EP2029866B1 - Verfahren und vorrichtung zur reinigung von ventilen - Google Patents

Verfahren und vorrichtung zur reinigung von ventilen Download PDF

Info

Publication number
EP2029866B1
EP2029866B1 EP07727689A EP07727689A EP2029866B1 EP 2029866 B1 EP2029866 B1 EP 2029866B1 EP 07727689 A EP07727689 A EP 07727689A EP 07727689 A EP07727689 A EP 07727689A EP 2029866 B1 EP2029866 B1 EP 2029866B1
Authority
EP
European Patent Office
Prior art keywords
injection valve
exhaust
fuel
gas flow
spray hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07727689A
Other languages
English (en)
French (fr)
Other versions
EP2029866A1 (de
Inventor
Stefan Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2029866A1 publication Critical patent/EP2029866A1/de
Application granted granted Critical
Publication of EP2029866B1 publication Critical patent/EP2029866B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/102Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance after addition to exhaust gases, e.g. by a passively or actively heated surface in the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus

Definitions

  • a fuel injection valve for fuel injection systems of internal combustion engines comprises an actuator and a valve needle operatively connected to the actuator and acted upon by a return spring in a closing direction for confirming a valve closing body.
  • This forms a sealing seat together with a formed on a valve seat body valve seat.
  • a spray perforated disk is arranged, wherein the spray perforated disk is curved in a dotted manner in a flow direction of the fuel.
  • particulate filters in particular diesel particulate filters
  • the particulate filters contain the soot particles contained in the exhaust gas of a self-igniting internal combustion engine, which accumulate in the filter pockets of the diesel particulate filter with the operating time of the self-igniting internal combustion engine.
  • the exhaust gas temperature is usually raised by the fact that motor measures are taken.
  • the required spray quality can be achieved by multi-hole nozzles, in which the additionally metered into the exhaust gas fuel is metered through several individual holes in the exhaust.
  • These multi-hole nozzles have a multiplicity of small and minute openings which, however, are deposited on the individual holes by the residual fluid remaining therefrom and the soot accumulating from the exhaust gas at the multi-hole nozzle over the service life of the multi-hole nozzle and clog these gradually.
  • the additionally metered into the exhaust gas amount of fuel decreases and in particular the fine droplet distribution within the spray decreases drastically. This, in turn, significantly affects the exhaust gas conditioning, so that the effectiveness of the temperature increase generated by the oxidation catalyst is significantly impaired.
  • WO 2005/025725 discloses an electrically controllable heating element which is arranged in front of a metering valve. The heating element can be used to clean the deposit-sensitive parts.
  • a heating device is provided at an additional injector, via which a spray of finely divided fuel liquid droplets is introduced into the gas.
  • a periodic activation of the heating device can bring about a periodic cleaning or vaporization of soot and fuel deposits on a multi-hole nozzle, so that a long-term constant operation of the additional injector is possible.
  • At the multi-hole nozzle of the additional fuel injector which is also referred to as a spray orifice plate, at least one heating wire is integrated.
  • the heating wire representing the additional heating device can on the one hand be on the outside, ie on the side of the multi-hole nozzle or spray perforated disk facing the flow channel.
  • the at least one heating wire that represents the heating device can also be arranged on the inner side, ie the side of the spray perforated disk or the multi-hole nozzle facing away from the exhaust gas flow, and thus be arranged within the injector body of the injector for introducing additional fuel into the exhaust gas flow.
  • the temperature at the spray perforated disk or the multi-hole nozzle in the immediate vicinity of Spray holes raised to a temperature of over 600 ° C, so that adhering fuel residues and soot particles evaporate or burn.
  • the heater may be insulated inwards by means of a thermal insulation.
  • the temperature of the spray perforated disk or the multi-hole nozzle can be raised in the short term after the metering of fuel mist one to the particle filter generation to a temperature of for example 400 ° C to evaporate adhering fuel residues quickly. Furthermore, it is also possible by the inventively proposed solution to produce a longer-term increase in temperature to counteract the diffuse deposition of soot particles by thermophoresis or exclude these entirely.
  • thermal insulation between the spray perforated disk or the multi-hole nozzle and the injector body of the injector is that a thermal decoupling of the multi-hole nozzle or the spray perforated disk from the injector of the fuel injector is made. While the valve tip is directly exposed to the hot exhaust gas flow in the region of the multi-hole nozzle or the spray perforated disk, the thermal insulation of the spray perforated disk avoids that the heat supplied to it being discharged into the interior of the injector body. Ideally, the spray perforated disk or the multi-hole nozzle assumes the exhaust gas temperature on the side facing the exhaust gas flow.
  • FIG. 1 is a schematic representation of the exhaust gas tract of a self-igniting internal combustion engine, wherein in the exhaust gas an oxide action catalyst is added, which is preceded by a Einosticiansstelle for additional exhaust gas.
  • an exhaust pipe 12 In the exhaust tract 10 of the self-igniting internal combustion engine extends an exhaust pipe 12, via which the exhaust gas of the self-igniting internal combustion engine flows to an oxidation catalyst 18.
  • the exhaust pipe 12 is bounded by a pipe wall 20.
  • An inflow side of the exhaust pipe 12 is denoted by reference numeral 14, and an outflow side of the exhaust gas flow is identified by reference numeral 16.
  • the outflow side 16 of the exhaust pipe 12 represents the inflow side of an oxidation catalyst 18.
  • the exhaust pipe 12 is constructed symmetrically to its symmetry axis 22.
  • an injection valve 24 is integrated in the pipe wall 20 of the exhaust pipe 12.
  • the injection valve 24 is connected via a supply line 25, for example, to the fuel tank of the vehicle with a self-igniting internal combustion engine and is supplied via this with fuel.
  • the injection valve 24 comprises a valve body 26, which penetrates the pipe wall 20 of the exhaust pipe 12 penetrating partially into the exhaust gas flow, which flows through the exhaust pipe 12.
  • a valve piston 28 Within the valve body 26 is a valve piston 28, indicated only schematically here, in the direction of in FIG. 1 registered double arrow is movable in the vertical direction.
  • the valve piston 28 acts with a valve seat 26 formed in the valve seat 30 together.
  • Below the valve seat 30 is located in the valve body 26 of the injection valve 24 identified by a reference numeral 36 cavity which is adjacent to the valve seat 30 bounded by a spray perforated disk 32.
  • additional fuel indicated by reference numeral 34, in which the exhaust pipe 12 possierende exhaust gas flow initiated.
  • reference numeral 34 in which the exhaust pipe 12 possierende exhaust gas flow initiated.
  • FIG. 2 is a section through the exhaust gas flow end facing the injection valve as shown in FIG FIG. 1 refer to.
  • valve body 26 of the injection valve 24 the vertically movable in the direction of the valve piston 28 is located, which cooperates with the likewise formed within the valve body 26 valve seat 30.
  • an opening is formed, which may be circular, for example, and by the valve seat 30 facing end face of the valve piston 28 is closed.
  • the opening in the valve seat 30 is fully or partially released, so that additional fuel flows from the interior of the valve body 26 via the open valve seat 30 to the cavity 36.
  • the valve body 26 is delimited by a spray-bonded disk 32, which is preferably adhesively connected to the valve body 26 at joints 54.
  • the spray perforated disk 32 preferably comprises a multiplicity of individual openings 48.
  • the joints 54 between the valve body 26 and the spray perforated disk 32 may be formed, for example, as welds; Alternatively, it is also possible to screw the spray perforated disk 32 into the valve body 26 or to carry out the valve body 26 with integrated spray perforated disk 32 as an integral component.
  • FIG. 2 shows that on the outside of the spray perforated disk 32, with respect to the representation according to FIG. 1 at the exhaust gas flow facing side of the spray perforated disk 32, at this one here as a heating wire 44 formed heating device is assigned.
  • a heating wire 44 formed heating device is assigned.
  • the at least one heating wire 44 of the heating device preferably runs such that the at least one heating wire 44 extends over the solid material of the spray perforated disk 32 and does not cover the openings 48 formed in the spray perforated disk 32.
  • the cavity 36 in the injection valve 24 is defined by a first end face 38 of the spray perforated disk 32, an inner wall 42 of the valve body 26, and the valve seat 30 with an opening formed therein.
  • the heater is located on a second end face 40 of the spray perforated disk 32, that is, at the exhaust gas flow facing surface.
  • the representation according to FIG. 3 is a further embodiment of the downstream end of an additional fuel in the exhaust flow metering injector.
  • the heating device comprising at least one heating wire 44 is located on the inside of the spray perforated disk 32, here on the first end face 38 within the cavity 36 in the valve body 26.
  • the at least one heating wire 44 extends to the first end face 38 of the spray perforated disk 32 in a division 56.
  • FIG. 3 illustrated embodiment of a lying inside, ie arranged in the cavity 36 of the valve body 26 heater, comprising at least one heating wire 44 it is achieved that the Heater itself is not contaminated by soot particles contained in the exhaust gas flow of the self-igniting internal combustion engine.
  • the division 56 in which the at least one heating wire, for example meandering, covers the first end face 38 of the spray perforated disk 32, there is a free inflow cross section to the individual openings 48 formed in the spray perforated disk 32.
  • the at least one heating wire 44 of the heating device When the at least one heating wire 44 of the heating device is supplied with current to the spray perforated disk 32 to a temperature T max of approximately 600 ° C., evaporation takes place in the individual openings 48 of remaining fuel and combustion of particles contained in the individual openings 48 of the spray perforated disk 32, for example soot particles.
  • T max of approximately 600 ° C.
  • evaporation takes place in the individual openings 48 of remaining fuel and combustion of particles contained in the individual openings 48 of the spray perforated disk 32, for example soot particles.
  • the cross section through which the additional fuel is injected into the exhaust gas flow is maintained.
  • the spray hole geometry remains unchanged over the operating time of the injection valve 24, so that there is no impairment of the area in which the spray is introduced into the exhaust gas flow.
  • FIG. 3 illustrated second embodiment of the injection valve 24 as shown in FIG. 1 is formed in the interior of the valve body 26 of the valve seat 30, the opening of which can be either completely released by the valve piston 28 according to the vertical stroke, fully closed or partially opened.
  • the spray perforated disk 32 according to the in FIG. 3 shown second embodiment of the injection valve 24 may be joined to the valve body 26 at the joints 54 both cohesively and positively inserted in this, for example, be shrunk.
  • FIG. 4 is another embodiment of the in FIG. 1 only to be taken in a schematic representation injector 24 shown.
  • thermal insulation 50 is embedded in the cavity 36 between the valve seat 30 and the spray perforated disk 32.
  • the thermal insulation 50 separates the spray hole disk 32 arranged at the exhaust gas flow end from the interior of the valve body 26.
  • the thermal insulation 50 comprises individual openings 52 formed in a partition 58, such that the openings 52 of the thermal insulation 50 communicate with the individual openings 48 of the spray perforated disk 32 are aligned. This is an unobstructed inflow of the stockpiled in the valve body 26 additional fuel with open valve seat 30 to the spray orifice plate 32 possible.
  • the heater which is formed by the at least one heating wire 44, omitted.
  • the in the FIGS. 2 and 3 illustrated embodiments of the heater which is represented by the at least one heating wire 44, can be energized at regular intervals, so that the temperature at the spray perforated disk 32 in the immediate vicinity of the individual openings 48 to a temperature level of above 600 ° C increases. At this temperature, the outflowing fuel flow obstructing fuel residues evaporates in the individual openings 48. Furthermore, soot particles that have accumulated in the flow cross sections of the individual openings 48 burn at this temperature level. Is the heater from the at least one heating wire 44 at the first end face 38 as shown in FIG FIG. 3 or at the second end face 40 as shown in FIG FIG. 2 arranged, so although in the FIGS. 2 and 3 not shown, in the cavity 36 of the valve body 26, a thermal insulation 50 be added, as in the embodiment according to FIG. 4 shown.
  • the thermal insulation 50 in the cavity 36 in the valve body 26 introduced, which is bounded by the valve seat 30 on the one hand and the spray hole disk 32 on the other.
  • the thermal insulation 50 arranged in the cavity 36 that the temperature level of the spray perforated disk 32 does not act on the valve body 26 of the injection valve 24. Furthermore, it is achieved by the thermal insulation 50 that the heating effect of the exhaust gas flow is limited to the spray perforated disk 32 and this really takes the temperature of the exhaust gas flow after a corresponding heating time. In a variant of the drawing which is not shown in the drawing, the thermal insulation 50 can also be applied to the side of the spray perforated disk 32 facing the exhaust gas flow.
  • the thermal insulation 50 can be represented by a coating with a ceramic thermal thin layer, wherein it must be ensured that this influences the exhaust gas flow within the exhaust pipe 12 as little as possible.
  • the thermal insulation 50 in the form of a coating with a ceramic thermal thin layer is applied to the spray perforated disk 32 in such a way that the injection openings 48 formed therein are not covered by the ceramic thermal thin layer.

Description

    Stand der Technik
  • Aus DE 101 18 164 A1 ist ein Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen bekannt. Das Brennstoffeinspritzventil umfasst einen Aktuator sowie einen mit dem Aktuator in Wirkverbindung stehenden und einer Schließrichtung von einer Rückstellfeder beaufschlagte Ventilnadel zur Bestätigung eines Ventilschließkörpers. Dieser bildet zusammen mit einer an einem Ventilsitzkörper ausgebildeten Ventilsitzfläche einen Dichtsitz. Abströmseitig des Ventilsitzkörpers ist eine Spritzlochscheibe angeordnet, wobei die Spritzlochscheibe in einer Strömungsrichtung des Brennstoffes kalottiert gewölbt ausgebildet ist.
  • An selbstzündenden Verbrennungskraftmaschinen werden aufgrund der höheren Anforderungen von Abgasnormen Partikelfilter, insbesondere Dieselpartikelfilter eingesetzt. Die Partikelfilter halten die im Abgas einer selbstzündenden Verbrennungskraftmaschine enthaltenen Rußpartikel zurück, welche sich mit der Betriebszeit der selbstzündenden Verbrennungskraftmaschine in den Filtertaschen des Dieselpartikelfilters anlagern. Zur Regeneration von Partikelfiltern selbstzündender Verbrennungskraftmaschinen wird die Abgastemperatur üblicherweise dadurch angehoben, dass motorische Maßnahmen ergriffen werden. Ist die zum Abbrand der Rußpartikel erforderliche Abgastemperaturerhöhung durch motorische Maßnahmen allein nicht möglich, wird durch einen zusätzlich im Abgastrakt der selbstzündenden Verbrennungskraftmaschine vorgesehenen Injektor, Kraftstoff in das Abgas eindosiert, der an einem Oxidationskatalysator katalytisch verbrannt wird. Dadurch wird die erforderliche Wärme zur Temperaturerhöhung freigesetzt. Für das zusätzliche Einbringen von Kraftstoff in den Abgastrakt der Verbrennungskraftmaschine wurde das HCl-System (Hydro Carbon Injection) entwickelt. Für eine gute katalytische Verbrennung des in das Abgas eindosierten Kraftstoffs im Bereich des Oxidationskatalysators ist eine feine Verteilung des zusätzlich eindosierten Kraftstoffs erforderlich. Der erzeugte Sprühnebel sollte idealerweise aus gleichmäßig verteilten kleinen Tröpfchen bestehen. Die erforderliche Sprayqualität kann durch Mehrlochdüsen erreicht werden, bei denen der zusätzlich in das Abgas eindosierte Kraftstoff durch mehrere Einzellöcher ins Abgas eindosiert wird. Diese Mehrlochdüsen weisen eine Vielzahl kleiner und kleinster Öffnungen auf, die sich jedoch durch an diesen verbliebene Flüssigkeitsreste und sich den aus dem Abgas an der Mehrlochdüse anlagernden Ruß über die Betriebsdauer der Mehrlochdüse an den Einzellöchern ablagern und diese nach und nach verstopfen. Dadurch nimmt die zusätzlich in das Abgas eindosierte Menge von Kraftstoff ab und insbesondere die feine Tröpfchenverteilung innerhalb des Sprühnebels nimmt drastisch ab. Dies wiederum beeinträchtigt die Abgaskonditionierung erheblich, so dass die Wirksamkeit der durch den Oxidationskatalysator erzeugten Temperaturerhöhung erheblich beeinträchtigt wird. WO 2005/025725 offenbart ein elektrisch regelbares Heizelement das vor einem Dosierventil angeordnet ist. Das Heizelement kann genutzt werden um die ablagerungsemfindlichen Teile zu reinigen.
  • Offenbarung der Erfindung
  • Der erfindungsgemäß vorgeschlagenen Lösung folgend, wird an einem zusätzlichen Injektor, über den ein Sprühnebel von feinverteilten Kraftstoffflüssigkeitstropfen in das Gas eingebracht wird, eine Heizeinrichtung vorgesehen. Über eine periodische Aktivierung der Heizeinrichtung kann eine regelmäßige Reinigung Abbrand oder Verdampfung von Ruß- und Kraftstoffablagerungen an einer Mehrlochdüse herbeigeführt werden, so dass langfristig ein konstanter Betrieb des zusätzlichen Injektors möglich ist.
  • An der Mehrlochdüse des zusätzlichen Kraftstoffinjektors, die auch als Spritzlochscheibe bezeichnet wird, wird mindestens ein Heizdraht integriert. Der die zusätzliche Heizeinrichtung darstellende Heizdraht kann einerseits außen liegend, d. h. an der dem Strömungskanal zugewandten Seite der Mehrlochdüse oder Spritzlochscheibe verlaufen. In einer anderen Ausführungsvariante kann der die Heizeinrichtung darstellende mindestens eine Heizdraht auch an der innen liegenden Seite, d. h. der der Abgasströmung abgewandten Seite der Spritzlochscheibe bzw. der Mehrlochdüse angeordnet werden und somit innerhalb des Injektorkörpers des Injektors zum Einbringen zusätzlichen Kraftstoffs in die Abgasströmung angeordnet werden. In regelmäßigen Zeitabständen wird mittels der Heizeinrichtung die Temperatur an der Spritzlochscheibe bzw. der Mehrlochdüse in direkter Nähe der Spritzlöcher auf eine Temperatur von über 600 °C angehoben, so dass anhaftende Kraftstoffrückstände sowie Rußpartikel verdampfen bzw. verbrennen.
  • Um die thermische Belastung des Kraftstoffinjektors im Abgastrakt der Verbrennungskraftmaschine, insbesondere in dessen Innenraum zu reduzieren, kann die Heizeinrichtung nach innen mittels einer thermischen Isolation isoliert sein.
  • Des Weiteren kann die Temperatur der Spritzlochscheibe bzw. der Mehrlochdüse kurzfristig nach der Eindosierung von Kraftstoffnebels eines zur Partikelfiltergeneration auf eine Temperatur von zum Beispiel 400 °C angehoben werden, um anhaftende Kraftstoffreste schnell zu verdampfen. Des Weiteren ist es durch die erfindungsgemäß vorgeschlagene Lösung auch möglich, eine längerfristige Temperaturerhöhung zu erzeugen, um der diffusen Anlagerung von Rußpartikeln durch Thermophorese entgegenzuwirken oder diese gänzlich auszuschließen.
  • Eine weitere zusätzliche Maßnahme in Gestalt einer thermischen Isolation zwischen der Spritzlochscheibe bzw. der Mehrlochdüse und dem Injektorkörper des Injektors besteht darin, dass eine thermische Entkopplung der Mehrlochdüse bzw. der Spritzlochscheibe vom Injektorkörper des Kraftstoffinjektors vorgenommen wird. Während die Ventilspitze im Bereich der Mehrlochdüse bzw. der Spritzlochscheibe der heißen Abgasströmung unmittelbar ausgesetzt ist, wird durch die thermische Isolation der Spritzlochscheibe vermieden, dass die dieser zugeführte Wärme in das Innere des Injektorkörpers abgeführt wird. Idealerweise nimmt die Spritzlochscheibe bzw. die Mehrlochdüse auf der der Abgasströmung zugewandten Seite die Abgastemperatur an.
  • Zeichnung
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt:
  • Figur 1
    eine schematische Darstellung des Abgastraktes einer selbstzündenden Verbrennungskraftmaschine mit einer einem Oxidationskatalysator vor- geschalteten Eindosierungsstelle für zusätzlichen Kraftstoff in die Ab- gasströmung,
    Figur 2
    eine erste Ausführungsvariante eines abgasströmungsseitigen Endes eines zusätzlichen Kraftstoffinjektors,
    Figur 3
    eine weitere Ausführungsvariante des der Abgasströmung zugewandten Endes des zusätzlichen Kraftstoffinjektors und
    Figur 4
    eine Ausführungsvariante des zusätzlich Kraftstoff in die Abgasströ- mung einbringenden Kraftstoffinjektors mit thermischer Isolation.
    Ausführungsvarianten
  • Der Darstellung gemäß Figur 1 ist eine schematische Darstellung des Abgastraktes einer selbstzündenden Verbrennungskraftmaschine zu entnehmen, wobei in dem Abgastrakt ein Oxidaktionskatalysator aufgenommen ist, dem eine Eindosierungsstelle für zusätzliches Abgas vorgeschaltet ist.
  • Im Abgastrakt 10 der selbstzündenden Verbrennungskraftmaschine verläuft ein Abgasrohr 12, über welches das Abgas der selbstzündenden Verbrennungskraftmaschine einem Oxidationskatalysator 18 zuströmt. Das Abgasrohr 12 ist von einer Rohrwand 20 begrenzt. Eine Einströmseite des Abgasrohrs 12 ist mit Bezugszeichen 14 bezeichnet, eine Ausströmseite der Abgasströmung durch Bezugszeichen 16 identifiziert. Die Ausströmseite 16 des Abgasrohrs 12 stellt die Einströmseite eines Oxidationskatalysators 18 dar. Das Abgasrohr 12 ist symmetrisch zu seiner Symmetrieachse 22 aufgebaut.
  • In die Rohrwand 20 des Abgasrohrs 12 ist ein Einspritzventil 24 integriert. Das Einspritzventil 24 steht über eine Versorgungsleitung 25 zum Beispiel mit dem Kraftstofftank des Fahrzeugs mit selbstzündender Verbrennungskraftmaschine in Verbindung und wird über diesen mit Kraftstoff versorgt.
  • Das Einspritzventil 24 umfasst einen Ventilkörper 26, der die Rohrwand 20 des Abgasrohres 12 durchdringend zum Teil in die Abgasströmung, die das Abgasrohr 12 durchströmt, hineinragt. Innerhalb des Ventilkörpers 26 befindet sich ein Ventilkolben 28, hier nur schematisch angedeutet, der in Richtung des in Figur 1 eingetragenen Doppelpfeils in vertikaler Richtung bewegbar ist. Der Ventilkolben 28 wirkt mit einem im Ventilkörper 26 ausgebildeten Ventilsitz 30 zusammen. Unterhalb des Ventilsitzes 30 befindet sich im Ventilkörper 26 des Einspritzventils 24 ein durch Bezugszeichen 36 identifizierter Hohlraum, der neben dem Ventilsitz 30 durch eine Spritzlochscheibe 32 begrenzt ist.
  • Über die Spritzlochscheibe 32, in der eine Vielzahl kleinster Öffnungen zur Erzeugung eines feinverteilten Sprühnebels ausgeführt sind, wird zusätzlicher Kraftstoff, angedeutet durch Bezugszeichen 34, in die das Abgasrohr 12 possierende Abgasströmung eingeleitet. Je kleiner die Tröpfchenverteilung innerhalb des durch die Spritzlochscheibe 32 erzeugten Sprühnebels ist, eine desto bessere Vermischung des zusätzlichen Kraftstoffes mit der Abgasströmung und eine desto gleichmäßigere Verbrennung lässt sich im Oxidationskatalysator 18 erreichen.
  • Der Darstellung gemäß Figur 2 ist ein Schnitt durch das der Abgasströmung zugewandte Ende des Einspritzventils gemäß der Darstellung in Figur 1 zu entnehmen.
  • Aus der Darstellung gemäß Figur 2 geht hervor, dass sich im Inneren des Ventilkörpers 26 des Einspritzventils 24 der in vertikale Berichtung bewegbare Ventilkolben 28 befindet, der mit dem ebenfalls innerhalb des Ventilkörpers 26 ausgebildeten Ventilsitz 30 zusammenarbeitet. Am Ventilsitz 30 ist eine Öffnung ausgebildet, die zum Beispiel kreisförmig ausgeführt sein kann, und durch die dem Ventilsitz 30 zuweisende Stirnseite des Ventilkolbens 28 verschließbar ist. Je nach Hubweg des Ventilkolbens 28 wird die Öffnung im Ventilsitz 30 vollständig oder teilweise freigegeben, so dass zusätzlicher Kraftstoff aus dem Inneren des Ventilkörpers 26 über den geöffneten Ventilsitz 30 dem Hohlraum 36 zuströmt.
  • Der Ventilkörper 26 wird durch eine an Fügestellen 54 mit dem Ventilkörper 26 bevorzugt stoffschlüssig verbundene Spritzlochscheibe 32 begrenzt. Die Spritzlochscheibe 32 umfasst vorzugsweise eine Vielzahl von Einzelöffnungen 48. Die Fügestellen 54 zwischen dem Ventilkörper 26 und der Spritzlochscheibe 32 können zum Beispiel als Schweißnähte ausgebildet sein; alternativ ist auch möglich, die Spritzlochscheibe 32 in den Ventilkörper 26 einzuschrauben oder den Ventilkörper 26 mit integrierter Spritzlochscheibe 32 als einstückiges Bauteil auszuführen.
  • Aus der Darstellung gemäß Figur 2 geht hervor, dass an der Außenseite der Spritzlochscheibe 32, im Bezug auf die Darstellung gemäß Figur 1 an der der Abgasströmung zugewandten Seite der Spritzlochscheibe 32, an dieser eine hier als Heizdraht 44 ausgebildete Heizeinrichtung zugeordnet ist. In der Darstellung gemäß Figur 2 ist eine Teilung, welche dem Abstand einzelner Heizdrähte 44 der Heizeinrichtung entspricht, durch Bezugszeichen 56 kenntlich gemacht. Der mindestens eine Heizdraht 44 der Heizeinrichtung verläuft bevorzugt so, dass der mindestens eine Heizdraht 44 sich über das Vollmaterial der Spritzlochscheibe 32 erstreckt und die in der Spritzlochscheibe 32 ausgebildeten Öffnungen 48 nicht überdeckt. Bei einer Aktivierung der Heizeinrichtung, gebildet durch die in Figur 2 dargestellten Heizdrähte 44, erfolgt eine Erwärmung der Spritzlochscheibe 32, so dass in den Einzelöffnungen 48 verbliebener Kraftstoff verdampft und sich an der Spritzlochscheibe 32 im Bereich der Einzelöffnungen 48 anlagernde Rußpartikel abgebrannt werden. Durch die in Figur 2 dargestellte erste Ausführungsvariante der Heizeinrichtung wird die Qualität des durch das Einspritzventil 24 erzeugten Sprühnebels aus zusätzlichem Kraftstoff dauerhaft gesichert, da die Geometrie der Einzelöffnungen 48 in der Spritzlochscheibe 32 nicht durch Kraftstoffanlagerungen bzw. durch die die Einzelöffnungen 48 verstopfende Rußpartikel beeinträchtigt wird. Die Dicke der Spritzlochscheibe 32 ist durch Bezugszeichen 46 gekennzeichnet. Der Hohlraum 36 im Einspritzventil 24 wird durch eine erste Stirnfläche 38 der Spritzlochscheibe 32, eine Innenwand 42 des Ventilkörpers 26 sowie den Ventilsitz 30 mit darin ausgebildeter Öffnung definiert. In der in Figur 2 dargestellten Ausführungsvariante befindet sich die Heizeinrichtung an einer zweiten Stirnfläche 40 der Spritzlochscheibe 32, d. h. an deren der Abgasströmung zugewandten Fläche.
  • Der Darstellung gemäß Figur 3 ist eine weitere Ausführungsvariante des abströmseitigen Endes eines zusätzlichen Kraftstoff in die Abgasströmung eindosierenden Einspritzventils zu entnehmen.
  • Im Unterschied zur in Figur 2 dargestellten ersten Ausführungsvariante des Einspritzventils 24 befindet sich die Heizeinrichtung, mindestens einen Heizdraht 44 umfassend, an der Innenseite der Spritzlochscheibe 32, hier an der ersten Stirnfläche 38 innerhalb des Hohlraumes 36 im Ventilkörper 26. Gemäß der in Figur 3 dargestellten Ausführungsvariante der Heizeinrichtung des Einspritzventils 24 verläuft der mindestens eine Heizdraht 44 an der ersten Stirnfläche 38 der Spritzlochscheibe 32 in einer Teilung 56. In der in Figur 3 dargestellten Ausführungsvariante einer innen liegend, d. h. im Hohlraum 36 des Ventilkörpers 26 angeordneten Heizeinrichtung, mindestens einen Heizdraht 44 umfassend, wird erreicht, dass die Heizeinrichtung an sich nicht durch Rußpartikel, die in der Abgasströmung der selbstzündenden Verbrennungskraftmaschine enthalten sind, kontaminiert wird. Durch die Teilung 56, in welcher der mindestens eine Heizdraht zum Beispiel mäanderförmig die erste Stirnfläche 38 der Spritzlochscheibe 32 überdeckt, besteht ein freier Zuströmquerschnitt zu den in der Spritzlochscheibe 32 ausgebildeten Einzelöffnungen 48.
  • Bei einer Bestromung des mindestens einen Heizdrahtes 44 der Heizeinrichtung an der Spritzlochscheibe 32 auf eine Temperatur Tmax von etwa 600 °C erfolgt ein Verdampfen in den Einzelöffnungen 48 verbliebenen Kraftstoffes sowie eine Verbrennung von in den Einzelöffnungen 48 der Spritzlochscheibe 32 befindlichen Partikeln, so zum Beispiel Rußpartikeln. Dadurch bleibt der Querschnitt, durch welchen der zusätzliche Kraftstoff in die Abgasströmung eingespritzt wird, erhalten. Ferner bleibt die Spritzlochgeometrie über die Betriebszeit des Einspritzventils 24 unverändert, so dass keine Beeinträchtigung des Bereiches erfolgt, in welchem der Sprühnebel in die Abgasströmung eingetragen wird.
  • Auch in der in Figur 3 dargestellten zweiten Ausführungsvariante des Einspritzventils 24 gemäß der Darstellung in Figur 1 ist im Inneren des Ventilkörpers 26 der Ventilsitz 30 ausgebildet, dessen Öffnung durch den Ventilkolben 28 entsprechend dessen Vertikalhubs entweder vollständig freigegeben, voll verschlossen oder auch teilweise geöffnet werden kann. Die Spritzlochscheibe 32 gemäß der in Figur 3 dargestellten zweiten Ausführungsvariante des Einspritzventils 24 kann mit dem Ventilkörper 26 an den Fügestellen 54 sowohl stoffschlüssig gefügt als auch kraftschlüssig in diesen eingelassen, so zum Beispiel eingeschrumpft sein.
  • Der Darstellung gemäß Figur 4 ist eine weitere Ausführungsvariante des in Figur 1 nur in schematischer Darstellung gezeigten Einspritzventils 24 zu entnehmen.
  • Aus der Darstellung gemäß Figur 4 geht hervor, dass in den Hohlraum 36 zwischen dem Ventilsitz 30 und der Spritzlochscheibe 32 eine thermische Isolation 50 eingelassen ist. Die thermische Isolation 50 trennt die am abgasströmungsseitigen Ende angeordnete Spritzlochscheibe 32 vom Inneren des Ventilkörpers 26. Die thermische Isolation 50 umfasst einzelne Öffnungen 52, die in einer Teilung 58 ausgebildet sind, so dass die Öffnungen 52 der thermischen Isolation 50 mit den Einzelöffnungen 48 der Spritzlochscheibe 32 fluchten. Damit ist eine unbehinderte Zuströmung des im Ventilkörper 26 bevorrateten zusätzlichen Kraftstoffes bei geöffnetem Ventilsitz 30 zur Spritzlochscheibe 32 möglich. In der Ausführungsvariante gemäß Figur 4 ist die Heizeinrichtung, die durch den mindestens einen Heizdraht 44 gebildet ist, entfallen.
  • Die in den Figuren 2 und 3 dargestellten Ausführungsvarianten der Heizeinrichtung, die durch den mindestens einen Heizdraht 44 dargestellt wird, können in regelmäßigen Zeitabständen bestromt werden, so dass die Temperatur an der Spritzlochscheibe 32 in direkter Nähe der Einzelöffnungen 48 auf ein Temperaturniveau von oberhalb 600 °C ansteigt. Bei dieser Temperatur verdampfen in den Einzelöffnungen 48 die austretende Kraftstoffströmung behindernde Kraftstoffreste. Ferner verbrennen Rußpartikel, die sich in den Strömungsquerschnitten der Einzelöffnungen 48 angelagert haben, bei diesem Temperaturniveau. Ist die Heizeinrichtung aus dem mindestens einen Heizdraht 44 an der ersten Stirnfläche 38 gemäß der Darstellung in Figur 3 oder an der zweiten Stirnfläche 40 gemäß der Darstellung in Figur 2 angeordnet, so kann, obwohl in den Figuren 2 und 3 nicht dargestellt, im Hohlraum 36 des Ventilkörpers 26 eine thermische Isolation 50 aufgenommen sein, wie im Ausführungsbeispiel gemäß Figur 4 dargestellt.
  • Neben einer gleichmäßigen Temperierung der Spritzlochscheibe 32 durch eine konstante Bestromung der Heizeinrichtung, mindestens einen Heizdraht 44 umfassend, besteht die Möglichkeit, die Temperatur der Spritzlochscheibe 32 kurzfristig nach der Eindosierung von Kraftstoff zur Partikelfilterregeneration anzuheben, so zum Beispiel auf ein Temperaturniveau von etwa 400 °C, um in den Einzelöffnungen 48 anhaftende Kraftstoffreste schnell zu verdampfen. Daneben ist auch eine längerfristig andauernde Temperaturerhöhung denkbar, um der diffusen Anlagerung von Rußpartikeln durch Thermophorese entgegenzuwirken und diese im Idealfall vollständig auszuschließen.
  • Bei dem in Figur 4 dargestellten Ausführungsbeispiel kann zur Erhöhung der Temperatur der Spritzlochscheibe 32 auf eine Heizeinrichtung, mindestens einen Heizdraht 44 umfassend, vollständig verzichtet werden, wenn die Temperaturerhöhung der Spritzlochscheibe 32 durch die Abgasströmung, die das Abgasrohr 12 passiert, herbeigeführt wird. In diesem Falle ist das Innere des Ventilkörpers 26 des Einspritzventils 24 von der Spritzlochscheibe 32 durch die thermische Isolation 50 entkoppelt. Bevorzugt wird die thermische Isolation 50 im Hohlraum 36 im Ventilkörper 26 eingebracht, der durch den Ventilsitz 30 einerseits und die Spritzlochscheibe 32 andererseits begrenzt ist. Da die Spritzlochscheibe 32 der heißen Abgasströmung ausgesetzt ist und sich demzufolge sehr stark erwärmt, wird über die im Hohlraum 36 angeordnete thermische Isolation 50 erreicht, dass das Temperaturniveau der Spritzlochscheibe 32 nicht auf den Ventilkörper 26 des Einspritzventils 24 wirkt. Ferner wird durch die thermische Isolation 50 erreicht, dass die Heizwirkung der Abgasströmung auf die Spritzlochscheibe 32 begrenzt bleibt und diese nach einer entsprechenden Aufheizzeit auch wirklich die Temperatur der Abgasströmung annimmt. In einer zeichnerisch nicht dargestellten Ausführungsvariante lässt sich die thermische Isolation 50 auch auf der der Abgasströmung zugewandten Seite der Spritzlochscheibe 32 aufbringen. In diesem Falle kann die thermische Isolation 50 durch eine Beschichtung mit einer keramischen Wärmedünnschicht dargestellt werden, wobei sicherzustellen ist, dass diese die Abgasströmung innerhalb des Abgasrohres 12 möglichst wenig beeinflusst. Die thermische Isolation 50 in Gestalt einer Beschichtung mit keramischer Wärmedünnschicht wird so auf die Spritzlochscheibe 32 aufgebracht, dass die in dieser ausgebildeten Einspritzöffnungen 48 nicht von der keramischen Wärmedünnschicht überdeckt sind.

Claims (10)

  1. Verfahren zur katalytischen Verbrennung von in einem Abgastrakt einer Verbrennungskraftmaschine mittels eines Einspritzventils (24) eindosierten Kraftstoffs (34) unter Einsatz eines Oxidationskatalysators (18) mit nachfolgenden Verfahrensschritten:
    a) der eindosierte Kraftstoff (34) wird über das Einspritzventil (24) in einer Abgasströmung zerstäubt,
    b1) mittels einer Heizeinrichtung (44) wird ein der Abgasströmung in einem Abgasrohr (12) zuweisendes Ende (32) des Einspritzventils (24) kontinuierlich oder periodisch beheizt,
    oder
    b2) ein vom Einspritzventil (24) thermisch entkoppeltes Ende (32) des Einspritzventils (24) wird von der Abgasströmung unmittelbar erwärmt.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt a) die Zerstäubung des eindosierten Kraftstoffs (34) über eine an der Abgasströmung zuweisenden Ende des Einspritzventils (24) aufgenommene Spritzlochscheibe (32) erfolgt.
  3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt b1) das der Abgasströmung zuweisende Ende (32) des Einspritzventils (24) in regelmäßigen Intervallen auf ein Temperaturniveau von etwa 600 °C oder nach der Eindosierung von zusätzlichem Kraftstoff (34) auf ein Temperaturniveau von etwa 400 °C beheizt wird.
  4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass gemäß Verfahrensschritt b2) die thermische Entkopplung des Endes (32) des Einspritzventils (24) durch eine thermische Isolation (50) erfolgt.
  5. Vorrichtung zur katalytischen Verbrennung von in einen Abgastrakt (10) einer Verbrennungskraftmaschine mittels eines Einspritzventils (24) eindosierten Kraftstoffs (34), wobei an dem der Abgasströmung zugewandten Ende des Einspritzventils (24) eine Spritzlochscheibe (32) mit einer Anzahl von Einzelöffnungen (48) angeordnet ist, dadurch gekennzeichnet, dass der Spritzlochscheibe (32) eine mindestens einen Heizdraht (44) umfassende Heizeinrichtung zugeordnet ist oder die Spritzlochscheibe (32) durch eine thermische Isolation (50) vom Ventilkörper (26) des Einspritzventils (24) thermisch entkoppelt ist.
  6. Vorrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass der mindestens eine Heizdraht (44) an einer der Stirnflächen (38, 40) der Spritzlochscheibe (32) verläuft.
  7. Vorrichtung gemäß Anspruch 6, dadurch gekennzeichnet, dass der mindestens eine Heizdraht (44) innerhalb eines Hohlraums (36) des Einspritzventils (24) aufgenommen und thermisch gegen den Ventilkörper (26) des Einspritzventils (24) isoliert ist.
  8. Vorrichtung gemäß Anspruch 6, dadurch gekennzeichnet, dass der mindestens eine Heizdraht (44) mäanderförmig auf einer der Stirnflächen (38, 40) der Spritzlochscheibe (32) verläuft.
  9. Vorrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass die thermische Isolation (50) in einem Hohlraum (36) oberhalb der Spritzlochscheibe (32) im Ventilkörper (26) angeordnet ist.
  10. Vorrichtung gemäß der Ansprüche 6 oder 9, dadurch gekennzeichnet, dass einzelne Windungen des mindestens einen Heizdrahtes (44) in einer den Kraftstoffdurchtritt durch Einzelöffnungen (48) der Spritzlochscheibe (32) ermöglichenden Teilung (56) verlaufen oder Öffnungen (52) der thermischen Isolation (50) zu Einzelöffnungen (48) der Spritzlochscheibe (32) fluchten.
EP07727689A 2006-05-31 2007-04-03 Verfahren und vorrichtung zur reinigung von ventilen Expired - Fee Related EP2029866B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006025332A DE102006025332A1 (de) 2006-05-31 2006-05-31 Verfahren und Vorrichtung zur Reinigung von Ventilen
PCT/EP2007/053218 WO2007137897A1 (de) 2006-05-31 2007-04-03 Verfahren und vorrichtung zur reinigung von ventilen

Publications (2)

Publication Number Publication Date
EP2029866A1 EP2029866A1 (de) 2009-03-04
EP2029866B1 true EP2029866B1 (de) 2010-08-11

Family

ID=38134180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07727689A Expired - Fee Related EP2029866B1 (de) 2006-05-31 2007-04-03 Verfahren und vorrichtung zur reinigung von ventilen

Country Status (4)

Country Link
US (1) US20090282814A1 (de)
EP (1) EP2029866B1 (de)
DE (2) DE102006025332A1 (de)
WO (1) WO2007137897A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8484947B2 (en) * 2007-03-02 2013-07-16 Caterpillar Inc. Fluid injector having purge heater
US7958721B2 (en) 2007-06-29 2011-06-14 Caterpillar Inc. Regeneration system having integral purge and ignition device
US8281570B2 (en) * 2007-08-09 2012-10-09 Caterpillar Inc. Reducing agent injector having purge heater
DE102010029298A1 (de) * 2010-05-26 2011-12-01 Robert Bosch Gmbh Ventilanordnung zur Dosierung eines fluiden Mediums in einen Abgasstrang einer Brennkraftmaschine
DE102016211826A1 (de) * 2016-06-30 2018-01-04 Continental Automotive Gmbh Dosiervorrichtung zum Dosieren einer Reduktionsmittelflüssigkeit und Verfahren zum Betreiben einer Dosiervorrichtung
US11319853B2 (en) * 2020-03-31 2022-05-03 Faurecia Emissions Control Technologies, Usa, Llc Automotive exhaust aftertreatment system with doser

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327773A1 (de) * 1983-05-13 1984-11-15 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur kraftstoffeinspritzung in brennraeume
EP0677653B1 (de) * 1994-04-12 1997-04-23 ULEV GmbH Einrichtung zur Vernebelung von Kraftstoff
DE4436415A1 (de) * 1994-10-12 1996-04-18 Bosch Gmbh Robert Einrichtung zum Nachbehandeln von Abgasen einer selbstzündenden Brennkraftmaschine
DE19625447B4 (de) * 1996-06-26 2006-06-08 Robert Bosch Gmbh Rohrverdampfer für Zusatzkraftstoff ins Abgas
DE19855385A1 (de) * 1998-12-01 2000-06-08 Bosch Gmbh Robert Vorrichtung zum Nachbehandeln von Abgasen einer Brennkraftmaschine
JP4092526B2 (ja) * 2000-06-19 2008-05-28 株式会社デンソー 燃料噴射装置
DE10056039A1 (de) * 2000-11-11 2002-05-16 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10118164B4 (de) 2001-04-11 2007-02-08 Robert Bosch Gmbh Brennstoffeinspritzventil
US7070126B2 (en) * 2001-05-09 2006-07-04 Caterpillar Inc. Fuel injector with non-metallic tip insulator
ITTO20010786A1 (it) * 2001-08-03 2003-02-03 Fiat Ricerche Metodo di autoinnesco della rigenerazione di un filtro particolato per un motore diesel ad iniezione diretta provvisto di un impianto di ini
DE10155675A1 (de) * 2001-08-18 2003-05-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Speicherung und Dosierung eines Reduktionsmittels
DE10330913B4 (de) * 2003-07-04 2016-02-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Zumessen von Reduktionsmittel zum Abgas eines Verbrennungsmotors
DE10342003A1 (de) * 2003-09-05 2005-03-31 Robert Bosch Gmbh Vorrichtung zur Aufbereitung einer Reduktionsmittel-Vorprodukt-Lösung zur Abgasnachbehandlung
US7010909B2 (en) * 2003-12-03 2006-03-14 Zeuna-Starker Gmbh & Co. Kg Motor vehicle equipped with a diesel propulison engine
US7240483B2 (en) * 2004-08-02 2007-07-10 Eaton Corporation Pre-combustors for internal combustion engines and systems and methods therefor
DE102004056791B4 (de) * 2004-11-24 2007-04-19 J. Eberspächer GmbH & Co. KG Abgasanlage
JP2006183657A (ja) * 2004-12-02 2006-07-13 Nissan Motor Co Ltd インジェクタ
DE102005044780A1 (de) * 2005-09-20 2007-03-29 Arvinmeritor Emissions Technologies Gmbh Einspritzdüse mit Heizelement sowie Verfahren zum Einbringen eines oxidierbaren Fluids in eine Abgasanlage stromaufwärts eines Katalysators oder Filters
US7328572B2 (en) * 2006-02-23 2008-02-12 Fleetguard, Inc. Exhaust aftertreatment device with star-plugged turbulator

Also Published As

Publication number Publication date
US20090282814A1 (en) 2009-11-19
WO2007137897A1 (de) 2007-12-06
DE502007004731D1 (de) 2010-09-23
DE102006025332A1 (de) 2007-12-06
EP2029866A1 (de) 2009-03-04

Similar Documents

Publication Publication Date Title
EP2029866B1 (de) Verfahren und vorrichtung zur reinigung von ventilen
DE10332114A1 (de) Gekühlte Vorrichtung zur Dosierung von Reduktionsmittel zum Abgas eines Verbrennungsmotors
DE102008055190B4 (de) Montageaufbau für ein Einspritzventil
EP2106496B1 (de) Vorrichtung zur dosierung von kraftstoff zum abgassystem eines verbrennungsmotors
EP2027374B1 (de) Vorrichtung zur regeneration, zur temperaturbeaufschlagung und/oder zum thermomanagement, zugehöriges einspritzventil und verfahren
DE102011003912B4 (de) Vorrichtung und Verfahren zur Eindosierung einer Flüssigkeit in den Abgasstrang einer Brennkraftmaschine
EP1369557B1 (de) Kraftfahrzeug mit einem Diesel-Antriebsmotor mit mittels Kraftstoffdampfeindüsung diskontinuierlich regenerierbarem Abgasreinigungssystem
WO2008110407A1 (de) Dosierventil für ein flüssiges medium, insbesondere abgastraktdosierventil
DE102016210640A1 (de) Vorrichtung und Verfahren zum Eindosieren eines Reduktionsmittels in den Abgaskanal einer Brennkraftmaschine
EP3325782B1 (de) Einspritzventil eines abgasnachbehandlungssystems
WO2005103481A1 (de) Kraftstoffeinspritzdüse für diesel-brennkraftmaschinen
DE102009002290A1 (de) Harnstofflösungseinspritzventil
EP2791484B1 (de) Vorrichtung und verfahren zum verdampfen eines fluids in einem abgasstrang
EP2839154A1 (de) Dosiervorrichtung
WO2008058634A1 (de) Vorrichtung zum dosieren von reduktionsmittel und injektor in einer vorrichtung zum dosieren von reduktionsmittel
EP3478946B1 (de) Dosiervorrichtung zum dosieren einer reduktionsmittelflüssigkeit und verfahren zum betreiben einer dosiervorrichtung
WO2010079010A1 (de) Einspritzventil für eine abgasnachbehandlungseinrichtung
EP2825740B1 (de) Dosiervorrichtung
DE102009027724A1 (de) Abgasnachbehandlungsvorrichtung
DE102011075591A1 (de) Vorrichtung zum Einspritzen von Kraftstoff in ein Abgasnachbehandlungssystem
DE102008040822A1 (de) Einspritzventil zum Zerstäuben von Fluid
DE112008002466B4 (de) System zum Einbringen eines verdampften Kraftstoffs in das Innere eines Auspuffelements
EP2898198B1 (de) Einspritzventil und abgasnachbehandlungsvorrichtung
DE102012221713A1 (de) Einspritzventil
DE102012216676A1 (de) Abgasnachbehandlungsvorrichtung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007004731

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004731

Country of ref document: DE

Effective date: 20110512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170623

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004731

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430