mediums, und an der Seite der Wärmeabgabe über die höchste Temperatur des wärmeabziehenden Mediums gehen muß, und daß - was damit eng im Zusammenhang steht - auch die Drücke der Wärmeaustauschergefäße mit einer unnötig großen Abweichung bestimmt werden müssen. So wird der Wert des Druckverhältnisses, das den Betrieb des Verdichters grundsätzlich bestimmt, ziemlich ungünstig. Das gleiche Problem tritt auch bei Wärmepumpen auf.There are also cooling tasks where a medium with variable temperature (a cooling medium) should be cooled and the extracted energy should also be transferred to a medium with variable temperature (e.g. cooling water). In such cases, the conventional compression refrigeration machines have the major disadvantage that the evaporation and condensation temperatures of the refrigeration machine on the side of the heat exhaust are below the lowest temperature of the medium to be cooled, and on the side of the heat output the highest temperature of the heat-absorbing medium must, and that - which is closely related - the pressures of the heat exchanger vessels must be determined with an unnecessarily large deviation. So the value of the pressure ratio, which basically determines the operation of the compressor, becomes rather unfavorable. The same problem also occurs with heat pumps.

Dieser Nachteil wird durch die erfindungsgemäße Kältemaschine bzw. durch die nach dem gleichen Prinzip arbeitende Wärmepumpe beseitigt.This disadvantage is eliminated by the refrigeration machine according to the invention or by the heat pump operating on the same principle.

Der Kern der Erfindung und zugleich die zu lösende Aufgabe ist die Schaffung einer die vorteilhaften Eigenschaften der Sorptionskältemaschinen und der mit mechanischem Verdichter versehenen Kältemaschinen (Kompressionskältemaschinen) vereinigenden hybriden Anlage, und zwar ohne die Nachteile der Ausgangstypen.The essence of the invention and at the same time the object to be achieved is the creation of a hybrid system which combines the advantageous properties of the sorption chillers and the chillers provided with mechanical compressors (compression chillers), without the disadvantages of the starting types.

Im Interesse der Lösung der gestellten Aufgabe werden die durch das Sorptionsprinzip einen veränderlichen Temperaturablauf ermöglichenden Wärmeaustauschergefäße mit dem Verdichter der Kompressionskältemaschinen kombiniert, und als Arbeitsmedium kein reines Kältemittel, sondern ein bei den Absorptions- (oder Resorptions-) Kältemaschinen schon bekanntes, oder ähnlich zusammengesetztes Arbeitsstoffpaar aus einem Kältemittel und einer Sorptionsflüssigkeit im thermodynamischen Kreis der erfindungsgemäßen Anlage umgewälzt.In the interest of solving the problem, the heat exchanger vessels, which enable a variable temperature sequence due to the sorption principle, are combined with the compressor of the compression refrigeration machines, and as a working medium not a pure refrigerant, but a pair of agents that is already known or similar in the absorption (or absorption) refrigeration machines circulated from a refrigerant and a sorption liquid in the thermodynamic circuit of the system according to the invention.

Im Sinne der Erfindung ist in einem als Arbeitsmedium ein Arbeitsstoffpaar aus einem Kältemittel und einer Sorptionsflüssigkeit umwälzenden, mit mechanischem Verdichter versehenen System wenigstens das eine der mit der Umgebung einen Wärmeaustausch ermöglichenden Wärmeaustauschergefäße eine zweckmäßigerweise aus Rohren oder Platten bestehende, sogenannte "trockene" Konstruktion, durch welche entlang der Wärmeaustauschfläche bezüglich beider Phasen des Arbeitsmediums zwischen dem Anfangs- und Endzustand sich kontinuierlich verändernde Konzentrationsverhältnisse bzw. diesen eindeutig zugeordnete, sich kontinuierlich verändernde Temperaturverhältnisse gewährleistet sind.In the sense of the invention, in a working medium consisting of a refrigerant and a sorption liquid circulating system, provided with a mechanical compressor, at least one of the heat exchanger vessels enabling heat exchange with the surroundings is a so-called "dry" construction, suitably consisting of pipes or plates which are guaranteed along the heat exchange surface with respect to both phases of the working medium between the initial and final state of continuously changing concentration ratios or clearly assigned continuously changing temperature conditions.

Nach einer abgewandelten oder alternativen Ausführungsform weist die erfindungsgemäße Anlage die Dampf- und Flüssigkeitsphase des Arbeitsmediums im Arbeitsraum ihres Verdichters gleichzeitig und gemeinsam auf.According to a modified or alternative embodiment, the system according to the invention has the vapor and liquid phase of the working medium in the working space of its compressor simultaneously and together.

Nach einer vorteilhaften Ausführungsform der Erfindung ist hinter dem Entgaser der Anlage ein Phasentrenner eingebaut. Gemäß einer ebenfalls vorteilhaften Ausführungsform der Erfindung ist hinter dem Phasentrenner in die Dampfphasenleitung des Arbeitsmediums ein Rektifikator eingebaut.According to an advantageous embodiment of the invention, a phase separator is installed behind the degasser of the system. According to a likewise advantageous embodiment of the invention, a rectifier is installed behind the phase separator in the vapor phase line of the working medium.

Nach einer weiteren vorteilhaften Ausführungsform der Erfindung sind hinter dem Verdichter ein Phasentrenner, und hinter diesem dampfphasenseitig ein Kondensator mit einem Nachkühler, sowie flüssigkeitsphasenseitig ein innerer Wärmeaustauscher eingebaut, wobei die beiden so entstandenen, miteinander parallelen, separaten Arbeitsmittel-Kreise mindestens einen gemeinsamen Abschnitt aufweisen. Bei dieser Ausführungsform ist es zweckmäßig, wenn in die Dampfleitung hinter dem Phasentrenner und vor dem Kondensator ein die Kältemittel-Konzentration der Dampfphase erhöhender Rektifikator eingebaut ist.According to a further advantageous embodiment of the invention, a phase separator is installed downstream of the compressor, and a condenser with an aftercooler on the vapor phase side, and an internal heat exchanger on the liquid phase side, the two separate working medium circuits thus created having at least one common section. In this embodiment, it is expedient if the cold is in the steam line behind the phase separator and in front of the condenser Rectifier increasing the medium concentration of the vapor phase is installed.

Nach einer weiteren zweckmäßigen Ausführungsform der Erfindung ist an die Basisanlage ein aus einem Kessel, einer Expansionsmaschine, einem Absorber, einem inneren Wärmeaustauscher und einer Lösungspumpe bestehender Antriebskreis angeschlossen, wobei die Expansionsmaschine und der Verdichter der Basisanlage mittels eines Kraft- übertragungsorgans miteinander verbunden sind.According to a further expedient embodiment of the invention, a drive circuit consisting of a boiler, an expansion machine, an absorber, an internal heat exchanger and a solution pump is connected to the base system, the expansion machine and the compressor of the base system being connected to one another by means of a power transmission element.

Die erfindungsgemäße Wärmepumpe weist bei gleichen Druckverhältnissen etwa gleich große, bei gleichen Temperaturverhältnissen aber eine 1,5 bis 2-fach höhere Leistungsziffer e auf als die herkömmlichen Anlagen.The heat pump according to the invention has, at the same pressure conditions, roughly the same, but at the same temperature conditions a 1.5 to 2 times higher performance coefficient e than the conventional systems.

Mit zielorientierten Forschungen und durch Anwendung von Arbeitsmedien größerer spezifischer Lösungswärme kann dieser Wert weiter erhöht werden.This value can be increased further with goal-oriented research and by using working media with a higher specific solution heat.

Die Erfindung wird ausführlicher anhand der Zeichnung erläutert, in welcher mögliche Schaltschemen der erfindungsgemäßen hybriden Kältemaschine bzw. Wärmepumpe dargestellt sind. Es zeigen:

  • Fig. 1 die Grundschaltung der erfindungsgemäßen hybriden Wärmepumpe,
  • Fig. 2 das Schaltschema einer eine "nasse Kompression" verwirklichenden hybriden Wärmepumpe,
  • Fig. 3 eine weitere mögliche Ausführungsform der hybriden Wärmepumpe, die für Tiefkühlung besonders geeignet ist, und
  • Fig. 4 eine weitere zweckmäßige Ausführungsform der erfindungsgemäßen Wärmepumpe.
The invention is explained in more detail with reference to the drawing, in which possible circuit diagrams of the hybrid refrigerator or heat pump according to the invention are shown. Show it:
  • 1 shows the basic circuit of the hybrid heat pump according to the invention,
  • 2 shows the circuit diagram of a hybrid heat pump realizing a "wet compression",
  • Fig. 3 shows another possible embodiment of the hybrid heat pump, which is particularly suitable for freezing, and
  • Fig. 4 shows another useful embodiment of the heat pump according to the invention.

In Fig. 1 ist der Grundtyp der erfindungsgemäßen hybriden Wärmepumpe dargestellt. Wie aus der Fig. ersichtlich, weist die Anlage, in deren thermodynamischem System eine Lösung als Arbeitsmedium umgewälzt wird, als Wärmetauschergefäße einen Absorber 1 und einen Entgaser 4 auf. Zwischen dem Absorber 1 und dem Entgaser 4 ist ein innerer Wärmeaustauscher 2 (Temperaturwechsler) und ein druckreduzierendes Expansionsventil 3 (zweckmäßigerweise ein Drosselventil) angeordnet. Hinter dem Entgaser 4 befindet sich ein Phasentrenner 5, in welchem die zweiphasige Arbeitsmittellösung getrennt wird. Der Weg der Flüssigkeit führt mit Hilfe einer Flüssigkeitspumpe 6 über den inneren Wärmeaustauscher 2, wo sie vorzugsweise im Gegenstrom zu der aus dem Absorber 1 austretenden Lösung strömt, in den Absorber 1 zurück. Der Weg der Dampfphase führt über einen Rektifikator 7 zu einem mechanischen Verdichter 8, dessen Ausgang ebenfalls mit dem Absorber 1 verbunden ist.1 shows the basic type of the hybrid heat pump according to the invention. As can be seen from the figure, the system, in the thermodynamic system of which a solution is circulated as the working medium, has an absorber 1 and a degasser 4 as heat exchanger vessels. An internal heat exchanger 2 (temperature changer) and a pressure-reducing expansion valve 3 (expediently a throttle valve) are arranged between the absorber 1 and the degasser 4. Behind the degasser 4 is a phase separator 5, in which the two-phase working solution is separated. The path of the liquid leads back into the absorber 1 with the aid of a liquid pump 6 via the internal heat exchanger 2, where it preferably flows in countercurrent to the solution emerging from the absorber 1. The path of the vapor phase leads via a rectifier 7 to a mechanical compressor 8, the output of which is also connected to the absorber 1.

Die Arbeitsweise der Anlage ist wie folgt:The system works as follows:

Die aus dem Absorber 1 austretende Lösung strömt durch die eine Seite des inneren Wärmetauschers 2 und durch das Expansionsventil 3. Nach dem Durchströmen durch das druckreduzierende Expansionsventil 3 gelangt in den Entgaser 4 eine Lösung niedrigen Druckes, die aus dem abzukühlenden Medium Wärme entzieht. Durch die aus dem abzukühlenden Medium entzogene Wärmemenge q wird ein bedeutender Anteil der Kältemittelkomponenten der Lösung in die Dampfphase überführt, wobei also diese Wärmemenge das Kältemittel aus der Lösung austreibt und die dazu notwendige Lösungs- und Verdampfungswärme zur Verfügung stellt.The solution emerging from the absorber 1 flows through one side of the inner heat exchanger 2 and through the expansion valve 3. After flowing through the pressure-reducing expansion valve 3, a solution of low pressure enters the degasser 4, which draws heat from the medium to be cooled. Due to the amount of heat q extracted from the medium to be cooled, a significant proportion of the refrigerant components of the solution are converted into the vapor phase, which means that this amount of heat drives the refrigerant out of the solution and provides the necessary heat of solution and evaporation.

Im Entgaser 4 entsteht somit eine Zweiphasenströmung, wobei durch die konstruktive Gestaltung des Entgasers 4 als sogenannte "trockene" Konstruktion, die charakterisiert ist durch die Ausbildung einer durch Leitelemente, wie Rohre oder Platten, herbeigeführten Zwangsbahn für das Arbeitsmedium zwischen dem Eingang und dem Ausgang des Wärmetauschers, der Anteil der Dampfphase entlang der Wärmeaustauscherfläche allmählich definiert zunimmt. In Abhängigkeit davon nimmt die Temperatur des strömenden Systems entsprechend den Gesetzmäßigkeiten der Lösungen zu.A two-phase flow thus arises in the degasser 4, the constructive design of the degasser 4 as a so-called “dry” construction, which is characterized by the formation of a guide element, such as pipes or plates, the forced path for the working medium between the inlet and the outlet of the heat exchanger, the proportion of the vapor phase along the heat exchanger surface gradually increases in a defined manner. Depending on this, the temperature of the flowing system increases according to the laws of the solutions.

Das aus dem Entgaser 4 austretende zweiphasige Gemisch gelangt in den,Phasentrenner 5, wo die Flüssigkeit und die Dampfphase voneinander getrennt werden. Von hier aus strömt die Flüssigkeit mit Hilfe der Flüssigkeitspumpe 6 über die andere Seite des inneren Wärmeaustauschers 2 in den Absorber 1 zurück, wo sie wieder mit der Dampfphase in Berührung kommt.The two-phase mixture emerging from the degasifier 4 enters the phase separator 5, where the liquid and the vapor phase are separated from one another. From here, the liquid flows back with the help of the liquid pump 6 over the other side of the internal heat exchanger 2 into the absorber 1, where it comes into contact with the vapor phase again.

Die Dampfphase gelangt über den Rektifikator 7, der entsprechend Fig. 1 in den Entgaser 4 einbezogen sein kann, in den Verdichter 8, der die Dampfphase durch den Einsatz von mechanischer Arbeit qk auf das höhere Druckniveau des Absorbers 1 komprimiert.The vapor phase passes through the rectifier 7, which can be included in the degasser 4 according to FIG. 1, into the compressor 8, which compresses the vapor phase to the higher pressure level of the absorber 1 through the use of mechanical work q k .

Im Absorber 1 erfolgt die Vermischung der Dampfphase und der wenig Kältemittel enthaltenden Sorptionsflüssigkeit, der sogenannten armen Lösung, die Auflösung des Kältemittels in der Sorptionsflüssigkeit sowie der Entzug der Verdampfungswärme und der Lösungswärme, d.h. der Wärmemenge q , bei sich verändernden Temperaturparametern. Nach den gleichen Konstruktionsprinzipien wie beim Entgaser 4 kann auch hier der Wärmeaustauschfläche des Absorbers eindeutig ein sich entlang derselben definiert veränderndes Temperaturfeld zugeordnet werden; die abgegebene Wärme kann also wirklich bei sich verändernden Temperaturparametern ausgenutzt werden.In the absorber 1, the vapor phase and the sorption liquid containing little refrigerant, the so-called poor solution, are mixed, the refrigerant is dissolved in the sorption liquid and the heat of evaporation and the heat of solution are extracted, i.e. the amount of heat q, with changing temperature parameters. According to the same construction principles as in the degasser 4, the heat exchange surface of the absorber can also be uniquely assigned a temperature field that changes along the same; the heat given off can therefore really be used with changing temperature parameters.

Die Anwendung des inneren Wärmeaustauschers 2 verbessert den thermischen Wirkungsgrad der Anlage.The use of the internal heat exchanger 2 improves the thermal efficiency of the system.

Fig. 2 zeigt eine andere vorteilhafte Ausführungsform der erfindungsgemäßen kombinierten Wärmepumpe.Fig. 2 shows another advantageous embodiment of the combined heat pump according to the invention.

Diese Ausführungsform unterscheidet sich von der aus Fig. 1 im wesentlichen darin, daß die Phasen des aus dem Entgaser 4 austretenden zweiphasigen Arbeitsmediums nicht getrennt werden, sondern - nach Passieren des inneren Wärmeaustauschers 2 - zusammen und gleichzeitig in den Arbeitsraum des Verdichters 8 gelangen, wo sich neben der Verdichtung auch die durch die Thermodynamik der Lösungen bestimmten physikalischen Vorgänge abspielen.This embodiment differs from that of Fig. 1 essentially in that the phases of the two-phase working medium emerging from the degasser 4 are not separated, but - after passing through the internal heat exchanger 2 - come together and simultaneously into the working space of the compressor 8, where in addition to compression, the physical processes determined by the thermodynamics of the solutions also take place.

Neben der Dampfphase kann die Flüssigkeit hier sogar in zwei voneinander verschiedenen Formen anwesend sein. Einerseits kann nach dem einen Lösungsweg die Flüssigkeitsphase in ihrer spezifisch flüssigen Form vorkommen. Andererseits kann sie jedoch auch in Form von Aerosol im Dampf anwesend sein. Zur letzteren Ausführungsform sind natürlich auch eine geeignete Pumpe sowie auch ein Zerstäuber erforderlich.In addition to the vapor phase, the liquid can even be present in two different forms. On the one hand, according to one solution, the liquid phase can occur in its specifically liquid form. On the other hand, however, it can also be present in the form of aerosol in the steam. A suitable pump and also an atomizer are of course also required for the latter embodiment.

Aus dem Verdichter 8 strömt das Flüssigkeits-Dampf-Gemisch hohen Druckes in den Absorber 1, wo die Verdampfungswärme der Dampfphase und die Lösungswärme des Kältemittels, d.h. die Wärmemenge q , bei einem sich verandernden Temperaturablaufentzogen bzw. für Heizungszwecke verwendet wird.From the compressor 8, the high pressure liquid-vapor mixture flows into the absorber 1, where the heat of vaporization of the vapor and the heat of solution of the refrigerant, i.e. the amount of heat q is withdrawn when the temperature changes or is used for heating purposes.

Hinter dem inneren Wärmeaustauscher 2, der der Erhöhung der energetischen Effektivität dient, gelangt die Flüssigkeit unter hohem Druck in das druckreduzierende Expansionsventil 3 (z.B. in ein Drosselventil), in welchem das Arbeitsmedium expandiert.Behind the inner heat exchanger 2, which serves to increase the energetic effectiveness, the liquid passes under high pressure into the pressure-reducing expansion valve 3 (e.g. into a throttle valve), in which the working medium expands.

Das expandierte und in dieser Weise abgekühlte Arbeitsmedium strömt in den Entgaser 4, wo die Wärme q9 des abzukühlenden Mediums in das System eingeführt wird. Die eingeführte Wärme treibt das Kältemittel aus der Lösung aus, und am Ende des Entgasers 4 bildet sich wieder ein zweiphasiges System aus. Dieses Flüssigkeit und Dampf gleichzeitig enthaltende System wird dann in den Verdichter 8 geleitet.The expanded and in this way cooled working medium flows into the degasser 4, where the heat q 9 of the medium to be cooled is introduced into the system. The Introduced heat drives the refrigerant out of the solution, and a two-phase system is formed again at the end of the degasifier 4. This system containing liquid and vapor at the same time is then fed into the compressor 8.

Ein sehr großer Vorteil dieser Ausführungsform ist die sogenannte "nasse Kompression". Während der Komprimierung laufen nämlich die Vermischung der Dampf- und der Flüssigkeitsphase und das Inlösunggehen des Dampfes parallel mit der Druckerhöhung ab, wobei die Dampfphase sowie die Flüssigkeitsphase bestrebt sind, in Funktion der Zeit und der Reaktionsgeschwindigkeiten - entsprechend den Gesetzmäßigkeiten der Thermodynamik der Lösungen - ein Gleichgewicht zu erreichen. Die zu diesen Gleichgewichtszuständen gehörenden Temperaturwerte sind aber immer wesentlich niedriger, als die zu einem gegebenen Druck gehörenden Temperaturwerte im Falle einer adiabaten Kompression.A very great advantage of this embodiment is the so-called "wet compression". During the compression, the mixing of the vapor and the liquid phase and the dissolving of the vapor take place in parallel with the pressure increase, whereby the vapor phase and the liquid phase are endeavored to function as a function of time and the reaction rates - in accordance with the laws of the thermodynamics of the solutions To achieve balance. However, the temperature values belonging to these equilibrium states are always significantly lower than the temperature values belonging to a given pressure in the case of adiabatic compression.

Hinsichtlich der Dampfphase kann diese Situation also so bewertet werden, als ob sich parallel mit der Kompression auch ein gleichmäßiger und kontinuierlicher Rückkühlungsvorgang abspielen würde. Die energetische Bedeutung dieser Erscheinung ist für einen Fachmann wohlbekannt. Eine weitere, die Kompressionsarbeit vermindernde Wirkung entsteht dadurch, daß während des Inlösunggehens auch der Massenanteil der Dampfphase abnimmt, und in dieser Weise weniger Dampf verdichtet werden muß.With regard to the vapor phase, this situation can thus be assessed as if a uniform and continuous recooling process was taking place in parallel with the compression. The energetic meaning of this phenomenon is well known to a person skilled in the art. Another effect which reduces the compression work arises from the fact that the mass fraction of the vapor phase also decreases during the dissolving process, and in this way less vapor has to be compressed.

Über die beschriebenen Erscheinungen hinaus nimmt auch die Endtemperatur der Kompression ab, was hinsichtlich der konstruktiven Merkmale des Verdichters sowie der verwendbaren Werkstoffe von entscheidender Bedeutung ist. Das Druckverhältnis der einstufigen Kompression kann wesentlich erhöht werden, wodurch das gestellte Ziel mit einfacheren und billigeren Mitteln erreicht werden kann.In addition to the phenomena described, the final temperature of the compression also decreases, which is of crucial importance with regard to the structural features of the compressor and the materials that can be used. The pressure ratio of the single-stage compression can be increased significantly, whereby the set goal can be achieved with simpler and cheaper means.

Durch die erwähnten Eigenschaften können mit dieser Ausführungsform wesentliche Vorteile erzielt werden.Due to the properties mentioned, significant advantages can be achieved with this embodiment.

Eine weitere mögliche Ausführungsform der erfindungsgemäßen Wärmepumpe ist in Fig. 3 dargestellt.Another possible embodiment of the heat pump according to the invention is shown in FIG. 3.

Diese Ausführungsform ist in solchen Fällen besonders zweckmäßig, wenn beim Wärmeaustausch mit der Umgebung die Anwendung eines Wärmeaustauschergefäßes konstanter oder nahezu konstanter Temperatur vorteilhafter ist, sei es an der Niederdruck- oder an der Hochdruckseite, oder sogar bei allen beiden Drücken. Dieser letztere Fall, der auch in der Abbildung dargestellt ist, kann eigentlich als eine Weiterentwicklung der herkömmlichen Kältemaschine betrachtet werden.This embodiment is particularly expedient in such cases when the use of a heat exchanger vessel of constant or almost constant temperature is more advantageous when exchanging heat with the surroundings, be it on the low-pressure side or on the high-pressure side, or even at both pressures. This latter case, which is also shown in the figure, can actually be seen as a further development of the conventional chiller.

Die hier vorgestellte Maschine vereinigt also die Vorteile, die die Wärmeaustauschergefäße konstanten Temperaturverlaufs und die "nasse Kompression", d.h. die Thermodynamik der Lösungen anbieten.The machine presented here thus combines the advantages that the heat exchanger vessels have a constant temperature profile and the "wet compression", i.e. offer the thermodynamics of the solutions.

Das aus dem Verdichter 8 austretende zweiphasige Arbeitsmedium hohen Druckes gelangt in einen Phasentrenner 16, wo der Weg der Flüssigkeit und des Dampfes voneinander getrennt werden.The two-phase, high-pressure working medium emerging from the compressor 8 passes into a phase separator 16, where the path of the liquid and the vapor are separated from one another.

Der Dampf wird von hier in einen in an sich bekannten Kondensator 9 geführt, wo er seine Verdampfungswärme qko abgibt, und gelangt dann über einen Nachkühler 10 und ein druckreduzierendes Expansionsventil 14 in einen Verdampfer 15, in welchem aus der Umgebung bei beinahe konstanter Temperatur Wärme entzogen wird, so daß damit im Zusammenhang das Arbeitsmedium verdampft.The steam is fed from here into a condenser 9 known per se, where it emits its heat of vaporization q ko , and then passes via an aftercooler 10 and a pressure-reducing expansion valve 14 into an evaporator 15, in which heat from the environment at an almost constant temperature is withdrawn, so that the working medium evaporates in connection therewith.

Die Flüssigkeit strömt aus dem Phasentrenner 16 in einen Flüssigkeitskühler 13, in welchem sie von ihrem noch nutzbaren oder im Kältemaschinenbetrieb physikalisch noch entziehbaren Wärmeinhalt befreit wird. Danach strömt die Flüssigkeit über die eine Seite eines inneren Wärmeaustauschers 12 und ein druchreduzierendes Expansionsventil 11 in die andere Seite des Nachkühlers 10, in welchem sich das flüssige Kältemittel weiter abkühlt. Von hier gelangt die Flüssigkeit über die andere Seite des inneren Wärmeaustauschers 12 zur Saugseite des Verdichters 8, wo sie sich mit dem aus dem Verdampfer 15 kommenden Dampf vermischt.The liquid flows out of the phase separator 16 into a liquid cooler 13, in which it is physically usable or still usable or in the operation of the refrigerator extractable heat content is exempted. The liquid then flows through one side of an internal heat exchanger 12 and a pressure-reducing expansion valve 11 into the other side of the aftercooler 10, in which the liquid refrigerant cools further. From here, the liquid reaches the suction side of the compressor 8 via the other side of the internal heat exchanger 12, where it mixes with the steam coming from the evaporator 15.

Danach wird dieses Gemisch durch den Verdichter 8 wieder in den Phasentrenner 16 weitergeleitet. In die vom Phasentrenner 16 abführende Dampfphasenleitung kann vor dem Kondensator 9 gegebenenfalls ein Rektifikator (nicht gezeigt) eingebaut sein, durch welchen die Kältemittel konzentration der Dampfphase erhöht wird.Then this mixture is passed through the compressor 8 back into the phase separator 16. In the vapor phase line leading away from the phase separator 16, a rectifier (not shown) can optionally be installed upstream of the condenser 9, by means of which the refrigerant concentration of the vapor phase is increased.

Die Ausführungsform nach Fig. 3 kann in erster Linie bei solchen Kühlungsaufgaben vorteilhaft verwendet werden, wo ein großer Druckunterschied notwendig ist (z.B. Tiefkühlung, Heizung mit Wärmepumpe); aber sie ist auch bei herkömmlichen Kühlungsverhältnissen energetisch wirkungsvoll einsetzbar.The embodiment according to FIG. 3 can primarily be used advantageously for such cooling tasks where a large pressure difference is necessary (e.g. freezing, heating with a heat pump); but it can also be used in an energetically effective manner in conventional cooling conditions.

Die Ausführungsform gemäß Fig. 4 hat den Vorteil, daß sie die guten Eigenschaften der bisher behandelten Ausführungsformen und der Absorptionsmaschinen vereinigt, da diese Ausführungsform ohne äußeren mechanischen Energieaufwand durch Einführung von Wärmeenergie funktioniert.The embodiment according to FIG. 4 has the advantage that it combines the good properties of the previously discussed embodiments and the absorption machines, since this embodiment works without external mechanical energy expenditure by introducing thermal energy.

Der wesentlichste Vorteil dieser Ausführungsform besteht gegenüber der als Ausgangsbasis dienenden Resorptionskältemaschine darin, daß mit ihrer Hilfe ein ganz großer Temperaturunterschied zwischen den Wärmeaustauschergefäßen überbrückt werden kann, bzw. bei gleichen äußeren Umgebungsverhältnissen diese erfindungsgemäße Anlage nahezu eine doppeltsogroße Leistungsziffer e aufweist.The most important advantage of this embodiment compared to the absorption chiller serving as a starting point is that it can be used to bridge a very large temperature difference between the heat exchanger vessels, or with the same outer ones Ambient conditions this system according to the invention has almost twice the performance figure e.

Das flüssige Arbeitsmedium strömt aus dem Absorber 1 in der schon bekannten Art und Weise über die eine Seite des inneren Wärmeaustauschers 2 und das druckreduzierende Expansionsventil 3 in den Entgaser 4, in welchem das Arbeitsmedium aus der Umgebung Wärmeenergie q entzieht, infolgedessen ein Teil des Arbeitsmediums verdampft.The liquid working medium flows out of the absorber 1 in the already known manner via one side of the inner heat exchanger 2 and the pressure-reducing expansion valve 3 into the degasser 4, in which the working medium extracts thermal energy q, as a result of which part of the working medium evaporates .

Die restliche Flüssigkeit bzw. die Dampfphase gelangen über die andere Seite des inneren Wärmetauschers 2 in den Verdichter 8, in welchem sich die "nasse Kompression" abspielt.The remaining liquid or the vapor phase pass through the other side of the inner heat exchanger 2 into the compressor 8, in which the "wet compression" takes place.

Das Arbeitsmedium wird von dem Kompressor 8 in den Absorber 19 des Antriebskreislaufs gedrückt. Hier wird das Arbeitsmedium in einer aus einem Kessel 18 kommenden armen Lösung aufgelöst, währenddessen das Arbeitsmittel seine Verdampfungs- und Lösungswärme q02 abgibt.The working medium is pressed by the compressor 8 into the absorber 19 of the drive circuit. Here the working medium is dissolved in a poor solution coming from a boiler 18, during which the working medium releases its heat of evaporation and solution q02.

Aus dem Absorber 19 strömt die reiche Lösung mit Hilfe einer Lösungspumpe 6 über die eine Seite des inneren Wärmeaustauschers 2 des Antriebskreislaufs in den Kessel 18, in welchem aus dieser reichen Lösung mit Hilfe einer äußeren Energiemenge qka hohen Temperaturniveaus der an Kältemittel reiche Dampf wieder ausgetrieben wird.The rich solution flows out of the absorber 19 with the help of a solution pump 6 via one side of the inner heat exchanger 2 of the drive circuit into the boiler 18, in which the rich refrigerant vapor is expelled again from this rich solution with the help of an external amount of energy q ka high temperature levels becomes.

Die arme Lösung strömt über die andere Seite des inneren Wärmeaustauschers 2 und das druckreduzierende Expansionsventil 3 wieder in den antriebsseitigen Absorber 19 zurück.The poor solution flows back over the other side of the inner heat exchanger 2 and the pressure-reducing expansion valve 3 into the drive-side absorber 19.

Der den Kessel 18 verlassende Dampf strömt in eine mechanische Expansionsmaschine 17, in welcher ein Teil der Enthalpie des Dampfes in mechanische Energie umgewandelt wird. Durch diese mechanische Energie wird der Verdichter 8 angetrieben.The steam leaving the boiler 18 flows into a mechanical expansion machine 17, in which part of the enthalpy of the steam is converted into mechanical energy. The compressor 8 is driven by this mechanical energy.

Der die Expansionsmaschine 17 verlassende Dampf gelangt in den Absorber 1 und damit wird der thermodynamische Kreis abgeschlossen.The steam leaving the expansion machine 17 reaches the absorber 1 and the thermodynamic cycle is thus completed.

Bei dieser Ausführungsform kann man noch erwähnen, daß das aus dem Verdichter 8 austretende Arbeitsmedium auch in den Absorber 1 geleitet werden könnte, wobei der aus der Expansionsmaschine 17 austretende Dampf in den antriebsseitigen Absorber 19 geleitet werden müßte. Dadurch könnten die Arbeitsseite und die Antriebsseite thermodynamisch getrennt werden. Diese Schaltungsweise ist aber weniger interessant, weil sie hinsichtlich der Funktion keine weiteren Vorteile bedeutet; sie hat sogar eine gewisse Verschlechterung der spezifischen Kennwerte zur Folge, weil im ersteren Fall durch die zweckmäßige Auswahl der Konzentrationsverhältnisse auf der Antriebsseite im Absorber 19 höhere Temperaturen erzielt werden können, wodurch ein größerer Anteil der aufgewendeten Energie auf einem höheren Temperaturniveau gewonnen werden kann.In this embodiment, it can also be mentioned that the working medium emerging from the compressor 8 could also be conducted into the absorber 1, the steam emerging from the expansion machine 17 having to be conducted into the drive-side absorber 19. This could thermodynamically separate the working side and the drive side. This way of switching is less interesting because it means no further advantages in terms of function; it even results in a certain deterioration of the specific characteristic values, because in the former case higher temperatures can be achieved by appropriately selecting the concentration ratios on the drive side in the absorber 19, as a result of which a larger proportion of the energy expended can be obtained at a higher temperature level.

Zusammenfassend kann also festgestellt werden, daß die erfindungsgemäße Wärmepumpe ein sehr breites Anwendungsgebiet aufweist, weil sie von den Tiefkühlungsaufgaben bis hin zu den Heizungszwecken überall einen energetisch günstigeren Betrieb gewährleistet als die bisherigen Anlagen.In summary, it can thus be stated that the heat pump according to the invention has a very wide field of application because, from the deep-freezing tasks up to the heating purposes, it guarantees more energy-efficient operation than the previous systems.

Ein weiterer Vorteil der erfindungsgemäßen Anlage besteht darin, daß sie in Abhängigkeit von den Konzentrationsverhältnissen der verwendeten Lösung an die zu lösende Aufgabe sehr elastisch angepaßt werden kann und in dieser Weise ihre Betriebskennwert optimiert werden können.Another advantage of the system according to the invention is that it can be adapted very flexibly to the task to be solved, depending on the concentration ratios of the solution used, and in this way its operating characteristic can be optimized.

Claims (8)

1: Hybride Kältemaschine oder Wärmepumpe mit einem geschlossenen Basiskreislauf, welcher einen Lösungskreislauf (1-5) mit Wärmeaustauschergefäßen (1-4), wie z.B. Absorber (1), Entgaser (4), Flüssigkeitskühler (13), für den Wärmeaustausch mit der Umgebung, innere Wärmeaustauscher (2), mechanische Einheiten (6, 8) zur Umwälzung eines Arbeitsmediums gegen die Druckdifferenz zwischen der wärmeabgebenden Seite und der wärmeaufnehmenden Seite, und einen mit dem Lösungskreislauf zusammengeschalteten mechanischen Verdichter (8) aufweist und als Arbeitsmedium ein Arbeitsstoffpaär aus einem Kältemittel und einem Lösungsmittel bzw. deren Phasen getrennt voneinander führt, dadurch gekennzeich- net, daß wenigstens eines der Wärmeaustauschergefäße (1, 4) als derartiger Trockenwärmetauscher ausgebildet ist, daß durch seine vorzugsweise Rohre oder Platten enthaltende Konstruktion entlang seiner Wärmeaustauscherfläche bezüglich beider Phasen des Arbeitsmediums zwischen dessen Anfangs- und Endzustand sich kontinuierlich ändernde Konzentrationsverhältnisse bzw. diesen eindeutig zugeordnete, sich kontinuierlich ändernde Temperaturverhält- nisse vorliegen.1: Hybrid refrigeration machine or heat pump with a closed basic circuit, which has a solution circuit (1-5) with heat exchanger vessels (1-4), such as absorber (1), degasser (4), liquid cooler (13), for heat exchange with the environment , internal heat exchanger (2), mechanical units (6, 8) for circulating a working medium against the pressure difference between the heat-emitting side and the heat-absorbing side, and a mechanical compressor (8) connected to the solution circuit, and a working medium pair consisting of a refrigerant and a solvent or the phases of leads separated from one another, characterized g ekennzeich- net that at least one of the Wärmeaustauschergefäße (1, 4) is formed as such a dry heat exchanger that its preferably tubes or plates containing construction along its heat exchange surface with respect to the two phases of the working medium between its initial and final state sic h concentration ratios or continuously changing these uniquely assigned, continuously changing Tem p eraturverhält- nit present. 2. Hybride Kältemaschine oder Wärmepumpe mit einem geschlossenen Basiskreislauf, welcher einen Lösungskreislauf (1-4) mit Wärmeaustauschergefäßen (1, 4), wie z.B. Absorber (1), Entgaser (4), Flüssigkeitskühler (13), für den Wärmeaustausch mit der Umgebung, innere Wärmeaustauscher (2), mechanische Einheiten (6, 8) zur Umwälzung eines Arbeitsmediums gegen die Druckdifferenz zwischen der wärmeabgebenden Seite und der wärmeaufnehmenden Seite, und einen mit dem Lösungskreislauf (1-4) zusammengeschalteten mechanischen Verdichter (8) aufweist und als Arbeitsmedium ein Arbeitsstoffpaar aus einem Kältemittel und einem Lösungsmittel bzw. deren Phasen getrennt voneinander führt, dadurch gekennzeichnet, daß der mechanische Verdichter (8) in den Basiskreislauf derart eingeschaltet ist, daß während seines Arbeitstaktes die Dampfphase und die Flüssigkeitsphase des Arbeitsmediums gleichzeitig und gemeinsam vorhanden sind.2. Hybrid refrigeration machine or heat pump with a closed basic circuit, which has a solution circuit (1-4) with heat exchanger vessels (1, 4), such as absorber (1), degasser (4), liquid cooler (13), for heat exchange with the environment, internal heat exchangers (2), mechanical units (6, 8) for circulating a working medium against the pressure difference between the heat-emitting side and the heat-absorbing side, and has a mechanical compressor (8) interconnected with the solution circuit (1-4) and a working medium consisting of a refrigerant and a solvent or their phases separately as working medium, characterized in that the mechanical compressor (8) in the basic circuit is switched on in such a way that the vapor phase and the liquid phase of the working medium are present simultaneously and together during its working cycle. 3. Hybride Kältemaschine oder Wärmepumpe nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß der Verdichter (8) einem Absorber (1) des Lösungskreislaufs vorgeschaltet ist.3. Hybrid refrigerator or heat pump according to claim 1 and / or 2, characterized in that the compressor (8) is connected upstream of an absorber (1) of the solution circuit. 4. Hybride Kältemaschine oder Wärmepumpe nach Anspruch 1, dadurch gekennzeichnet, daß einem Entgaser (4) des Lösungskreislaufs ein Phasentrenner (5) nachgeschaltet ist.4. Hybrid refrigerator or heat pump according to claim 1, characterized in that a degasser (4) of the solution circuit is followed by a phase separator (5). 5. Hybride Kältemaschine oder Wärmepumpe nach Anspruch 4, dadurch gekennzeichnet, daß in den Dampfweg des Arbeitsmediums hinter dem Phasentrenner (5) ein Rektifikator (7) eingeschaltet ist.5. Hybrid refrigerator or heat pump according to claim 4, characterized in that a rectifier (7) is switched on in the steam path of the working medium behind the phase separator (5). 6. Hybride Kältemaschine oder Wärmepumpe nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß dem Verdichter (8) ein Phasentrenner (16) nachgeschaltet ist, der dampfphasenseitig an einen Kondensator (9) mit einem nachgeschalteten Nachkühler (10), und flüssigkeitsphasenseitig an einen inneren Wärmetauscher (12) angeschlossen ist, zwischen dessen Wärmeaustauschseiten die andere Seite des Nachkühlers (10) eingeschaltet ist, wobei die so entstandenen Kältemittel/Lösungsmittel-Kreisläufe wenigstens einen gemeinsamen Abschnitt aufweisen.6. Hybrid refrigerator or heat pump according to claim 1 and / or 2, characterized in that the compressor (8) is followed by a phase separator (16), the vapor phase side of a condenser (9) with a downstream aftercooler (10), and is connected on the liquid phase side to an inner heat exchanger (12), between the heat exchange sides of which the other side of the aftercooler (10) is switched on, the refrigerant / solvent circuits thus produced having at least one common section. 7. Hybride Kältemaschine oder Wärmepumpe nach Anspruch 6, dadurch gekennzeichnet, daß in den Dampfweg zwischen dem Phasentrenner (16) und dem Kondensator (9) ein Rektifikator eingeschaltet ist.7. Hybrid refrigerator or heat pump according to claim 6, characterized in that a rectifier is switched on in the steam path between the phase separator (16) and the condenser (9). 8. Hybride Kältemaschine oder Wärmepumpe nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß an den Basiskreislauf ein Antriebskreislauf mit einem Kessel (18), einer Expansionsmaschine (17), einem Absorber (19), einem inneren Wärmetauscher (2) und einer Lösungspumpe (6) angeschlossen ist und die Expansionsmaschine (17) als Antrieb des Verdichters (8) mit diesem gekuppelt ist.8. Hybrid refrigeration machine or heat pump according to claim 1 and / or 2, characterized in that a drive circuit with a boiler (18), an expansion machine (17), an absorber (19), an inner heat exchanger (2) and one to the base circuit Solution pump (6) is connected and the expansion machine (17) is coupled to drive the compressor (8).
EP80103173A 1979-06-08 1980-06-09 Hybrid compression-absorption method for operating heat pumps or refrigeration machines Expired EP0021205B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8383101481T DE3071785D1 (en) 1979-06-08 1980-06-09 Operation of a heat pump or refrigeration machine
AT80103173T ATE6387T1 (en) 1979-06-08 1980-06-09 HYBRID COMPRESSION-ABSORPHION PROCESS FOR OPERATING HEAT PUMPS OR REFRIGERATION MACHINES.
AT83101481T ATE22490T1 (en) 1979-06-08 1980-06-09 OPERATING A HEAT PUMP OR CHILLER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HUPE001086 1979-06-08
HU79PE1086A HU186726B (en) 1979-06-08 1979-06-08 Hybrid heat pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP83101481.6 Division-Into 1980-06-09

Publications (3)

Publication Number Publication Date
EP0021205A2 true EP0021205A2 (en) 1981-01-07
EP0021205A3 EP0021205A3 (en) 1981-03-18
EP0021205B1 EP0021205B1 (en) 1984-02-22

Family

ID=11000504

Family Applications (2)

Application Number Title Priority Date Filing Date
EP83101481A Expired EP0085994B1 (en) 1979-06-08 1980-06-09 Operation of a heat pump or refrigeration machine
EP80103173A Expired EP0021205B1 (en) 1979-06-08 1980-06-09 Hybrid compression-absorption method for operating heat pumps or refrigeration machines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP83101481A Expired EP0085994B1 (en) 1979-06-08 1980-06-09 Operation of a heat pump or refrigeration machine

Country Status (5)

Country Link
US (1) US4481783A (en)
EP (2) EP0085994B1 (en)
JP (1) JPS5637471A (en)
DE (1) DE3066679D1 (en)
HU (1) HU186726B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2497931A1 (en) * 1981-01-15 1982-07-16 Inst Francais Du Petrole METHOD FOR HEATING AND HEAT CONDITIONING USING A COMPRESSION HEAT PUMP OPERATING WITH A MIXED WORKING FLUID AND APPARATUS FOR CARRYING OUT SAID METHOD
EP0093051A2 (en) * 1982-04-28 1983-11-02 Henri Rodié-Talbère Resorption method for heat pumps
EP0138041A2 (en) * 1983-09-29 1985-04-24 VOBACH, Arnold R. Chemically assisted mechanical refrigeration process
EP0184181A2 (en) * 1984-12-03 1986-06-11 Energiagazdalkodasi Intezet Heat pump
US4674297A (en) * 1983-09-29 1987-06-23 Vobach Arnold R Chemically assisted mechanical refrigeration process
EP0248296A2 (en) * 1986-05-23 1987-12-09 Energiagazdálkodási Részvénytársaság Method for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
EP0276251A1 (en) * 1986-07-02 1988-08-03 RADERMACHER, Reinhard Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixture

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864470A (en) * 1981-10-13 1983-04-16 工業技術院長 Compression type refrigerator
US5600967A (en) * 1995-04-24 1997-02-11 Meckler; Milton Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
US6483580B1 (en) 1998-03-06 2002-11-19 Kla-Tencor Technologies Corporation Spectroscopic scatterometer system
KR100385432B1 (en) * 2000-09-19 2003-05-27 주식회사 케이씨텍 Surface cleaning aerosol production system
TWI263384B (en) 2002-12-19 2006-10-01 Fuji Electric Co Ltd Terminal device for electrical equipment
FR2913762A1 (en) * 2007-03-16 2008-09-19 Usifroid Freeze-drying assembly cooling system, has condenser lowering temperature of mixture to value between boiling temperatures so that refrigerant is remained in gaseous state to guide towards derivative detent loop section
US7878236B1 (en) 2009-02-09 2011-02-01 Breen Joseph G Conserving energy in an HVAC system
ITUA20161730A1 (en) 2016-03-16 2017-09-16 Stefano Briola PLANT AND METHOD FOR SUPPLY TO THE USER OF ELECTRIC POWER AND / OR MECHANICAL POWER, THERMAL POWER AND / OR REFRIGERANT POWER
US9453665B1 (en) * 2016-05-13 2016-09-27 Cormac, LLC Heat powered refrigeration system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE84084C (en) *
DE142330C (en) *
FR537438A (en) * 1920-11-03 1922-05-23 Process and devices for the production of closed cycle refrigeration
DE386863C (en) * 1920-06-17 1923-12-17 Siemens Schuckertwerke G M B H System for raising heat to higher temperatures by means of two interconnected cooling machines
DE491065C (en) * 1926-06-12 1930-02-05 Frans Georg Liljenroth Cold generating machine based on the absorption principle
US2307380A (en) * 1939-12-26 1943-01-05 Carroll W Baker Refrigeration
FR983950A (en) * 1943-09-08 1951-06-29 Cold machine
US2581558A (en) * 1947-10-20 1952-01-08 Petrocarbon Ltd Plural stage cooling machine
DE953378C (en) * 1950-08-29 1956-11-29 Margarete Altenkirch Geb Schae Method and device for operating a heat pump
US2952139A (en) * 1957-08-16 1960-09-13 Patrick B Kennedy Refrigeration system especially for very low temperature
DE1125956B (en) * 1961-05-25 1962-03-22 Giovanni Novaro Method and device for generating cold with an absorption refrigeration machine and a compressor for the refrigerant between the evaporator and the absorber
DE1241468B (en) * 1962-12-01 1967-06-01 Andrija Fuderer Dr Ing Compression method for generating cold
DE2538730A1 (en) * 1974-11-14 1976-06-24 Carrier Corp COOLING HEAT RECOVERY SYSTEM
DE2617351A1 (en) * 1975-04-28 1976-11-04 Sten Olof Zeilon METHOD AND APPARATUS FOR MAKING REFRIGERATION
DE2624714A1 (en) * 1975-06-09 1976-12-23 Inst Francais Du Petrol METHOD AND DEVICE FOR GENERATING REFRIGERATION

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041725A (en) * 1934-07-14 1936-05-26 Walter J Podbielniak Art of refrigeration
US3067590A (en) * 1960-07-06 1962-12-11 Jr Charles P Wood Pumping apparatus for refrigerator systems
US3283524A (en) * 1964-03-17 1966-11-08 Byron John Thomson Refrigeration system
DE1426956A1 (en) * 1964-07-17 1969-05-08 Fuderer Michael Procedure for deep freezing
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US3952533A (en) * 1974-09-03 1976-04-27 Kysor Industrial Corporation Multiple valve refrigeration system
US3990264A (en) * 1974-11-14 1976-11-09 Carrier Corporation Refrigeration heat recovery system
US3922873A (en) * 1974-11-14 1975-12-02 Carrier Corp High temperature heat recovery in refrigeration
JPS5848820B2 (en) * 1976-04-23 1983-10-31 ステン オロフ ザイロン Freezing method and equipment
DE2628007A1 (en) * 1976-06-23 1978-01-05 Heinrich Krieger PROCESS AND SYSTEM FOR GENERATING COLD WITH AT LEAST ONE INCORPORATED CASCADE CIRCUIT
JPS5434159A (en) * 1977-08-08 1979-03-13 Hitachi Ltd Refrigerating device with screw compressor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE84084C (en) *
DE142330C (en) *
DE386863C (en) * 1920-06-17 1923-12-17 Siemens Schuckertwerke G M B H System for raising heat to higher temperatures by means of two interconnected cooling machines
FR537438A (en) * 1920-11-03 1922-05-23 Process and devices for the production of closed cycle refrigeration
DE491065C (en) * 1926-06-12 1930-02-05 Frans Georg Liljenroth Cold generating machine based on the absorption principle
US2307380A (en) * 1939-12-26 1943-01-05 Carroll W Baker Refrigeration
FR983950A (en) * 1943-09-08 1951-06-29 Cold machine
US2581558A (en) * 1947-10-20 1952-01-08 Petrocarbon Ltd Plural stage cooling machine
DE953378C (en) * 1950-08-29 1956-11-29 Margarete Altenkirch Geb Schae Method and device for operating a heat pump
US2952139A (en) * 1957-08-16 1960-09-13 Patrick B Kennedy Refrigeration system especially for very low temperature
DE1125956B (en) * 1961-05-25 1962-03-22 Giovanni Novaro Method and device for generating cold with an absorption refrigeration machine and a compressor for the refrigerant between the evaporator and the absorber
DE1241468B (en) * 1962-12-01 1967-06-01 Andrija Fuderer Dr Ing Compression method for generating cold
DE2538730A1 (en) * 1974-11-14 1976-06-24 Carrier Corp COOLING HEAT RECOVERY SYSTEM
DE2617351A1 (en) * 1975-04-28 1976-11-04 Sten Olof Zeilon METHOD AND APPARATUS FOR MAKING REFRIGERATION
DE2624714A1 (en) * 1975-06-09 1976-12-23 Inst Francais Du Petrol METHOD AND DEVICE FOR GENERATING REFRIGERATION

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2497931A1 (en) * 1981-01-15 1982-07-16 Inst Francais Du Petrole METHOD FOR HEATING AND HEAT CONDITIONING USING A COMPRESSION HEAT PUMP OPERATING WITH A MIXED WORKING FLUID AND APPARATUS FOR CARRYING OUT SAID METHOD
EP0057120A2 (en) * 1981-01-15 1982-08-04 Institut Français du Pétrole Method of heating a room by means of a compression heat pump using a mixed working medium
EP0057120A3 (en) * 1981-01-15 1983-05-04 Institut Francais Du Petrole Method of heating and thermal conditioning by means of a compression heat pump using a mixed working medium and a device for carrying out the method
EP0093051A2 (en) * 1982-04-28 1983-11-02 Henri Rodié-Talbère Resorption method for heat pumps
FR2526136A1 (en) * 1982-04-28 1983-11-04 Rodie Talbere Henri RESORPTION CYCLE PROCESS FOR HEAT PUMPS
EP0093051A3 (en) * 1982-04-28 1984-09-19 Henri Rodie-Talbere Resorption method for heat pumps
EP0138041A2 (en) * 1983-09-29 1985-04-24 VOBACH, Arnold R. Chemically assisted mechanical refrigeration process
EP0138041A3 (en) * 1983-09-29 1986-03-26 Arnold R. Vobach Chemically assisted mechanical refrigeration process
US4674297A (en) * 1983-09-29 1987-06-23 Vobach Arnold R Chemically assisted mechanical refrigeration process
EP0184181A2 (en) * 1984-12-03 1986-06-11 Energiagazdalkodasi Intezet Heat pump
EP0184181A3 (en) * 1984-12-03 1988-01-13 Energiagazdalkodasi Intezet Heat pump
EP0248296A2 (en) * 1986-05-23 1987-12-09 Energiagazdálkodási Részvénytársaság Method for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
EP0248296A3 (en) * 1986-05-23 1988-05-25 Energiagazdalkodasi Intezet Method and device for increasing the coefficient of performance of hybrid refrigeration machines or heat pumps
EP0276251A1 (en) * 1986-07-02 1988-08-03 RADERMACHER, Reinhard Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixture
EP0276251A4 (en) * 1986-07-02 1988-11-22 Reinhard Radermacher Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixture.

Also Published As

Publication number Publication date
JPH0423185B2 (en) 1992-04-21
EP0021205A3 (en) 1981-03-18
HU186726B (en) 1985-09-30
DE3066679D1 (en) 1984-03-29
JPS5637471A (en) 1981-04-11
EP0085994B1 (en) 1986-09-24
EP0021205B1 (en) 1984-02-22
EP0085994A3 (en) 1984-10-03
EP0085994A2 (en) 1983-08-17
US4481783A (en) 1984-11-13

Similar Documents

Publication Publication Date Title
DE69003067T2 (en) Refrigeration system.
EP0021205A2 (en) Hybrid compression-absorption method for operating heat pumps or refrigeration machines
DE60123816T2 (en) REVERSABLE STEAM COMPACTION ASSEMBLY
DE3220335C2 (en) Heat pump system with a refrigerant mixture
DE10194530B4 (en) Multi-stage mixed refrigerant cryogenic system that achieves low temperature by repetition of expansion and evaporation of a mixed refrigerant.
EP0855009B1 (en) Sorption heat converter system with additional components
DE60111448T2 (en) Hot water supply device with heat pump cycle
DE102005061480B3 (en) Heat pump system e.g. air/water-heat pump, for warming heater water, has one of heat exchangers interconnected in cooling medium circuit, so that exchanger is operated as reverse current- exchanger in cooling and heating operation modes
CH627833A5 (en) ABSORPTION COOLING METHOD BY COOKING ENERGY, WHICH IS ADDED TO AN ABSORPTION COOLING SYSTEM.
DE102004007932A1 (en) Heat pump type hot water supply system with cooling function for e.g. bathtub, has brine circuit having brine heat exchanger facilitating heat exchange between brine and low pressure coolant that flows in second refrigerating circuit
DE68913707T2 (en) Heat pump unit.
WO1980002869A1 (en) Circulation pump for liquid and/or gas medium
CH661786A5 (en) METHOD AND DEVICE FOR GENERATING AN ICE CRYSTAL SUSPENSION BY MEANS OF FREEZER EVAPORATION AT THE TRIPLE POINT.
DE3536953C1 (en) Resorption-type heat converter installation with two solution circuits
DE4415199A1 (en) Refrigerating plant using absorption principle
DE3100019A1 (en) Method for carrying out cold-pump and heat-pump processes on the compression principle with solution circulation
DE3129957C2 (en)
DE102005001928A1 (en) Heat pump type hot water supply apparatus has auxiliary heat exchanger arranged for exchanging heat between water circulating through path and low pressure refrigerant before sucking into compressor
DE102007062343B4 (en) Method and arrangement for refrigeration after a water-lithium bromide absorption cooling process
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner
EP0184181B1 (en) Heat pump
DE2438418A1 (en) Rotating vane gas compressor for refrigerating plant - has means for injecting the gas in liquid state into the compression chamber
DE112017000376T5 (en) Freezer
CH628416A5 (en) METHOD AND HEAT PUMP FOR TRANSMITTING HEAT.
EP2051027A2 (en) Heat pump assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

ITCL It: translation for ep claims filed

Representative=s name: ING. C. GREGORJ S.P.A.

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810917

ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONELLI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 6387

Country of ref document: AT

Date of ref document: 19840315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3066679

Country of ref document: DE

Date of ref document: 19840329

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920529

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920616

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920623

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920708

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920831

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930609

Ref country code: AT

Effective date: 19930609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: ENERGIAGAZDALKODASI INTEZET

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930609

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80103173.3

Effective date: 19940110