EP2044401A1 - Verfahren zum testen von rotoren - Google Patents

Verfahren zum testen von rotoren

Info

Publication number
EP2044401A1
EP2044401A1 EP07786827A EP07786827A EP2044401A1 EP 2044401 A1 EP2044401 A1 EP 2044401A1 EP 07786827 A EP07786827 A EP 07786827A EP 07786827 A EP07786827 A EP 07786827A EP 2044401 A1 EP2044401 A1 EP 2044401A1
Authority
EP
European Patent Office
Prior art keywords
rotor
time
motor
activation motor
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07786827A
Other languages
English (en)
French (fr)
Inventor
Bernd LÜNEBURG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07786827A priority Critical patent/EP2044401A1/de
Publication of EP2044401A1 publication Critical patent/EP2044401A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines

Definitions

  • the invention relates to a method for testing rotors, wherein a rotor to be tested is coupled with an activation motor in a torque-transmitting manner, is rotated, and vibrations of the rotor are measured.
  • the invention further relates to an activation motor for use in a measuring arrangement for measuring vibrations of a rotatably mounted rotor.
  • a steam turbine as an embodiment of a turbomachine is usually operated at 50 Hz, if this steam turbine is intended for the European electrical power grid, or 60 Hz, if this steam turbine is provided for the US electrical power grid.
  • the operating speeds appear to be 25 Hz with respect to the European electrical power grid or 30 Hz with respect to the US electrical power grid.
  • rotors in turbomachinery can experience vibrational excitations that can lead to vibrations that eventually lead to failure of the rotor or of the blades and thus of the turbomachine.
  • Hydraulic turbines, steam and gas turbines, wind turbines, centrifugal pumps and centrifugal compressors, as well as propellers are summarized under the collective design of the turbomachine. All of these machines have in common that they serve the purpose of extracting energy from one fluid in order to drive another machine or, conversely, to supply energy to a fluid in order to increase its pressure.
  • Rotors of steam turbines in particular rotors with blades or blade rings can be excited to torsional vibrations in operation at certain speeds.
  • the vibrations are undesirable and often occur at so-called torsion-critical speeds. Often the blades or blade rings form a composite only by centrifugal forces occurring during operation. The experimental determination of the torsion-critical speeds is difficult during product development or during production. This means that the design of such rotors with respect to torsion-critical natural frequencies is done with great uncertainties. If the steam turbine is intended for example coupled in a generator and / or a gas turbine and thus forms a total strand, a measurement of the vibrations can take place.
  • a rotor Before a rotor is installed as intended in a turbomachine and then put into operation, i. d. R. Test runs of the rotor in a so-called balancing bunker required to test whether the rotor meets the desired quality requirements.
  • the rotor is rotatably mounted in the balancing bunker and rotated by an activation motor in rotation. Measuring sensors are used to determine the vibrations of the rotor and to store and evaluate the recorded measurement data. Only when the rotor can withstand certain speeds and acceleration forces can it be released for delivery.
  • the invention starts, whose object is to provide a method for testing rotors, with which it is possible to measure vibrations of a rotor, which occur in operation.
  • Another object of the invention is to provide an activation motor which can be used in a measuring arrangement with which the vibration behavior of a rotor can be measured.
  • This object is achieved by a method for testing rotors, wherein a rotor to be tested with an activation motor coupled torque-transmitting, rotated and vibrations of the rotor are measured, the activating motor is operated in such a way that torsional excitations are generated in the rotor.
  • the invention is based on the aspect that vibrations of the rotor can be determined at torsion-critical rotational speeds when the rotor is operated via an activation motor in such a way that torsional excitations are generated.
  • the rotor including an activation motor, is set in rotation at constant speeds and the vibration of the rotor is measured by sensors.
  • the task directed towards the activation motor is achieved by an activation motor for use in a measuring arrangement for measuring a rotatably mounted rotor, wherein the activation motor is designed such that the torque which can be transmitted by the activation motor is timed constant proportion and a time-varying proportion.
  • the torsional excitations are generated by the fact that the torque transmitted by the activation motor to the rotor has a time-variable component in addition to a time-constant component. This has the advantage that torsional excitations can be simulated that can appear or be expected in normal operation.
  • time-varying components can be described by a harmonic function.
  • harmonic functions lead to damaging excitation frequencies which can occur during operation.
  • the frequency ⁇ (t) is changed from a starting value to a target value, the amplitude M A remaining constant. It is also advantageous if the amplitude is changed and the frequency ⁇ (t) is changed again from a starting value to a target value. It is also advantageous if the rate of change of the frequency from the starting value to the target value can be changed.
  • FIG. 1 shows a schematic representation of a measuring arrangement of integrated drive and activation motor
  • FIG. 2 shows a schematic representation of a measuring arrangement with a separate drive and activation motor
  • FIG. 1 Figure 3 representation of three harmonic excitation functions of the activation motor.
  • a rotor 1 of a flow machine are shown in a schematic manner.
  • the flow machine may be a high pressure, medium or low pressure steam turbine or a gas turbine.
  • the rotor 1 is rotatably mounted about a rotation axis 2 and stored on bearings 3.
  • the rotor 1 can be sold with or without blades on the bearings 3.
  • the rotor 1 is coupled with an activation motor 5 in a torque-transmitting manner.
  • the activation motor 5 can be designed as an electric servomotor.
  • the activation motor 5 for generating the torsional excitation and the drive motor 17 for rotation of the rotor 1 is integrated.
  • the drive motor 17 can be separated from the activation motor 5, so that the rotation of the rotor 1 and the activation motor 5 takes place by the drive motor 17 designed as a rotary motor.
  • the rotary motor is torsionally rigid but torsionally soft decoupled connected to the rotor 1.
  • Figure 2 shows the schematic structure.
  • Vibrations of the rotor and the blades are detected by sensors 6 and forwarded via data lines 7 to a control and evaluation unit 8.
  • the excitation frequency and the speed of the activation motor 5 can via the control and evaluation unit 8 and on the Control line 9 are controlled separately.
  • the clutch 4, the rotor 1, the bearings 3 and the activation motor 5 are usually arranged in a balancing bunker 10.
  • the interior of the balancing bunker 10 is pumped out with vacuum pumps in such a way that vacuum-like conditions prevail in the interior of the balancing bunker 10.
  • the rotor 1 to be tested is coupled with the activation motor 5 in a torque-transmitting manner and rotated by the activation motor 5 or alternatively by the drive motor 11.
  • the vibrations of the rotor 1 and the blades arranged on the rotor 1 are measured via the vibration meter 6.
  • the activation motor 5 is operated in such a way that torsional excitations are generated in the rotor 1.
  • the Torsionsanregonne are generated by the fact that the torque transmitted from the activation motor 5 to the rotor 1 in addition to a temporally constant portion has a time-varying proportion.
  • the temporally variable portion is chosen as a harmonic function.
  • the time-varying component has an amplitude.
  • the frequency ⁇ (t) is changed from a start value to a target value at a fixed rotor speed, the amplitude M A remaining constant.
  • the activation motor 5 is designed in such a way that the torque which can be transmitted by the activation motor 5 has a time-constant component and a time-variable component.
  • the time-varying proportion can be a harmonic function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Testen von Rotoren (1), wobei ein zu testender Rotor (1) mit einem Aktivierungsmotor (5) drehmomentübertragend gekoppelt, in Drehung versetzt und Schwingungen des Rotors (1) gemessen werden, wobei der Aktivierungsmotor (5) derart betrieben wird, dass Torsionsanregungen im Rotor (1) erzeugt werden.

Description

Beschreibung
Verfahren zum Testen von Rotoren
Die Erfindung betrifft ein Verfahren zum Testen von Rotoren, wobei ein zu testender Rotor mit einem Aktivierungsmotor drehmomentübertragend gekoppelt, in Drehung versetzt wird und Schwingungen des Rotors gemessen werden. Die Erfindung be- trifft des Weiteren einen Aktivierungsmotor zur Verwendung in einer Messanordnung zur Messung von Schwingungen eines drehbar gelagerten Rotors.
Eine Dampfturbine als Ausführungsform einer Strömungsmaschine wird üblicherweise mit 50 Hz betrieben, wenn diese Dampfturbine für das europäische elektrische Energieversorgungsnetz vorgesehen ist, oder mit 60 Hz, wenn diese Dampfturbine für das US-amerikanische elektrische Energieversorgungsnetz vorgesehen ist. Wenn solche eine Dampfturbine zudem an einen vierpoligen Generator angekoppelt wird, liegen die im Betrieb auftretenden Drehzahlen bei 25 Hz in Bezug auf das europäische elektrische Energieversorgungsnetz oder bei 30 Hz in Bezug auf das US-amerikanische elektrische Energieversorgungsnetz .
Im Betrieb können Rotoren in Strömungsmaschinen Schwingungsanregungen erfahren, die zu Schwingungen führen können, die schließlich zu einem Versagen des Rotors oder der Schaufeln und damit der Strömungsmaschine führt. Unter der Sammelbe- Zeichnung Strömungsmaschine werden Wasserturbinen, Dampf- und Gasturbinen, Windräder, Kreiselpumpen und Kreiselverdichter sowie Propeller zusammengefasst . Allen diesen Maschinen ist gemeinsam das sie dem Zweck dienen, einem Fluid Energie zu entziehen, um damit eine andere Maschine anzutreiben oder um- gekehrt einem Fluid Energie zuzuführen, um dessen Druck zu erhöhen . Rotoren von Dampfturbinen, insbesondere Rotoren mit Schaufeln oder Schaufelkränzen können im Betrieb bei bestimmten Drehzahlen zu Torsionsschwingungen angeregt werden. Die Schwingungen sind unerwünscht und treten häufig bei so genannten torsionskritischen Drehzahlen auf. Oft bilden die Schaufeln oder Schaufelkränze erst durch im Betrieb auftretende Zentrifugalkräfte einen Verbund. Die experimentelle Bestimmung der torsionskritischen Drehzahlen ist während der Produktentwicklung oder während der Fertigung schwierig. Das bedeutet, dass die Auslegung solcher Rotoren in Bezug auf torsionskritische Eigenfrequenzen mit großen Unsicherheiten erfolgt. Wenn die Dampfturbine bestimmungsgemäß beispielsweise in einem Generator und/oder einer Gasturbine gekoppelt ist und somit einen Gesamtstrang bildet, kann eine Messung der Schwingungen er- folgen.
Bevor ein Rotor in einer Strömungsmaschine bestimmungsgemäß eingebaut und anschließend in Betrieb genommen wird, sind i. d. R. Testläufe des Rotors in einem so genannten Wuchtbunker erforderlich, um zu testen, ob der Rotor den gewünschten Qualitätsanforderungen entspricht. Dazu wird der Rotor in dem Wuchtbunker drehgelagert angeordnet und über einen Aktivierungsmotor in Drehung versetzt. Mit Messsensoren werden die Schwingungen des Rotors ermittelt und die dabei aufgenommenen Messdaten gespeichert und ausgewertet. Erst wenn der Rotor bestimmten Drehzahlen und Beschleunigungskräften Stand hält, kann dieser zur Auslieferung freigegeben werden.
Bei komplexen rotationssymmetrischen Systemen tauchen natur- gemäß torsionskritische Eigenfrequenzen auf. Sofern ein Rotor mit einer Anregungsfrequenz betrieben wird, die nahe bei der Eigenfrequenz liegt, kann es zu Schädigungen des Rotors, der Schaufeln bzw. der Dampfturbine kommen.
Oft stellt sich erst während des bestimmungsgemäßen Betriebes heraus, dass ein Rotorsystem Schwingungen bei torsionskritischen Drehzahlen aufweist, die zu einer Schädigung führen könnten . Wünschenswert wäre es, wenn ein Verfahren zum Testen von Rotoren zur Verfügung stünde, mit dem torsionskritische Drehzahlen simuliert werden können.
An dieser Stelle setzt die Erfindung an, dessen Aufgabe es ist, ein Verfahren zum Testen von Rotoren anzugeben, mit dem es möglich ist, Schwingungen eines Rotors zu messen, die im Betrieb auftreten.
Eine weitere Aufgabe der Erfindung ist es einen Aktivierungsmotor anzugeben, der in einer Messanordnung verwendet werden kann, mit der das Schwingungsverhalten eines Rotors gemessen werden kann.
Gelöst wird diese Aufgabe durch ein Verfahren zum Testen von Rotoren, wobei ein zu testender Rotor mit einem Aktivierungsmotor drehmomentübertragend gekoppelt, in Drehung versetzt und Schwingungen des Rotors gemessen werden, wobei der Akti- vierungsmotor derart betrieben wird, dass Torsionsanregungen im Rotor erzeugt werden.
Die Erfindung geht von dem Aspekt aus, dass Schwingungen des Rotors bei torsionskritischen Drehzahlen ermittelt werden können, wenn der Rotor über einen Aktivierungsmotor derart betrieben wird, dass Torsionsanregungen erzeugt werden. Dafür wird der Rotor inklusive eines Aktivierungsmotors mit zeitlich konstanten Drehzahlen in Drehung versetzt und die Schwingung des Rotors über Messaufnehmer gemessen.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen enthalten .
Die auf den Aktivierungsmotor hin gerichtete Aufgabe wird gelöst durch einen Aktivierungsmotor zur Verwendung in einer Messanordnung zur Messung eines drehbar gelagerten Rotors, wobei der Aktivierungsmotor derart ausgebildet ist, dass das vom Aktivierungsmotor übertragbare Drehmoment einen zeitlich konstanten Anteil und einen zeitlich veränderlichen Anteil aufweist .
Vorteilhaft für das Verfahren ist es, wenn die Torsionsanre- gungen dadurch erzeugt werden, dass das vom Aktivierungsmotor auf den Rotor übertragene Drehmoment neben einem zeitlich konstanten Anteil einen zeitlich veränderlichen Anteil hat. Dies hat den Vorteil, dass Torsionsanregungen simuliert werden können, die im bestimmungsgemaßen Betrieb auftauchen bzw. erwartet werden können.
Vorteilhaft ist es, wenn die zeitlich veränderlichen Anteile durch eine harmonische Funktion beschreiben werden können. Dies hat unter anderem den Vorteil, dass harmonische Funktio- nen erfahrungsgemäß zu schädigenden Anregungsfrequenzen fuhren, die im Betrieb auftreten können.
Das Drehmoment, das auf den Rotor vom Aktivierungsmotor übertragen wird, wird durch folgende Gleichung beschrieben: M(t) = M0 + MA x sin (ω(t) x t) .
Als vorteilhaft erweist es sich, wenn bei einer festen Rotordrehzahl die Frequenz ω(t) von einem Startwert zu einem Zielwert verändert wird, wobei die Amplitude MA konstant bleibt. Ebenso ist es vorteilhaft, wenn die Amplitude verändert wird und die Frequenz ω(t) erneut von einem Startwert zu einem Zielwert verändert wird. Ebenso ist es vorteilhaft, wenn die Anderungsgeschwindigkeit der Frequenz vom Startwert zum Zielwert verändert werden kann.
Ausfuhrungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen beschrieben.
Im Einzelnen zeigt die Zeichnung in:
Figur 1 eine schematisierte Darstellung einer Messanordnung von integriertem Antriebs- und Aktivierungsmotor, Figur 2 eine schematisierte Darstellung einer Messanordnung mit einem separaten Antriebs- und Aktivierungsmotor,
Figur 3 Darstellung von drei harmonischen Anregungsfunktionen des Aktivierungsmotors.
In der Figur 1 und in Figur 2 sind in schematischer Weise ein Rotor 1 einer Stromungsmaschine dargestellt. Die Stromungsmaschine kann eine Hochdruck-, Mittel- oder Niederdruck-Dampfturbine oder eine Gasturbine sein. Der Rotor 1 ist um eine Rotationsachse 2 drehbar gelagert und auf Lagern 3 abgelegt. Der Rotor 1 kann mit oder ohne Laufschaufeln auf den Lagern 3 abgesetzt werden.
Über eine Kupplung 4 wird der Rotor 1 drehmomentubertragend mit einem Aktivierungsmotor 5 gekoppelt. Der Aktivierungsmo- tor 5 kann als elektrischer Servomotor ausgebildet sein.
In der Ausfuhrung Figur 1 ist der Aktivierungsmotor 5 zur Erzeugung der Torsionsanregung und der Antriebsmotor 17 zur Drehung des Rotors 1 integriert.
Alternativ kann der Antriebsmotor 17 vom Aktivierungsmotor 5 separiert werden, so dass die Drehung des Rotors 1 und des Aktivierungsmotors 5 durch den als Drehmotor ausgebildeten Antriebsmotor 17 erfolgt. Hierzu wird der Drehmotor drehmo- mentstarr aber torsionsweich entkoppelt mit dem Rotor 1 verbunden. Figur 2 zeigt den schematischen Aufbau.
Schwingungen des Rotors und der Schaufeln werden über Messaufnehmer 6 erfasst und über Datenleitungen 7 an eine Steuer- und Auswerteeinheit 8 weitergeleitet.
Die Anregungsfrequenz und die Drehzahl des Aktivierungsmotors 5 kann über die Steuer- und Auswerteeinheit 8 und über die Steuerleitung 9 getrennt gesteuert werden. Die Kupplung 4, der Rotor 1, die Lager 3 und der Aktivierungsmotor 5 werden üblicherweise in einem Wuchtbunker 10 angeordnet. Der Innenraum des Wuchtbunkers 10 wird mit Vakuumpumpen derart ausge- pumpt, dass vakuumähnliche Bedingungen im Innenraum des Wuchtbunkers 10 herrschen.
Im Testverfahren wird der zu testende Rotor 1 mit dem Aktivierungsmotor 5 drehmomentübertragend gekoppelt und durch den Aktivierungsmotor 5 oder alternativ durch den Antriebsmotor 11 in Drehung versetzt. Die Schwingungen des Rotors 1 bzw. der am Rotor 1 angeordneten Schaufeln werden über die Schwingungsmesser 6 gemessen. Der Aktivierungsmotor 5 wird dabei derart betrieben, dass Torsionsanregungen im Rotor 1 erzeugt werden. Die Torsionsanregungen werden dadurch erzeugt, dass das vom Aktivierungsmotor 5 auf den Rotor 1 übertragende Drehmoment neben einem zeitlich konstanten Anteil einen zeitlich veränderlichen Anteil hat.
Der zeitlich veränderliche Anteil wird hierbei als eine harmonische Funktion gewählt. Neben einer Frequenz weist der zeitlich veränderliche Anteil eine Amplitude auf. Mit Hilfe des Aktivierungsmotors 5 ist es möglich, Torsionsanregungen in der entsprechenden Höhe und in der geforderten Dynamik zu erzeugen, so dass der Rotor 1 und die Schaufeln messbare Schwingungen durchführen.
Der Aktivierungsmotor 5 überträgt ein Drehmoment auf den Rotor 1 gemäß folgender Gleichung: M(t) = M0 + MA x sin (ω(t) x t) .
Besonders vorteilhaft ist es, wenn die Frequenz ω (t) bei einer festen Rotordrehzahl von einem Start-Wert zu einem Ziel-Wert verändert wird, wobei die Amplitude MA konstant bleibt.
In der Figur 3 sind beispielhaft drei Verläufe der Drehzahl des Aktivierungsmotors über der Zeit dargestellt. Auf der X- Achse 11 ist die Zeit aufgetragen und auf der Y-Achse 12 ist der veränderliche Teil des auf den Rotor 1 übertragenden Drehmomentes dargestellt. Im störfreien Betrieb ist kein zeitlich veränderlicher Anteil des Drehmomentes auszumachen. Erst im Betrieb treten üblicherweise harmonische Schwingungen als zeitlich veränderlicher Anteil auf. Solch harmonische Schwingungen 14, 15, 16 sind meistens Sinus- oder Kosinusfunktionen. Vorteilhaft ist es ebenso, wenn bei dem zeitlich veränderlichen Anteil die Amplitude MA verändert wird und die Frequenz ω(t) erneut von einem Start-Wert zu einem Ziel-Wert verändert wird.
Der Aktivierungsmotor 5 ist derart ausgebildet, dass das vom Aktivierungsmotor 5 übertragbare Drehmoment einen zeitlich konstanten Anteil und einen zeitlich veränderlichen Anteil aufweist. Der zeitlich veränderliche Anteil kann eine harmonische Funktion sein. Durch das erfindungsgemäße Verfahren ist es möglich die Amplituden und Frequenzen für große und kleine Rotoren 1 einfach in einem weiten Bereich zu steuern. Zur Qualitätssicherung wird in der Steuer- und Auswerteeinheit 8 die gemessenen Schwingungen und Drehzahlen protokolliert und ausgewertet.

Claims

Patentansprüche
1. Verfahren zum Testen von Rotoren (1), wobei ein zu testender Rotor (1) mit einem Aktivierungsmotor (5) drehmomentübertragend gekoppelt, in Drehung versetzt und Schwingungen des Rotors (1) gemessen werden, dadurch gekennzeichnet, dass der Aktivierungsmotor (5) derart betrieben wird, dass Torsionsanregungen im Rotor (1) erzeugt werden.
2. Verfahren nach Anspruch 1, wobei die Torsionsanregungen dadurch erzeugt werden, dass das vom Aktivierungsmotor (5) auf den Rotor (1) über- tragene Drehmoment neben einem zeitlich konstanten Anteil einen zeitlich veränderlichen Anteil hat.
3. Verfahren nach Anspruch 1 oder 2, wobei der zeitlich konstante Anteil des übertragenen Dreh- moments mit einem Antriebsmotor (17) und der zeitlich veränderliche Anteil mit einem Aktivierungsmotor (5) erreicht wird.
4. Verfahren nach Anspruch 2 oder 3, wobei der zeitlich veränderliche Anteil als harmonische Funktion gewählt wird.
5. Verfahren nach Anspruch 2 oder 3, wobei der zeitlich veränderliche Anteil eine Amplitude zeigt.
6. Verfahren nach Anspruch 2 oder 3, wobei der Aktivierungsmotor (5) das Drehmoment auf den Rotor (1) gemäß folgender Gleichung überträgt: M(t) = M0 + MA x sin (ω(t) x t) , mit
Mo = zeitlich konstantes Drehmoment,
MA = Amplitude des zeitveränderlichen Anteils, ω(t) = zeitlich veränderliche Frequenz.
7. Verfahren nach Anspruch 6, wobei bei einer festen Rotordrehzahl die Frequenz ω(t) von einem Start-Wert zu einem Ziel-Wert verändert wird, wobei die Amplitude MA konstant bleibt.
8. Verfahren nach Anspruch 7, wobei die Amplitude MA verändert wird und die Frequenz ω(t) erneut von einem Start-Wert zu einem
Ziel-Wert verändert wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei Schaufeln an dem Rotor (1) angeordnet und Schwingungen der Schaufeln gemessen werden.
10. Aktivierungsmotor (5) zur Verwendung in einer Messanord- nung zur Messung von Schwingungen eines drehbar gelagerten
Rotors (1), wobei der Aktivierungsmotor (5) derart ausgebildet ist, dass das vom Aktivierungsmotor (5) übertragbare Drehmoment einen zeitlich konstanten Anteil und einen zeitlich veränderlichen Anteil aufweist.
11. Aktivierungsmotor (5) nach Anspruch 10, wobei der zeitlich veränderliche Anteil eine harmonische Funktion ist.
12. Aktivierungsmotor (5) nach Anspruch 10, wobei das Drehmoment gemäß folgender Gleichung übertragbar ist :
M(t) = M0 + MA x sin (ω(t) x t) .
13. Aktivierungsmotor (5) nach Anspruch 12, wobei bei einer festen Rotordrehzahl die Frequenz (ω(t) von einem Start-Wert zu einem Ziel-Wert veränderbar ist.
14. Aktivierungsmotor (5) nach Anspruch 12, wobei die Amplitude MA veränderbar ist.
EP07786827A 2006-07-25 2007-06-25 Verfahren zum testen von rotoren Withdrawn EP2044401A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07786827A EP2044401A1 (de) 2006-07-25 2007-06-25 Verfahren zum testen von rotoren

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06015495A EP1882915A1 (de) 2006-07-25 2006-07-25 Verfahren zum Testen von Rotoren
EP07786827A EP2044401A1 (de) 2006-07-25 2007-06-25 Verfahren zum testen von rotoren
PCT/EP2007/056305 WO2008012153A1 (de) 2006-07-25 2007-06-25 Verfahren zum testen von rotoren

Publications (1)

Publication Number Publication Date
EP2044401A1 true EP2044401A1 (de) 2009-04-08

Family

ID=38008386

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06015495A Withdrawn EP1882915A1 (de) 2006-07-25 2006-07-25 Verfahren zum Testen von Rotoren
EP07786827A Withdrawn EP2044401A1 (de) 2006-07-25 2007-06-25 Verfahren zum testen von rotoren

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06015495A Withdrawn EP1882915A1 (de) 2006-07-25 2006-07-25 Verfahren zum Testen von Rotoren

Country Status (3)

Country Link
US (1) US8261616B2 (de)
EP (2) EP1882915A1 (de)
WO (1) WO2008012153A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193021B2 (ja) * 2008-12-25 2013-05-08 株式会社日立製作所 蒸気タービン試験設備、低負荷試験方法、及び負荷遮断試験方法
US8371178B1 (en) * 2011-06-30 2013-02-12 Florida Turbine Technologies, Inc. Turbopump with rotor torque sensor
EP2634898A1 (de) * 2012-03-01 2013-09-04 Siemens Aktiengesellschaft Verfahren zum Betreiben einer elektrischen Maschine
CN106644422B (zh) * 2016-09-19 2019-03-26 中国航空动力机械研究所 用于涡轮试验的试验装置
US10788398B2 (en) * 2016-12-23 2020-09-29 Rolls-Royce Corporation Gas turbine engine test stand
CN110132601A (zh) * 2019-06-04 2019-08-16 内蒙古君正能源化工集团股份有限公司 一种汽轮机主轴振动监测系统
CN114216669B (zh) * 2021-12-17 2024-05-28 大连民族大学 一种可实现激励频率慢变的试验设备及其试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2384987A (en) * 1943-07-20 1945-09-18 Westinghouse Electric Corp Electric vibration generator
US3495447A (en) * 1968-07-16 1970-02-17 Torin Corp Apparatus for fatigue testing and other purposes and method of using same
US4283957A (en) * 1979-06-25 1981-08-18 Zonic Corporation Torsional exciter for a rotating structure
GB2221312A (en) * 1988-07-29 1990-01-31 Inst Mash Akademii Nauk Uk Ssr Method of testing fan impellers
US20060070457A1 (en) * 2004-09-29 2006-04-06 Raytheon Company Dynamic load fixture for application of torsion loads for rotary mechanical systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206816A (en) * 1991-01-30 1993-04-27 Westinghouse Electric Corp. System and method for monitoring synchronous blade vibration
US5303681A (en) * 1992-08-28 1994-04-19 Cummins Engine Company, Inc. Torsional tunable coupling for a diesel engine drive shaft
US6128959A (en) * 1994-11-07 2000-10-10 Eaton Corporation Driveline vibration analyzer
DE19721298C2 (de) * 1997-05-21 2001-09-06 Mannesmann Sachs Ag Hybrid-Fahrantrieb für ein Kraftfahrzeug
US5955674A (en) * 1997-10-31 1999-09-21 Eaton Corporation Driveline vibration system diagnostics
US6065344A (en) * 1998-10-20 2000-05-23 General Electric Co. Apparatus and methods for cooling an ultrasonic inspection transducer for turbine rotor wheel repair
US6314342B1 (en) * 2000-07-19 2001-11-06 Meritor Heavy Vehicle Systems, Llc Method and system for optimizing operation of vehicle control systems based on the dynamics of the vehicle
DE10344802A1 (de) * 2003-09-26 2005-04-14 Ford Global Technologies, LLC, Dearborn Getriebeprüfeinrichtung und Verfahren zur Durchführung von Akustikprüfungen
US7213461B2 (en) * 2004-03-05 2007-05-08 Siemens Power Generation, Inc. Torsional shaker apparatus for inspecting rotatable power generation machinery
DE102005034794A1 (de) * 2004-07-23 2006-02-23 Ford Global Technologies, LLC, Dearborn Verfahren zum Dämpfen von Vibrationen im Antriebsstrang eines hybridelektrischen Fahrzeugs
FR2894040B1 (fr) * 2005-11-28 2011-10-21 Eurocopter France Dispositif d'asservissement pour un vibrateur a rotors desequilibres.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2384987A (en) * 1943-07-20 1945-09-18 Westinghouse Electric Corp Electric vibration generator
US3495447A (en) * 1968-07-16 1970-02-17 Torin Corp Apparatus for fatigue testing and other purposes and method of using same
US4283957A (en) * 1979-06-25 1981-08-18 Zonic Corporation Torsional exciter for a rotating structure
GB2221312A (en) * 1988-07-29 1990-01-31 Inst Mash Akademii Nauk Uk Ssr Method of testing fan impellers
US20060070457A1 (en) * 2004-09-29 2006-04-06 Raytheon Company Dynamic load fixture for application of torsion loads for rotary mechanical systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008012153A1 *

Also Published As

Publication number Publication date
EP1882915A1 (de) 2008-01-30
US20100089136A1 (en) 2010-04-15
WO2008012153A1 (de) 2008-01-31
US8261616B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
EP2044401A1 (de) Verfahren zum testen von rotoren
DE69926923T2 (de) Verfahren und Vorrichtung zur Erkennung eines Wellenbruchs
CRABTREE Condition monitoring techniques for wind turbines
EP2038517B1 (de) Verfahren zum betrieb einer gasturbine sowie gasturbine zur durchführung des verfahrens
DE102015009678A1 (de) Intelligente Konfiguration einer Anwenderschnittstelle eines Maschinenfunktionszustands-Überwachungssystems
EP2169224A2 (de) Verfahren zum Überwachen einer Triebstrangkomponente einer Windenergieanlage
DE102009059669A1 (de) Verfahren und Vorrichtung zur Dämpfung von Torsionsschwingungen
DE102010061289A1 (de) Verfahren und System zur Detektion eines Risses auf einer Turbomaschinenschaufel
DE102017131258B4 (de) Antriebssystem für ein Flugzeug
Fingersh et al. Controls advanced research turbine (CART) commissioning and baseline data collection
WO2020099336A1 (de) Vorrichtung und verfahren zur ermittlung des zustandes mindestens einer zahnpaarung und / oder mindestens eines zahnes in einem mechanischen system
DE112010004031T5 (de) Steuersystem für eine Windkraftanlage
DE10062252A1 (de) Verfahren zur Regelung von Fluggasturbinen
EP3036408B1 (de) Verfahren zum betreiben einer strömungsmaschine mit überlastschutz und strömungsmaschine mit einer vorrichtung zur durchführung des verfahrens
DE102011119466A1 (de) Verfahren zur Bestimmung einer Gesamtschädigung wenigstens einer rotierenden Komponente eines Antriebsstrangs
WO2011117183A2 (de) Vermeidung von torsionsanregungen in umrichtergeführten verdichtersträngen
DE102015011890A1 (de) System zum Kompensieren von Rotorschwingungen
DE19534404A1 (de) Verfahren zur Bestimmung des technischen Zustandes einer Windkraftanlage
DE102008037532A1 (de) Automatische Detektion und Meldung von Verschleiss innerer Turbinenkomponenten
DE102009016105A1 (de) Verfahren und Vorrichtung zum Messen der Beanspruchung rotierender Wellen
WO2016091933A1 (de) Verfahren und vorrichtung zum überwachen einer windenergieanlage
DE2850625A1 (de) Vorrichtung und verfahren zur temperaturanzeige
EP1725743B1 (de) Verfahren und vorrichtung zur detektierung von verunreinigungen an turbinenbauteilen
DE102009009714A1 (de) Vorrichtung und Verfahren zur Drehmomentmessung an einer Turbinenwelle
DE102010046490A1 (de) Verfahren zur Regelung des Betriebszustandes von Strömungsarbeitsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20170113

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180605