EP2038951A1 - Système de cellules électrochimiques et procédé destiné à influencer l'économie thermique d'un système de cellules électrochimiques - Google Patents

Système de cellules électrochimiques et procédé destiné à influencer l'économie thermique d'un système de cellules électrochimiques

Info

Publication number
EP2038951A1
EP2038951A1 EP07722514A EP07722514A EP2038951A1 EP 2038951 A1 EP2038951 A1 EP 2038951A1 EP 07722514 A EP07722514 A EP 07722514A EP 07722514 A EP07722514 A EP 07722514A EP 2038951 A1 EP2038951 A1 EP 2038951A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
cell system
heat
air
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07722514A
Other languages
German (de)
English (en)
Inventor
Matthias Boltze
Michael Rozumek
Stefan Käding
Manfred Pfalzgraf
Andreas Engl
Beate Bleeker
Michael Süßl
Markus Bedenbecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerday GmbH
Original Assignee
Enerday GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday GmbH filed Critical Enerday GmbH
Publication of EP2038951A1 publication Critical patent/EP2038951A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a fuel cell system with at least one heat-generating component and at least one component using process air.
  • the invention further relates to a method for influencing the heat balance of a fuel cell system.
  • Fuel cell systems serve to generate electrical energy and heat energy, with the primary supply of fossil fuels becoming increasingly important.
  • the fuels used are preferably used, while in stationary use, that is to say in particular in the domestic sector, natural gas and fuel oil are used.
  • waste heat generated by a DC / DC or a DC / AC converter can also be regarded as a power loss of the fuel cell system.
  • the excessive waste heat reduces the efficiency of the system, and on the other hand, it can also be undesirable as such, for example when operating a fuel cell system for air conditioning on hot days.
  • the invention has for its object to provide a fuel cell system with reduced heat losses and improved thermal management available.
  • the invention is based on the generic fuel cell system characterized in that the heat generating component ambient air can be supplied, which can be heated by the heat generating component, and that the thus heated air of the process air using component as process air is supplied.
  • the of the supplied ambient air absorbed heat can thus be fed back to the system on the way through the taking place in the fuel cell system chemical and electrochemical processes and thus recovered.
  • the heat-generating component is arranged in a housing and the ambient air can be supplied to an inner region of the housing.
  • the housing allows a plurality of heat generating components and the sewerage of the supplied ambient air in such a way that the heat release of all heat generating components can contribute to the heating of the supplied ambient air.
  • a heat-generating component is arranged outside of a housing in which further heat-generating components are arranged.
  • a housing in which further heat-generating components are arranged.
  • the housing is a thermal insulation device.
  • This isolation device can be the isolation device provided anyway anyway mostly around the heat generating components of the fuel cell system or an additional isolation device, which is arranged around the already provided isolation device around. in the In the latter case, the air guide will then take place between the conventional isolation device and the additional isolation device.
  • the at least one heat-generating component is a reformer and / or an afterburner and / or a fuel cell assembly and / or a media guide and / or a DC / DC converter.
  • the supplied ambient air is first heat-supplying components with a first temperature can be supplied and subsequently heat-generating components with a second temperature can be fed bar, wherein the first temperature is lower than the second temperature. Since the speed of the heat transfer depends on the temperature difference of the media involved, it makes sense initially to apply cold air to the cooler components in order to provide a relatively large temperature difference here as well. Already heated air can subsequently be supplied to warmer components, a correspondingly high temperature difference also being present then. Thus, all components can equally be included in the temperature management of the fuel cell system.
  • the ambient air can be supplied by the delivery of a blower associated with the component using process air.
  • a blower associated with the component using process air no additional blower for the introduction of the ambient air is required.
  • the component using the process air is a reformer and / or an afterburner and / or a fuel cell arrangement.
  • the invention further relates to a method for influencing the heat balance of a fuel cell system according to the invention.
  • Figure 1 is a schematic representation of a conventional fuel cell system
  • Figure 2 is a schematic representation of a first embodiment of a fuel cell system according to the invention.
  • Figure 3 is a schematic representation of a second embodiment of a fuel cell system according to the invention.
  • FIG. 1 shows a schematic representation of a conventional fuel cell system.
  • the typical fuel cell system 10 shown here includes a plurality of components that are partially disposed within an isolation device 38.
  • the reformer 12 is supplied via a fuel feed 18 from a fuel pump 42 funded fuel and air via an air feed 20 from a blower 40 conveyed air.
  • the hydrogen-rich reformate prepared in the reformer 12 then passes via a reformate line 26 to the anode side of a fuel cell stack 14, wherein the fuel cell stack 14 is further supplied with air via a cathode inlet line 22 and an associated fan 44.
  • Anode exhaust of Brennstoffzellenan- order 14 passes via an anode exhaust gas line 28 in an afterburner 16, which is also supplied via an air supply line 24 and an associated fan 46 air.
  • the exhaust gases generated in the afterburner 16 exit from the fuel cell system 10 via an exhaust gas line 30.
  • the power generated by the fuel cell system 14 is supplied to a converter 32, for example a DC / DC or a DC / AC converter.
  • the fuel cell system 10 shown in this way allows numerous variants, for example, exhaust gas can be recirculated from the afterburner 16.
  • cathode exhaust air from the fuel cell assembly 14 may be supplied to the afterburner 16.
  • heat exchangers can be provided which permit a variety of heat exchange between different media streams in a variety rich variety.
  • the problem with such fuel cell systems 10 is the heat loss. This is done on the one hand naturally on the isolation device 38, which is indicated by the arrows 48, 50, and in particular in the range of bushings through the isolation device 38, for example in the range of media feeds, which is indicated by the arrow 52nd is indicated. Further heat losses occur at the transducer 32, indicated by the arrow 54.
  • FIG. 2 shows a schematic representation of a first embodiment of a fuel cell system according to the invention.
  • a housing 36 which is equipped with at least one air inlet opening 56 for the entry of ambient air 34.
  • an air outlet opening 58 is provided, which is coupled to the air inlet side of the blower 40.
  • the heat-generating components of the fuel cell assembly 10 are housed.
  • ambient air 34 is now sucked into the housing 36, which then flows around the isolation device 38 or the converter 32 arranged outside the isolation device 38.
  • the cold ambient air 34 absorbs heat and leaves in the heated state via the air outlet opening 58, the housing 36.
  • the heated ambient air is supplied via the blower 40 to the reformer 12 again as process air. It is also possible to supply the heated air alternatively or additionally to the fuel cell stack 14 or to the afterburner 16.
  • FIG. 3 shows a schematic representation of a second embodiment of a fuel cell system according to the invention. According to this embodiment, it is provided to equip the isolation device 38 itself with an air supply opening 56 and an air outlet opening 58.
  • the cool ambient air flows around directly the components, such as the afterburner 16, the Brennstoffzellensta- pel 14 and the reformer 12, and then in the heated state and after exiting the air outlet opening 48 via the blower 40 to the reformer 12 to be recycled as process air.
  • Such a design of the system does not require an additional outer housing 36 (see FIG. 2). Also, due to the heat energy dissipated by the transducer 32, a separate warm air return device would be required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un système de cellules électrochimiques (10) comportant au moins un composant produisant de la chaleur (12 à 32) et au moins un composant employant de l'air de traitement (12, 14, 16). Selon l'invention, de l'air environnant (34) pouvant être chauffé par le composant produisant de la chaleur (12 à 32) peut être acheminé vers le composant produisant de la chaleur, et l'air ainsi chauffé peut être acheminé en tant qu'air de traitement vers le composant employant de l'air de traitement (12, 14, 16). L'invention concerne également un procédé destiné à influencer l'économie thermique d'un tel système de cellules électrochimiques.
EP07722514A 2006-07-10 2007-06-05 Système de cellules électrochimiques et procédé destiné à influencer l'économie thermique d'un système de cellules électrochimiques Withdrawn EP2038951A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006031866A DE102006031866A1 (de) 2006-07-10 2006-07-10 Brennstoffzellensystem und Verfahren zum Beeinflussen des Wärmehaushaltes eines Brennstoffzellensystems
PCT/DE2007/001003 WO2008006328A1 (fr) 2006-07-10 2007-06-05 Système de cellules électrochimiques et procédé destiné à influencer l'économie thermique d'un système de cellules électrochimiques

Publications (1)

Publication Number Publication Date
EP2038951A1 true EP2038951A1 (fr) 2009-03-25

Family

ID=38519327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07722514A Withdrawn EP2038951A1 (fr) 2006-07-10 2007-06-05 Système de cellules électrochimiques et procédé destiné à influencer l'économie thermique d'un système de cellules électrochimiques

Country Status (11)

Country Link
US (1) US20110117464A1 (fr)
EP (1) EP2038951A1 (fr)
JP (1) JP2009543302A (fr)
KR (1) KR20090020687A (fr)
CN (1) CN101501910A (fr)
AU (1) AU2007272136A1 (fr)
BR (1) BRPI0714145A2 (fr)
CA (1) CA2657693A1 (fr)
DE (1) DE102006031866A1 (fr)
EA (1) EA200970025A1 (fr)
WO (1) WO2008006328A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007007605A1 (de) 2007-02-13 2008-08-14 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
DE102007039017A1 (de) * 2007-08-17 2009-02-19 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem
US20100167096A1 (en) * 2008-12-30 2010-07-01 Gateway Inc. System for managing heat transfer in an electronic device to enhance operation of a fuel cell device
DE102010023671A1 (de) * 2010-06-12 2011-12-15 Daimler Ag Brennstoffzellensystem mit einer in einem Gehäuse angeordneten Brennstoffzelle
JP6406704B2 (ja) * 2015-01-26 2018-10-17 本田技研工業株式会社 燃料電池モジュール
CN108172862A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种具有气体预热功能的燃料电池系统
DE102017107003A1 (de) 2017-03-31 2018-10-04 Brandenburgische Technische Universität Cottbus-Senftenberg Behältnis zum Betrieb von Hochtemperaturbrennstoffzellen
DE102021106835A1 (de) 2021-03-19 2022-09-22 Audi Aktiengesellschaft Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellen-Fahrzeug

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763114A (en) * 1994-09-01 1998-06-09 Gas Research Institute Integrated reformer/CPN SOFC stack module design
US5612149A (en) * 1996-01-02 1997-03-18 Ceramatec, Inc. Fuel cell column heat exchanger mated module
NZ503606A (en) * 1997-10-01 2002-05-31 Acumentrics Corp Integrated solid oxide fuel cell and reformer
AT407590B (de) * 1998-10-08 2001-04-25 Vaillant Gmbh Blockheizkraftwerk
DE19910695C1 (de) * 1999-03-10 2000-08-10 Siemens Ag Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage
AU2003243867B2 (en) * 2002-06-21 2008-09-18 Versa Power Systems, Ltd. Fuel cell insulating heat exchanger
DE60323243D1 (de) * 2002-09-17 2008-10-09 Medtronic Inc Verbindungen die quarternäre kohlstoffe und siliziumgruppen enthalten, medizinsiche geräte und verfahren
US7008711B2 (en) * 2003-01-27 2006-03-07 Gas Technology Institute Thermally integrated fuel cell power system
DE102004028809B4 (de) * 2004-06-15 2006-09-14 Staxera Gmbh Brennstoffzellensystem

Also Published As

Publication number Publication date
KR20090020687A (ko) 2009-02-26
DE102006031866A1 (de) 2008-01-17
JP2009543302A (ja) 2009-12-03
CA2657693A1 (fr) 2008-01-17
EA200970025A1 (ru) 2009-06-30
US20110117464A1 (en) 2011-05-19
CN101501910A (zh) 2009-08-05
WO2008006328A1 (fr) 2008-01-17
BRPI0714145A2 (pt) 2012-12-25
AU2007272136A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
EP2038951A1 (fr) Système de cellules électrochimiques et procédé destiné à influencer l'économie thermique d'un système de cellules électrochimiques
EP1616361B1 (fr) Dispositif de conversion de l'energie avec installation de reformage et installation de pile a combustible associees
DE102009012994B4 (de) Heizsystem zum Optimieren einer Erwärmung in einem Brennstoffzellenfahrzeug
WO2001003217A1 (fr) Dispositif pour chauffer/refroidir une pile a combustible, et systeme a pile a combustible
DE19910695C1 (de) Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage
EP1849203B1 (fr) Procede pour utiliser des piles a combustible dans des systemes a charge thermique limitee et empilement de piles a combustible permettant de mettre en oeuvre le procede
DE60306725T2 (de) Abgasbeheiztes Festelektrolyt Brennstoffzellen System
DE10062257A1 (de) Verfahren zum Betrieb eines Brenners in einem Brennstoffzellensystem
DE102011088566A1 (de) Brennstoffzellensystem
EP1864347B1 (fr) Installation constituee de piles a combustible haute temperature et d'une gaine multicomposant formant un empilement de piles a combustible
EP1921703B1 (fr) Système de piles à combustible ayant un dispositif pour préchauffer de l'air pour la cathode
EP2399315A1 (fr) Système de pile à combustible comportant au moins une pile à combustible
DE102018219069A1 (de) Brennstoffzellensystem
EP1861890B1 (fr) Installation comprenant des piles a combustible haute temperature et un dispositif de serrage pour un empilement de piles
DE102007006963A1 (de) Brennstoffzellensystem für ein Fahrzeug
EP1178552B1 (fr) Système de pile à combustible
WO2001003216A1 (fr) Dispositif de chauffage/refrigeration d'une pile a combustible, et systeme de pile a combustible
EP1845576B1 (fr) Système de cellules combustibles
EP1845578A2 (fr) Système de cellules combustibles
EP1845577B1 (fr) Système de pile à combustible
DE102010008210A1 (de) Brennstoffzellenversorgung für ein Fahrzeug, Brennstoffzellensystem mit der Brennstoffzellenversorgung sowie Verfahren zum Betreiben
EP1968150B1 (fr) Système de piles à combustibles
DE102013207430A1 (de) Brennstoffzellensystem zum Erwärmen einer Brennstoffzelle und Verfahren zum Betreiben des Brennstoffzellensystems
DE10318866A1 (de) Vorrichtung zur Umsetzung eines Ausgangsstoffes zu einem wasserstoffhaltigen Gas sowie Verfahren zum Betreiben der Vorrichtung
WO2008083644A1 (fr) Système de reformage, procédé de fonctionnement d'un système de reformage et installation à pile à combustible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100821