EP2275643B1 - Engine blade with excess front edge loading - Google Patents

Engine blade with excess front edge loading Download PDF

Info

Publication number
EP2275643B1
EP2275643B1 EP10005471.7A EP10005471A EP2275643B1 EP 2275643 B1 EP2275643 B1 EP 2275643B1 EP 10005471 A EP10005471 A EP 10005471A EP 2275643 B1 EP2275643 B1 EP 2275643B1
Authority
EP
European Patent Office
Prior art keywords
skeleton line
camber
fluid
distribution
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10005471.7A
Other languages
German (de)
French (fr)
Other versions
EP2275643A3 (en
EP2275643A2 (en
Inventor
Volker Dr. Gümmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP2275643A2 publication Critical patent/EP2275643A2/en
Publication of EP2275643A3 publication Critical patent/EP2275643A3/en
Application granted granted Critical
Publication of EP2275643B1 publication Critical patent/EP2275643B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the invention relates to a fluid power machine comprising an engine blade with excessive leading edge load.
  • the invention relates to a fluid flow machine with a blade according to the preamble of claim 1.
  • the blading in question is provided within a main flow path, bounded on the outside by a housing and internally bounded by a hub.
  • a rotor comprises a plurality of rotor blades attached to a rotating shaft and emits energy to the working fluid
  • a stator consists of a plurality of fixed, mostly in the housing mounted stator blades.
  • the fluid flow machine comprises a rotor with a fixed connection to a rotating hub and a free blade end with a gap on the housing.
  • the fluid flow machine alternatively comprises a stator which has a fixed connection to the edge on the housing side and has a free blade end with a gap to the hub on the hub side.
  • the present invention relates to fluid flow machines such as fans, compressors, pumps and fans in axial, semi-axial or also radial design.
  • the working medium (fluid) can be gaseous or liquid.
  • the following is known from the prior art:
  • the Fig. 1 1 shows, on the left side, a schematic representation of two blade configurations according to the prior art in the meridian plane formed by the radial direction r and the axial direction x. It is a rotor blade row 4 with a gap on the housing 1 (top), wherein the housing 1 is or in special cases also rotates and the blade row rotates about the machine axis 3.
  • stator blades 5 It is also a row of stator blades 5 with a gap on the hub 2 (bottom), wherein the hub 2 rotates about the machine axis 3 or, in special cases, also rests and the row of blades 5 stands.
  • the blade profile cut directly on the running gap of a rotor 4 or stator 5 is designed such that the profile load and thus the profile curvature in the region of the leading edge does not exceed a certain level, because conventional design rules based on considerations of the nature of two-dimensional flows around profiles recommend this.
  • the right side of the Fig. 1 shows different, the prior art corresponding distributions of the skeleton line curvature in the profile section directly on the running gap, shown as a relative curvature ⁇ * over the related run length s * (for definitions see Fig. 3 ).
  • This category includes the so-called CDA (controlled diffusion aerofoils) US 4431376 A , From an aerodynamic point of view, the CDA aims for a moderate profile frontload.
  • CDA controlled diffusion aerofoils
  • the present invention has for its object to provide a fluid flow machine of the type mentioned, which while avoiding the disadvantages of In the prior art, a very effective influencing of the edge flow is achieved by an excessive skeleton curve curvature in the region of the front edge of the blade profile cuts located near the running gap.
  • a fluid power machine comprising a blade disposed in a main flow path bounded by a hub and a housing, wherein a gap is provided between an end of the blade and the main flow path boundary, hub or housing, and thus a free blade end is formed, wherein in at least one blade profile streamline section in the area between the gap and one
  • the Fig.2 gives a precise definition of the meridional flow lines and the streamline profile sections.
  • the mean meridional flow line 7 is formed by the geometric center of an annular channel 6. If one establishes a normal at each location of the middle streamline 7, one obtains the course of the ring channel width W along the flow path and, on the other hand, a number of normals with whose help further meridional flow lines result with the same relative subdivision in the direction of the channel height.
  • the intersection of a meridional streamline with a blade results in a streamline profile intersection.
  • the respective skeleton line type for a streamline profile intersection is defined in relative representation by means of the relative curvature ⁇ * and the related run length s *, see Figure 3 , The figure shows a streamline profile section of the blade on a meridian flow surface (um plane).
  • the inclination angle ⁇ p and the run length s P covered up to this point are determined in all points of the skeleton line.
  • the Fig. 4a shows a family of inventive crevices near the profile skeleton curves. They are characterized in that the relative skeleton curve curvature ⁇ * always has values greater than or equal to 0.35 for related run lengths of s *> 0.1.
  • Fig. 4a The distribution shown shows the special case according to the invention of a change of the skeleton curve curvature sign.
  • the skeleton line is convexly curved towards the profile suction side in a part of the run length s * and concave in a lower part of the run length s *, as is the case if values of ⁇ *> 1 at least in part of the run length s * are provided.
  • the excessive leakage of the profile leading edge region in the vicinity of the running gap influences the leakage flows occurring at the running gap.
  • values of the relative skeleton curve curvature ⁇ * of greater than or equal to 0.35 or even greater than 0.5 or in special cases greater than or equal to 0.65 or in extreme cases greater than 1.0 already at a relative run length of s * 0.1.
  • a curvature distribution ⁇ * f (s *), the high gradient at the starting point A, starting in the further course of the point B approaches with decreasing gradient.
  • the Fig. 4b shows an also according to the invention Schar of Skelettlinienwölbungsveranderen, which is also suitable for aerodynamically highly loaded profiles.
  • the curvature at point T changes its sign.
  • an S-shaped skeleton line curvature distribution results according to the invention, corresponding to FIG Fig. 4b shown crowd.
  • the value ⁇ * C provided at s * 0.9 and thus the position of the point C is restricted.
  • particularly favorable solutions result if ⁇ * C ⁇ * B + 0.75 (1- ⁇ * B ).
  • the skeleton line curvature distribution according to the invention is to be provided in at least one vane stream section in the region between the gap and a vane section at 5% of the main flow path width (0.05 W).
  • This skeleton line curvature distribution can be provided directly at the gap, but according to the invention must be provided at least within the 5% of the main flow path width W adjacent to the gap.
  • Pumps and fans have an edge flow control which, while maintaining the same stability, can increase the efficiency of each stage by approximately 0.3%.
  • a reduction in the number of blades of up to 20% is possible.
  • the inventive concept is applicable to different types of turbomachines and, depending on the degree of utilization of the concept, leads to reductions in costs and weight for the turbomachine of 2% to 10%.

Description

Die Erfindung bezieht sich auf eine Strömungsarbeitsmaschine umfassend eine Triebwerksschaufel mit überhöhter Vorderkantenbelastung.The invention relates to a fluid power machine comprising an engine blade with excessive leading edge load.

Die aerodynamische Belastbarkeit und die Effizienz von Strömungsarbeitsmaschinen, beispielsweise Bläsern, Verdichtern, Pumpen und Ventilatoren, wird insbesondere durch das Wachstum und die Ablösung von Grenzschichten im Bereich von Rotor- und Statorradialspalten und von festen Schaufelenden nahe der Ringkanalwände begrenzt. Der Stand der Technik hält für dieses fundamentale Problem nur bedingt Lösungen bereit. Der allgemeine Gedanke der Randbeeinflussung durch Änderung des Skelettlinientyps entlang der Schaufelhöhe ist im Stand der Technik enthalten, doch sind die bekannten Lösungen, insbesondere für die Strömungsverhältnisse an einem Schaufelende mit Radialspalt, nicht genügend zielgerichtet.The aerodynamic load capacity and efficiency of fluid flow machines, such as fans, compressors, pumps, and fans, is limited particularly by the growth and separation of boundary layers in the area of rotor and stator radial gaps and fixed blade ends near the annular channel walls. The state of the art provides only limited solutions to this fundamental problem. The general idea of boundary effect by changing the skeleton line type along the blade height is included in the prior art, but the known solutions, especially for the flow conditions at a blade end with radial gap, are not sufficiently targeted.

Im Einzelnen betrifft die Erfindung eine Strömungsarbeitsmaschine mit einer Schaufel gemäß dem einleitenden Teil des Anspruchs 1. Die betreffende Beschaufelung ist innerhalb eines Hauptströmungspfades vorgesehen, außen begrenzt durch ein Gehäuse und innen begrenzt durch eine Nabe. Während ein Rotor mehrere an einer rotierenden Welle befestigte Rotorschaufeln umfasst und Energie an das Arbeitsmedium abgibt, besteht ein Stator aus mehreren feststehenden, meist im Gehäuse befestigten Statorschaufeln.In particular, the invention relates to a fluid flow machine with a blade according to the preamble of claim 1. The blading in question is provided within a main flow path, bounded on the outside by a housing and internally bounded by a hub. While a rotor comprises a plurality of rotor blades attached to a rotating shaft and emits energy to the working fluid, a stator consists of a plurality of fixed, mostly in the housing mounted stator blades.

Zum einen umfasst die Strömungsarbeitsmaschine einen Rotor mit fester Anbindung an einer rotierenden Nabe und einem freien Schaufelende mit Spalt am Gehäuse. In analoger Weise umfasst die Strömungsarbeitsmaschine alternativ einen Stator, der gehäuseseitig eine feste Verbindung zum Rand aufweist und nabenseitig ein freies Schaufelende mit Spalt zur Nabe besitzt.On the one hand, the fluid flow machine comprises a rotor with a fixed connection to a rotating hub and a free blade end with a gap on the housing. In an analogous manner, the fluid flow machine alternatively comprises a stator which has a fixed connection to the edge on the housing side and has a free blade end with a gap to the hub on the hub side.

Die vorliegende Erfindung bezieht sich auf Strömungsarbeitsmaschinen wie etwa Bläser, Verdichter, Pumpen und Ventilatoren in axialer, halbaxialer oder auch radialer Bauart. Das Arbeitsmedium (Fluid) kann gasförmig oder flüssig sein. Aus dem Stand der Technik ist folgendes bekannt:
Die Fig. 1 zeigt auf der linken Seite in schematischer Darstellung zwei Schaufelkonfigurationen nach dem Stand der Technik in der durch die Radialrichtung r und die Axialrichtung x gebildeten Meridianebene. Es handelt sich dabei um eine Rotorschaufelreihe 4 mit Spalt am Gehäuse 1 (oben), wobei das Gehäuse 1 steht oder in Spezialfällen auch rotiert und die Schaufelreihe um die Maschinenachse 3 rotiert. Es handelt sich weiterhin um eine Statorschaufelreihe 5 mit Spalt an der Nabe 2 (unten), wobei die Nabe 2 um die Maschinenachse 3 rotiert oder in Spezialfällen auch ruht und die Schaufelreihe 5 steht. Gemäß dem Stand der Technik ist der Schaufelprofilschnitt direkt am Laufspalt eines Rotors 4 oder Stators 5 so gestaltet, dass die Profilbelastung und somit die Profilwölbung im Bereich der Vorderkante ein bestimmtes Maß nicht übersteigt, weil konventionelle Entwurfsregeln, basierend auf Überlegungen zur Natur zweidimensionaler Strömungen um Profile dies empfehlen.
The present invention relates to fluid flow machines such as fans, compressors, pumps and fans in axial, semi-axial or also radial design. The working medium (fluid) can be gaseous or liquid. The following is known from the prior art:
The Fig. 1 1 shows, on the left side, a schematic representation of two blade configurations according to the prior art in the meridian plane formed by the radial direction r and the axial direction x. It is a rotor blade row 4 with a gap on the housing 1 (top), wherein the housing 1 is or in special cases also rotates and the blade row rotates about the machine axis 3. It is also a row of stator blades 5 with a gap on the hub 2 (bottom), wherein the hub 2 rotates about the machine axis 3 or, in special cases, also rests and the row of blades 5 stands. According to the prior art, the blade profile cut directly on the running gap of a rotor 4 or stator 5 is designed such that the profile load and thus the profile curvature in the region of the leading edge does not exceed a certain level, because conventional design rules based on considerations of the nature of two-dimensional flows around profiles recommend this.

Die rechte Seite der Fig. 1 zeigt unterschiedliche, dem Stand der Technik entsprechende Verteilungen der Skelettlinienwölbung im Profilschnitt direkt am Laufspalt, dargestellt als relative Wölbung α* über der bezogenen Lauflänge s* (Definitionen siehe Fig. 3). Kennzeichnend für alle Wölbungsverteilungen ist, dass bei einer bezogenen Lauflänge von s*=0,1 bei Weitem nicht Werte der relativen Wölbung von α*>=0,35 oder gar α*>=0,50 oder α*>=0,65 vorgesehen werden. Dadurch wird eine extreme Vorderkantenbelastung bewusst vermieden. In diese Kategorie fallen die sogenannten CDA (controlled diffusion aerofoils) gemäß US 4431376 A . Aerodynamisch betrachtet wird durch die CDA eine moderate Profilvorderlast angestrebt.The right side of the Fig. 1 shows different, the prior art corresponding distributions of the skeleton line curvature in the profile section directly on the running gap, shown as a relative curvature α * over the related run length s * (for definitions see Fig. 3 ). Characteristic for all vault distributions is that with a related run length of s * = 0.1 by far not values of the relative curvature of α *> = 0.35 or even α *> = 0.50 or α *> = 0.65 be provided. As a result, an extreme leading edge load is deliberately avoided. This category includes the so-called CDA (controlled diffusion aerofoils) US 4431376 A , From an aerodynamic point of view, the CDA aims for a moderate profile frontload.

Als nachteilig erweist sich beim Stand der Technik, dass die entsprechenden Schaufelformen oft bewusst mit geringer Komplexität bezüglich der Skelettlinienform entworfen werden. Für den Fall starker Laufspaltleckageströmungen fehlt eine überhöhte Profilwölbung im Vorderkantenbereich der Schaufelprofilschnitte in der Nähe des Laufspaltes, um eine im Schaufelmittenbereich günstige übliche Skelettlinienwölbungsverteilung auf angemessene Weise mit einer für die Randbereiche günstigeren Skelettlinienwölbungsverteilung zu kombinieren.It is disadvantageous in the prior art that the corresponding blade shapes are often deliberately designed with little complexity with respect to the skeleton line shape. In the case of strong run gap leakage flows, there is a lack of excessive profile camber in the leading edge region of the airfoil sections in the vicinity of the air gap to adequately combine a conventional skeleton line curvature distribution favorable in the airfoil region with a skeleton line curvature distribution more favorable to the edge regions.

Ferner ist aus der DE 10 2005 042 115 A1 eine Strömungsarbeitsmaschine gemäß dem Oberbegriff des Anspruchs 1 bekannt.Furthermore, from the DE 10 2005 042 115 A1 a turbomachine according to the preamble of claim 1.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Strömungsarbeitsmaschine der eingangs genannten Art zu schaffen, welche unter Vermeidung der Nachteile des Standes der Technik eine sehr wirkungsvolle Beeinflussung der Randströmung durch eine überhöhte Skelettlinienwölbung im Bereich der Vorderkante der nahe des Laufspaltes befindlichen Schaufelprofilschnitte erreicht.The present invention has for its object to provide a fluid flow machine of the type mentioned, which while avoiding the disadvantages of In the prior art, a very effective influencing of the edge flow is achieved by an excessive skeleton curve curvature in the region of the front edge of the blade profile cuts located near the running gap.

Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.According to the invention the object is achieved by the combination of features of claim 1, the dependent claims show further advantageous embodiments of the invention.

Erfindungsgemäß ist somit eine Schaufel einer Strömungsarbeitsmaschine, welche mindestens innerhalb der an den Spalt angrenzenden 5% der Hauptströmungspfadweite eine Skelettlinienwölbungsverteilung vorgesehen, die bei einer bezogenen Lauflänge von s*=0,1 einen überhöhten Wert der relativen Skelettlinienwölbung von mindestens α*=0,35 aufweist.Thus, according to the present invention, a blade of a fluid flow machine is provided with a skeleton line curvature distribution at least within the 5% of the main flow path width adjacent the gap, which at an averaged run length of s * = 0.1, exaggerates the relative skeleton line curvature of at least α * = 0.35 having.

Wie sich insbesondere aus der Fig. 4c (siehe nachfolgende Beschreibung) ergibt, ist am vorderen Bereich der Schaufel ein sehr hoher Anstieg der Strömungs-Umlenkung vorgesehen.As can be seen in particular from the Fig. 4c (see description below), a very high rise in the flow deflection is provided at the front of the blade.

Die Erfindung lässt sich auch wie folgt darstellen:
Strömungsarbeitsmaschine umfassend eine Schaufel, welche in einem von einer Nabe und einem Gehäuse berandeten Hauptströmungspfad angeordnet ist, wobei zwischen einem Ende der Schaufel und der Hauptströmungspfadberandung, Nabe oder Gehäuse, ein Spalt vorgesehen ist und somit ein freies Schaufelende ausgebildet ist, wobei in mindestens einem Schaufelprofilstromlinienschnitt im Bereich zwischen dem Spalt und einem
The invention can also be represented as follows:
A fluid power machine comprising a blade disposed in a main flow path bounded by a hub and a housing, wherein a gap is provided between an end of the blade and the main flow path boundary, hub or housing, and thus a free blade end is formed, wherein in at least one blade profile streamline section in the area between the gap and one

Schaufelschnitt im Abstand von 30% der Hauptströmungspfadweite W vom Spalt eine Skelettlinienwölbungsverteilung vorgesehen ist, die bei einer bezogenen Lauflänge von s*=0,1 einen überhöhten Wert der relativen Skelettlinienwölbung von mindestens α*=0,35 aufweist, wobei s* die auf die Gesamtlauflänge der Profilskelettlinie bezogene lokale Lauflänge darstellt und α* als die von der Vorderkante bis zu einer bezogenen Lauflänge s* erreichte Winkeländerung der Skelettlinie bezogen auf die Gesamtwölbung der Skelettlinie gebildet wird, wobei die Skelettlinienwölbungsverteilung in dieser Darstellung im Vorderkantenpunkt V (s*=0,α*=0) beginnt und im Hinterkantenpunkt H (s*=1,α*=1) endet, wobei insbesondere mindestens direkt am Spalt eine Skelettlinienwölbungsverteilung vorgesehen ist, die bei einer bezogenen Lauflänge von s*=0,1 einen überhöhten Wert der relativen Skelettlinienwölbung von mindestens α*=0,35 aufweist,
und mindestens innerhalb der an den Spalt angrenzenden 5% der Hauptströmungspfadweite eine Skelettlinienwölbungsverteilung vorgesehen ist, die bei einer bezogenen Lauflänge von s*=0,1 einen überhöhten Wert der relativen Skelettlinienwölbung von mindestens α*=0,35 aufweist,
wobei bevorzugt bei einer bezogenen Lauflänge von s*=0,1 ein überhöhter Wert der relativen Skelettlinienwölbung von mindestens α*=0,50 vorgesehen ist,
wobei bevorzugt die Skelettlinienwölbungsverteilung die mit hohem Gradienten im Vorderkantenpunkt V beginnt und im weiteren Verlauf sich der bezogenen Lauflänge s*=0,1 mit abnehmendem Gradienten nähert,
wobei bevorzugt die Skelettlinienwölbungsverteilung sich von der bezogenen Lauflänge s*=0,1 aus in Richtung des Hinterkantenpunktes H gehend knickfrei und mit abnehmendem oder konstanten Gradienten bis zum Hinterkantenpunkt H fortsetzt, wobei die Stelle stärkster Krümmung der Skelettlinienwölbungsverteilung im Bereich 0 <= s* <= 0,2 vorgesehen ist,
wobei vorteilhaft die Skelettlinienwölbungsverteilung sich von der bezogenen Lauflänge s*=0,1 aus in Richtung des Hinterkantenpunktes H gehend knickfrei zunächst mit weiter geringer werdenden Gradienten fortsetzt und ab einem Punkt T, in dem die Krümmung ihr Vorzeichen wechselt, für wenigstens einen Teil des Bereiches 0,1 <= s* <= 1 wieder ansteigende Gradienten aufweist,
wobei weiter bevorzugt die Skelettlinienwölbungsverteilung nur einen einzigen Krümmungsvorzeichenwechsel besitzt und somit einen S-förmigen Verlauf zeigt,
und/oder dass der Punkt T des ersten Krümmungsvorzeichenwechsels im Bereich 0,35 <= s* <= 0,65 vorgesehen ist,
wobei bevorzugt weiterhin die Skelettlinienwölbungsverteilung wenigstens in einem Teil des Bereiches 0,1 <= s* <= 1 bei konstanten Werten der relativen Skelettlinienwölbung α* verläuft,
und/oder die Skelettlinienwölbungsverteilung bei einer bezogenen Lauflänge von s*=0,9 einen Wert der relativen Skelettlinienwölbung von α* < α*(s*=0,1) + 0,75 (1 - α*(s*=0,1)) aufweist,
und/oder die Skelettlinienwölbungsverteilung gekrümmt, abschnittsweise gekrümmt oder abschnittsweise geradlinig verläuft und auf diese Weise zwischen dem Vorderkantenpunkt V und dem Hinterkantenpunkt H eine beliebige Anzahl von Knickstellen aufweist,
wobei weiter bevorzugt bei einer bezogenen Lauflänge von s* = 0,1 ein überhöhter Wert der relativen Skelettlinienwölbung von mindestens α* = 0,65 vorgesehen ist,
wobei weiter bevorzugt bei einer bezogenen Lauflänge von s* = 0,1 ein überhöhter Wert der relativen Skelettlinienwölbung von mindestens α* = 1,0 vorgesehen ist,
und/oder in wenigstens einem Teil der Lauflänge von 0,1 < s* < 1 Werte der relativen Skelettlinienwölbung von α* > 1 vorgesehen sind.
Blade section at a distance of 30% of the main flow path width W from the gap is provided a skeleton line curvature distribution having an excessive value of the relative skeleton line curvature of at least α * = 0.35 with a related run length of s * = 0.1, where s * on the Represents the total run length of the profile skeleton line-related local run length and α * is formed as the angle change of the skeleton line relative to the total curvature of the skeleton line from the leading edge to a related run length s *, the skeletal line curvature distribution in this representation at the leading edge point V (s * = 0, α * = 0) starts and ends in the trailing edge point H (s * = 1, α * = 1), wherein in particular at least directly at the gap a skeleton line curvature distribution is provided, which with a related run length of s * = 0.1 an excessive value of relative skeleton line curvature of at least α * = 0.35,
and at least within the 5% of the main flow path width adjacent to the gap, there is provided a skeleton line curvature distribution having an excessive relative skeletal line curvature value of at least α * = 0.35 for a related run length of s * = 0.1,
wherein, given a related run length of s * = 0.1, an excessive value of the relative skeleton line curvature of at least α * = 0.50 is preferably provided,
wherein preferably the skeleton line curvature distribution starts with high gradients in the leading edge point V and, in the further course, approaches the related run length s * = 0.1 with decreasing gradient,
preferably the skeleton line curvature distribution continues from the related run length s * = 0.1 in the direction of the trailing edge point H, kink-free and with decreasing or constant gradient to the trailing edge point H, the point of greatest curvature of the skeleton line curvature distribution in the range 0 <= s * < = 0.2 is provided
wherein advantageously the skeleton line curvature distribution of the related run length s * = 0.1 out in the direction of the trailing edge point H going kink-free initially with decreasing gradient continues and from a point T, in which the curvature changes its sign, for at least a portion of the range 0.1 <= s * <= 1 has again rising gradients,
more preferably, the skeleton line curvature distribution has only a single curvature sign change and thus shows an S-shaped course,
and / or that the point T of the first curvature sign change is provided in the range 0.35 <= s * <= 0.65,
furthermore preferably the skeletal line curvature distribution runs in at least part of the range 0.1 <= s * <= 1 at constant values of the relative skeleton curve curvature α *,
and / or the skeleton line curvature distribution with a related run length of s * = 0.9, a value of the relative skeleton line curvature of α * <α * (s * = 0.1) + 0.75 (1-α * (s * = 0, 1)),
and / or the skeleton line curvature distribution curved, partially curved or sectionally rectilinear and in this way between the leading edge point V and the trailing edge point H has any number of kinks,
more preferably, with a related run length of s * = 0.1, an excessive value of the relative skeleton line curvature of at least α * = 0.65 is provided,
more preferably with a related run length of s * = 0.1 an excessive value of the relative skeleton line curvature of at least α * = 1.0 is provided,
and / or in at least a part of the run length of 0.1 <s * <1 values of the relative skeleton line curvature of α *> 1 are provided.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit den Figuren beschrieben. Dabei zeigt:

Fig.1:
eine schematische Darstellung zum Stand der Technik,
Fig.2:
die Definition von Meridianstromlinien und Stromlinienprofilschnitten,
Fig.3:
die Definition der Skelettlinie eines Stromlinienprofilschnitts,
Fig.4a:
erfindungsgemäße Lösungen,
Fig.4b:
weitere erfindungsgemäße Lösungen,
Fig.4c:
weitere erfindungsgemäße Lösungen.
In the following the invention will be described by means of embodiments in conjunction with the figures. Showing:
Fig.1:
a schematic representation of the prior art,
Figure 2:
the definition of meridian streamlines and streamline profile sections,
Figure 3:
the definition of the skeleton line of a streamline profile section,
4a:
solutions according to the invention,
4b:
further solutions according to the invention,
4c:
further solutions according to the invention.

Die Fig.2 gibt eine genaue Definition der Meridianstromlinien und der Stromlinienprofilschnitte an. Die mittlere Meridianstromlinie 7 wird durch die geometrische Mitte eines Ringkanals 6 gebildet. Errichtet man an jedem Ort der mittleren Stromlinie 7 eine Normale, so erhält man zum einen den Verlauf der Ringkanalweite W entlang des Strömungspfades und zum anderen eine Anzahl von Normalen, mit deren Hilfe sich bei gleicher relativer Unterteilung in Richtung der Kanalhöhe weitere Meridianstromlinien ergeben. Der Schnitt einer Meridianstromlinie mit einer Schaufel ergibt einen Stromlinienprofilschnitt.The Fig.2 gives a precise definition of the meridional flow lines and the streamline profile sections. The mean meridional flow line 7 is formed by the geometric center of an annular channel 6. If one establishes a normal at each location of the middle streamline 7, one obtains the course of the ring channel width W along the flow path and, on the other hand, a number of normals with whose help further meridional flow lines result with the same relative subdivision in the direction of the channel height. The intersection of a meridional streamline with a blade results in a streamline profile intersection.

Der jeweilige Skelettlinientyp für einen Stromlinienprofilschnitt wird in relativer Darstellung mit Hilfe der relativen Wölbung α* und der bezogenen Lauflänge s* festgelegt, siehe Fig.3. Die Figur zeigt einen Stromlinienprofilschnitt der Schaufel auf einer Meridianstromfläche (u-m-Ebene).The respective skeleton line type for a streamline profile intersection is defined in relative representation by means of the relative curvature α * and the related run length s *, see Figure 3 , The figure shows a streamline profile section of the blade on a meridian flow surface (um plane).

Dazu werden in allen Punkten der Skelettlinie der Neigungswinkel αp und die bis dorthin zurückgelegte Lauflänge sP bestimmt. Als Bezugsgrößen werden die Neigungswinkel an Vorder- und Hinterkante α1 und α2 sowie die Gesamtlauflänge der Skelettlinie S verwendet. Es gilt: α * = α 1 α P α 1 α 2 S * = s P s

Figure imgb0001
For this purpose, the inclination angle α p and the run length s P covered up to this point are determined in all points of the skeleton line. As reference values, the inclination angles at the leading and trailing edges α 1 and α 2 as well as the total running length of the skeleton line S are used. The following applies: α * = α 1 - α P α 1 - α 2 S * = s P s
Figure imgb0001

Die Fig. 4a zeigt eine Schar erfindungsgemäßer spaltnaher Verteilungen der Profilskelettlinienwölbung. Sie sind dadurch gekennzeichnet, dass die relative Skelettlinienwölbung α* bei bezogenen Lauflängen von s*>0,1 stets Werte größer oder gleich 0,35 aufweist.The Fig. 4a shows a family of inventive crevices near the profile skeleton curves. They are characterized in that the relative skeleton curve curvature α * always has values greater than or equal to 0.35 for related run lengths of s *> 0.1.

Erfindungsgemäß ist es weiter vorteilhaft, wenn die relative Skelettlinienwölbung α* bei bezogenen Lauflängen von s*>0,1 stets Werte gleich oder größer 0,50 aufweist. In besonderen Fällen kann es erfindungsgemäß sogar günstig sein, wenn die relative Skelettlinienwölbung α* ab einer bezogenen Lauflänge von s*=0,1 den Wert 0,65 oder gar 1,0 annimmt.According to the invention, it is further advantageous if the relative skeleton curve curvature α * always has values equal to or greater than 0.50 for related run lengths of s *> 0.1. In special cases, it may even be favorable according to the invention if the relative skeleton curve curvature α * assumes the value 0.65 or even 1.0 from a related run length of s * = 0.1.

Die oberste in Fig. 4a dargestellte Verteilung zeigt den erfindungsgemäßen Spezialfall eines Wechsels des Skelettlinienkrümmungsvorzeichens. In diesem dargestellten Fall ist die Skelettlinie zur Profilsaugseite hin in einem Teil der Lauflänge s* konvex und in einem unteren Teil der Lauflänge s* konkav gekrümmt, wie es sich ergibt, wenn wenigstens in einem Teil der Lauflänge s* Werte von α* > 1 vorgesehen sind.The top in Fig. 4a The distribution shown shows the special case according to the invention of a change of the skeleton curve curvature sign. In this illustrated case, the skeleton line is convexly curved towards the profile suction side in a part of the run length s * and concave in a lower part of the run length s *, as is the case if values of α *> 1 at least in part of the run length s * are provided.

Der bei s*=0,1 vorliegende Wert von α* wird im weiteren mit α*B bezeichnet, d. h. α*B = α*(s*=0,1). In analoger Weise wird der bei s*=0,9 vorliegende Wert von α* im weiteren mit α*C bezeichnet, d. h. α*C = α*(s*=0,9). Die entsprechenden Punkt auf der Skelettlinienwölbungsverteilung heißen B und C, siehe Fig. 4c.The value of α * present at s * = 0.1 is hereinafter referred to as α * B , ie α * B = α * (s * = 0.1). In an analogous manner, the value of α * present at s * = 0.9 is also denoted by α * C , ie α * C = α * (s * = 0.9). The corresponding points on the skeleton line curvature distribution are called B and C, see Fig. 4c ,

Erfindungsgemäß wird somit bewusst von den aus dem Stand der Technik bekannten Lösungsprinzipien abgewichen. Erfindungsgemäß werden durch eine überhöhte Belastung der Profilvorderkantenregion in der Nähe des Laufspaltes die am Laufspalt auftretenden Leckageströmungen günstig beeinflusst. Erreicht wird dies erfindungsgemäß durch Werte der relativen Skelettlinienwölbung α* von größer gleich 0,35 oder sogar größer gleich 0,5 oder in besonderen Fällen größer gleich 0,65 oder in Extremfällen größer gleich 1,0 bereits bei einer relativen Lauflänge von s*=0,1.In accordance with the invention, there is thus a deliberate departure from the solution principles known from the prior art. According to the invention, the excessive leakage of the profile leading edge region in the vicinity of the running gap influences the leakage flows occurring at the running gap. This is achieved according to the invention by values of the relative skeleton curve curvature α * of greater than or equal to 0.35 or even greater than 0.5 or in special cases greater than or equal to 0.65 or in extreme cases greater than 1.0 already at a relative run length of s * = 0.1.

Erfindungsgemäße Skelettlinienwölbungsverteilungen können gekrümmt, abschnittsweise gekrümmt oder abschnittsweise geradlinig verlaufen und dabei zwischen ihrem Startpunkt V (s*=0,α*=0) an der Vorderkante und ihrem Endpunkt H (s*=1,α*=1) an der Hinterkante eine beliebige Anzahl von Knickstellen aufweisen, solange sie das erfindungsgemäße Grundkriterium α*B = α*(s*=0,1) >= 0,35 oder α*B >= 0,5 oder α*B >= 0,65 oder α*B >= 1,0 erfüllen.Skeleton line curvature distributions according to the invention can be curved, sectionally curved or sectionally rectilinear, and between their starting point V (s * = 0, α * = 0) at the leading edge and their end point H (s * = 1, α * = 1) at the trailing edge have any number of kinks, as long as they the inventive basic criterion α * B = α * (s * = 0.1)> = 0.35 or α * B > = 0.5 or α * B > = 0.65 or α * B > = 1.0.

Erfindungsgemäß günstig ist, wie die Fig. 4a zeigt, eine Wölbungsverteilung α*=f(s*), die mit hohem Gradienten im Startpunkt A beginnend im weiteren Verlauf sich dem Punkt B mit abnehmendem Gradienten nähert. Ebenfalls erfindungsgemäß günstig ist eine knickfreie Fortsetzung der Wölbungsverteilung vom Punkt B aus mit weiterhin abnehmendem oder konstantem Gradienten bis zum Hinterkantenpunkt H, wobei die stärkste Krümmung der Wölbungsverteilung im Bereich 0 <= s* <= 0,2 vorgesehen ist, entsprechend der in Fig. 4a dargestellten Schar von erfindungsgemäßen Wölbungsverteilungen, die insbesondere für geringe und moderate aerodynamische Profilbelastungen geeignet sind.According to the invention is low, like the Fig. 4a shows, a curvature distribution α * = f (s *), the high gradient at the starting point A, starting in the further course of the point B approaches with decreasing gradient. Likewise favorable according to the invention is a kink-free continuation of the curvature distribution from the point B with a further decreasing or constant gradient up to the trailing edge point H, the strongest curvature of the curvature distribution being provided in the range 0 <= s * <= 0.2, corresponding to FIG Fig. 4a illustrated crowd of curvature distributions according to the invention, which are particularly suitable for low and moderate aerodynamic profile loads.

Die Fig. 4b zeigt eine ebenfalls erfindungsgemäße Schar von Skelettlinienwölbungsverteilungen, die auch für aerodynamisch hoch belastete Profile geeignet ist. In diesem Fall ist es erfindungsgemäß günstig, die Skelettlinienwölbungsverteilung ausgehend von großen Gradienten im Bereich 0 <= s* <= 0,1 auch im weiteren Verlauf zunächst mit weiter geringer werdenden Gradienten zu versehen und ab einem Punkt T im Bereich 0,1 <= s* <= 1 den Gradienten wieder ansteigen zu lassen. Entsprechend wechselt die Krümmung im Punkt T ihr Vorzeichen. Für den Spezialfall, dass vom Punkt T an der Gradient kontinuierlich steigt, ergibt sich eine erfindungsgemäß S-förmige Skelettlinienwölbungsverteilung, entsprechend der in Fig. 4b dargestellten Schar. Erfindungsgemäß besonders günstig ist eine Position des Punktes T im Bereich 0,35 <= s* <= 0,65.The Fig. 4b shows an also according to the invention Schar of Skelettlinienwölbungsverteilungen, which is also suitable for aerodynamically highly loaded profiles. In this case, it is favorable according to the invention to initially provide the skeleton line curvature distribution starting from large gradients in the range 0 <= s * <= 0.1 in the further course with further decreasing gradients and from a point T in the range 0.1 <= s * <= 1 to increase the gradient again. Accordingly, the curvature at point T changes its sign. For the special case that the gradient increases continuously from the point T to the gradient, an S-shaped skeleton line curvature distribution results according to the invention, corresponding to FIG Fig. 4b shown crowd. According to the invention, a position of the point T in the range 0.35 <= s * <= 0.65 is particularly favorable.

Ebenfalls erfindungsgemäß günstig kann es sein, wenn die Skelettlinienwölbungsverteilung wenigstens in einem Teil des Bereiches 0,1 <= s* <= 1 bei konstanten Werten von α* verläuft, siehe die unterste Skelettlinienwölbungsverteilung in Fig. 4b.It can also be favorable according to the invention if the skeletal line curvature distribution runs at least in a part of the range 0.1 <= s * <= 1 at constant values of α *, see the lowest skeletal line curvature distribution in FIG Fig. 4b ,

Die Fig. 4c zeigt eine weitere erfindungsgemäße Skelettlinienwölbungsverteilung, die den im Bereich 0,1 <= s* <= 1 erreichten Zuwachs der Wölbung in bestimmter Weise aufteilt. Dazu wird der bei s*=0,9 vorgesehene Wert α*C und damit die Lage des Punktes C eingeschränkt. So ergeben sich erfindungsgemäß besonders günstige Lösungen, wenn gilt: α*C < α*B + 0,75 (1 - α*B).The Fig. 4c shows another Skelettlinienwölbungsverteilung invention, which divides the achieved in the range 0.1 <= s * <= 1 increase of the curvature in a certain way. For this purpose, the value α * C provided at s * = 0.9 and thus the position of the point C is restricted. Thus, according to the invention, particularly favorable solutions result if α * C <α * B + 0.75 (1-α * B ).

Die erfindungsgemäße Skelettlinienwölbungsverteilung ist in wenigstens einem Schaufelstromlinienschnitt im Bereich zwischen dem Spalt und einem Schaufelschnitt bei 5% der Hauptströmungspfadweite (0,05 W) vorzusehen.The skeleton line curvature distribution according to the invention is to be provided in at least one vane stream section in the region between the gap and a vane section at 5% of the main flow path width (0.05 W).

Diese Skelettlinienwölbungsverteilung kann direkt am Spalt, muss aber gemäß der Erfindung mindestens innerhalb der an den Spalt angrenzende 5% der Hauptströmungspfadweite W vorgesehen sein.This skeleton line curvature distribution can be provided directly at the gap, but according to the invention must be provided at least within the 5% of the main flow path width W adjacent to the gap.

Sehr günstig ist eine Anwendung der erfindungsgemäßen Skelettlinienwölbungsverteilung wenigstens direkt am Spalt. Bei der erfindungsgemäßen Strömungsarbeitsmaschine wie zum Beispiel Bläser, Verdichter,Very favorable is an application of the skeleton line curvature distribution according to the invention at least directly at the gap. In the flow machine according to the invention, such as, for example, blowers, compressors,

Pumpen und Ventilatoren wird eine Randströmungsbeeinflussung erzielt, die bei gleicher Stabilität den Wirkungsgrad einer jeden Stufe um etwa 0,3% erhöhen kann. Zudem ist eine Reduzierung der Schaufelzahlen von bis zu 20% möglich. Das erfindungsgemäße Konzept ist bei unterschiedlichen Arten von Strömungsarbeitsmaschinen anwendbar und führt je nach Ausnutzungsgrad des Konzeptes zu Reduktionen der Kosten und des Gewichts für die Strömungsarbeitsmaschine von 2% bis 10%. Hinzu kommt eine Verbesserung des Gesamtwirkungsgrades der Strömungsarbeitsmaschine, je nach Anwendungsfall, von bis zu 1,5%.Pumps and fans have an edge flow control which, while maintaining the same stability, can increase the efficiency of each stage by approximately 0.3%. In addition, a reduction in the number of blades of up to 20% is possible. The inventive concept is applicable to different types of turbomachines and, depending on the degree of utilization of the concept, leads to reductions in costs and weight for the turbomachine of 2% to 10%. In addition, there is an improvement in the overall efficiency of the fluid flow machine, depending on the application, of up to 1.5%.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Gehäusecasing
22
Nabehub
33
Maschinenachse (Drehachse)Machine axis (rotation axis)
44
Rotor (Rotorschaufelreihe)Rotor (rotor blade row)
55
Stator (Statorschaufelreihe)Stator (stator blade row)
66
Ringkanal (Hauptströmungspfad)Ring channel (main flow path)
77
Mittlere MeridianstromlinieMean meridian current line
88th
ProfilskelettlinieProfile skeleton line
99
StromlinienquerschnittStreamlined cross-section
1010
Spaltgap

Claims (11)

  1. Fluid-flow machine including a blade arranged in a main flow path (6) confined by a hub (2) and a casing (1), with a gap (10) being provided between one end of the blade and a main flow path boundary formed by a hub (2) or a casing (1), and with a free blade end thus being provided, with a skeleton line camber distribution having an excessive value of the relative skeleton line camber of at least α* = 0.35 for a related running length of s* = 0.1 being provided in at least one blade profile flow line section in the area between the gap (10) and a blade section at a distance of 30 percent of the main flow path width W from the gap (10), with s* being the local running length relative to the total running length of the profile skeleton line and α* being formed as the angular change of the skeleton line relative to the total camber of the skeleton line achieved from the leading edge to a related running length s*, with the skeleton line camber distribution in this representation commencing in the leading edge point V of the blade (s* = 0, α* = 0) and terminating in the trailing edge point H of the blade (s* = 1, α* = 1), and with the total camber of the skeleton line being defined by the angular change of the skeleton line from the leading edge point (V) to the trailing edge point (H) of the blade, characterized in that a skeleton line camber distribution is provided at least within 5 % of the main flow path width adjoining the gap, said distribution, for a related running length of s* = 0.1, having an excessive value of the relative skeleton line camber of at least α* = 0.35.
  2. Fluid-flow machine in accordance with Claim 1, characterized in that a skeleton line camber distribution is provided at least directly at the gap (10), which for a related running length of s* = 0.1 has an excessive value of the relative skeleton line camber of at least α* = 0.35.
  3. Fluid-flow machine in accordance with one of the Claims 1 or 2, characterized in that for a related running length of s* = 0.1 an excessive value of the relative skeleton line camber of at least α* = 0.50 is provided.
  4. Fluid-flow machine in accordance with one of the Claims 1 to 3, characterized in that the skeleton line camber distribution starts with high gradient in the leading edge point V and, in the further course, approaches with descending gradient the related running length s* = 0.1.
  5. Fluid-flow machine in accordance with one of the Claims 1 to 4, characterized in that the skeleton line camber distribution continues from the related running length s* = 0.1 in the direction of the trailing edge point H up to the trailing edge point H without bent and with descending or constant gradient, with the point of maximum curvature of the skeleton line camber distribution being provided in the range of 0 <= s* <= 0.2.
  6. Fluid-flow machine in accordance with one of the Claims 1 to 4, characterized in that the skeleton line camber distribution continues from the related running length s* = 0.1 in the direction of the trailing edge point H without bent with initially further descending gradient and, from a point T in which the camber changes its sign, has again rising gradients for at least a part of the range of 0.1 <= s* <= 1.
  7. Fluid-flow machine in accordance with Claim 6, characterized in that the skeleton line camber distribution has only a single camber sign change and shows an S-shaped course.
  8. Fluid-flow machine in accordance with one of the Claims 6 and 7, characterized in that the point T of the first camber sign change is provided in the range of 0.35 <= s* <= 0.65.
  9. Fluid-flow machine in accordance with one of the Claims 1 to 8, characterized in that the skeleton line camber distribution extends, at least in a part of the range of 0.1 <= s* <= 1, at constant values of the relative skeleton line camber α*.
  10. Fluid-flow machine in accordance with one of the Claims 1 to 9, characterized in that the skeleton line camber distribution, for a related running length of s* = 0.9, has a value of the relative skeleton line camber of α* < α*(s* = 0.1) + 0.75 (1 - α*(s* = 0.1)).
  11. Fluid-flow machine in accordance with one of the Claims 1 to 10, characterized in that the skeleton line camber distribution extends cambered, cambered in sections or rectilinear in sections, thus having any number of bending points between the leading edge point V and the trailing edge point H.
EP10005471.7A 2009-07-17 2010-05-26 Engine blade with excess front edge loading Not-in-force EP2275643B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009033593A DE102009033593A1 (en) 2009-07-17 2009-07-17 Engine blade with excessive leading edge load

Publications (3)

Publication Number Publication Date
EP2275643A2 EP2275643A2 (en) 2011-01-19
EP2275643A3 EP2275643A3 (en) 2017-10-04
EP2275643B1 true EP2275643B1 (en) 2018-12-26

Family

ID=42278932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10005471.7A Not-in-force EP2275643B1 (en) 2009-07-17 2010-05-26 Engine blade with excess front edge loading

Country Status (3)

Country Link
US (1) US8439646B2 (en)
EP (1) EP2275643B1 (en)
DE (1) DE102009033593A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113900B (en) 2010-01-05 2015-07-15 深圳迈瑞生物医疗电子股份有限公司 Relevant method and device for color blood flow dynamic frame
DE102014203605A1 (en) 2014-02-27 2015-08-27 Rolls-Royce Deutschland Ltd & Co Kg Blade row group
JP6468414B2 (en) * 2014-08-12 2019-02-13 株式会社Ihi Compressor vane, axial compressor, and gas turbine
US9797267B2 (en) * 2014-12-19 2017-10-24 Siemens Energy, Inc. Turbine airfoil with optimized airfoil element angles
DE102016115868A1 (en) * 2016-08-26 2018-03-01 Rolls-Royce Deutschland Ltd & Co Kg High-efficiency fluid flow machine
GB201719538D0 (en) 2017-11-24 2018-01-10 Rolls Royce Plc Gas turbine engine
GB201719539D0 (en) 2017-11-24 2018-01-10 Rolls Royce Plc Gas Turbine Engine
WO2019123697A1 (en) 2017-12-20 2019-06-27 株式会社Ihi Fan and compressor stator blade
CN109058161B (en) * 2018-09-27 2023-08-29 美的集团股份有限公司 Axial flow wind wheel and air conditioner outdoor unit
IT202000005146A1 (en) * 2020-03-11 2021-09-11 Ge Avio Srl TURBINE ENGINE WITH AERODYNAMIC PROFILE HAVING HIGH ACCELERATION AND LOW VANE CURVE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431376A (en) 1980-10-27 1984-02-14 United Technologies Corporation Airfoil shape for arrays of airfoils
US4961686A (en) * 1989-02-17 1990-10-09 General Electric Company F.O.D.-resistant blade
US5167489A (en) * 1991-04-15 1992-12-01 General Electric Company Forward swept rotor blade
US5525038A (en) * 1994-11-04 1996-06-11 United Technologies Corporation Rotor airfoils to control tip leakage flows
FR2797658B1 (en) * 1999-08-18 2002-08-23 Snecma IMPROVED TURBINE DAWN
US7204676B2 (en) * 2004-05-14 2007-04-17 Pratt & Whitney Canada Corp. Fan blade curvature distribution for high core pressure ratio fan
DE102005042115A1 (en) * 2005-09-05 2007-03-08 Rolls-Royce Deutschland Ltd & Co Kg Blade of a fluid flow machine with block-defined profile skeleton line
DE102006055869A1 (en) * 2006-11-23 2008-05-29 Rolls-Royce Deutschland Ltd & Co Kg Rotor and guide blades designing method for turbo-machine i.e. gas turbine engine, involves running skeleton curve in profile section in sectional line angle distribution area lying between upper and lower limit curves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2275643A3 (en) 2017-10-04
US8439646B2 (en) 2013-05-14
EP2275643A2 (en) 2011-01-19
US20110014057A1 (en) 2011-01-20
DE102009033593A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
EP2275643B1 (en) Engine blade with excess front edge loading
EP1657401B1 (en) Turbomachine comprising blades with an extended profile chord length in its tip region
EP2025945B1 (en) Flow working machine with ring canal wall fitting
EP2096260B1 (en) Turbo machine comprising rotor assemblies with small outlet flow deviation angle
EP2261463B1 (en) Turbomachine with a group of bladed stages
EP2096316B1 (en) Housing structuring for axial compressor in the hub area
EP2463480B1 (en) Blade with hybrid airfoil
EP1798375B1 (en) Airfoil shape for variable stator vanes
EP2003292B1 (en) Fluid working machine having blade shroud with overhang
EP1760321A2 (en) Blade for turbomachine
EP2228542B1 (en) Turbo compressor or pump with fluid injection to influence the boundary layer
EP2761137B1 (en) Blade of a row of rotor blades or stator blades for use in a turbomachine
EP1632662A2 (en) Turbomachine with bleeding
EP2194232A2 (en) Turbo engine with side wall boundary layer barrier
EP2913478B1 (en) Tandem blades of a turbo-machine
EP2947270B3 (en) Rotor series group
EP2180195A2 (en) Turbo machine with tip clearance control
EP1998049A2 (en) Flow processing machine blade with multi-profile configuration
EP2913479B1 (en) Tandem blades of a turbo-machine
EP1865148B1 (en) Flow machine with rotors with a high specific energy transfer
DE10205363A1 (en) gas turbine
EP1953340B1 (en) Flow machine and rotor shovel for a flow machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/14 20060101AFI20170830BHEP

Ipc: F01D 5/20 20060101ALI20170830BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180313

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUEMMER, VOLKER DR.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081694

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015649

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015649

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200528

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1081694

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200528

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200728

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015649

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015649

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210526

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226