EP2025945B1 - Flow working machine with ring canal wall fitting - Google Patents
Flow working machine with ring canal wall fitting Download PDFInfo
- Publication number
- EP2025945B1 EP2025945B1 EP08013782.1A EP08013782A EP2025945B1 EP 2025945 B1 EP2025945 B1 EP 2025945B1 EP 08013782 A EP08013782 A EP 08013782A EP 2025945 B1 EP2025945 B1 EP 2025945B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- recess
- fluid
- point
- flow machine
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
- F04D29/526—Details of the casing section radially opposing blade tips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
- F04D29/685—Inducing localised fluid recirculation in the stator-rotor interface
Definitions
- the present invention thus relates to fluid flow machines such as fans, compressors, pumps and fans, in both axial, semi-axial and radial designs.
- the working medium or fluid may be gaseous or liquid.
- the turbomachine according to the invention may comprise one or more stages, each with a rotor and a stator.
- the rotor consists of a number of blades, which are connected to the rotating shaft of the fluid flow machine and energy to the Release working medium.
- the rotor is designed with a free blade end on the housing.
- the stator according to the invention consists of a number of fixed blades, which are designed on the housing side with a fixed blade end.
- the turbomachine in front of the first rotor may have a special form of stator, a so-called leading wheel.
- At least one stator or Vorleitrad may be rotatably mounted deviating from the immovable fixation in order to change the angle of attack.
- An adjustment is made for example by a spindle accessible from outside the annular channel.
- the turbomachine may have at least one row of adjustable rotors.
- the fluid flow machine can alternatively also have a bypass configuration such that the single-flow annular channel divides behind a specific row of blades into two concentric annular channels, which in turn each comprise at least one further row of blades.
- Fig. 2 shows examples according to the invention relevant flow machines.
- the invention relates to the shape of a portion of the annular channel wall and the arrangement and shaping of recesses in said annular channel wall portion in the region of a blade row with free end and running gap of a fluid flow machine.
- a recirculation structure for turbo compressors is previously known, which shows a circumferential annular chamber.
- fluid enters around the entire circumference of the annular chamber, is then directed counter to the direction of flow and is conducted between vanes which are scoop-shaped and cause a swirl change of the flow.
- the flow After flowing through the guide elements, the flow enters an annular region of the annular chamber and flows from there back into the flow path.
- the present invention has for its object to provide a fluid flow machine of the type mentioned, which has an effective boundary layer influence in the blade tip area while avoiding the disadvantages of the prior art.
- the Fig. 1 shows, marked by dashed borders, the invention relevant zones, namely areas of the fluid flow machine with free blade ends with running gap.
- the Figure 3 shows a sketch of a solution according to the invention with at least one recess which is characterized by a partial overlap with the running path of the relevant row of blades. It may also be advantageous to let the recess or the recess group also partially extend into the bladed region of a possibly upstream blade row.
- the Figure 4 shows a relevant to the invention section of the flow machine, consisting of the portion of a hub or housing assembly with the annular channel wall formed thereby and the blade row located in this area.
- the configuration may be either a pair of rotor blade rows and a housing assembly, or a pair of stator blade rows and a hub assembly.
- an optionally upstream arranged row of blades as well as the projected into the illustrated meridian plane outline of the invention Ringkanalwandaus founded.
- a small arrow indicates the machine axis direction and a thick arrow indicates the main flow direction.
- the 5a shows a reduced representation of the features Figure 4 , but now with more points and geometrical details.
- the reference chord length L is defined between the blade tip points A and B. All distances given are in the illustrated meridian plane (plane formed by axial direction x and radial direction r) parallel to the course of the blade tip, ie parallel to the connecting line AB measured.
- a straight line through the auxiliary points C and D encloses a straight line through the blade tip points A and B the angle alpha.
- the angle alpha in the indicated directional convention is between -15 ° and 30 °.
- the front boundary point of the annular channel wall recess E is located at a distance e> 0 in front of the leading edge point A.
- point E can also be arranged in the bladed region of another row of blades possibly located upstream of the blade row.
- the rear boundary point of the annular channel wall recess F is at a distance f behind the leading edge point A, where 0.5 L> f> 0.
- the angle beta is positive in the drawn direction and is given between the straight line through the blade tip points A and B and a tangent to the contour of the annular channel wall recess, at least at one point in the outline of the recess between S and F given in the meridian section minimum 15 ° and maximum 70 °.
- the angle beta is at least at one point of the outline given in the meridian section of the recess between E and S between 15 ° and 40 °. In this way, a particularly gentle re-entry of the fluid upstream of the blade row is made possible in the main flow path.
- 5 b shows some possible according to the invention outline shapes of the RingkanalwandausEnglishung.
- the outline shape can be completely curved or straight.
- As production technology easily achievable formation of the recess according to the invention is particularly the bottom left and right in 5 b illustrated triangular shape.
- FIG. 6 shows the view YY, as in Fig. 5a is drawn. Shown here is a pair of rotor blade row and housing, but the following statements also apply to the analogue representable pairing of stator blade row and hub.
- the figure shows two blade tips in the vicinity of a portion of the housing wall.
- the annular channel wall (here exemplary housing) has a number of recesses which are arranged distributed in the circumferential direction.
- the recesses unlike in Figure 6 shown, arranged at different distances in the circumferential direction to each other.
- the recesses are shown approximately at the position of their maximum penetration depth into the channel wall.
- the recesses according to the invention have an angle of inclination gamma against the radial direction of the machine.
- the inclination of the recesses is according to the invention 25 ° ⁇ gamma ⁇ 75 ° and shows accordingly in the direction of the blades moving relative to them.
- the size of the penetration depth and the choice of shape at the foot of the recess are of minor importance to the present invention and therefore freely selectable.
- the Fig.7a to 7c each show in the view ZZ a settlement of the circumference of the fluid flow machine in the region of the Ringkanalwandausappelung. Dotted indicate two blades of the relevant row of blades, on which the recess is arranged. Shown are, in partial overlap with the blade row, the openings of an array of recesses on the annular channel wall. According to the invention, the openings in the flow direction of slender nature, ie, the extent in the circumferential direction is smaller than the extent perpendicular thereto.
- the Fig. 7a shows the alignment of the recess openings in the direction of the machine axis (left half of the picture) and a further arrangement according to the invention, in which the slender openings of the recesses are inclined against the machine axis direction by the angle delta.
- the angle delta can assume values of up to 35 ° and thus guarantees an opposite staggering of the recess openings and the profiles of the relevant row of blades.
- Fig. 7b shows two arrangements according to the invention, which are used in the invention differently long and / or differently positioned recesses along the circumference.
- the Fig. 7c shows two arrangements according to the invention, in which a variation of the width of the recess opening in the longitudinal direction is provided in the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die aerodynamische Belastbarkeit und die Effizienz von Strömungsarbeitsmaschinen, beispielsweise Bläsern, Verdichtern, Pumpen und Ventilatoren, wird insbesondere durch das Wachstum und die Ablösung von Grenzschichten im Rotor- und Statorspitzenbereich nahe der Gehäuse- beziehungsweise Nabenwand begrenzt. Dies führt bei Schaufelreihen mit Laufspalt bei höherer Belastung zu Rückströmerscheinungen und dem Auftreten von Instabilität der Maschine. Strömungsarbeitsmaschinen nach dem Stand der Technik besitzen entweder keine besonderen Merkmale zur Abhilfe in diesem Bereich (siehe
Bekannte Lösungen werden beispielsweise in folgenden Dokumenten offenbart:
-
US 2005/0226717 A1 -
DE 101 35 003 C1 -
DE 103 30 084 A1
-
US 2005/0226717 A1 -
DE 101 35 003 C1 -
DE 103 30 084 A1
Die vorliegende Erfindung bezieht sich somit auf Strömungsarbeitsmaschinen wie etwa Bläser, Verdichter, Pumpen und Ventilatoren, sowohl in axialer, halbaxialer als auch in radialer Bauart. Das Arbeitsmedium oder Fluid kann gasförmig oder flüssig sein.The present invention thus relates to fluid flow machines such as fans, compressors, pumps and fans, in both axial, semi-axial and radial designs. The working medium or fluid may be gaseous or liquid.
Die erfindungsgemäße Strömungsarbeitsmaschine kann eine oder mehrere Stufen mit jeweils einem Rotor und einem Stator umfassen.The turbomachine according to the invention may comprise one or more stages, each with a rotor and a stator.
Erfindungsgemäß besteht der Rotor aus einer Anzahl von Schaufeln, die mit der rotierenden Welle der Strömungsarbeitsmaschine verbunden sind und Energie an das Arbeitsmedium abgeben. Der Rotor ist mit freiem Schaufelende am Gehäuse ausgeführt. Der erfindungsgemäße Stator besteht aus einer Anzahl feststehender Schaufeln, die gehäuseseitig mit festem Schaufelende ausgeführt sind.According to the invention, the rotor consists of a number of blades, which are connected to the rotating shaft of the fluid flow machine and energy to the Release working medium. The rotor is designed with a free blade end on the housing. The stator according to the invention consists of a number of fixed blades, which are designed on the housing side with a fixed blade end.
Erfindungsgemäß kann die Strömungsarbeitsmaschine vor dem ersten Rotor eine besondere Form eines Stators, ein sogenanntes Vorleitrad, aufweisen.According to the invention, the turbomachine in front of the first rotor may have a special form of stator, a so-called leading wheel.
Erfindungsgemäß kann mindestens ein Stator oder Vorleitrad abweichend von der unbeweglichen Fixierung auch drehbar gelagert sein, um den Anströmwinkel zu verändern. Eine Verstellung erfolgt beispielsweise durch eine von außerhalb des Ringkanals zugängliche Spindel.According to the invention, at least one stator or Vorleitrad may be rotatably mounted deviating from the immovable fixation in order to change the angle of attack. An adjustment is made for example by a spindle accessible from outside the annular channel.
In besonderer Ausgestaltung kann die Strömungsarbeitsmaschine mindestens eine Reihe verstellbarer Rotoren aufweisen.In a particular embodiment, the turbomachine may have at least one row of adjustable rotors.
Erfindungsgemäß kann die Strömungsarbeitsmaschine alternativ auch eine Nebenstromkonfiguration derart aufweisen, dass sich der einstromige Ringkanal hinter einer bestimmten Schaufelreihe in zwei konzentrische Ringkanäle aufteilt, die ihrerseits mindestens jeweils eine weitere Schaufelreihe umfassen.
Einfache existierende Konzepte von "Casing Treatments" in Form von Schlitzen und/oder Kammern in der Ringkanalwand bieten eine Steigerung der Stabilität der Strömungsarbeitsmaschine. Diese wird jedoch aufgrund der ungünstig gewählten Anordnung oder Formgebung nur bei Verlust an Wirkungsgrad erzielt.Simple existing concepts of "casing treatments" in the form of slots and / or chambers in the annular channel wall provide an increase in the stability of the fluid power machine. However, this is achieved due to the unfavorably chosen arrangement or shaping only at loss of efficiency.
Im Einzelnen betrifft die Erfindung die Form eines Abschnitts der Ringkanalwand sowie die Anordnung und Formgebung von Ausnehmungen in besagtem Ringkanalwandabschnitt im Bereich einer Schaufelreihe mit freiem Ende und Laufspalt einer Strömungsarbeitsmaschine.In particular, the invention relates to the shape of a portion of the annular channel wall and the arrangement and shaping of recesses in said annular channel wall portion in the region of a blade row with free end and running gap of a fluid flow machine.
Aus der
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Strömungsarbeitsmaschine der eingangs genannten Art zu schaffen, welche unter Vermeidung der Nachteile des Standes der Technik eine wirkungsvolle Grenzschichtbeeinflussung im Schaufelspitzenbereich aufweist.The present invention has for its object to provide a fluid flow machine of the type mentioned, which has an effective boundary layer influence in the blade tip area while avoiding the disadvantages of the prior art.
Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Hauptanspruchs gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.According to the invention the object is achieved by the feature combination of the main claim, the subclaims show further advantageous embodiments of the invention.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit den Figuren beschrieben. Dabei zeigt:
- Fig.1:
- eine Skizze des Standes der Technik;
- Fig.2:
- Beispiele erfindungsgemäß relevanter Strömungsarbeitsmaschinen;
- Fig.3:
- eine Skizze der erfindungsgemäßen Lösung;
- Fig.4:
- eine Definition erfindungsrelevanter Größen,
Teil 1, Meridianschnitt; - Fig. 5a:
- eine Definition erfindungsrelevanter Größen,
Teil 2, Meridianschnitt; - Fig. 5b:
- erfindungsgemäße Umrissformen der Ringkanalwandausnehmung;
- Fig. 6:
- eine Definition erfindungsrelevanter Größen, Ansicht Y-Y;
- Fig. 7a:
- eine Ansicht Z-Z,
Teil 1; - Fig. 7b:
- eine Ansicht Z-Z,
Teil 2; - Fig. 7c:
- eine Ansicht Z-Z,
Teil 3.
- Fig.1:
- a sketch of the prior art;
- Figure 2:
- Examples of relevant flow working machines according to the invention;
- Figure 3:
- a sketch of the solution according to the invention;
- Figure 4:
- a definition of variables relevant to the invention,
part 1, meridian section; - Fig. 5a:
- a definition of variables relevant to the invention,
part 2, meridian section; - Fig. 5b:
- Outline of the invention Ringkanalwandausnehmung;
- Fig. 6:
- a definition of invention-relevant variables, view YY;
- Fig. 7a:
- a view ZZ,
part 1; - Fig. 7b:
- a view ZZ,
part 2; - Fig. 7c:
- a view ZZ,
Part 3.
Die
Die
Die
Die
Der Hilfspunkt C liegt stromauf von A im Abstand c = 0,75 L. Eine Gerade durch die Hilfspunkte C und D schließt mit einer Geraden durch die Schaufelspitzenpunkte A und B den Winkel alpha ein.The auxiliary point C lies upstream of A at a distance c = 0.75 L. A straight line through the auxiliary points C and D encloses a straight line through the blade tip points A and B the angle alpha.
Erfindungsgemäß beträgt der Winkel alpha in der eingezeichneten Richtungskonvention zwischen -15° und 30°.According to the invention, the angle alpha in the indicated directional convention is between -15 ° and 30 °.
Erfindungsgemäß befindet sich der vordere Begrenzungspunkt der Ringkanalwandausnehmung E im Abstand e > 0 vor dem Vorderkantenpunkt A. In besonderen Fällen kann Punkt E zudem im beschaufelten Bereich einer eventuell stromauf der betrachteten Schaufelreihe befindlichen anderen Schaufelreihe angeordnet sein.According to the invention, the front boundary point of the annular channel wall recess E is located at a distance e> 0 in front of the leading edge point A. In special cases, point E can also be arranged in the bladed region of another row of blades possibly located upstream of the blade row.
Erfindungsgemäß befindet sich der hintere Begrenzungspunkt der Ringkanalwandausnehmung F im Abstand f hinter dem Vorderkantenpunkt A, wobei 0,5 L > f > 0 gilt.According to the invention, the rear boundary point of the annular channel wall recess F is at a distance f behind the leading edge point A, where 0.5 L> f> 0.
Die Orthogonale auf der Linie A-B durch den Punkt A ergibt als Schnittpunkt mit dem projizierten Umriss der Ringkanalwandausnehmung den Punkt S.The orthogonal on the line A-B through the point A gives the point S as an intersection with the projected outline of the Ringkanalwandausnehmung.
Erfindungsgemäß beträgt der Winkel beta, der in der eingezeichneten Richtung positiven Betrages ist und zwischen der Geraden durch die Schaufelspitzenpunkte A und B und einer Tangente an den Umriss der Ringkanalwandausnehmung gegeben ist, mindestens in einem Punkt des im Meridianschnitt gegebenen Umrisses der Ausnehmung zwischen S und F minimal 15° und maximal 70°. Auf diese Weise wird sichergestellt, dass das Fluid, das von der Schaufel im Überlappungsbereich (Bereich zwischen Punkten S und B) in die Ausnehmung gedrückt wird, auf effektive Weise stromaufwärts vor die Schaufelreihe gelangt.According to the invention, the angle beta is positive in the drawn direction and is given between the straight line through the blade tip points A and B and a tangent to the contour of the annular channel wall recess, at least at one point in the outline of the recess between S and F given in the meridian section minimum 15 ° and maximum 70 °. In this way, it is ensured that the fluid which is pressed into the recess by the blade in the overlap region (region between points S and B), passes in an effective manner upstream of the blade row.
In besonders günstiger Ausgestaltung der Ringkanalwandausnehmung beträgt der Winkel beta mindestens in einem Punkt des im Meridianschnitt gegebenen Umrisses der Ausnehmung zwischen E und S zwischen 15° und 40°. Auf diese Weise wird ein besonders schonender Wiedereintritt des Fluids stromauf der Schaufelreihe in den Hauptströmungspfad ermöglicht.In a particularly favorable embodiment of the annular channel wall recess, the angle beta is at least at one point of the outline given in the meridian section of the recess between E and S between 15 ° and 40 °. In this way, a particularly gentle re-entry of the fluid upstream of the blade row is made possible in the main flow path.
Die
Die Figur zeigt zwei Schaufelspitzen in Umgebung eines Abschnittes der Gehäusewand. Die Ringkanalwand (hier beispielhaft Gehäuse) besitzt eine Reihe von Ausnehmungen, die in Umfangsrichtung verteilt angeordnet sind. In einer besonders vorteilhaften erfindungsgemäßen Lösung sind die Ausnehmungen, anders als in
Die
Die
Die
Bei der erfindungsgemäßen Strömungsarbeitsmaschine wird somit ein bislang unerreichtes Maß an raumsparender Randströmungsbeeinflussung erzielt, die zudem eine bedeutende Reduzierung des Bau- und Kostenaufwandes ermöglicht (weniger variable Statoren und Zwischenstufenabblasung), der an Maschinen nach dem Stand der Technik zur Bereitstellung einen genügenden Betriebsbereiches erforderlich wäre. Dies ist bei unterschiedlichen Arten von Strömungsarbeitsmaschinen wie Bläsern, Verdichtern, Pumpen und Ventilatoren möglich. Je nach Ausnutzungsgrad des Konzeptes sind Reduktionen der Kosten und des Gewichts für die Strömungsarbeitsmaschine von 10% bis 20% zu erzielen. Hinzu kommt eine Verbesserung des Wirkungsgrades, die mit 0,2% bis 0,5% zu beziffern ist.In the flow machine according to the invention thus a previously unattained level of space-saving Randströmungsbeeinflussung is achieved, which also allows a significant reduction in construction and cost (less variable stators and Zwischenstufenabblasung), the Prior art machines would be required to provide sufficient operating range. This is possible with different types of fluid flow machines such as fans, compressors, pumps and fans. Depending on the degree of utilization of the concept, reductions in costs and weight for the turbomachine of 10% to 20% can be achieved. In addition, there is an improvement in the efficiency, which is to be quantified with 0.2% to 0.5%.
- 11
- Gehäusecasing
- 22
- Wellewave
- 33
- Rotorschaufelrotor blade
- 44
- Statorschaufelstator
- 55
- Ausnehmungrecess
- 66
- Maschinenachsemachine axis
Claims (9)
- Fluid-flow machine with a flow path provided by a casing (1) and a rotating shaft (2), in which path rows of rotor blades (3) and stator blades (4) are arranged, characterized in that a row of recesses (5) arranged distributed in the circumferential direction is disposed in a blade (3, 4) tip area in an annulus duct wall of the casing (1) and/ or the shaft (2), where the cross-section and the position of each recess (5) are defined as follows:- a limit point E of the recess (5) upstreamly arranged in the flow direction features a distance e > 0 to the forward blade tip point A,- a limit point F of the recess (5) downstreamly arranged in the flow direction features a distance f to the forward blade tip point A,- where the following applies: 0.5 L > f > 0,- with L being defined as the distance between the blade tip points A and B,- with the wall of the recess (5) including a point S, which is arranged on an orthogonal on line A-B through the point S,- with a straight line through the blade tip points A and B and a tangent to the wall of the recess (5) including an angle beta amounting to 15° ≤ beta ≤ 70° in at least one point of the wall of the recess (5) provided in a meridional section between the points S and F,- with all points lying in a meridional plane established by an axial direction x of the axis (6) of the fluid-flow machine and a radial direction r,- with all distances being measured parallelly to a line connecting a forward blade tip point A and a rearward blade tip point B,- with two further points C and D characterizing the course of the annulus duct wall upstream of the recess, C at a distance of 0.75 L to the blade tip point A and D at a distance of 0.25 L to the blade tip point A, and- with the connecting line A-B and the connecting line C-D including an angle -15° < alpha < 30°.
- Fluid-flow machine in accordance with Claim 1, characterized in that the angle beta amounts to 15° ≤ beta ≤ 40°.
- Fluid-flow machine in accordance with one of the Claims 1 or 2, characterized in that the point E is arranged in the bladed area of a further blade row disposed upstream of the blades (3, 4) under consideration.
- Fluid-flow machine in accordance with one of the Claims 1 to 3, characterized in that the wall of the recess (5) is given a completely curved shape.
- Fluid-flow machine in accordance with one of the Claims 1 to 3, characterized in that the wall of the recess (5) extends rectilinearly, at least in a partial area.
- Fluid-flow machine in accordance with one of the Claims 1 to 5, characterized in that the recess (5) features an inclination angle gamma amounting to 25° ≤ gamma ≤ 75° towards the radial direction r of the fluid-flow machine.
- Fluid-flow machine in accordance with one of the Claims 1 to 6, characterized in that one longitudinal edge of the recess (5) is inclined against the direction of the machine axis (6) by an angle delta amounting to delta ≤ 35°.
- Fluid-flow machine in accordance with one of the Claims 1 to 7, characterized in that at least one recess (5) in its opening section on the annulus duct wall features a varying width or extension in the circumferential direction.
- Fluid-flow machine in accordance with one of the Claims 1 to 8, characterized in that, in the case of several recesses (5), two circumferentially adjacent recesses feature different positions or extensions (both in the axial and in the circumferential direction).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007037924A DE102007037924A1 (en) | 2007-08-10 | 2007-08-10 | Turbomachine with Ringkanalwandausnehmung |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2025945A2 EP2025945A2 (en) | 2009-02-18 |
EP2025945A3 EP2025945A3 (en) | 2014-06-25 |
EP2025945B1 true EP2025945B1 (en) | 2016-04-20 |
Family
ID=39869927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08013782.1A Ceased EP2025945B1 (en) | 2007-08-10 | 2008-07-31 | Flow working machine with ring canal wall fitting |
Country Status (3)
Country | Link |
---|---|
US (1) | US8419355B2 (en) |
EP (1) | EP2025945B1 (en) |
DE (1) | DE102007037924A1 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007056953B4 (en) * | 2007-11-27 | 2015-10-22 | Rolls-Royce Deutschland Ltd & Co Kg | Turbomachine with Ringkanalwandausnehmung |
FR2940374B1 (en) | 2008-12-23 | 2015-02-20 | Snecma | COMPRESSOR HOUSING WITH OPTIMIZED CAVITIES. |
DE102011107523B4 (en) * | 2011-07-15 | 2016-08-11 | MTU Aero Engines AG | System for injecting a fluid, compressor and turbomachine |
FR2989742B1 (en) | 2012-04-19 | 2014-05-09 | Snecma | UPRIGHT CAVITY COMPRESSOR HOUSING OPTIMIZED |
FR2989744B1 (en) * | 2012-04-19 | 2014-06-13 | Snecma | CAVITY COMPRESSOR HOUSING WITH OPTIMIZED SHAFT |
FR2989743B1 (en) * | 2012-04-19 | 2015-08-14 | Snecma | COMPRESSOR HOUSING WITH CAVITIES OF VARIED LENGTHS |
US20140093355A1 (en) * | 2012-09-28 | 2014-04-03 | United Technologies Corporation | Extended indentation for a fastener within an air flow |
KR20170120202A (en) | 2013-01-23 | 2017-10-30 | 컨셉츠 이티아이 인코포레이티드 | Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same |
EP2971547B1 (en) * | 2013-03-12 | 2020-01-01 | United Technologies Corporation | Cantilever stator with vortex initiation feature |
US9644639B2 (en) * | 2014-01-27 | 2017-05-09 | Pratt & Whitney Canada Corp. | Shroud treatment for a centrifugal compressor |
US9845810B2 (en) * | 2014-06-24 | 2017-12-19 | Concepts Nrec, Llc | Flow control structures for turbomachines and methods of designing the same |
EP3177811B1 (en) * | 2014-08-08 | 2021-07-21 | Siemens Energy Global GmbH & Co. KG | Gas turbine engine compressor |
US20160153465A1 (en) * | 2014-12-01 | 2016-06-02 | General Electric Company | Axial compressor endwall treatment for controlling leakage flow therein |
US10047620B2 (en) * | 2014-12-16 | 2018-08-14 | General Electric Company | Circumferentially varying axial compressor endwall treatment for controlling leakage flow therein |
EP3037674A1 (en) * | 2014-12-22 | 2016-06-29 | Alstom Technology Ltd | Engine and method for operating said engine |
JP2016118165A (en) * | 2014-12-22 | 2016-06-30 | 株式会社Ihi | Axial flow machine and jet engine |
CN108506249B (en) * | 2018-04-02 | 2020-03-10 | 华能国际电力股份有限公司 | Groove end wall processing method for axial flow compressor |
DE102018116062A1 (en) * | 2018-07-03 | 2020-01-09 | Rolls-Royce Deutschland Ltd & Co Kg | Structure assembly for a compressor of a turbomachine |
US10914318B2 (en) * | 2019-01-10 | 2021-02-09 | General Electric Company | Engine casing treatment for reducing circumferentially variable distortion |
EP3734081A1 (en) * | 2019-04-30 | 2020-11-04 | Borgwarner Inc. | Flow modification device for compressor |
EP4193035A4 (en) | 2020-08-07 | 2024-08-07 | Concepts Nrec Llc | Flow control structures for enhanced performance and turbomachines incorporating the same |
CN112832878B (en) * | 2020-12-31 | 2022-10-25 | 南昌航空大学 | Unsteady casing processing structure for turbine leakage flow control |
US20230151825A1 (en) * | 2021-11-17 | 2023-05-18 | Pratt & Whitney Canada Corp. | Compressor shroud with swept grooves |
FR3137940A1 (en) * | 2022-07-15 | 2024-01-19 | Safran | Treatment of variable timing casing by co-axial multi-discs |
US12085021B1 (en) | 2023-08-16 | 2024-09-10 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with movable closure for a fan of a gas turbine engine |
US11965528B1 (en) | 2023-08-16 | 2024-04-23 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with circumferential movable closure for a fan of a gas turbine engine |
US12018621B1 (en) | 2023-08-16 | 2024-06-25 | Rolls-Royce North American Technologies Inc. | Adjustable depth tip treatment with rotatable ring with pockets for a fan of a gas turbine engine |
US12078070B1 (en) | 2023-08-16 | 2024-09-03 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with sliding doors for a fan of a gas turbine engine |
US12066035B1 (en) | 2023-08-16 | 2024-08-20 | Rolls-Royce North American Technologies Inc. | Adjustable depth tip treatment with axial member with pockets for a fan of a gas turbine engine |
US11970985B1 (en) | 2023-08-16 | 2024-04-30 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE889506C (en) | 1940-09-25 | 1953-09-10 | Versuchsanstalt Fuer Luftfahrt | Flow machine with boundary layer suction |
GB619722A (en) | 1946-12-20 | 1949-03-14 | English Electric Co Ltd | Improvements in and relating to boundary layer control in fluid conduits |
US2933238A (en) | 1954-06-24 | 1960-04-19 | Edward A Stalker | Axial flow compressors incorporating boundary layer control |
GB799675A (en) | 1955-10-13 | 1958-08-13 | Bristol Aeroengines Ltd | Improvements in or relating to axial flow gas compressors and turbines |
US3066912A (en) | 1961-03-28 | 1962-12-04 | Gen Electric | Turbine erosion protective device |
CH437614A (en) | 1963-07-02 | 1967-11-30 | Moravec Zdenek | Turbo machine with reduced noise generation |
GB987625A (en) | 1963-10-14 | 1965-03-31 | Rolls Royce | Improvements in or relating to axial flow compressors, for example for aircraft gas turbine engines |
US3572960A (en) | 1969-01-02 | 1971-03-30 | Gen Electric | Reduction of sound in gas turbine engines |
DE1938132A1 (en) | 1969-07-26 | 1971-01-28 | Daimler Benz Ag | Guide vanes of axial compressors |
FR2166494A5 (en) | 1971-12-27 | 1973-08-17 | Onera (Off Nat Aerospatiale) | |
US3849023A (en) | 1973-06-28 | 1974-11-19 | Gen Electric | Stator assembly |
FR2248732A5 (en) | 1973-10-23 | 1975-05-16 | Onera (Off Nat Aerospatiale) | |
US4155680A (en) | 1977-02-14 | 1979-05-22 | General Electric Company | Compressor protection means |
GB2017228B (en) * | 1977-07-14 | 1982-05-06 | Pratt & Witney Aircraft Of Can | Shroud for a turbine rotor |
FR2491549B1 (en) | 1980-10-08 | 1985-07-05 | Snecma | DEVICE FOR COOLING A GAS TURBINE, BY TAKING AIR FROM THE COMPRESSOR |
US4479755A (en) | 1982-04-22 | 1984-10-30 | A/S Kongsberg Vapenfabrikk | Compressor boundary layer bleeding system |
DE3407945A1 (en) | 1984-03-03 | 1985-09-05 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | METHOD AND MEANS FOR AVOIDING THE DEVELOPMENT OF TITANIUM FIRE |
DE3407946A1 (en) | 1984-03-03 | 1985-09-05 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | DEVICE FOR PREVENTING THE SPREADING OF TITANIUM FIRE IN TURBO MACHINES, ESPECIALLY GAS TURBINE OR. GAS TURBINE JET ENGINES |
GB2245312B (en) * | 1984-06-19 | 1992-03-25 | Rolls Royce Plc | Axial flow compressor surge margin improvement |
CA1314486C (en) * | 1984-06-19 | 1993-03-16 | Michael John Charles Waterman | Axial flow compressor surge margin improvement |
US5059093A (en) * | 1990-06-07 | 1991-10-22 | United Technologies Corporation | Compressor bleed port |
US5203162A (en) | 1990-09-12 | 1993-04-20 | United Technologies Corporation | Compressor bleed manifold for a gas turbine engine |
JPH04132899A (en) | 1990-09-25 | 1992-05-07 | Mitsubishi Heavy Ind Ltd | Axial blower |
DE69204861T2 (en) * | 1991-01-30 | 1996-05-23 | United Technologies Corp | Fan housing with recirculation channels. |
US5327716A (en) | 1992-06-10 | 1994-07-12 | General Electric Company | System and method for tailoring rotor tip bleed air |
RU2034175C1 (en) * | 1993-03-11 | 1995-04-30 | Центральный институт авиационного моторостроения им.П.И.Баранова | Turbo-compressor |
US5431533A (en) | 1993-10-15 | 1995-07-11 | United Technologies Corporation | Active vaned passage casing treatment |
US5480284A (en) | 1993-12-20 | 1996-01-02 | General Electric Company | Self bleeding rotor blade |
US5562404A (en) | 1994-12-23 | 1996-10-08 | United Technologies Corporation | Vaned passage hub treatment for cantilever stator vanes |
US5474417A (en) | 1994-12-29 | 1995-12-12 | United Technologies Corporation | Cast casing treatment for compressor blades |
US5607284A (en) | 1994-12-29 | 1997-03-04 | United Technologies Corporation | Baffled passage casing treatment for compressor blades |
JP3816150B2 (en) | 1995-07-18 | 2006-08-30 | 株式会社荏原製作所 | Centrifugal fluid machinery |
US5762034A (en) | 1996-01-16 | 1998-06-09 | Board Of Trustees Operating Michigan State University | Cooling fan shroud |
DE19632207A1 (en) | 1996-08-09 | 1998-02-12 | Bmw Rolls Royce Gmbh | Process for preventing laminar boundary layer separation on turbomachine blades |
US6109868A (en) | 1998-12-07 | 2000-08-29 | General Electric Company | Reduced-length high flow interstage air extraction |
US6231301B1 (en) | 1998-12-10 | 2001-05-15 | United Technologies Corporation | Casing treatment for a fluid compressor |
US6574965B1 (en) | 1998-12-23 | 2003-06-10 | United Technologies Corporation | Rotor tip bleed in gas turbine engines |
US6290458B1 (en) | 1999-09-20 | 2001-09-18 | Hitachi, Ltd. | Turbo machines |
US6234747B1 (en) | 1999-11-15 | 2001-05-22 | General Electric Company | Rub resistant compressor stage |
DE10135003C1 (en) * | 2001-07-18 | 2002-10-02 | Mtu Aero Engines Gmbh | Compressor housing structure in axially, through-flowing moving blade ring for use in pumps |
US6585479B2 (en) | 2001-08-14 | 2003-07-01 | United Technologies Corporation | Casing treatment for compressors |
US6663346B2 (en) | 2002-01-17 | 2003-12-16 | United Technologies Corporation | Compressor stator inner diameter platform bleed system |
WO2003072949A1 (en) * | 2002-02-28 | 2003-09-04 | Mtu Aero Engines Gmbh | Anti-stall tip treatment means for turbo-compressors |
DE10233032A1 (en) | 2002-07-20 | 2004-01-29 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid flow machine with integrated fluid circulation system |
GB0216952D0 (en) | 2002-07-20 | 2002-08-28 | Rolls Royce Plc | Gas turbine engine casing and rotor blade arrangement |
DE10330084B4 (en) | 2002-08-23 | 2010-06-10 | Mtu Aero Engines Gmbh | Recirculation structure for turbocompressors |
ATE325939T1 (en) * | 2002-08-23 | 2006-06-15 | Mtu Aero Engines Gmbh | RECIRCULATION STRUCTURE FOR TURBO COMPRESSORS |
FR2846034B1 (en) | 2002-10-22 | 2006-06-23 | Snecma Moteurs | CARTER, COMPRESSOR, TURBINE AND COMBUSTION TURBOMOTOR COMPRISING SUCH A CARTER |
GB2408546B (en) * | 2003-11-25 | 2006-02-22 | Rolls Royce Plc | A compressor having casing treatment slots |
DE10355240A1 (en) * | 2003-11-26 | 2005-07-07 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid flow machine with fluid removal |
DE10355241A1 (en) * | 2003-11-26 | 2005-06-30 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid flow machine with fluid supply |
US7097414B2 (en) | 2003-12-16 | 2006-08-29 | Pratt & Whitney Rocketdyne, Inc. | Inducer tip vortex suppressor |
GB2413158B (en) | 2004-04-13 | 2006-08-16 | Rolls Royce Plc | Flow control arrangement |
DE102004030597A1 (en) | 2004-06-24 | 2006-01-26 | Rolls-Royce Deutschland Ltd & Co Kg | Turbomachine with external wheel jet generation at the stator |
DE102004043036A1 (en) | 2004-09-06 | 2006-03-09 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid flow machine with fluid removal |
DE102004055439A1 (en) | 2004-11-17 | 2006-05-24 | Rolls-Royce Deutschland Ltd & Co Kg | Fluid flow machine with dynamic flow control |
US7861823B2 (en) | 2005-11-04 | 2011-01-04 | United Technologies Corporation | Duct for reducing shock related noise |
GB0600532D0 (en) | 2006-01-12 | 2006-02-22 | Rolls Royce Plc | A blade and rotor arrangement |
EP1862641A1 (en) | 2006-06-02 | 2007-12-05 | Siemens Aktiengesellschaft | Annular flow channel for axial flow turbomachine |
US20080044273A1 (en) | 2006-08-15 | 2008-02-21 | Syed Arif Khalid | Turbomachine with reduced leakage penalties in pressure change and efficiency |
FR2912789B1 (en) | 2007-02-21 | 2009-10-02 | Snecma Sa | CARTER WITH CARTER TREATMENT, COMPRESSOR AND TURBOMACHINE COMPRISING SUCH A CARTER. |
US20090160135A1 (en) | 2007-12-20 | 2009-06-25 | Gabriele Turini | Labyrinth seal with reduced leakage flow by grooves and teeth synergistic action |
-
2007
- 2007-08-10 DE DE102007037924A patent/DE102007037924A1/en not_active Withdrawn
-
2008
- 2008-07-31 EP EP08013782.1A patent/EP2025945B1/en not_active Ceased
- 2008-08-11 US US12/222,532 patent/US8419355B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US8419355B2 (en) | 2013-04-16 |
EP2025945A2 (en) | 2009-02-18 |
EP2025945A3 (en) | 2014-06-25 |
US20090041576A1 (en) | 2009-02-12 |
DE102007037924A1 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2025945B1 (en) | Flow working machine with ring canal wall fitting | |
EP2096316B1 (en) | Housing structuring for axial compressor in the hub area | |
DE102007056953B4 (en) | Turbomachine with Ringkanalwandausnehmung | |
EP1632662B1 (en) | Turbomachine with bleeding | |
EP2138727B1 (en) | Blade shrouds with outlet | |
EP2108784B1 (en) | Flow machine with fluid injector component group | |
EP2003292B1 (en) | Fluid working machine having blade shroud with overhang | |
EP2110559B1 (en) | Turbo machine with fluid re-injection to influence the boundary layer | |
EP2261463B1 (en) | Turbomachine with a group of bladed stages | |
DE102006057063B3 (en) | Stator stage of an axial compressor of a turbomachine with cross blades to increase efficiency | |
EP0916812B1 (en) | Final stage for an axial turbine | |
EP2275643B1 (en) | Engine blade with excess front edge loading | |
EP2143956A2 (en) | Flow work machine with groove on a running gap of a blade end | |
EP1382855A2 (en) | Turbomachine with integrated fluid recirculation system | |
EP1657401A2 (en) | Turbo machine blade with an extended profile chord length in its tip and root regions | |
EP1918529A2 (en) | Turbomachine with adjustable stator vanes | |
DE102008037154A1 (en) | Turbomachine | |
EP1609999A2 (en) | Turbo machine | |
EP2180195A2 (en) | Turbo machine with tip clearance control | |
EP2913478B1 (en) | Tandem blades of a turbo-machine | |
EP2947270B1 (en) | Rotor series group | |
EP2226510A2 (en) | Flow working machine with fluid supply | |
EP1998049A2 (en) | Flow processing machine blade with multi-profile configuration | |
EP3078804A1 (en) | Shroud assembly of a row of stator or rotor blades and corresponding turbine | |
EP1335136B1 (en) | Gasturbine with a compressor having a flow guiding system along the walls of the flow canal of the compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 29/66 20060101ALI20140520BHEP Ipc: F04D 29/16 20060101ALI20140520BHEP Ipc: F04D 27/02 20060101AFI20140520BHEP Ipc: F04D 29/52 20060101ALI20140520BHEP |
|
17P | Request for examination filed |
Effective date: 20140716 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
AXX | Extension fees paid |
Extension state: AL Extension state: RS Extension state: MK Extension state: BA |
|
17Q | First examination report despatched |
Effective date: 20150216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502008014108 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F04D0027020000 Ipc: F04D0029520000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 29/52 20060101AFI20150929BHEP Ipc: F04D 29/68 20060101ALI20150929BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151113 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008014108 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008014108 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170123 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190729 Year of fee payment: 12 Ref country code: FR Payment date: 20190725 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190729 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008014108 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008014108 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |