EP1798375B1 - Airfoil shape for variable stator vanes - Google Patents

Airfoil shape for variable stator vanes Download PDF

Info

Publication number
EP1798375B1
EP1798375B1 EP06024318A EP06024318A EP1798375B1 EP 1798375 B1 EP1798375 B1 EP 1798375B1 EP 06024318 A EP06024318 A EP 06024318A EP 06024318 A EP06024318 A EP 06024318A EP 1798375 B1 EP1798375 B1 EP 1798375B1
Authority
EP
European Patent Office
Prior art keywords
zone
stator
profile
line
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06024318A
Other languages
German (de)
French (fr)
Other versions
EP1798375A3 (en
EP1798375A2 (en
Inventor
Volker Gümmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1798375A2 publication Critical patent/EP1798375A2/en
Publication of EP1798375A3 publication Critical patent/EP1798375A3/en
Application granted granted Critical
Publication of EP1798375B1 publication Critical patent/EP1798375B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/74Shape given by a set or table of xyz-coordinates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves

Definitions

  • the present invention relates to variable stator blades of fluid flow machines such as fans, compressors, pumps, and fans in the axial, semi-axial, or even radial form.
  • the working medium can be gaseous or liquid.
  • the invention relates to at least one adjustable stator blade, possibly also an adjustable Vorleitrad, a fluid flow machine.
  • the blading in question is within a housing, which limits the flow of at least one rotor and a stator with a fluid to the outside.
  • a rotor comprises a plurality of rotor blades attached to a rotating shaft and supplies energy to the working fluid
  • a stator consists of a plurality of stator blades usually mounted in the housing.
  • the aerodynamic load capacity and the efficiency of fluid flow machines is limited in particular by the growth and separation of boundary layers in the region of the radial gap between the blading and the housing or hub, which is structurally necessary at the annular channel edge.
  • Rotary adjustable stators in particular, which are characterized by the necessary free cuts in front of and behind the rotary spindle, have a pronounced radial gap and cause considerable flow losses.
  • turntables as large as possible are usually provided at the inner and outer ends of the adjusting stators in order to keep the extent of the cutouts in the flow direction small.
  • the turntables are arranged so that they are located in the critically classified profile leading edge zone of the blade edge cuts.
  • the Fig. 1 Fig. 2 shows a schematic representation of two prior art blade configurations in the meridian plane given by the radial direction r and the axial direction x.
  • the presentation is limited to a mounted in hub as housing variable stator, a storage solely in housing or hub with a full radial gap at the other end of the blade but in some cases also occurs.
  • the blade On the left side of the picture, a conventional variable stator without variation of the skeleton line type is shown.
  • the blade consists of only one block (ZO) in which the type of skeleton line is given according to uniform rules.
  • ZO the type of skeleton line is given according to uniform rules.
  • This category includes the so-called CDA (controlled diffusion aerofoils) US4431376 , From an aerodynamic point of view, the CDA aims for a moderate profile frontload.
  • the present invention relates to stators, which are rotatably mounted on at least one blade end and can be adjusted via a spindle about a fixed axis of rotation. As in all representations shown here, the inflow of the relevant row of blades takes place, as indicated by the thick arrow, from left to right.
  • the present invention has for its object to provide an adjustable stator blade of the type mentioned, which achieves a very effective influencing the edge flow through targeted and problematic, block-wise definition of the profile skeleton lines along the blade height while avoiding the prior art.
  • the Fig.2 gives a precise definition of meridian flow lines and streamline profile sections.
  • the middle meridional flow line is formed by the geometric center of the ring channel. If one establishes a normal at each location of the middle streamline, one obtains the course of the ring channel width W along the flow path and, on the other hand, a number of normals with whose help further meridional streamlines result with the same relative subdivision in the direction of the channel height.
  • the intersection of a meridional streamline with a blade results in a streamline profile intersection.
  • the 3a shows the invention adjustable stator blade with storage in the housing and hub "SGN" in the determined by the axial coordinate x and the radial coordinate r meridian.
  • the blade edge zones Z1 and Z2, the transition zones T1 and T2 and the blade center zone Z0 are particularly marked and in each case by meridional flow lines as defined in FIG Fig.2 limited.
  • Each of the five bucket zones is assigned a subset WZ1, WT1, WZ0, WT2, WZ2, which is measured in the direction of the channel width W.
  • the Fig. 4 shows the definition of the height aspect ratio, which is decisive for the determination of the respective zone widths.
  • the middle streamline first gives the position for the determination of the total blade height H when halving the distance between the leading and trailing edges (point G).
  • the height H is determined along a straight line at point G perpendicular to the middle streamline.
  • five flow lines are specified at 10%, 30%, 50%, 70% and 90% of the channel width W (SL10, SL30, SL50, SL70, SL90), along which the respective chord length L is to be determined.
  • the definition of L is shown for any meridian flow area (um level) in the upper left half of the picture.
  • the chord length resulting at xy% of the channel width is here and in the formulas of Figure 4 denoted by LSLxy.
  • the Figure 5 shows the definition of the rotational axis position, which is co-determining for the present invention according to profile skeleton line type PR.
  • the picture shows a schematic of the streamline section through the adjustable stator blade at 5% and 95% channel width, respectively. Shown is the puncture point of the axis of rotation in the plane of the streamline section, point D. This point does not necessarily have to lie within the profile, as shown here.
  • the entire chord length is L. Determined by the perpendicular Lot of the point D on the chord, one obtains the measured distance d of the axis of rotation in the same direction from the front edge.
  • the respective skeleton line type is determined in relative representation with the help of the related inclination angle ⁇ * and the related run length s *, see 6a ,
  • the image shows a streamline profile cut of the blade on a meridian flow surface (um-plane).
  • the inclination angle ⁇ P and the run length sP covered up to this point are determined in all points of the skeleton line.
  • the inclination angles at leading and trailing edges ⁇ 1 and ⁇ 2 as well as the total running length of the skeleton line S are used. The following applies: ⁇ * ⁇ ⁇ 1 - ⁇ P / ⁇ ⁇ 1 - ⁇ ⁇ 2 and s * sP / S ,
  • the Figure 6b shows in the known relative representation the definition of the skeleton line type "PM". Skeleton lines according to the invention are located above a boundary line. Skeleton lines in the exclusion area below and on the boundary line are not according to the invention.
  • a skeleton line distribution which can be provided according to the invention for the block in the center of the blade is shown.
  • Skeleton line courses according to the invention are located below the continuous upper limit line and run over the lower limit line given in a specific interval. Skeleton lines in the exclusion area above and on the upper boundary line are not according to the invention. Skeleton line courses below or on the lower boundary line are also not according to the invention.
  • an edge flow control is achieved, which can increase the efficiency of each stage by about 1% with the same stability.
  • a reduction in the number of blades of up to 20% is possible.
  • the inventive concept is applicable to different types of turbomachines and, depending on the degree of utilization of the concept, leads to reductions in costs and weight for the turbomachine of 2% to 10%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)

Description

Die vorliegende Erfindung bezieht sich auf verstellbare Statorschaufeln von Strömungsarbeitsmaschinen wie etwa Bläsern, Verdichtern, Pumpen und Ventilatoren in axialer, halbaxialer oder auch radialer Bauart. Das Arbeitsmedium (Fluid) kann gasförmig oder flüssig sein.The present invention relates to variable stator blades of fluid flow machines such as fans, compressors, pumps, and fans in the axial, semi-axial, or even radial form. The working medium (fluid) can be gaseous or liquid.

Im Einzelnen betrifft die Erfindung mindestens eine verstellbare Statorschaufel, gegebenenfalls auch ein verstellbares Vorleitrad, einer Strömungsarbeitsmaschine. Die betreffende Beschaufelung ist innerhalb eines Gehäuses, welches die Durchströmung mindestens eines Rotors und eines Stators mit einem Fluid nach außen begrenzt. Während ein Rotor mehrere an einer rotierenden Welle befestigte Rotorschaufeln umfasst und Energie an das Arbeitsmedium abgibt, besteht ein Stator aus mehreren meist im Gehäuse befestigten Statorschaufeln.In detail, the invention relates to at least one adjustable stator blade, possibly also an adjustable Vorleitrad, a fluid flow machine. The blading in question is within a housing, which limits the flow of at least one rotor and a stator with a fluid to the outside. While a rotor comprises a plurality of rotor blades attached to a rotating shaft and supplies energy to the working fluid, a stator consists of a plurality of stator blades usually mounted in the housing.

Die aerodynamische Belastbarkeit und die Effizienz von Strömungsarbeitsmaschinen, beispielsweise Bläsern, Verdichtern, Pumpen und Ventilatoren, wird insbesondere durch das Wachstum und die Ablösung von Grenzschichten im Bereich der am Ringkanalrand baulich notwendigen Radialspalte zwischen Beschaufelung und Gehäuse beziehungsweise Nabe begrenzt.The aerodynamic load capacity and the efficiency of fluid flow machines, such as fans, compressors, pumps and fans, is limited in particular by the growth and separation of boundary layers in the region of the radial gap between the blading and the housing or hub, which is structurally necessary at the annular channel edge.

Besonders an drehbaren Verstellstatoren sind die Radialspalte, die durch erforderliche Freischnitte vor und hinter der Drehspindel entstehen, stark ausgeprägt und verursachen beträchtliche Strömungsverluste. Um diese Verluste in Grenzen zu halten, werden üblicherweise möglichst große Drehteller an den inneren und äußeren Enden der Verstellstatoren vorgesehen, um die Erstreckung der Freischnitte in Strömungsrichtung klein zu halten. Vorzugsweise werden die Drehteller so angeordnet, dass sie sich in der kritisch einzustufenden Profilvorderkantenzone der Schaufelrandschnitte befinden.Rotary adjustable stators in particular, which are characterized by the necessary free cuts in front of and behind the rotary spindle, have a pronounced radial gap and cause considerable flow losses. In order to limit these losses, turntables as large as possible are usually provided at the inner and outer ends of the adjusting stators in order to keep the extent of the cutouts in the flow direction small. Preferably, the turntables are arranged so that they are located in the critically classified profile leading edge zone of the blade edge cuts.

Nun gibt es aber aufgrund von Versagensrichtlinien und konstruktiven Restriktionen oftmals Konfigurationen von Verstellstatoren, die nur eine kleine Größe und eine nicht weit genug vorn liegende Position der Drehteller aufweisen. Dann bleibt zwangsläufig ein beträchtlicher Radialspalt, sowohl vor als auch hinter dem Drehteller. Der Stand der Technik hält für dieses fundamentale Problem keine aerodynamisch günstigen Lösungen bereit. Der allgemeine Gedanke der Randbeeinflussung von radialen Laufspalten durch Änderung des Skelettlinientyps entlang der Schaufelhöhe ist im Stand der Technik enthalten, doch sind die bekannten Lösungen, insbesondere für die Strömungsverhältnisse an einem Schaufelende mit Drehteller und zwei Teilradialspalten nicht geeignet und folglich uneffektiv.However, due to failure guidelines and design restrictions, there are often configurations of adjustable stators that have only a small size and a position of the turntable that is not far enough forward. Then inevitably remains a considerable radial gap, both in front of and behind the turntable. The prior art does not provide aerodynamically favorable solutions to this fundamental problem. The general idea of edge control of radial run gaps by changing the skeleton line type along the blade height is included in the prior art, but the known solutions, in particular for the flow conditions at a blade end with turntable and two partial radial gaps are not suitable and therefore ineffective.

Die Fig. 1 zeigt in schematischer Darstellung zwei Schaufelkonfigurationen nach dem Stand der Technik in der durch die Radialrichtung r und die Axialrichtung x gegebenen Meridianebene. Die Darstellung beschränkt sich auf einen in Nabe wie Gehäuse gelagerten Verstellstator, eine Lagerung alleinig in Gehäuse oder Nabe mit vollem Radialspalt am jeweils anderen Schaufelende kommt in Einzelfällen aber ebenfalls vor.The Fig. 1 Fig. 2 shows a schematic representation of two prior art blade configurations in the meridian plane given by the radial direction r and the axial direction x. The presentation is limited to a mounted in hub as housing variable stator, a storage solely in housing or hub with a full radial gap at the other end of the blade but in some cases also occurs.

Auf der linken Bildseite ist ein üblicher Verstellstator ohne Variation des Skelettlinientyps dargestellt. In diesem einfachsten Standardfall besteht die Schaufel aus nur einem Block (ZO) in dem der Typ der Skelettlinie nach einheitlichen Regeln vorgegeben ist. In diese Kategorie fallen die sogenannten CDA (controlled diffusion aerofoils) gemäß US4431376 . Aerodynamisch betrachtet wird durch die CDA eine moderate Profilvorderlast angestrebt.On the left side of the picture, a conventional variable stator without variation of the skeleton line type is shown. In this simplest standard case, the blade consists of only one block (ZO) in which the type of skeleton line is given according to uniform rules. This category includes the so-called CDA (controlled diffusion aerofoils) US4431376 , From an aerodynamic point of view, the CDA aims for a moderate profile frontload.

Auf der rechten Seite ist eine übliche Schaufel mit einem bis zur Vorderkante reichenden Drehteller dargestellt. Anstelle einer vollständig einheitlichen Profilierung kann die Schaufel nach dem Stand der Technik auch über der gesamten Höhe einer kontinuierlichen Änderung des Profiltyps unterworfen sein. Dann wird die ganze Schaufel nicht durch einen Block (Z0) einheitlicher Profilierung, sondern durch eine einzige große Transitionszone repräsentiert. Dazu gehören Konzepte aus bekannten Veröffentlichungen, die eine Transition von einem CDA-Skelettlinientyp zu einem mehr auf Profilhinterlast zielenden Skelettlinientyp in den Schaufelaußenbereichen in Betracht ziehen (R. F. Behlke, Journal of Turbomachinery, Vol. 8, July 1986).On the right side of a conventional bucket with a reaching to the front edge turntable is shown. Instead of a completely uniform profiling, the blade according to the prior art can also be subjected over the entire height to a continuous change of the profile type. Then the whole bucket is not represented by a block (Z0) of uniform profiling but by a single large transition zone. These include concepts from known publications contemplating a transition from a CDA skeleton lineage type to a more profile-behind-target skeleton lineage type in the outboard blade areas (RF Behlke, Journal of Turbomachinery, Vol. 8, July 1986).

Daneben gibt es Lösungsvorschläge, bei denen die Randzonenströmung durch eine besondere Gestalt der Schaufelfädelachse eine Biegung, eine Pfeilung oder eine V-Stellung, positiv beeinflusst wird (siehe EP0661413A1 , EP1106835A2 , EP1106836A2 ). Keine der bestehenden Lösungen bezieht sich auf Verstellstatoren.In addition, there are proposed solutions, in which the marginal zone flow is positively influenced by a particular shape of the blade axis, a bend, a sweep or a V-position (see EP0661413A1 . EP1106835A2 . EP1106836A2 ). None of the existing solutions relates to adjustable stators.

Weitere Lösungsvorschläge für die Gestaltung von Verdichterschaufeln zeigen die WO-A-2005/054633 , EP-A-1 508 669 und EP-A-0 533 319 . Dabei beschreibt die erste der drei genannten Druckschriften einen Verstellstator.Further proposed solutions for the design of compressor blades show the WO-A-2005/054633 . EP-A-1 508 669 and EP-A-0 533 319 , The first of the three cited documents describes an adjustable stator.

Die vorliegende Erfindung betrifft Statoren, die an mindestens einem Schaufelende drehbar gelagert sind und über eine Spindel um eine feste Drehachse verstellt werden können. Wie in allen hier gezeigten Darstellungen erfolgt die Zuströmung der betreffenden Schaufelreihe, wie durch den dicken Pfeil angedeutet, von links nach rechts.The present invention relates to stators, which are rotatably mounted on at least one blade end and can be adjusted via a spindle about a fixed axis of rotation. As in all representations shown here, the inflow of the relevant row of blades takes place, as indicated by the thick arrow, from left to right.

Als nachteilig erweist sich beim Stand der Technik, dass die entsprechenden Schaufelformen oft bewusst mit geringer Komplexität bezüglich der Skelettlinienform entworfen werden. Für den Fall, dass unterschiedliche Skelettlinientypen entlang der Schaufelhöhe verwendet werden, fehlt eine blockweise Ausprägung der Eigenschaften der Profilskelettlinien, mit deren Hilfe ein stärkerer Einfluss auf die Profildruckverteilung in Wandnähe genommen werden könnte, um das maximal mögliche Maß an Spalt- und Randströmungsberuhigung zu erzielen. Insbesondere bei Verstellstatoren fehlen Schaufelkonzepte mit Skelettlinienvariation längs Schaufelhöhe, die eine, im Schaufelmittenbereich günstige, Profilvorderlast auf angemessene Weise mit einer für die Randbereiche günstigen Art der Lastverteilung kombinieren.It is disadvantageous in the prior art that the corresponding blade shapes are often deliberately designed with little complexity with respect to the skeleton line shape. In the event that different skeletal line types along the blade height a block-wise expression of the properties of the profile skeleton lines is missing, with whose help a stronger influence on the profile pressure distribution near the wall could be taken, in order to achieve the maximum possible degree of crevice and edge flow calming. Particularly in the case of adjustable stators, blade concepts with a skeleton line variation along the blade height, which lack a profile preliminary load that is favorable in the blade center region, are lacking appropriate way with a favorable for the edge areas type of load distribution.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine verstellbare Statorschaufel der eingangs genannten Art zu schaffen, welche unter Vermeidung des Standes der Technik eine sehr wirkungsvolle Beeinflussung der Randströmung durch gezielte und problemgerechte, blockweise Definition der Profilskelettlinien entlang der Schaufelhöhe erreicht.The present invention has for its object to provide an adjustable stator blade of the type mentioned, which achieves a very effective influencing the edge flow through targeted and problematic, block-wise definition of the profile skeleton lines along the blade height while avoiding the prior art.

Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Hauptanspruchs gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.According to the invention the object is achieved by the feature combination of the main claim, the subclaims show further advantageous embodiments of the invention.

Erfindungsgemäß ist für den Einsatz in einer Strömungsarbeitsmaschine eine verstellbare Statorschaufel geschaffen, die in unterschiedlichen, durch Meridianstromlinien begrenzten Zonen (Blöcken) der Schaufelhöhe festgelegte Typen von Profilskelettlinien aufweist, unter der Maßgabe, dass

  1. i.) die Verteilung der Skelettlinientypen längs Schaufelhöhe eine ausgeprägte aerodynamische Profilvorderlast im Schaufelmittenbereich auf vorteilhafte Weise mit einer speziellen Profillastverteilung in den Randbereichen kombiniert,
  2. ii.) in den definierten Randzonen Z1 und Z2 durchgängig ein speziell eingegrenzter Skelettlinientyp gemäß der weiter unten gegebenen Definition vorgesehen ist,
  3. iii.) die Wahl des Skelettlinientyps in den sich zur Schaufelmitte hin an Z1 und Z2 anschließenden Transitionszonen T1 und T2 frei ist,
  4. iv.) in der definierten mittleren Schaufelzone Z0 durchgängig ein speziell eingegrenzter Skelettlinientyp gemäß der weiter unten gegebenen Definition vorgesehen ist.
According to the invention, an adjustable stator blade is provided for use in a fluid flow machine, which has different types of profile skeleton lines fixed in different zones (blocks) of the blade height defined by meridian flow lines, with the proviso that
  1. i) the distribution of the skeletal line types along the blade height combines a pronounced aerodynamic profile front load in the blade center region in an advantageous manner with a specific profile load distribution in the edge regions,
  2. ii.) in the defined marginal zones Z1 and Z2 is provided throughout a specially limited skeleton line type according to the definition given below,
  3. iii.) the selection of the skeleton line type in the transition zones T1 and T2 adjoining the blade center at Z1 and Z2 is free,
  4. iv.) in the defined mean blade zone Z0 a specially constrained skeleton line type is provided according to the definition given below.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit den Figuren beschrieben. Dabei zeigt:

  • Fig.1: eine schematische Darstellung von Verstellstatoren nach dem Stand der Technik,
  • Fig.2: die Definition von Meridianstromlinien und Stromlinienprofilschnitten,
  • Fig.3a: einen erfindungsgemäßen Verstellstator (Lagerung in Gehäuse und Nabe) "SGN",
  • Fig.3b: einen erfindungsgemäßen Verstellstator (Lagerung im Gehäuse) "SG",
  • Fig.3c: einen erfindungsgemäßen Verstellstator (Lagerung in der Nabe) "SN",
  • Fig.3d: die erfindungsgemäße Zuordnung der Schaufelzonen Z1, Z0, Z2 und der definierten Skelettlinientypen PM und PR,
  • Fig.4: die Definition des Höhenseitenverhältnisses HSV und der individuellen Zonenweiten (Blockweiten) WZ1, WT1, WZ0, WT2, WZ2,
  • Fig.5: die Definition der Drehachsenposition an den Schaufelenden,
  • Fig.6a: die Definition der Skelettlinie eines Stromlinienprofilschnitts,
  • Fig.6b: die Definition des Profilskelettlinientyps "PM" für die Schaufelmittelzone,
  • Fig.6c: die Definition des Profilskelettlinientyps "PR" für die Schaufelrandzone bei einer Drehachsenposition von D=0,3,
  • Fig.6d: die Definition des Profilskelettlinientyps "PR" für die Schaufelrandzone bei einer Drehachsenposition von D=0,5.
In the following the invention will be described by means of embodiments in conjunction with the figures. Showing:
  • Fig.1 FIG. 2 is a schematic representation of prior art displacement stators. FIG.
  • Fig.2 : the definition of meridional streamlines and streamline profile sections,
  • 3a : an adjustable stator according to the invention (storage in housing and hub) "SGN",
  • 3b : a variable stator according to the invention (storage in the housing) "SG",
  • 3 c : an adjustable stator according to the invention (storage in the hub) "SN",
  • 3 d the assignment according to the invention of the blade zones Z1, Z0, Z2 and the defined skeleton line types PM and PR,
  • Figure 4 : the definition of the height-side ratio HSV and the individual zone widths (block widths) WZ1, WT1, WZ0, WT2, WZ2,
  • Figure 5 : the definition of the rotational axis position at the blade ends,
  • 6a : the definition of the skeleton line of a streamline profile section,
  • Figure 6b the definition of the profile skeleton type "PM" for the vane center zone,
  • 6C : the definition of the profile skeleton type "PR" for the blade edge zone at a rotational axis position of D = 0.3,
  • Fig.6d : the definition of the profile skeleton type "PR" for the blade edge zone at a rotational axis position of D = 0.5.

Die Fig.2 gibt eine genaue Definition der Meridianstromlinien und der Stromlinienprofilschnitte. Die mittlere Meridianstromlinie wird durch die geometrische Mitte des Ringkanals gebildet. Errichtet man an jedem Ort der mittleren Stromlinie eine Normale, so erhält man zum einen den Verlauf der Ringkanalweite W entlang des Strömungspfades und zum anderen eine Anzahl von Normalen, mit deren Hilfe sich bei gleicher relativer Unterteilung in Richtung der Kanalhöhe weitere Meridianstromlinien ergeben. Der Schnitt einer Meridianstromlinie mit einer Schaufel ergibt einen Stromlinienprofilschnitt.The Fig.2 gives a precise definition of meridian flow lines and streamline profile sections. The middle meridional flow line is formed by the geometric center of the ring channel. If one establishes a normal at each location of the middle streamline, one obtains the course of the ring channel width W along the flow path and, on the other hand, a number of normals with whose help further meridional streamlines result with the same relative subdivision in the direction of the channel height. The intersection of a meridional streamline with a blade results in a streamline profile intersection.

Die Fig.3a zeigt die erfindungsgemäß verstellbare Statorschaufel mit Lagerung in Gehäuse und Nabe "SGN" in der durch die Axialkoordinate x und die Radialkoordinate r bestimmten Meridianebene. Darin sind die Schaufelrandzonen Z1 und Z2, die Transitionszonen T1 und T2 sowie die Schaufelmittelzone Z0 besonders gekennzeichnet und jeweils durch Meridianstromlinien gemäß der Definition in Fig.2 begrenzt. Jeder einzelnen der fünf Schaufelzonen ist eine Teilweite WZ1, WT1, WZ0, WT2, WZ2 zugewiesen, die in Richtung der Kanalweite W gemessen wird.The 3a shows the invention adjustable stator blade with storage in the housing and hub "SGN" in the determined by the axial coordinate x and the radial coordinate r meridian. Therein, the blade edge zones Z1 and Z2, the transition zones T1 and T2 and the blade center zone Z0 are particularly marked and in each case by meridional flow lines as defined in FIG Fig.2 limited. Each of the five bucket zones is assigned a subset WZ1, WT1, WZ0, WT2, WZ2, which is measured in the direction of the channel width W.

Dieser Darstellung entsprechend zeigen die Fig.3b und 3c die erfindungsgemäße Statorschaufel mit Lagerung im Gehäuse "SG" und die erfindungsgemäße Statorschaufel mit Lagerung in der Nabe "SN".According to this illustration, the 3b and 3c the stator blade according to the invention with storage in the housing "SG" and the stator blade according to the invention with storage in the hub "SN".

Die Fig.3d zeigt tabellarisch die erfindungsgemäße Zuordnung der drei Schaufelzonen Z1, Z0, Z2 und der im folgenden (Fig.6b-d) spezifizierten Skelettlinientypen PM und PR. So ist beispielsweise für die Schaufelkonfiguration "SGN" der Typ PR in Zone Z1, der Typ PM in Zone Z0 und der Typ PR in Zone Z2 vorgesehen. Frei gestaltbar ist die Zone Z1 im Fall der Schaufelkonfiguration "SG" sowie die Zone Z2 im Fall der Schaufelkonfiguration "SN" aufgrund des dort am jeweiligen Schaufelende fehlenden Drehtellers.

  • PM - Profilskelettlinientyp für die Schaufelmittelzone,
  • PR - Profilskelettlinientyp für die Schaufelrandzone.
The 3 d shows in tabular form the assignment according to the invention of the three blade zones Z1, Z0, Z2 and the following ( Figure 6b-d ) specified skeletal line types PM and PR. For example, for the blade configuration "SGN", the type PR is provided in zone Z1, the type PM in zone Z0 and the type PR in zone Z2. Freely configurable is the zone Z1 in the case of the blade configuration "SG" and the zone Z2 in the case of the blade configuration "SN" due to the missing at the respective blade end turntable.
  • PM - profile skeleton line type for the vane center zone,
  • PR - profile skeleton line type for the blade edge zone.

Die Fig. 4 zeigt die Definition des Höhenseitenverhältnisses, das für die Bestimmung der jeweiligen Zonenweiten maßgebend ist. In der unteren rechten Bildhälfte ist eine Schaufelkonfiguration mit einer Anzahl von Meridianstromlinien skizziert. Die mittlere Stromlinie gibt zunächst bei Halbierung der Strecke zwischen Vorder- und Hinterkante die Position für die Bestimmung der Gesamtschaufelhöhe H vor (Punkt G). Die Höhe H wird entlang einer im Punkt G senkrecht auf der mittleren Stromlinie stehenden Geraden bestimmt. Weiterhin sind fünf Stromlinien bei 10%, 30%, 50%, 70% und 90% der Kanalweite W vorgegeben (SL10, SL30, SL50, SL70, SL90), entlang denen die jeweilige Sehnenlänge L zu bestimmen ist. Die Definition von L ist für eine beliebige Meridianstromfläche (u-m-Ebene) in der linken oberen Bildhälfte dargestellt. Die sich bei xy% der Kanalweite ergebende Sehnenlänge wird hier und in den Formeln der Fig.4 mit LSLxy bezeichnet. Das Höhenseitenverhältnis ist schließlich wie folgt zu bestimmen: HSV = 5 H / L SL 10 + L SL 30 + L SL 50 + L SL 70 + L SL 90 .

Figure imgb0001
The Fig. 4 shows the definition of the height aspect ratio, which is decisive for the determination of the respective zone widths. In the lower right half of the picture a blade configuration with a number of meridian flow lines is sketched. The middle streamline first gives the position for the determination of the total blade height H when halving the distance between the leading and trailing edges (point G). The height H is determined along a straight line at point G perpendicular to the middle streamline. Furthermore, five flow lines are specified at 10%, 30%, 50%, 70% and 90% of the channel width W (SL10, SL30, SL50, SL70, SL90), along which the respective chord length L is to be determined. The definition of L is shown for any meridian flow area (um level) in the upper left half of the picture. The chord length resulting at xy% of the channel width is here and in the formulas of Figure 4 denoted by LSLxy. The height aspect ratio is finally determined as follows: HSV = 5 H / L SL 10 + L SL 30 + L SL 50 + L SL 70 + L SL 90 ,
Figure imgb0001

Die Zonenweiten werden in Abhängigkeit des Höhenseitenverhältnisses in relativer Form (bezogen auf die Gesamtkanalweite W nach folgender Berechnungsvorschrift bestimmt: WZ 1 / W = WZ 2 / W = 0 , 06 HSV 0 , 65 / HSV

Figure imgb0002
WT 1 / W = WT 2 / W = 0 , 30 HSV 0 , 80 / HSV
Figure imgb0003
WZ 0 / W = 1 - WZ 1 / W - WT 1 / W - WZT 2 / W - WZ 2 / W
Figure imgb0004
The zone widths are determined in relation to the vertical aspect ratio in relative form (relative to the Total channel width W determined according to the following calculation rule: WZ 1 / W = WZ 2 / W = 0 . 06 HSV 0 . 65 / HSV
Figure imgb0002
WT 1 / W = WT 2 / W = 0 . 30 HSV 0 . 80 / HSV
Figure imgb0003
WZ 0 / W = 1 - WZ 1 / W - WT 1 / W - WZT 2 / W - WZ 2 / W
Figure imgb0004

Die Fig.5 zeigt die Definition der Drehachsenposition, die mitbestimmend ist für den erfindungsgemäß vorzusehenden Profilskelettlinientyp PR. Das Bild zeigt schematisch den Stromlinienschnitt durch die verstellbare Statorschaufel bei 5% beziehungsweise 95% Kanalweite. Gezeigt ist der Durchstoßpunkt der Drehachse in der Ebene des Stromlinienschnitts, Punkt D. Dieser Punkt muss nicht zwingend, wie hier dargestellt, innerhalb des Profils liegen. Die gesamte Profilsehnenlänge beträgt L. Festgelegt durch das senkrechte Lot des Punktes D auf die Profilsehne, erhält man den in gleicher Richtung gemessenen Abstand d der Drehachse von der Vorderkante. Die relative Lage der Drehachse in Richtung der Profilsehne wird mit d*=d/L bezeichnet.The Figure 5 shows the definition of the rotational axis position, which is co-determining for the present invention according to profile skeleton line type PR. The picture shows a schematic of the streamline section through the adjustable stator blade at 5% and 95% channel width, respectively. Shown is the puncture point of the axis of rotation in the plane of the streamline section, point D. This point does not necessarily have to lie within the profile, as shown here. The entire chord length is L. Determined by the perpendicular Lot of the point D on the chord, one obtains the measured distance d of the axis of rotation in the same direction from the front edge. The relative position of the axis of rotation in the direction of the chord is denoted by d * = d / L.

Der jeweilige Skelettlinientyp wird in relativer Darstellung mit Hilfe des bezogenen Neigungswinkels α* und der bezogenen Lauflänge s* festgelegt, siehe Fig.6a. Das Bild zeigt einen Stromlinienprofilschnitt der Schaufel auf einer Meridianstromfläche (u-m-Ebene).The respective skeleton line type is determined in relative representation with the help of the related inclination angle α * and the related run length s *, see 6a , The image shows a streamline profile cut of the blade on a meridian flow surface (um-plane).

Dazu werden in allen Punkten der Skelettlinie der Neigungswinkel αP und die bis dorthin zurückgelegte Lauflänge sP bestimmt. Als Bezugsgrößen werden die Neigungswinkel an Vorder- und Hinterkante α1 und α2 sowie die Gesamtlauflänge der Skelettlinie S verwendet. Es gilt: α * α 1 - αP / α 1 - α 2 und s * sP / S .

Figure imgb0005
For this purpose, the inclination angle αP and the run length sP covered up to this point are determined in all points of the skeleton line. As reference values, the inclination angles at leading and trailing edges α1 and α2 as well as the total running length of the skeleton line S are used. The following applies: α * α 1 - αP / α 1 - α 2 and s * sP / S ,
Figure imgb0005

Die Fig.6b zeigt in der bekannten relativen Darstellung die Definition des Skelettlinientyps "PM". Erfindungsgemäße Skelettlinienverläufe befinden sich oberhalb einer Grenzlinie. Skelettlinienverläufe im Ausschlussgebiet unterhalb und auf der Grenzlinie sind nicht erfindungsgemäß. Die Grenzlinie für den Skelettlinientyp "PM" ist durch die folgende Definition gegeben: α * = - 3 , 8512520965 s * 6 + 14 , 6764714420 s * 5 - 21 , 6808727924 s * 4 + 16 , 3850592743 s * 3 - 6 , 9703863077 s * 2 + 2 , 4431236235 s * - 0 , 0060854622

Figure imgb0006
The Figure 6b shows in the known relative representation the definition of the skeleton line type "PM". Skeleton lines according to the invention are located above a boundary line. Skeleton lines in the exclusion area below and on the boundary line are not according to the invention. The boundary line for the skeleton line type "PM" is given by the following definition: α * = - 3 . 8512520965 s * 6 + 14 . 6764714420 s * 5 - 21 . 6808727924 s * 4 + 16 . 3850592743 s * 3 - 6 . 9703863077 s * 2 + 2 . 4431236235 s * - 0 . 0060854622
Figure imgb0006

Beispielhaft ist eine erfindungsgemäß für den Block in Schaufelmitte vorsehbare Skelettlinienverteilung eingezeichnet. Die Fig.6c und 6d zeigen in der bekannten relativen Darstellung die Definition des Skelettlinientyps "PR" für die Drehachsenpositionen d*=0,3 und d*=0,5. Erfindungsgemäße Skelettlinienverläufe befinden sich unter der durchgehenden oberen Grenzlinie und verlaufen über der in einem bestimmten Intervall gegebenen unteren Grenzlinie. Skelettlinienverläufe im Ausschlussgebiet oberhalb und auf der oberen Grenzlinie sind nicht erfindungsgemäß. Skelettlinienverläufe unterhalb oder auf der unteren Grenzlinie sind ebenfalls nicht erfindungsgemäß.By way of example, a skeleton line distribution which can be provided according to the invention for the block in the center of the blade is shown. The 6C and 6d show in the known relative representation the definition of the skeleton line type "PR" for the rotational axis positions d * = 0.3 and d * = 0.5. Skeleton line courses according to the invention are located below the continuous upper limit line and run over the lower limit line given in a specific interval. Skeleton lines in the exclusion area above and on the upper boundary line are not according to the invention. Skeleton line courses below or on the lower boundary line are also not according to the invention.

In Abhängigkeit der relativen Drehachsenpositionen d* sind die Grenzlinien für den Skelettlinientyp "PR" durch folgende Definitionen gegeben:Depending on the relative rotational axis positions d *, the boundary lines for the skeleton line type "PR" are given by the following definitions:

Obere Grenzlinie für d*=0,3 : α * = - 15 , 1441661664 s * 6 + 52 , 8168915277 s * 5 - 67 , 2135203453 s * 4 + 35 , 9670881201 s * 3 - 6 , 8146566070 s * 2 + 1 , 3350483823 s * + 0 , 0535731815

Figure imgb0007
Upper limit line for d * = 0.3: α * = - 15 . 1441661664 s * 6 + 52 . 8168915277 s * 5 - 67 . 2135203453 s * 4 + 35 . 9670881201 s * 3 - 6 . 8146566070 s * 2 + 1 . 3350483823 s * + 0 . 0535731815
Figure imgb0007

Obere Grenzlinie für d*=0,5 : α * = 3 , 6478453237 s * 6 + 5 , 6044881912 s * 5 - 5 , 3211690262 s * 4 + 11 , 7583720270 s * 3 - 4 , 3361971934 s * 2 + 0 , 8062070974 s * + 0 , 0502599068

Figure imgb0008
Upper limit line for d * = 0.5: α * = 3 . 6478453237 s * 6 + 5 . 6044881912 s * 5 - 5 . 3211690262 s * 4 + 11 . 7583720270 s * 3 - 4 . 3361971934 s * 2 + 0 . 8062070974 s * + 0 . 0502599068
Figure imgb0008

Für Drehachsenpositionen d* ungleich 0,3 und 0,5 ist bei der Bestimmung der Werte von α* linear zwischen denen für d*=0,3 und d*=0,5 zu interpolieren: α * d * = α * d = 0 , 5 + α * d * = 0 , 3 - α d * = 0 , 5 * 0 , 5 - d * / 0 , 2

Figure imgb0009
For axes of rotation positions d * other than 0.3 and 0.5, when determining the values of α *, linearly interpolate between those for d * = 0.3 and d * = 0.5: α * d * = α * d = 0 . 5 + α * d * = 0 . 3 - α d * = 0 . 5 * 0 . 5 - d * / 0 . 2
Figure imgb0009

Untere Grenze . α * = 2 , 0 s * - 2 d *

Figure imgb0010
Lower limit . α * = 2 . 0 s * - 2 d *
Figure imgb0010

Gültig im Intervall von s*: (d*+0,1 ; d*+0,3) Beispielhaft ist in Fig.6c und 6d je eine erfindungsgemäß für den Schaufelrandblock vorsehbare Skelettlinienverteilung eingezeichnet.Valid in the interval of s *: (d * + 0.1, d * + 0.3) 6C and 6d depending on the invention provided for the blade edge block providable skeletal line distribution.

Bei der erfindungsgemäßen Schaufel für Strömungsarbeitsmaschinen wie Bläser, Verdichter, Pumpen und Ventilatoren wird eine Randströmungsbeeinflussung erzielt, die bei gleicher Stabilität den Wirkungsgrad einer jeden Stufe um etwa 1% erhöhen kann. Zudem ist eine Reduzierung der Schaufelzahlen von bis zu 20% möglich. Das erfindungsgemäße Konzept ist bei unterschiedlichen Arten von Strömungsarbeitsmaschinen anwendbar und führt je nach Ausnutzungsgrad des Konzeptes zu Reduktionen der Kosten und des Gewichts für die Strömungsarbeitsmaschine von 2% bis 10%. Hinzu kommt eine Verbesserung des Gesamtwirkungsgrades der Strömungsarbeitsmaschine, je nach Anwendungsfall, von bis zu 1,5% .In the blade according to the invention for fluid flow machines such as fans, compressors, pumps and fans an edge flow control is achieved, which can increase the efficiency of each stage by about 1% with the same stability. In addition, a reduction in the number of blades of up to 20% is possible. The inventive concept is applicable to different types of turbomachines and, depending on the degree of utilization of the concept, leads to reductions in costs and weight for the turbomachine of 2% to 10%. In addition, there is an improvement in the overall efficiency of the fluid flow machine, depending on the application, of up to 1.5%.

Claims (2)

  1. Variable stator of a fluid flow machine with a profile skeleton line extending along a meridional flow line, with the stator being rotatable around a rotating axis and with the stator being radially divided into at least three zones (Z0, Z1, Z2), with the zones (Z1, Z2) being blade rim zones and the zone (Z0) being a blade mid zone and with the profile skeleton lines of each zone (Z0, Z1, Z2) being provided in each of the three zones from the respective radially inner to the radially outer boundary such that they satisfy the following equations: α * = α 1 - α P α 1 - α 2
    Figure imgb0021
    s * = s P S
    Figure imgb0022

    where:
    - P is any point of the profile skeleton line,
    - α1 is the angle of inclination at the stator leading edge,
    - α2 is the angle of inclination at the stator trailing edge,
    - α* is the dimensionless, specific angle of the total curvature,
    - s* is the dimensionless, specific extension,
    - αP is the angle of the tangent at any point P of the profile skeleton line to the central meridional flow line,
    - sP is the extension of the profile skeleton line at any point P, and
    - S is the total extension of the profile skeleton line,
    characterized in that, when represented in a diagram, in which the dimensionless, specific angle α* is shown as a function of the dimensionless, specific extension s*, the profile skeleton line is provided in a blade rim zone (Z1, Z2) of the stator at its firmly attached end (Z1, Z2), when the extension of the skeleton line is represented in the form of α* as a function of s*, below a boundary line shown in the diagram, with the boundary line satisfying the following equation: α * d * , s * = α * d * = 0.5 + α * d * = 0.3 - α * d * = 0.5 * 0.5 - d * / 0.2 ,
    Figure imgb0023

    where: α * d * = 0.3 = - 15.1441661664 s * 6 + 52.8168915277 s * 5 - 67.2135203453 s * 4 + 35.9670881201 s * 3 - 6.8146566070 s * 2 + 1.3350483823 s * + 0.0535731815
    Figure imgb0024

    and α * d * = 0.5 = 3.6478453237 s * 6 - 5.6044881912 s * 5 - 5.3211691062 s * 4 + 11.7583720270 s * 3 - 4.3361971934 s * 2 + 0.8062070974 s * + 0.0502599068 ,
    Figure imgb0025

    with a relative rotating axis of the stator being arranged on a perpendicular erected on the profile chord in the plane of the respective flow-line section and a distance d of the rotating axis D from the leading edge of the stator being defined by the perpendicular erected on the profile chord, with the relative position of the rotating axis d* being defined by d*=d/L, where L is the total profile chord length of the blade at the firmly attached end and d is the distance of the rotating axis D from the stator leading edge in profile chord direction, with a height-to-side ratio (HSV) being determined to the following equation: HSV = 5 H / L SL 10 + L SL 30 + L SL 50 + L SL 70 + L SL 90 ,
    Figure imgb0026

    where:
    - H is the height along a straight line extending in the meridional plane established by the radial direction r and the axial direction x, normal to a central flow line in a point G, with the central flow line being the geometric center of the flow path, in which the stator is arranged,
    - L is the length of the profile chord, and
    - the individual lengths L of the profile chords for five flow lines are at 10%, 30%, 50%, 70% and 90 % of an annulus duct width W of a flow path, in which the stator is arranged,
    with zone widths being determined in dependence of the height-to-side ratio (HSV) in relative form, related to an annulus duct width of the flow path (W) according to the following rule: WZ 1 / W = WZ 2 / W = 0.06 HSV 0.65 / HSV
    Figure imgb0027
    WT 1 / W = WT 2 / W = 0.30 HSV 0.80 / HSV
    Figure imgb0028
    WZ 0 / W = 1 - WZ 1 / W - WT 1 / W - WZT 2 / W - WZ 2 / W ,
    Figure imgb0029

    where:
    - W is the annulus duct width of the flow path,
    - WZ1 is the partial duct width in a zone Z1,
    - WZ2 is the partial duct width in a zone Z2,
    - WZ0 is the partial duct width in a central zone ZO,
    - WT1 is the partial duct width in a transition zone between zone Z1 and zone Z0, and
    - WT2 is the partial duct width in a transition zone between zone Z0 and zone Z2.
  2. Stator in accordance with Claim 1, characterized in that the profile skeleton line in an area of the stator in the blade mid zone (Z0), when representing the extension of the skeleton line in the form α* as a function of s* is provided above a boundary line satisfying the following equation: α * = - 3.8512520965 s * 6 + 14.6764714420 s * 5 - 21.6808727924 s * 4 + 16.3850592743 s * 3 - 6.9703863077 s * 2 + 2.4431236235 s * - 0.060854622
    Figure imgb0030
EP06024318A 2005-12-19 2006-11-23 Airfoil shape for variable stator vanes Not-in-force EP1798375B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005060699A DE102005060699A1 (en) 2005-12-19 2005-12-19 Turbomachine with adjustable stator

Publications (3)

Publication Number Publication Date
EP1798375A2 EP1798375A2 (en) 2007-06-20
EP1798375A3 EP1798375A3 (en) 2008-10-29
EP1798375B1 true EP1798375B1 (en) 2011-03-02

Family

ID=37905790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06024318A Not-in-force EP1798375B1 (en) 2005-12-19 2006-11-23 Airfoil shape for variable stator vanes

Country Status (3)

Country Link
US (1) US7416382B2 (en)
EP (1) EP1798375B1 (en)
DE (2) DE102005060699A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040574A1 (en) * 2005-08-26 2007-03-15 Rolls-Royce Deutschland Ltd & Co Kg Gap control device for a gas turbine
DE102006055869A1 (en) 2006-11-23 2008-05-29 Rolls-Royce Deutschland Ltd & Co Kg Rotor and guide blades designing method for turbo-machine i.e. gas turbine engine, involves running skeleton curve in profile section in sectional line angle distribution area lying between upper and lower limit curves
US8834104B2 (en) * 2010-06-25 2014-09-16 Honeywell International Inc. Vanes for directing exhaust to a turbine wheel
DE102010027588A1 (en) * 2010-07-19 2012-01-19 Rolls-Royce Deutschland Ltd & Co Kg Fan-Nachleitradschaufel a turbofan engine
JP5608062B2 (en) * 2010-12-10 2014-10-15 株式会社日立製作所 Centrifugal turbomachine
EP2660423B1 (en) * 2010-12-27 2019-07-31 Mitsubishi Hitachi Power Systems, Ltd. Blade body and rotary machine
JP6468414B2 (en) * 2014-08-12 2019-02-13 株式会社Ihi Compressor vane, axial compressor, and gas turbine
US9995166B2 (en) * 2014-11-21 2018-06-12 General Electric Company Turbomachine including a vane and method of assembling such turbomachine
US9845684B2 (en) * 2014-11-25 2017-12-19 Pratt & Whitney Canada Corp. Airfoil with stepped spanwise thickness distribution
EP3421754B1 (en) * 2016-03-30 2021-12-01 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Variable geometry turbocharger
DE102016115868A1 (en) * 2016-08-26 2018-03-01 Rolls-Royce Deutschland Ltd & Co Kg High-efficiency fluid flow machine
CN106593943B (en) * 2016-12-06 2019-01-04 大连理工大学 A kind of core main pump runner forming method based on intermediate line traffic control
IT202000005146A1 (en) * 2020-03-11 2021-09-11 Ge Avio Srl TURBINE ENGINE WITH AERODYNAMIC PROFILE HAVING HIGH ACCELERATION AND LOW VANE CURVE
CN112145409B (en) * 2020-08-28 2022-04-26 江苏大学 Non-uniform incoming flow suppression device for wing plate at pump inlet
CN114109893B (en) * 2022-01-27 2022-06-21 中国航发上海商用航空发动机制造有限责任公司 Method for shaping compressor blade and compressor blade
US12071889B2 (en) 2022-04-05 2024-08-27 General Electric Company Counter-rotating turbine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835349C2 (en) * 1978-08-11 1979-12-20 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Adjustable grille for highly loaded compressors, especially of gas turbine engines
US5221181A (en) * 1990-10-24 1993-06-22 Westinghouse Electric Corp. Stationary turbine blade having diaphragm construction
GB9119846D0 (en) 1991-09-17 1991-10-30 Rolls Royce Plc Aerofoil members for gas turbine engines and method of making the same
JP3082378B2 (en) * 1991-12-20 2000-08-28 株式会社デンソー Blower fan
DE4344189C1 (en) 1993-12-23 1995-08-03 Mtu Muenchen Gmbh Axial vane grille with swept front edges
US5492446A (en) * 1994-12-15 1996-02-20 General Electric Company Self-aligning variable stator vane
DE69820853T2 (en) 1998-03-23 2004-11-18 Spal S.R.L., Correggio Axial
EP0945625B1 (en) 1998-03-23 2004-03-03 SPAL S.r.l. Axial flow fan
US6129528A (en) * 1998-07-20 2000-10-10 Nmb Usa Inc. Axial flow fan having a compact circuit board and impeller blade arrangement
US6299412B1 (en) 1999-12-06 2001-10-09 General Electric Company Bowed compressor airfoil
US6331100B1 (en) 1999-12-06 2001-12-18 General Electric Company Doubled bowed compressor airfoil
US6457938B1 (en) * 2001-03-30 2002-10-01 General Electric Company Wide angle guide vane
DE50306855D1 (en) * 2003-08-19 2007-05-03 Siemens Ag Vorleitschaufelring for a compressor and a turbine
ITMI20032388A1 (en) 2003-12-05 2005-06-06 Nuovo Pignone Spa VARIABLE NOZZLE FOR A GAS TURBINE.

Also Published As

Publication number Publication date
DE502006008986D1 (en) 2011-04-14
US20070140837A1 (en) 2007-06-21
DE102005060699A1 (en) 2007-06-21
EP1798375A3 (en) 2008-10-29
EP1798375A2 (en) 2007-06-20
US7416382B2 (en) 2008-08-26

Similar Documents

Publication Publication Date Title
EP1798375B1 (en) Airfoil shape for variable stator vanes
EP1760321A2 (en) Blade for turbomachine
EP2096260B1 (en) Turbo machine comprising rotor assemblies with small outlet flow deviation angle
EP1657401B1 (en) Turbomachine comprising blades with an extended profile chord length in its tip region
EP1632662B1 (en) Turbomachine with bleeding
EP2025945B1 (en) Flow working machine with ring canal wall fitting
EP2463480B1 (en) Blade with hybrid airfoil
EP2275643B1 (en) Engine blade with excess front edge loading
EP2151582A2 (en) Flow work machine
DE102007056953B4 (en) Turbomachine with Ringkanalwandausnehmung
EP2947270B3 (en) Rotor series group
EP2761137B1 (en) Blade of a row of rotor blades or stator blades for use in a turbomachine
EP2913478B1 (en) Tandem blades of a turbo-machine
EP2226510B1 (en) Turbo compressor or pump with fluid injection to influence the boundary layer
CH697806B1 (en) Shroud of a blade leaf of a turbine blade.
EP1998049A2 (en) Flow processing machine blade with multi-profile configuration
EP2275647A2 (en) Flow working machine with rotor series group
EP3287640A1 (en) Fluid flow machine with high performance
EP1953340B1 (en) Flow machine and rotor shovel for a flow machine
DE977491C (en) Axial flow compressor or turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/56 20060101ALI20080925BHEP

Ipc: F04D 29/46 20060101ALI20080925BHEP

Ipc: F01D 17/16 20060101ALI20080925BHEP

Ipc: F01D 5/14 20060101AFI20070417BHEP

Ipc: F04D 29/32 20060101ALI20080925BHEP

17P Request for examination filed

Effective date: 20081118

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20091009

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006008986

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006008986

Country of ref document: DE

Effective date: 20110414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008986

Country of ref document: DE

Effective date: 20111205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191127

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191125

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191127

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006008986

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601