EP2025811A1 - Method and control system for laying a road paving - Google Patents

Method and control system for laying a road paving Download PDF

Info

Publication number
EP2025811A1
EP2025811A1 EP07016122A EP07016122A EP2025811A1 EP 2025811 A1 EP2025811 A1 EP 2025811A1 EP 07016122 A EP07016122 A EP 07016122A EP 07016122 A EP07016122 A EP 07016122A EP 2025811 A1 EP2025811 A1 EP 2025811A1
Authority
EP
European Patent Office
Prior art keywords
screed
leveling cylinder
installation
height
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07016122A
Other languages
German (de)
French (fr)
Other versions
EP2025811B1 (en
Inventor
Jens Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP07016122.9A priority Critical patent/EP2025811B1/en
Priority to US12/191,624 priority patent/US7654769B2/en
Priority to CN2008101475017A priority patent/CN101368361B/en
Publication of EP2025811A1 publication Critical patent/EP2025811A1/en
Application granted granted Critical
Publication of EP2025811B1 publication Critical patent/EP2025811B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • E01C19/4873Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/008Devices for guiding or controlling the machines along a predetermined path by reference lines placed along the road, e.g. wires co-operating with feeler elements

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a control system according to the preamble of patent claim 5.
  • height sensors are installed on the paving train at the front end, at the rear end of the paver in the transverse spreading device, and on the screed and optionally the drawbars, which are used to measure the thickness by scanning the reference (for example a guidewire or runners sliding on the surface) ,
  • the leveling cylinders are each adjusted in the direction predetermined by a deviation (too small or too thick a thickness) until the desired layer thickness is reached again.
  • the large number of height sensors requires high costs and high-quality signal processing.
  • the resulting height change relative to the respective leveling cylinder e.g. with regard to the adjustment direction of the leveling cylinder, evaluated, and the leveling cylinders are driven until the height difference has reduced to zero.
  • the detected height difference is only minimal, the leveling cylinder moves to the stop and the thickness deviation is not corrected correctly.
  • the placements of the height sensors compromise accuracy and evenness by placing multiple height sensors in the area between the screed trailing edge and the leveling cylinder and, optionally, at the level of the transverse spreading device. The achievable despite the high cost accuracy of the layer thickness is not always satisfactory. Installation-influencing parameters such as installation speed, body temperature, compaction, material consistency, and the like, make accuracy and accurate thickness measurement difficult.
  • the invention has for its object to provide a method and a control system of the type mentioned, with the installation error with high accuracy due to ungested Target layer thickness can be avoided, the method should be feasible by the simple and fast response control system.
  • the height measurement is carried out as close as possible to the decisive point for the accuracy of the screed, namely at or in the vicinity of the screed trailing edge to measure the installation height or actual height with respect to the reference and immediately upon the occurrence of a deviation from the target height to be able to react.
  • the placement of the height sensors at or near the screed trailing edge and the adjustment of each leveling cylinder only over a respective given absolute stroke a more accurate, yet level installation is possible.
  • Parameters influencing the installation such as the installation speed, the temperature of the paving material, the compaction of the ceiling layer, the material consistency, and the like, are compensated only by an absolute stroke due to the height measurement on the screed trailing edge and the adjustment of the leveling cylinders.
  • the respective zero point of the leveling cylinder is automatically learned automatically and automatically corrects itself again and again as soon as the control differential value of the height sensors or inclination sensors has been reduced to a minimum.
  • This automatic teach-in process has the advantage that even an erroneously incorrect input of the built-in ratio factor leads to the correct result.
  • the inclination measurement, alternative or additive, either leads to the same result or supports the altitude measurement.
  • the control system is simple, responsive, and surprisingly works very reliably with a few sensors on the screed.
  • the leveling cylinder setting position selected as the zero point and set a current measured control differential value of the height sensors and / or inclination sensor relative to the reference to zero.
  • the actual height and / or inclination is measured relative to the reference. If a deviation occurs, a new current control difference value different from zero is determined by means of the height sensors and / or inclination sensor.
  • the absolute stroke required for the correction for the leveling cylinder is calculated, and the leveling cylinder is started from the previously selected zero point over the calculated absolute stroke, in the direction in which the new current control difference value would have to be reduced to a predetermined minimum. With continued installation, the achievement of the predetermined minimum is monitored.
  • the previously set installation ratio or the factor is increased or decreased via an adaptive built-in ratio controller until the expected minimum of the control difference value is reached.
  • new leveling cylinder setting positions are selected as the zero point and adopted in the control system. Then the control system is ready for a new control cycle.
  • the control system thus operates self-learning and the correction is made relatively quickly and accurately, and without the risk of the leveling cylinder, e.g. in the case of a small control differential value, in the absence of a sufficiently meaningful control variable, it moves too far and to the limit and the height deviation is either not at all or overcorrected.
  • the absolute stroke is calculated and controlled for both leveling cylinders.
  • a constant ratio between a lift increment of the leveling cylinder and the lifting stroke or lowering stroke or tilting stroke of the screed at the reference measuring point e.g. at or in the area of the screed trailing edge.
  • Fig. 1 shows a side view of a paving train, consisting of a paver with at least one towbar towed to Switzerlandholmen.
  • the in Fig. 1 paver shown has a chassis 1 on a chassis and on the chassis at the front end of a bins 3 bins. Behind the built-in bunker 3 is a primary drive source 4, for example, a diesel engine, installed in the chassis, behind which is a cab with a control panel 5.
  • the paver F has a computerized control device in or to which a control system R is incorporated or connected.
  • the control system R or the controller is equipped with a self-learning built-in ratio controller R1, which increases or decreases a previously entered installation ratio factor for consideration in the control system R, for example, when a corrective measure driven leveling cylinder Z is not or z. B. does not lead to the desired result after a certain time. Further, a calculation section B is provided.
  • leveling cylinders Z for example hydraulic cylinders, double-acting
  • the screed B is fixedly mounted on the Switzerlandholmen 6.
  • the screed B may carry at least one inclination sensor N, which may be connected to the controller or the control system R.
  • the inclination of the screed B can be varied via the inclination sensor N.
  • height sensors H At the screed B in the vicinity of the screed trailing edge 7 on one side at least one or on both sides height sensors H are installed, which are at a distance from a reference R installed on a subgrade M, e.g. a guidewire, measure.
  • each leveling cylinder Z adjusts the traction point P by control of the control system R, each starting from a current zero point N in the direction of the double arrow 8 up or down to adjust the thickness D of a ceiling layer S and / or correct, by means of the screed B is installed on the Planum M.
  • the tilt sensor N if present, measures the transverse slope of the screed B relative to the planum P.
  • a transverse distribution device 9 is provided, for example a distributor screw.
  • the screed B is in the embodiment shown a Ausziehbohle whose working width is variable.
  • a screed middle part and Ausziehbohlenmaschine each have a screed plate 11, before the screed plate a tamper 10, and on or behind the screed plate 11, a high compression device 12, for example with one or more hydraulically acted pressure bars, for example.
  • the lever arm X between the pull point P and the screed trailing edge 7 influences the so-called installation ratio. For this reason, in the method according to the invention (for the regulation, eg in a closed control loop), an installation ratio factor taking this lever arm X into account is entered into the installation ratio controller R1 or the control system R or the control 5.
  • the screed B Before the start of installation, the screed B, for example, by underlying planks, adjusted to the desired target layer thickness D, where appropriate, the adjustment is carried out using previously or previously determined parameters.
  • the leveling cylinders Z are also adjusted in order to set the desired layer thickness or desired height of the layer surface above the plane P determining angle of attack of the screed and / or its transverse slope, which is later dragged floating on the built-in ceiling layer S.
  • the current height position of the leveling cylinder Z is set in the control system R as the zero point.
  • the control difference value of the height sensors and / or the inclination sensor N, which they detect by sensing the reference R, is also set to zero.
  • the paver F travels while the building material (bituminous or concrete building material) is dropped from the built-in bunker 3 with a conveying device (not shown) in the chassis in front of the transverse distribution device, distributed and then installed by the screed B.
  • the determined control difference value in the control system R is converted into an absolute stroke for the leveling cylinder Z taking into account the inputted installation factor.
  • the built-in ratio factor takes into account how the height of the screed B (or the layer thickness) changes at the screed trailing edge 7 at a certain stroke increment of the leveling cylinder Z. If the layer thickness increases, then the angle of attack of the screed B must be set flatter. If the layer thickness decreases compared to the target layer thickness D, then the angle of attack of the screed B must be set steeper.
  • the leveling cylinders Z are adjusted only over the calculated absolute stroke and starting from the selected zero point in the required direction. As a result, the layer thickness would have to be corrected again to the target layer thickness. This is monitored by further height measurements of the height sensors H or inclination measurements of the inclination sensor N until the control difference value becomes zero or a predetermined minimum, confirming that the controlled absolute stroke of the leveling cylinders was correct. Then the new height position of the leveling cylinder Z in the control system is selected as the new zero point. If a deviation occurs again later, the procedure is repeated accordingly.
  • the previously set installation ratio (the factor) is increased or decreased via a learning integration ratio controller R1 in the control or in the control system R until the expected minimum of the control difference value is reached becomes.
  • the two leveling cylinders Z are set to different height positions and these height positions are selected as their zero point.
  • the inclination sensor N cooperating with the control or the control system R can be used on the paver F or the screed B, or in the simplest case a spirit level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

The method involves calculating an absolute stroke for a leveling cylinder (Z) from a new actual differential measurement value and from an input construction ratio factor. The ratio factor is adjusted for the calculation of the absolute stroke by a self-learning construction ratio controller (R1) until a predetermined minimum value of the differential measurement value is reached. A new leveling cylinder adjustment position is selected as a new zero point (NP), and the predetermined minimum value is set to zero in a regulating system (R), when the predetermined minimum value is reached. An independent claim is also included for a regulating system for adjusting elevation position of a road paver, comprising a paving screed.

Description

Die Erfindung betrifft ein Verfahren gemäß Oberbegriff des Patentanspruchs 1 und ein Regelsystem gemäß Oberbegriff des Patentanspruchs 5.The invention relates to a method according to the preamble of patent claim 1 and a control system according to the preamble of patent claim 5.

In der Praxis des Verkehrsflächenbaus sind verschiedene Verfahren zur Schichtdickenkorrektur bekannt.In the practice of traffic surface construction, various methods for layer thickness correction are known.

Bei einem bekannten Verfahren sind am Einbauzug am Vorderende, am Hinterende des Straßenfertigers bei der Querverteilvorrichtung, und an der Einbaubohle und gegebenenfalls den Zugholmen Höhensensoren installiert, die unter Abtasten der Referenz (beispielsweise einem Leitdraht oder mittels auf dem Planum gleitender Kufen) zur Dickenmessung eingesetzt werden. Die Nivellierzylinder werden jeweils so lange in der durch eine Abweichung (zu geringe oder zu starke Dicke) vorgegebenen Richtung verstellt, bis die Sollschichtdicke wieder erreicht ist. Die große Anzahl der Höhensensoren bedingt hohe Kosten und eine hochwertige Signalverarbeitung.In a known method, height sensors are installed on the paving train at the front end, at the rear end of the paver in the transverse spreading device, and on the screed and optionally the drawbars, which are used to measure the thickness by scanning the reference (for example a guidewire or runners sliding on the surface) , The leveling cylinders are each adjusted in the direction predetermined by a deviation (too small or too thick a thickness) until the desired layer thickness is reached again. The large number of height sensors requires high costs and high-quality signal processing.

Bei einem anderen bekannten Verfahren wird bei einer Abweichung die sich ergebende Höhenveränderung relativ zum jeweiligen Nivellierzylinder, z.B. hinsichtlich der Verstellrichtung des Nivellierzylinders, ausgewertet, und werden die Nivellierzylinder so lange angesteuert, bis sich die Höhendifferenz auf Null reduziert hat. Obwohl manchmal die festgestellte Höhendifferenz nur minimal ist, fährt der Nivellierzylinder bis auf Anschlag und wird die Dickenabweichung nicht korrekt korrigiert. Mit den Platzierungen der Höhensensoren wird ein Kompromiss aus Genauigkeit und Ebenheit eingegangen, indem mehrere Höhensensoren im Bereich zwischen der Bohlenhinterkante und dem Nivellierzylinder und gegebenenfalls auf Höhe der Querverteilvorrichtung angeordnet werden. Die trotz des hohen Aufwands erreichbare Genauigkeit der Schichtdicke ist nicht immer zufriedenstellend. Den Einbau beeinflussende Parameter, wie die Einbaugeschwindigkeit, die Temperatur des Einbauguts, die hergestellte Verdichtung, die Materialkonsistenz, und dgl., erschweren die Genauigkeit und die präzise Dickenmessung.In another known method, if there is a deviation, the resulting height change relative to the respective leveling cylinder, e.g. with regard to the adjustment direction of the leveling cylinder, evaluated, and the leveling cylinders are driven until the height difference has reduced to zero. Although sometimes the detected height difference is only minimal, the leveling cylinder moves to the stop and the thickness deviation is not corrected correctly. The placements of the height sensors compromise accuracy and evenness by placing multiple height sensors in the area between the screed trailing edge and the leveling cylinder and, optionally, at the level of the transverse spreading device. The achievable despite the high cost accuracy of the layer thickness is not always satisfactory. Installation-influencing parameters such as installation speed, body temperature, compaction, material consistency, and the like, make accuracy and accurate thickness measurement difficult.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und ein Regelsystem der eingangs genannten Art anzugeben, mit der mit hoher Genauigkeit Einbaufehler infolge nicht eingehaltener Sollschichtdicke vermieden werden, wobei das Verfahren durch das einfache und schnell ansprechende Regelsystem führbar sein soll.The invention has for its object to provide a method and a control system of the type mentioned, with the installation error with high accuracy due to ungested Target layer thickness can be avoided, the method should be feasible by the simple and fast response control system.

Die gestellte Aufgabe wird mit den im Patentanspruch 1 und Patentanspruch 5 enthaltenen Merkmalen gelöst.The stated object is achieved with the features contained in claim 1 and claim 5.

Verfahrensgemäß wird die Höhenmessung so nahe wie möglich bei der für die Genauigkeit entscheidender Stelle der Einbaubohle, nämlich an oder in der Nähe der Bohlenhinterkante durchgeführt, um die Einbauhöhe bzw. Isthöhe in Bezug auf die Referenz präzise messen und bei Auftreten einer Abweichung von der Sollhöhe sofort reagieren zu können. Durch die Platzierung der Höhensensoren an oder nahe der Bohlenhinterkante und die Verstellung jedes Nivellierzylinders nur über einen jeweils vorgegebenen Absoluthub ist ein genauerer und dennoch ebener Einbau möglich. Den Einbau beeinflussende Parameter, wie die Einbaugeschwindigkeit, die Temperatur des Einbauguts, die hergestellte Verdichtung der Deckenschicht, die Materialkonsistenz, und dgl., werden durch die Höhenmessung an der Bohlenhinterkante und die Verstellung der Nivellierzylinder nur jeweils über einen Absoluthub ausgeglichen. Der jeweilige Nullpunkt des Nivellierzylinders wird automatisch selbsttätig gelernt und korrigiert sich automatisch stets aufs Neue, sobald sich der Regeldifferenzwert der Höhensensoren oder von Neigungssensoren auf ein Minimum reduziert hat. Dieser automatische Einlernvorgang hat den Vorteil, dass selbst eine irrtümlich unrichtige Eingabe des Einbauverhältnis-Faktors zum richtigen Ergebnis führt. Die Neigungsmessung, alternativ oder additiv, führt entweder zum gleichen Ergebnis, oder unterstützt die Höhenmessung.According to the method, the height measurement is carried out as close as possible to the decisive point for the accuracy of the screed, namely at or in the vicinity of the screed trailing edge to measure the installation height or actual height with respect to the reference and immediately upon the occurrence of a deviation from the target height to be able to react. The placement of the height sensors at or near the screed trailing edge and the adjustment of each leveling cylinder only over a respective given absolute stroke a more accurate, yet level installation is possible. Parameters influencing the installation, such as the installation speed, the temperature of the paving material, the compaction of the ceiling layer, the material consistency, and the like, are compensated only by an absolute stroke due to the height measurement on the screed trailing edge and the adjustment of the leveling cylinders. The respective zero point of the leveling cylinder is automatically learned automatically and automatically corrects itself again and again as soon as the control differential value of the height sensors or inclination sensors has been reduced to a minimum. This automatic teach-in process has the advantage that even an erroneously incorrect input of the built-in ratio factor leads to the correct result. The inclination measurement, alternative or additive, either leads to the same result or supports the altitude measurement.

Das Regelsystem ist einfach, spricht präzise an, und arbeitet überraschend mit wenigen Sensoren an der Einbaubohle sehr zuverlässig.The control system is simple, responsive, and surprisingly works very reliably with a few sensors on the screed.

Zweckmäßig wird bei einer bevorzugten Verfahrensvariante vor Einbaubeginn und zunächst "von Hand" einjustierter Einbaubohle oder früher gelernter Parameter die Nivellierzylinder-Einstellposition als Nullpunkt gewählt und ein aktueller gemessener Regeldifferenzwert der Höhensensoren und/oder des Neigungssensors relativ zur Referenz auf Null gesetzt. Während des Einbaus wird die Isthöhe und/oder Istneigung relativ zur Referenz gemessen. Bei Auftreten einer Abweichung wird mittels der Höhensensoren und/oder Neigungssensors ein neuer aktueller Regeldifferenzwert verschieden von Null ermittelt. Aus diesem wird unter Berücksichtigung des eingegebenen Einbauverhältnis-Faktors, der zumindest den Hebelarm zwischen dem Zugpunkt und dem Referenzmesspunkt berücksichtigt, der zur Korrektur erforderliche Absoluthub für den Nivellierzylinder errechnet und wird der Nivellierzylinder ausgehend von dem zuvor gewählten Nullpunkt über den errechneten Absoluthub verstellt, und zwar in der Richtung, in der der neue aktuelle Regeldifferenzwert bis zu einem vorbestimmten Minimum reduziert werden müsste. Bei fortgesetztem Einbau wird das Erreichen des vorbestimmten Minimums überwacht.Appropriately, in a preferred variant of the method before the start of installation and initially "manually" adjusted screed or previously learned parameters, the leveling cylinder setting position selected as the zero point and set a current measured control differential value of the height sensors and / or inclination sensor relative to the reference to zero. During installation, the actual height and / or inclination is measured relative to the reference. If a deviation occurs, a new current control difference value different from zero is determined by means of the height sensors and / or inclination sensor. For this, taking into account the input installation ratio factor which takes into account at least the lever arm between the traction point and the reference measuring point, the absolute stroke required for the correction for the leveling cylinder is calculated, and the leveling cylinder is started from the previously selected zero point over the calculated absolute stroke, in the direction in which the new current control difference value would have to be reduced to a predetermined minimum. With continued installation, the achievement of the predetermined minimum is monitored.

Bei Nichterreichen des vorbestimmten Minimums wird über einen lernfähig ausgebildeten Einbauverhältnis-Regler das zuvor eingestellte Einbauverhältnis bzw. der -Faktor vergrößert oder verkleinert, bis das erwartete Minimum des Regeldifferenzwerts erreicht wird.If the predetermined minimum is not achieved, the previously set installation ratio or the factor is increased or decreased via an adaptive built-in ratio controller until the expected minimum of the control difference value is reached.

Sobald das vorbestimmte Minimum erreicht ist, werden neue Nivellierzylinder-Einstellpositionen als Nullpunkt gewählt und im Regelsystem übernommen. Dann ist das Regelsystem für einen neuen Regelzyklus bereit. Das Regelsystem arbeitet demzufolge selbstlernend und die Korrektur wird relativ rasch und genau durchgeführt, und ohne Gefahr, dass der Nivellierzylinder, z.B. bei einem kleinen Regeldifferenzwert, mangels einer ausreichend aussagefähigen Regelführungsgröße, zu weit und auf Anschlag verfährt und die Höhenabweichung entweder überhaupt nicht oder überkorrigiert.Once the predetermined minimum is reached, new leveling cylinder setting positions are selected as the zero point and adopted in the control system. Then the control system is ready for a new control cycle. The control system thus operates self-learning and the correction is made relatively quickly and accurately, and without the risk of the leveling cylinder, e.g. in the case of a small control differential value, in the absence of a sufficiently meaningful control variable, it moves too far and to the limit and the height deviation is either not at all or overcorrected.

Soll verfahrensgemäß eine Deckenschicht mit gegenüber dem Planum seitlich geneigter Oberfläche eingebaut werden, dann werden die Nullpunkte der beiden Nivellierzylinder an beiden Seiten des Straßenfertigers auf unterschiedliche Höhen gestellt, z.B. unter Verwendung des Neigungssensors. Dies ist für das Regelsystem kein Erschwernis, weil jeder Regelzyklus stets ausgehend vom Nullpunkt des Nivellierzylinders erfolgt, ohne dessen tatsächliche Höheneinstellposition berücksichtigen zu müssen.If, according to the method, a cover layer with a surface inclined laterally relative to the plane is installed, then the zero points of the two leveling cylinders on both sides of the road paver are set at different heights, e.g. using the tilt sensor. This is no complication for the control system, because each control cycle always takes place from the zero point of the leveling cylinder, without having to take into account its actual height adjustment position.

Der Absoluthub wird für beide Nivellierzylinder errechnet und eingesteuert.The absolute stroke is calculated and controlled for both leveling cylinders.

Zweckmäßig wird als der eingegebene Einbauverhältnis-Faktor ein konstantes Verhältnis zwischen einem Hubinkrement des Nivellierzylinders und dem beim Einbau von diesem Hubinkrement bewirkten oder - aus Erfahrung zu erwartenden - Hebehub bzw. Senkhub bzw. Neigehub der Einbaubohle am Referenzmesspunkt, z.B. an oder im Bereich der Bohlenhinterkante, gewählt.Conveniently, as the input installation ratio factor, a constant ratio between a lift increment of the leveling cylinder and the lifting stroke or lowering stroke or tilting stroke of the screed at the reference measuring point, e.g. at or in the area of the screed trailing edge.

Der Erfindungsgegenstand wird anhand der Zeichnung erläutert.The subject invention is explained with reference to the drawing.

Fig. 1 zeigt eine Seitenansicht eines Einbauzugs, bestehend aus einem Straßenfertiger mit zumindest einer an Zugholmen geschleppten Einbaubohle. Fig. 1 shows a side view of a paving train, consisting of a paver with at least one towbar towed to Zugholmen.

Der in Fig. 1 gezeigte Straßenfertiger weist an einem Chassis 1 ein Fahrwerk und auf dem Chassis am vorderen Ende einen Einbaugut-Bunker 3 auf. Hinter dem Einbaugut-Bunker 3 ist eine Primärantriebsquelle 4, beispielsweise ein Dieselmotor, in das Chassis eingebaut, hinter dem sich ein Führerstand mit einer Steuerkonsole 5 befindet. Der Straßenfertiger F besitzt eine computerisierte Steuervorrichtung, in oder an die ein Regelsystem R eingegliedert bzw. angeschlossen ist. Das Regelsystem R bzw. die Steuerung ist mit einem selbstlernenden Einbauverhältnis-Regler R1 ausgestattet, der einen zuvor eingegebenen Einbauverhältnis-Faktor zur Berücksichtigung im Regelsystem R z.B. dann vergrößert oder verkleinert, wenn eine Korrekturmaßnahme angesteuerte Nivellierzylinder Z nicht oder z. B. nach einer bestimmten Zeit nicht zum gewünschten Resultat führt. Ferner ist eine Rechensektion B vorgesehen.The in Fig. 1 paver shown has a chassis 1 on a chassis and on the chassis at the front end of a bins 3 bins. Behind the built-in bunker 3 is a primary drive source 4, for example, a diesel engine, installed in the chassis, behind which is a cab with a control panel 5. The paver F has a computerized control device in or to which a control system R is incorporated or connected. The control system R or the controller is equipped with a self-learning built-in ratio controller R1, which increases or decreases a previously entered installation ratio factor for consideration in the control system R, for example, when a corrective measure driven leveling cylinder Z is not or z. B. does not lead to the desired result after a certain time. Further, a calculation section B is provided.

Am Chassis 1 sind an beiden Seiten des Straßenfertigers F etwa in der Längsmitte Nivellierzylinder Z (z.B. Hydraulikzylinder, doppeltwirkend) angeordnet, die zur Höhenverstellung von Zugpunkten P eine Einbaubohle B schleppender Zugholme 6 dienen. Die Einbaubohle B ist an den Zugholmen 6 fest montiert. Die Einbaubohle B kann zumindest einen Neigungssensor N tragen, der mit der Steuerung bzw. dem Regelsystem R verbunden sein kann. Gegebenenfalls lässt sich die Neigung der Einbaubohle B über den Neigungssensor N variieren. An der Einbaubohle B ist in der Nähe der Bohlenhinterkante 7 an einer Seite zumindest ein oder sind an beiden Seiten Höhensensoren H installiert, die den Hochabstand zu einer auf einem Planum M installierten Referenz R, z.B. einem Leitdraht, messen. Bei einer nicht gezeigten Alternative könnten die Höhensensoren H auch mit auf dem Planum gleitenden Kufen arbeiten. Jeder Nivellierzylinder Z verstellt den Zugpunkt P durch Ansteuerung über das Regelsystem R, jeweils ausgehend von einem aktuellen Nullpunkt N in Richtung des Doppelpfeiles 8 nach oben oder nach unten, um die Dicke D einer Deckenschicht S einzustellen und/oder zu korrigieren, die mittels der Einbaubohle B auf dem Planum M eingebaut wird. Der Neigungssensor N, falls vorhanden, misst die Querneigung der Einbaubohle B relativ zum Planum P.On the chassis 1, leveling cylinders Z (for example hydraulic cylinders, double-acting) are arranged on both sides of the paver F approximately in the longitudinal center, which serve for the height adjustment of traction points P a screed B trailing Zugholme dragging. The screed B is fixedly mounted on the Zugholmen 6. The screed B may carry at least one inclination sensor N, which may be connected to the controller or the control system R. Optionally, the inclination of the screed B can be varied via the inclination sensor N. At the screed B in the vicinity of the screed trailing edge 7 on one side at least one or on both sides height sensors H are installed, which are at a distance from a reference R installed on a subgrade M, e.g. a guidewire, measure. In an alternative not shown, the height sensors H could also work with skids sliding on the surface. Each leveling cylinder Z adjusts the traction point P by control of the control system R, each starting from a current zero point N in the direction of the double arrow 8 up or down to adjust the thickness D of a ceiling layer S and / or correct, by means of the screed B is installed on the Planum M. The tilt sensor N, if present, measures the transverse slope of the screed B relative to the planum P.

Zwischen dem Hinterende des Chassis 1 und der Einbaubohle B ist eine Querverteilvorrichtung 9 vorgesehen, beispielsweise eine Verteilerschnecke. Die Einbaubohle B ist in der gezeigten Ausführungsform eine Ausziehbohle, deren Arbeitsbreite variabel ist. Ein Bohlenmittelteil und Ausziehbohlenteile weisen jeweils ein Glättblech 11, vor dem Glättblech einen Tamper 10, und auf oder hinter dem Glättblech 11 eine Hochverdichtungseinrichtung 12, beispielsweise mit einer oder mehreren z.B. hydraulisch beaufschlagten Pressleisten, auf. Der Hebelarm X zwischen dem Zugpunkt P und der Bohlenhinterkante 7 beeinflusst das sogenannte Einbauverhältnis. Aus diesem Grund wird bei dem erfindungsgemäßen Verfahren (für die Regelung, z.B. in einer geschlossenen Regelschleife) ein diesen Hebelarm X berücksichtigender Einbauverhältnis-Faktor in den Einbauverhältnis-Regler R1 oder das Regelsystem R bzw. die Steuerung 5 eingegeben.Between the rear end of the chassis 1 and the screed B, a transverse distribution device 9 is provided, for example a distributor screw. The screed B is in the embodiment shown a Ausziehbohle whose working width is variable. A screed middle part and Ausziehbohlenteile each have a screed plate 11, before the screed plate a tamper 10, and on or behind the screed plate 11, a high compression device 12, for example with one or more hydraulically acted pressure bars, for example. The lever arm X between the pull point P and the screed trailing edge 7 influences the so-called installation ratio. For this reason, in the method according to the invention (for the regulation, eg in a closed control loop), an installation ratio factor taking this lever arm X into account is entered into the installation ratio controller R1 or the control system R or the control 5.

Vor Einbaubeginn wird die Einbaubohle B, beispielsweise durch untergelegte Planken, auf die gewünschte Sollschichtdicke D justiert, gegebenenfalls erfolgt die Justierung unter Verwenden zuvor oder früher ermittelter Parameter. Dabei werden auch die Nivellierzylinder Z verstellt, um einen die Sollschichtdicke bzw. Sollhöhe der Schichtoberfläche über dem Planum P bestimmenden Anstellwinkel der Einbaubohle und/oder deren Querneigung einzustellen, die später schwimmend auf der eingebauten Deckenschicht S geschleppt wird. Nach Abschluss der Justierung wird die momentane Höhenposition der Nivellierzylinder Z im Regelsystem R als Nullpunkt gesetzt. Der Regeldifferenzwert der Höhensensoren und/oder des Neigungssensors N, den diese unter Abtasten der Referenz R feststellen, wird ebenfalls zu Null gesetzt.Before the start of installation, the screed B, for example, by underlying planks, adjusted to the desired target layer thickness D, where appropriate, the adjustment is carried out using previously or previously determined parameters. In this case, the leveling cylinders Z are also adjusted in order to set the desired layer thickness or desired height of the layer surface above the plane P determining angle of attack of the screed and / or its transverse slope, which is later dragged floating on the built-in ceiling layer S. After completion of the adjustment, the current height position of the leveling cylinder Z is set in the control system R as the zero point. The control difference value of the height sensors and / or the inclination sensor N, which they detect by sensing the reference R, is also set to zero.

Dann wird der Einbau begonnen. Der Straßenfertiger F fährt, während Einbaugut (bituminöses oder Betoneinbaugut) aus dem Einbaugut-Bunker 3 mit einer Fördervorrichtung (nicht gezeigt) im Chassis vor der Querverteilvorrichtung abgeworfen, verteilt und dann durch die Einbaubohle B eingebaut wird. Wird beim Einbau mittels der Höhensensoren H und/oder des Neigungssensors N relativ zur Referenz R eine Abweichung festgestellt, wird der ermittelte Regeldifferenzwert im Regelsystem R unter Berücksichtigung des eingegebenen Einbauverhältnis-Faktors in einen Absoluthub für die Nivellierzylinder Z umgerechnet. Der Einbauverhältnis-Faktor berücksichtigt, wie sich die Höhenlage der Einbaubohle B (bzw. die Schichtdicke) an der Bohlenhinterkante 7 bei einem bestimmten Hubinkrement der Nivellierzylinder Z verändert. Nimmt die Schichtdicke zu, dann muss der Anstellwinkel der Einbaubohle B flacher eingestellt werden. Nimmt die Schichtdicke gegenüber der Sollschichtdicke D ab, dann muss der Anstellwinkel der Einbaubohle B steiler eingestellt werden.Then the installation is started. The paver F travels while the building material (bituminous or concrete building material) is dropped from the built-in bunker 3 with a conveying device (not shown) in the chassis in front of the transverse distribution device, distributed and then installed by the screed B. If a deviation is detected during installation by means of the height sensors H and / or the inclination sensor N relative to the reference R, the determined control difference value in the control system R is converted into an absolute stroke for the leveling cylinder Z taking into account the inputted installation factor. The built-in ratio factor takes into account how the height of the screed B (or the layer thickness) changes at the screed trailing edge 7 at a certain stroke increment of the leveling cylinder Z. If the layer thickness increases, then the angle of attack of the screed B must be set flatter. If the layer thickness decreases compared to the target layer thickness D, then the angle of attack of the screed B must be set steeper.

Wird beim Einbau mittels des Neigungssensors N eine Abweichung relativ zur vorher eingegebenen bzw. ermittelten Sollneigung festgestellt, ergibt diese einen Regeldifferenzwert, der im Regelsystem R unter Berücksichtigung des eingegebenen Einbauverhältnis-Faktors in einen Absoluthub für die Nivellierzylinder Z umgerechnet wird.If, during installation by means of the inclination sensor N, a deviation relative to the previously entered or determined target inclination is determined, this results in a control difference value which is converted into an absolute stroke for the leveling cylinders Z in the control system R taking into account the input installation factor.

Nach Feststellen der Abweichung werden die Nivellierzylinder Z nur über den errechneten Absoluthub und ausgehend von dem gewählten Nullpunkt in der erforderlichen Richtung verstellt. Dadurch müsste die Schichtdicke wieder zur Sollschichtdicke korrigiert werden. Dies wird durch weitere Höhenmessungen der Höhensensoren H bzw. Neigungsmessungen des Neigungssensors N überwacht, bis der Regeldifferenzwert zu Null oder zu einem vorbestimmten Minimum wird, was bestätigt, dass der eingesteuerte Absoluthub der Nivellierzylinder richtig war. Dann wird die neue Höhenposition der Nivellierzylinder Z im Regelsystem als neuer Nullpunkt gewählt. Bei einer später erneut auftretenden Abweichung wird wieder entsprechend verfahren.After determining the deviation, the leveling cylinders Z are adjusted only over the calculated absolute stroke and starting from the selected zero point in the required direction. As a result, the layer thickness would have to be corrected again to the target layer thickness. This is monitored by further height measurements of the height sensors H or inclination measurements of the inclination sensor N until the control difference value becomes zero or a predetermined minimum, confirming that the controlled absolute stroke of the leveling cylinders was correct. Then the new height position of the leveling cylinder Z in the control system is selected as the new zero point. If a deviation occurs again later, the procedure is repeated accordingly.

Sollte sich nach einer vorbestimmten Zeit das erwartete Minimum des Regeldifferenzwertes nicht eingestellt haben, dann wird über einen lernfähigen Einbauverhältnis-Regler R1 in der Steuerung oder im Regelsystem R das zuvor eingestellte Einbauverhältnis (der Faktor) vergrößert oder verkleinert, bis das erwartete Minimum des Regeldifferenzwertes erreicht wird.If, after a predetermined time, the expected minimum of the control difference value has not been set, then the previously set installation ratio (the factor) is increased or decreased via a learning integration ratio controller R1 in the control or in the control system R until the expected minimum of the control difference value is reached becomes.

Sofern eine Deckenschicht S eingebaut wird, die relativ zum Planum M eine Seitenneigung besitzt, dann werden die beiden Nivellierzylinder Z auf unterschiedliche Höhenpositionen eingestellt und diese Höhenpositionen als ihr Nullpunkt gewählt. Dabei kann der mit der Steuerung bzw. dem Regelsystem R zusammenwirkende Neigungssensor N am Straßenfertiger F bzw. der Einbaubohle B verwendet werden, oder im einfachsten Fall eine Wasserwaage.If a ceiling layer S is installed, which has a lateral inclination relative to the plane M, then the two leveling cylinders Z are set to different height positions and these height positions are selected as their zero point. In this case, the inclination sensor N cooperating with the control or the control system R can be used on the paver F or the screed B, or in the simplest case a spirit level.

Erfindungsgemäß werden nur Höhensensoren H an oder in der Nähe der Bohlenhinterkante 7 gegebenenfalls kombiniert mit dem Neigungssensor N, oder nur der Neigungssensor N, gegebenenfalls kombiniert mit einem Höhensensor H benötigt, und bleibt der Daten-Verarbeitungsaufwand im Regelsystem R moderat. Da stets nur Absoluthübe der Nivellierzylinder Z, ausgehend von dem jeweils gewählten Nullpunkt, ausgeführt werden, und die Nivellierzylinder Z nicht nur ausgefahren oder eingefahren werden, bis die Abweichung wieder korrigiert ist, ist mit Sicherheit ausgeschlossen, dass die Nivellierzylinder ungewollt zu weit verfahren und auf Anschlag gehen und die Abweichung überhaupt nicht oder im Übermaß korrigieren.According to the invention, only height sensors H at or in the vicinity of the screed trailing edge 7, if necessary combined with the inclination sensor N, or only the inclination sensor N, possibly combined with a height sensor H are needed, and the data processing effort in the control system R remains moderate. Since only absolute strokes of the leveling cylinders Z, starting from the respectively selected zero point, are always executed, and the leveling cylinders Z are not only extended or retracted until the deviation is corrected again, it is definitely ruled out that the leveling cylinders undesirably move too far Do not go and correct the deviation at all or in excess.

Claims (5)

Verfahren zum Einbauen einer Deckenschicht (S) auf einem Planum (M) mit einer von einem Straßenfertiger (F) an Zugholmen (6) geschleppten Einbaubohle (B), bei dem die Höhe der Einbaubohle (B) über dem Planum (P) mittels Höhensensoren (H) und/oder wenigstens einem Neigungssensor (N) an dem aus dem Straßenfertiger und der Einbaubohle bestehenden Einbauzug anhand einer auf dem Planum (M) angeordneten Referenz (R) gemessen und bei Auftreten einer Abweichung Zugpunkte (P) der Zugholme (6) in Höhenrichtung verlagernde Nivellierzylinder (Z) zur Korrektur der Abweichung über ein in eine computerisierte Steuervorrichtung (5) eingegliedertes Regelsystem (R) verstellt werden, dadurch gekennzeichnet, dass zur Korrektur in einer geschlossenen Regelschleife jeder Nivellierzylinder (Z) ausgehend von einem gewählten Nullpunkt (N) des Nivellierzylinders (Z) nur über einen Absoluthub verstellt wird, der anhand von an Referenzmesspunkten ermittelter Messwerte und eines eingegebenen, zumindest den Hebelarm (X) zwischen dem Zugpunkt (P) und dem Referenzmesspunkt berücksichtigenden Einbauverhältnis-Faktors errechnet wird, und dass die sich durch den Absoluthub ergebende neue Nivellierzylinder-Einstellposition selbstlernend automatisch als neuer Nullpunkt (N) für einen nachfolgenden gleichartigen Regelvorgang gewählt wird.Method for installing a cover layer (S) on a subgrade (M) with a screed (B) towed by a paver (F) to drawbars (6), in which the height of the screed (B) above the subgrade (P) is determined by means of height sensors (H) and / or at least one inclination sensor (N) on the paving train consisting of the paver and the screed, measured on the basis of a planum (M) arranged reference (R) and upon occurrence of a deviation pull points (P) of the Zugholme (6) height-adjusting leveling cylinders (Z) for correcting the deviation are adjusted via a control system (R) incorporated into a computerized control device (5), characterized in that, for correction in a closed control loop, each leveling cylinder (Z) starts from a selected zero point (N ) of the leveling cylinder (Z) is adjusted only via an absolute stroke, based on measured values determined at reference measuring points and an input, at least de n lever arm (X) is calculated between the Zugpunkt (P) and the reference measuring point incorporating Ratio factor, and that the resulting by the Absolute stroke new leveling cylinder adjustment position is self-learning automatically selected as the new zero point (N) for a subsequent similar control process. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vor Einbaubeginn auf der Basis der auf die Sollschichtdicke einjustierten Einbaubohle (B) oder zuvor eingelernter Parameter im Regelsystem (R) die Nivellierzylinder-Einstellposition als Nullpunkt des Nivellierzylinders (Z) gewählt und ein aktuelle Regeldifferenzwert der Höhensensoren (H) und/oder des Neigungssensors (N) relativ zur Referenz (R) auf Null gesetzt werden,
dass während des Einbaus über die Höhensensoren (H) und/oder dem Neigungssensor (N) relativ zu einem absoluten Sollwert zur Referenz (R) gemessen und bei einer auftretenden Abweichung vom Sollwert der Höhe und/oder Neigung ein neuer aktueller Regeldifferenzwert verschieden von Null bestimmt wird,
dass aus dem neuen aktuellen Regeldifferenzwert anhand des eingegebenen Einbauverhältnis-Faktors der Absoluthub für den Nivellierzylinder (Z) errechnet wird,
und dass der Nivellierzylinder (Z) ausgehend von dem gewählten Nullpunkt nur über den errechneten Absoluthub in einer den neuen aktuellen Regeldifferenzwert bis zu einem vorbestimmten Minimum reduzierenden Richtung verstellt wird,
wobei dann bei fortgesetztem Einbau das Erreichen des vorbestimmten Minimums durch fortgesetzte Referenzmessung überwacht wird und entweder
bei Nichterreichen des vorbestimmten Minimums über einen lernfähigen Einbauverhältnis-Regler (R1) das zuvor eingestellte Einbauverhältnis bzw. der Faktor vergrößert oder verkleinert wird, bis das erwartete Minimum des Regeldifferenzwertes erreicht ist,
oder
bei Erreichen des vorbestimmten Minimums die neue Nivellierzylinder-Einstellposition als neuer Nullpunkt gewählt und das erreichte Minimum im Regelsystem (R) übernommen werden.
A method according to claim 1, characterized in that prior to commencement of installation on the basis of adjusted to the target layer thickness screed (B) or previously learned parameters in the control system (R) the leveling cylinder setting position selected as the zero point of the leveling cylinder (Z) and a current control difference value of the height sensors (H) and / or the tilt sensor (N) are set to zero relative to the reference (R),
during installation, the height sensors (H) and / or the inclination sensor (N) are measured relative to an absolute reference value relative to the reference (R), and if a deviation from the nominal value of the altitude and / or inclination occurs, a new current control differential value different from zero is determined becomes,
in that the absolute stroke for the leveling cylinder (Z) is calculated from the new current control difference value on the basis of the entered installation ratio factor,
and that the leveling cylinder (Z), starting from the selected zero point, is adjusted only over the calculated absolute stroke in a direction reducing the new current control difference value to a predetermined minimum,
then, with continued installation, the achievement of the predetermined minimum is monitored by continued reference measurement and either
if the predetermined minimum is not reached by means of a learning integration ratio controller (R1), the previously set installation ratio or the factor is increased or decreased until the expected minimum of the control difference value is reached,
or
when the predetermined minimum is reached, the new leveling cylinder setting position is selected as the new zero point, and the minimum reached in the control system (R) is adopted.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zum Einbauen einer Deckenschicht (S) mit gegenüber dem Planum (M) seitlich geneigter Oberfläche die Nullpunkte (N) der beiden Nivellierzylinder (Z) auf unterschiedlichen Höheneinstellpositionen gewählt werden.A method according to claim 1, characterized in that for mounting a ceiling layer (S) with respect to the plane (M) laterally inclined surface, the zero points (N) of the two leveling cylinders (Z) are selected at different height adjustment positions. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als der eingegebene Einbauverhältnis-Faktor ein konstantes Verhältnis zwischen einem Hubinkrement des Nivellierzylinders (Z) und dem beim Einbau von diesem Hubinkrement bewirkten oder zu erwartenden Hebehub bzw. Senkhub bzw. Neigehub der Einbaubohle (B) am Referenzmesspunkt, vorzugsweise an oder im Bereich der Hinderkante (7) der Einbaubohle (B) gewählt wird.A method according to claim 1, characterized in that as the input installation ratio factor, a constant ratio between a Hubinkrement of the leveling cylinder (Z) and during installation of this Hubinkrement caused or expected lifting stroke or Senkhub or tilting stroke of the screed (B) on Reference measuring point, preferably at or in the region of the Hinderkante (7) of the screed (B) is selected. Regelsystem (R) für die Höhen- und/oder Quer-Neigungslage einer Einbaubohle (B) relativ zu einem Planum (P) eines Straßenfertigers (F), dadurch gekennzeichnet, dass das Regelsystem (R) einen selbstlernenden Einbauverhältnis-Regler (R1) zum Vergrößern oder Verkleinern eines eingegebenen Einbauverhältnis-Faktors aufweist, und mit wenigstens einem an oder in der Nähe der Einbaubohlenhinterkante (7) platzierten Höhensensor (H) und/oder einem an der Einbaubohle (B) installierten Quer-Neigungssensor (N) verknüpft ist und eine Rechensektion (B) zum Errechnen eines zur Abweichungskorrektur ausführbaren Absoluthubes für Nivellierzylinder (Z) auf der Basis eines relativ zu einer Referenz (R) gemessenen Regeldifferenzwertes und des Einbauverhältnis-Faktors umfasst.Control system (R) for the vertical and / or transverse inclination position of a screed (B) relative to a planum (P) of a paver (F), characterized in that the control system (R) a self-learning installation ratio controller (R1) for Increasing or decreasing an input built-in factor, and with at least one attached to or in the vicinity of the screed trailing edge (7) height sensor (H) and / or on the screed (B) installed transversal inclination sensor (N) is linked and a Calculating section (B) for calculating an absolute deviation for leveling cylinder (Z) executable for deviation correction on the basis of a control difference value measured relative to a reference (R) and the built-in ratio factor.
EP07016122.9A 2007-08-16 2007-08-16 Method for laying a road paving and paver for carrying out this method Active EP2025811B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07016122.9A EP2025811B1 (en) 2007-08-16 2007-08-16 Method for laying a road paving and paver for carrying out this method
US12/191,624 US7654769B2 (en) 2007-08-16 2008-08-14 Method and regulating system for producing a cover layer
CN2008101475017A CN101368361B (en) 2007-08-16 2008-08-15 Method and control system for laying a road paving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07016122.9A EP2025811B1 (en) 2007-08-16 2007-08-16 Method for laying a road paving and paver for carrying out this method

Publications (2)

Publication Number Publication Date
EP2025811A1 true EP2025811A1 (en) 2009-02-18
EP2025811B1 EP2025811B1 (en) 2019-04-24

Family

ID=38984544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016122.9A Active EP2025811B1 (en) 2007-08-16 2007-08-16 Method for laying a road paving and paver for carrying out this method

Country Status (3)

Country Link
US (1) US7654769B2 (en)
EP (1) EP2025811B1 (en)
CN (1) CN101368361B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029705A1 (en) 2009-06-04 2011-04-07 N.V. Hoogmartens Wegenbouw Asphalting machine, has pivotably attached arm applying joining material between liquid asphalt and hardening part applied before liquid asphalt, where arm is controlled proportional to movement of machine
CN102011360A (en) * 2010-11-28 2011-04-13 宗焕清 Construction method of highway asphalt pavement
EP2620549A1 (en) * 2012-01-26 2013-07-31 Joseph Vögele AG Paver with controllable conveyor devices
EP2921588B1 (en) 2014-03-18 2016-12-14 MOBA - Mobile Automation AG Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer
CN114892481A (en) * 2022-06-15 2022-08-12 四川公路桥梁建设集团有限公司 Pavement 3D intelligent paving control method, equipment and system
EP4083322A1 (en) * 2021-04-27 2022-11-02 Leica Geosystems AG System and method for controlling a road construction process
WO2023096602A1 (en) * 2021-11-24 2023-06-01 Geometri Makina Elektrik Insaat Muhendislik Sanayi Ve Ticaret Limited Sirketi Asphalt core paver
EP4223932A1 (en) * 2022-02-08 2023-08-09 MOBA Mobile Automation AG Leveling system for construction machine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199466B1 (en) * 2008-12-16 2011-07-13 Joseph Vögele AG Method for laying a paving surface
PL2366831T3 (en) * 2010-03-18 2015-07-31 Voegele Ag J Method for controlling the process of applying a layer of road paving material and paver
US8371769B2 (en) * 2010-04-14 2013-02-12 Caterpillar Trimble Control Technologies Llc Paving machine control and method
MY184032A (en) * 2012-04-04 2021-03-17 Elmich Pte Ltd Chock for paver support
CN102991590B (en) * 2012-12-17 2016-05-25 三一重工股份有限公司 Driver's cabin and engineering machinery
US8747022B1 (en) 2013-01-22 2014-06-10 Caterpillar Paving Products Inc. Screed tow point assembly for a paver
CN103528555A (en) * 2013-11-01 2014-01-22 山东科技大学 Device for monitoring elevation and thickness of loose laying layer of asphalt pavement in real time
US9200415B2 (en) 2013-11-19 2015-12-01 Caterpillar Paving Products Inc. Paving machine with automatically adjustable screed assembly
US9873990B2 (en) * 2015-07-30 2018-01-23 Caterpillar Paving Products Inc. Paving machine having production monitoring system
WO2019068344A1 (en) * 2017-10-06 2019-04-11 Volvo Construction Equipment Ab A screed arrangement
US11078634B2 (en) * 2019-11-05 2021-08-03 Caterpillar Paving Products Inc. Variable tamper bar amplitude for asphalt pavers
CN113032860B (en) * 2019-12-07 2022-12-27 中交二公局城市建设发展有限公司 Paving material dosage allocation platform and method
CN111206473A (en) * 2020-02-12 2020-05-29 珠海市联港中投建筑装饰工程有限公司 Intelligent asphalt paving machine
EP4056760B1 (en) * 2021-03-12 2023-08-09 Joseph Vögele AG Road finisher with levelling cascade control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823917A1 (en) * 1988-07-14 1990-01-18 Berger Bau Gmbh Finisher for large working widths and high placing capacities for asphalt and concrete road construction
DE19647150A1 (en) * 1996-11-14 1998-05-28 Moba Mobile Automation Gmbh Control system for built in material using road leveller
DE10025462A1 (en) * 2000-05-23 2001-12-06 Moba Mobile Automation Gmbh Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3604878A (en) * 1977-05-17 1979-11-15 Integrated Tech Ltd Paving machines
US5752783A (en) * 1996-02-20 1998-05-19 Blaw-Knox Construction Equipment Corporation Paver with radar screed control
DE19709131C2 (en) * 1997-03-06 2003-02-20 Abg Allg Baumaschinen Gmbh pavers
JP3514995B2 (en) * 1998-12-18 2004-04-05 前田道路株式会社 Concrete finisher
US6749364B1 (en) * 1999-05-19 2004-06-15 Blaw-Knox Construction Equipment Corporation Temperature sensing for controlling paving and compaction operations
US6318928B1 (en) * 2000-01-07 2001-11-20 Astec Industries, Inc. Method and apparatus for electrically heating a screed assembly in a paving machine
JP3548129B2 (en) * 2000-08-23 2004-07-28 株式会社Nippoコーポレーション Asphalt spread apparatus and asphalt spread method
JP3980322B2 (en) * 2001-10-25 2007-09-26 株式会社Nippoコーポレーション Method and apparatus for controlling floor thickness in multi-layer simultaneous pavement
US6796616B2 (en) * 2002-06-26 2004-09-28 Jeffrey K. Harman Mining system
DE102004016419A1 (en) * 2004-04-02 2005-10-20 Voegele Ag J Paver and method for simultaneous installation of multiple patches
US7172363B2 (en) * 2004-08-31 2007-02-06 Caterpillar Paving Products Inc Paving machine output monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823917A1 (en) * 1988-07-14 1990-01-18 Berger Bau Gmbh Finisher for large working widths and high placing capacities for asphalt and concrete road construction
DE19647150A1 (en) * 1996-11-14 1998-05-28 Moba Mobile Automation Gmbh Control system for built in material using road leveller
DE10025462A1 (en) * 2000-05-23 2001-12-06 Moba Mobile Automation Gmbh Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010029705A1 (en) 2009-06-04 2011-04-07 N.V. Hoogmartens Wegenbouw Asphalting machine, has pivotably attached arm applying joining material between liquid asphalt and hardening part applied before liquid asphalt, where arm is controlled proportional to movement of machine
CN102011360A (en) * 2010-11-28 2011-04-13 宗焕清 Construction method of highway asphalt pavement
CN102011360B (en) * 2010-11-28 2015-04-01 宗焕清 Construction method of highway asphalt pavement
EP2620549A1 (en) * 2012-01-26 2013-07-31 Joseph Vögele AG Paver with controllable conveyor devices
US20130195550A1 (en) * 2012-01-26 2013-08-01 Joseph Vogele Ag Road finishing machine with controllable conveyor devices
US9260827B2 (en) * 2012-01-26 2016-02-16 Joseph Vogele Ag Road finishing machine with controllable conveyor devices
EP2921588B1 (en) 2014-03-18 2016-12-14 MOBA - Mobile Automation AG Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer
EP3048199B1 (en) 2014-03-18 2017-03-29 MOBA Mobile Automation AG Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer
EP4083322A1 (en) * 2021-04-27 2022-11-02 Leica Geosystems AG System and method for controlling a road construction process
WO2023096602A1 (en) * 2021-11-24 2023-06-01 Geometri Makina Elektrik Insaat Muhendislik Sanayi Ve Ticaret Limited Sirketi Asphalt core paver
EP4223932A1 (en) * 2022-02-08 2023-08-09 MOBA Mobile Automation AG Leveling system for construction machine
CN114892481A (en) * 2022-06-15 2022-08-12 四川公路桥梁建设集团有限公司 Pavement 3D intelligent paving control method, equipment and system

Also Published As

Publication number Publication date
US20090047069A1 (en) 2009-02-19
CN101368361B (en) 2012-06-27
CN101368361A (en) 2009-02-18
EP2025811B1 (en) 2019-04-24
US7654769B2 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
EP2025811B1 (en) Method for laying a road paving and paver for carrying out this method
EP2199466B1 (en) Method for laying a paving surface
EP3498914B1 (en) Adjustment of the levelling cylinder in a road finisher
EP3048199B2 (en) Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer
DE102011001542B4 (en) Control and corresponding procedure for a tar machine
DE112009001767B4 (en) Paving machine control and process
EP2927372B1 (en) Self-propelled construction machine and method for controlling the same
EP3739122A1 (en) Road finisher and method for determining a thickness of a layer of an established installation layer
DE102017002225A1 (en) Road paver with control unit for determining the weight and / or the center of gravity and / or the width of the screed and method
EP3130939A1 (en) Road finisher with a radar based levelling device and control method
EP0388819A1 (en) Road-paving machine
DE112016000713T5 (en) Auto calibration of an automatic leveling control system in a work machine
EP2325393A1 (en) Method and paver for manufacturing a street covering
DE19709131A1 (en) Road finisher or paving machine
EP0495171B1 (en) Laying-down course thickness adjusting method with a finisher
DE10025474B4 (en) Coating thickness determination by relative position detection between the tractor and the traction arm of a paver
DE10025462A1 (en) Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor
EP3981918B1 (en) Road finisher and method for levelling the screed of a finisher
EP4056760B1 (en) Road finisher with levelling cascade control
DE102014010837A1 (en) Process for the production of a road surface and road paver
DE102021107447A1 (en) METHODS AND SYSTEMS FOR DETERMINING AN ANGLE OF RACING AND A LATERAL INCLINATION OF A PAVER
DE29619831U1 (en) Device for controlling the installation height of a paver
EP3708711B1 (en) Sensor system with calculation unit for a road finisher for calculating material consumption
EP3712328B1 (en) Construction maschine with measuring system
DE102022122747A1 (en) OPTIMAL ADJUSTMENT OF SCREED ANGLE AND AUTOMATIC ADJUSTMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid

Designated state(s): DE IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOSEPH VOEGELE AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOSEPH VOEGELE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016648

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016648

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200127

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230824

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 17