EP4056760B1 - Road finisher with levelling cascade control - Google Patents

Road finisher with levelling cascade control Download PDF

Info

Publication number
EP4056760B1
EP4056760B1 EP21162228.7A EP21162228A EP4056760B1 EP 4056760 B1 EP4056760 B1 EP 4056760B1 EP 21162228 A EP21162228 A EP 21162228A EP 4056760 B1 EP4056760 B1 EP 4056760B1
Authority
EP
European Patent Office
Prior art keywords
screed
control
basis
leveling
leveling cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21162228.7A
Other languages
German (de)
French (fr)
Other versions
EP4056760A1 (en
Inventor
Stefan Simon
Philipp Stumpf
Ralf Weiser
Martin Buschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP21162228.7A priority Critical patent/EP4056760B1/en
Priority to PL21162228.7T priority patent/PL4056760T3/en
Priority to JP2022036233A priority patent/JP2022140380A/en
Priority to US17/691,602 priority patent/US20220290382A1/en
Priority to BR102022004541-0A priority patent/BR102022004541A2/en
Priority to CN202210249699.XA priority patent/CN115075096A/en
Publication of EP4056760A1 publication Critical patent/EP4056760A1/en
Application granted granted Critical
Publication of EP4056760B1 publication Critical patent/EP4056760B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/42Machines for imparting a smooth finish to freshly-laid paving courses other than by rolling, tamping or vibrating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • E01C19/4873Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound

Definitions

  • the present invention relates to a road finisher with a leveling system according to claim 1.
  • the present invention also relates to a method for leveling a screed of a road finisher according to method claim 14.
  • Known road finishers are equipped with leveling systems that are used during a paving journey to compensate for unevenness in the subsoil that acts on the road finisher's chassis or directly on the screed of the road finisher. Based on the sensor measurements of a leveling system, the screed of the road finisher can be adjusted in height by means of a leveling cylinder, which has an extendable piston coupled to the screed, in order to produce a level paving layer.
  • the distance sensor In conventional leveling systems, when leveling is carried out using a stringline and distance sensor, the distance sensor is installed on the towing beam between a front towing point formed thereon, to which the piston of the leveling cylinder is attached, and the screed body towed by the towing beam, i.e. approximately at the level of the transverse distributor device in the direction of travel. From this position, the distance sensor detects neither the exact position of the rear edge of the screed behind it, which generally defines a screed height and which decisively determines the evenness of the installed covering, nor the influence of uneven ground on the front traction point. These imprecise sensor measurements do not reflect the profile of the existing subsoil so that the screed cannot be leveled based on this, which means that unevenness in the subsoil can be precisely compensated for.
  • DE 196 47 150 A1 discloses a road finisher with a leveling system that has a height control circuit as master controller that works on the basis of a measured height of the rear edge of the screed. This is configured to generate an actuating signal as a command signal for a towing point control loop designed as a slave controller, which based on this and with regard to a detected inclination of the towing arm of the screed actuates a hydraulic valve of a leveling cylinder coupled to the front towing point of the screed.
  • DE 100 25 474 B4 discloses a leveling system that uses a layer thickness control circuit as a master controller, from which an actuating signal based on a calculated actual layer thickness value and based on a layer thickness setpoint value emerges.
  • This control signal specifies an inclination target value that can be supplied to a levelness control circuit designed as a follow-up controller.
  • This evenness control circuit calculates and Based on an inclination of the towing arm detected during the paving journey, a control variable for controlling a leveling cylinder for adjusting the height of the screed.
  • the object of the invention is to provide a road finisher with a leveling system that can be used to almost completely compensate for any disruptive influence of the subsoil on the tow point position of the screed. It is also the object of the invention to provide a leveling method for a road finisher that responds precisely to the existing subsurface profile.
  • the invention relates to a road finisher with a screed for producing a paving layer on a subsoil on which the road finisher moves in the direction of travel during a paving run.
  • the road finisher according to the invention comprises a leveling system for adjusting the height of the screed, the leveling system having a cascade control.
  • the cascade control comprises an outer control loop, which has a first controller (also referred to below as a screed controller), which is designed to, on the basis of a detected actual value of a screed height of the screed relative to a predetermined reference and on the basis of a target value of the screed height relative to it the predetermined reference to determine a target value of a towing point position of a towing point of the screed relative to the predetermined reference.
  • the screed height here means in particular the height of a rear edge of the screed of the paving screed.
  • the tow point position is preferably determined by a front end of the tow arm of the screed.
  • the cascade control system also includes an inner control loop, which has a second controller (also referred to below as a leveling cylinder controller), which is designed to, on the basis of a detected actual value of a leveling cylinder position of an extendable piston of a leveling cylinder that is attached to the towing point, and on the basis of a leveling cylinder held up to the second controller setpoint the leveling cylinder position to determine an actuating signal for the leveling cylinder, on the basis of which the leveling cylinder can be controlled.
  • a second controller also referred to below as a leveling cylinder controller
  • the cascade control comprises either a middle control loop between the outer and the inner control loop, which has a third controller (also referred to below as the towing point controller), which is designed to, on the basis of a detected actual value of the towing point position of the towing point of the screed for the predetermined reference and on To determine the setpoint of the leveling cylinder position for the second controller on the basis of the setpoint of the tow point position determined by means of the first controller, or the cascade control has a tow point control between the outer and the inner control circuit, which is designed to do this on the basis of the setpoint determined by means of the first controller the traction point position of the traction point of the screed and in particular on the basis of a digital terrain model of the subsoil provided to the traction point control, on which the road finisher moves to produce the paving layer, to determine the target value of the leveling cylinder position for the second controller.
  • a third controller also referred to below as the towing point controller
  • the cascade control has a tow point control
  • the cascade control comprises at least three control circuits, namely an outer, a middle and an inner control circuit, which are nested in one another to produce the actuating signal for the leveling cylinder.
  • the second alternative of the road finisher according to the invention provides a cascade control with integrated traction point control for improved leveling of the screed.
  • the tow point control used for this forms a command control for the inner control loop and a follow-up control for the outer control loop and can almost completely compensate for the tow point disturbance on the basis of the digital terrain model provided, in which unevenness in the subsoil is taken into account as known.
  • Both of the above-mentioned alternatives of the road finisher according to the invention make it possible for disturbing influences on the traction point position and the screed caused by unevenness in the subsoil to be precisely detected and accordingly almost completely corrected.
  • This is primarily due to the fact that the leveling system is divided into several controlled/controlled system sections, which can be better designed with regard to their respective controlled/controlled system in order to almost completely compensate for any unevenness in the subsoil and other disturbance variables that occur in practice when leveling the screed to compensate.
  • the outer control loop preferably includes a controlled system whose output variable (controlled variable) is the detected actual value of the screed height relative to the predetermined reference and/or whose input variable is the detected actual value of the tow point position of the tow point of the screed relative to the predetermined reference.
  • the input variable can be an actual value of the towing point position of the towing point calculated as a function of a detected actual value of the leveling cylinder position.
  • the outer control circuit makes it possible to regulate the screed height with regard to the predetermined reference, for example a guide wire stretched next to the roadway.
  • the leveling system for the outer control loop has at least one first sensor, which is designed to detect the actual value of the screed height.
  • This sensor is therefore also referred to below as a screed sensor.
  • the first sensor is designed to detect a distance between the trailing edge of the screed and the predetermined reference.
  • the first sensor is a distance sensor positioned in the area of a trailing edge of the screed for detecting a distance from the predetermined reference.
  • the sensor is attached to a side shifter of the screed.
  • the outer feedback can be based on the feedback of the inner control loop, with the inner feedback preferably taking place more quickly, so that the disturbance variable compensation by means of the inner control loop or control loops and the control behavior of the outer control loop can be better matched to one another.
  • the inner control circuit preferably includes a controlled system whose output variable is the detected actual value of the leveling cylinder position of the extendable piston of the leveling cylinder attached to the towing point and/or whose input variable is the control signal for the leveling cylinder.
  • the leveling system for the inner control loop has at least one second sensor, which is designed to detect the actual value of the leveling cylinder position.
  • This sensor is also referred to below as the leveling cylinder sensor.
  • the second sensor is a distance sensor positioned in the area of the leveling cylinder for detecting an extension path of the piston of the leveling cylinder. This means that the leveling cylinder position can be precisely recorded as a controlled variable, in particular the current extension path of the leveling cylinder piston, and fed back to the second controller of the inner control loop.
  • the middle control loop has a controlled system whose output variable is the detected actual value of the tow point position of the screed and/or whose input variable is the detected actual value of the leveling cylinder position.
  • the leveling system for the central control loop has at least one third sensor (also referred to below as the tow point sensor), which is designed to detect the actual value of the tow point position relative to the predetermined reference. It is expedient if the third sensor is a distance sensor positioned in the area of the towing point of the screed for detecting a distance from the predetermined reference. This means that the tow point position, which is directly influenced by unevenness, can be precisely recorded as a controlled variable and fed back to the third controller of the middle control loop.
  • the third sensor also referred to below as the tow point sensor
  • the sensors for detecting the position of the screed and the tow point can be designed as path measuring sensors.
  • the use of laser, ultrasonic, LIDAR and/or radar sensors would be conceivable.
  • at least one tachymeter arranged on the road finisher and/or a laser receiver attached to the assembly of screeds can be used as a measuring device for detecting the position of the screed and the tow point. It is conceivable that the tachymeter for target tracking of the predetermined reference is designed to be automatically adjustable in a motorized manner.
  • a pitch sensor would be used in combination with a distance sensor.
  • the distance sensor can be installed on the screed beam at any point between the rear edge of the screed and the towing point.
  • the inclination sensor measures the angle of attack of the screed. Due to the known geometry of the screed, it is irrelevant at which position of the screed or the drawbar the inclination sensor is installed.
  • the distances between the trailing edge of the screed and the towing point can be used as a reference (see the in Fig.2 distances y bo and y zp shown) can be determined by trigonometric calculations based on the measured angle and the measured distance. The structure and parameterization of the controller remain unaffected.
  • This sensor configuration can also be used if an underground model is used as a reference (also referred to below as a virtual reference).
  • the cascade control preferably has at least one feedforward control of disturbance variables. It would be possible for the feedforward control to function on the basis of a calculated, indirect determination of at least one disturbance variable and/or on the basis of at least one directly measurable disturbance variable. Based on the feedforward feedforward, a manipulated variable, for example the manipulated variable for the towing point position, can be adjusted proactively by means of an upstream transfer function, instead of allowing the influence of the disturbance variable on the controlled variable present at the output.
  • the disturbance variable control is equipped with at least one filter for smoothing calculated or recorded disturbance variables.
  • the reaction of the controller functionally connected to the feedforward control can be dampened.
  • Measurements of a subsoil profile recorded by means of a scanner and/or a digital terrain model can be used for the disturbance variables.
  • the cascade control includes a first feedforward control for the outer control loop and a second feedforward control for the middle control loop.
  • the respective disturbance variables can be activated and deactivated independently of one another, individually or together. It is conceivable that based on at least one process parameter measured on the road finisher during paving operation and/or based on a measured property of the paving layer produced, at least one disturbance variable triggering that responds directly or indirectly to the process parameter and/or the property of the paving layer can be automatically activated.
  • the cascade control is supplemented by a layer thickness calculation module, which is designed to determine the target value of the plank height as a reference variable based on a determined current layer thickness of the paving layer produced and/or on the basis of a target value of the layer thickness of the paving layer to be produced that is held available to it for the outer control loop.
  • a layer thickness calculation module which is designed to determine the target value of the plank height as a reference variable based on a determined current layer thickness of the paving layer produced and/or on the basis of a target value of the layer thickness of the paving layer to be produced that is held available to it for the outer control loop.
  • the layer thickness calculation module is configured to determine the layer thickness from a profile of the sensor measurements used for the leveling, possibly temporarily stored.
  • the actual value of the layer thickness can be determined using a layer thickness measuring system installed on the road finisher. It would be conceivable for the measurement results of at least one distance sensor to be used to determine the layer thickness produced, the measurement results of which are also used for the operation of the leveling system.
  • the reference is designed as a real physical reference (e.g. guide wire).
  • a physical reference is not always available.
  • a reference referred to here as "virtual” is used. This can be, for example, a rotating laser and a laser receiver mounted on the screed or a tachymeter that tracks a prism mounted on the screed. Typical distance sensors are not used for these two measurement methods, since the reference and sensor form a system.
  • an executable virtual reference is a mathematical model of the subsoil, which is available as a digital terrain model (DTM) or in another digital form (data from a (laser) scanner).
  • DTM digital terrain model
  • distance sensors continue to determine the distance to the ground and thus to the reference.
  • the corresponding target distance for the screed and towing point to the ground is selected depending on the location so that the desired screed height is set.
  • r bo ( x ) z bo applies should ( x ) ⁇ z ref ( x ) with r bo ( x ) > 0 ⁇ x .
  • the actuating signal of the screed controller is overlaid with the negative progression of the reference in order to achieve the traction point position desired by the screed controller.
  • the invention also relates to a method for leveling a paving screed of a road finisher in order to produce a paving layer on a subsoil on which the road finisher moves in the direction of travel during a paving run.
  • unevenness in the subsoil is compensated for by means of a leveling system, which adjusts the height of the screed by means of a cascade control.
  • an outer control loop of the cascade control uses a first controller to determine a setpoint value for a tow point position of a screed relative to a predetermined reference based on a detected actual value of a screed height relative to a predetermined reference and based on a setpoint value of the screed height that can be provided to the first controller as a reference variable Pull point of the screed relative to the predetermined reference.
  • an inner control loop of the cascade control uses a second controller to determine an actuating signal for the leveling cylinder based on a detected actual value of a leveling cylinder position of an extendable piston of a leveling cylinder attached to the traction point of the screed and on the basis of a setpoint value of the leveling cylinder position provided to the second controller for adjusting the height of the screed.
  • the method according to the invention provides that either a central control loop of the cascade control integrated between the outer and inner control loops is controlled by means of a third controller on the basis of a detected actual value of the towing point position of the towing point of the screed relative to the predetermined reference and on the basis of the setpoint value determined by means of the first controller the towing point position determines the target value of the leveling cylinder position for the second controller, or that a towing point control functionally integrated between the outer and the inner control circuit based on the target value of the towing point position of the towing point of the screed determined by means of the first controller and in particular on the basis of a digital signal provided to the towing point control Terrain model of the subsoil on which the road finisher moves to produce the paving layer, determines the target value of the leveling cylinder position for the second controller.
  • the setpoint value of the leveling cylinder position provided as the reference variable for setting the leveling cylinder and thus also the required manipulated variable for the leveling cylinder are determined either by means of a three-stage, nested cascade control, i.e. using the superimposed first, second and third control circuits or on the basis of the outer and inner control loops and the traction point control formed in between. Based on both alternatives is one Better compensation for unevenness in the subsoil is possible because both the influence of unevenness on the screed height and the influence of unevenness on the traction point mechanism are recorded directly and taken into account to generate the control signal for setting the leveling cylinder.
  • the cascade control is preferably supplemented by at least one feedforward control.
  • This can proactively respond to unevenness in the ground and other disturbance variables in order to determine the desired traction point and/or leveling cylinder position and reliably compensate for these by transmitting the associated disturbance variables to the screed controller, i.e. the controller of the outer control loop, and/or the traction point controller, i.e. the Controller of the middle loop, by means of a predetermined transfer function.
  • the cascade control is supplemented by a layer thickness calculation module, which determines the target value of the plank height for the outer control loop on the basis of a layer thickness of the paving layer that has been produced and/or on the basis of a target value of the layer thickness of the paving layer to be produced that is held available to it.
  • the layer thickness calculation module could use the leveling sensor signals to calculate the target screed height.
  • the road finisher 1 shows a road finisher 1, which produces a paving layer 2 with a desired layer thickness S on a substrate 3, on which the road finisher 1 moves in a travel direction R during a paving run.
  • the road finisher 1 has a levelable screed 4 for compacting the paving layer 2.
  • the screed 4 has a pull arm 5, which at one front towing point 6 is connected to a leveling cylinder 7 attached to the chassis of the road finisher 1 .
  • the leveling cylinder 7 can raise and lower the towing arm 5 at the front towing point 6 so that an angle of attack of the towed screed 4 can be set during the paving journey, with the screed 4 being raised or lowered in response thereto.
  • unevenness 8 in the subsurface 3 can be compensated for by dynamic control of the leveling cylinder setting.
  • FIG. 2 shows an isolated, schematic representation of the paving screed 4 in a reference coordinate system K, including the subsoil 3 and the dimensions relating to the screed geometry, which are associated with the Figures 3 and 4 are explained in more detail below.
  • FIG. 1 shows a leveling system 10A that is designed to level the screed 4.
  • the leveling system 10A includes a cascade control 100A, which includes three superimposed control loops, namely an inner control loop 11, a middle control loop 12 and an outer control loop 13.
  • the outer control loop 13 has a first sensor H bo (screed sensor), the inner control loop 11 has a second sensor H nz (leveling cylinder sensor) and the middle control loop 12 has a third sensor H zp (traction point sensor).
  • H bo screw sensor
  • H nz leveling cylinder sensor
  • H zp traction point sensor
  • Each of the three control circuits 11, 12, 13 thus has according to 2 each have a separate sensor.
  • the sensors H bo , H nz , H zp are configured to use the in 2 to measure the distances shown, in particular the extension path of the leveling cylinder s nz , the screed height z bo and the towing point position z zp .
  • Corresponding sensor signals y bo , y nz , y zp are fed from the respective sensors H bo , H nz , H zp as actual controlled variables to the three controllers C bo , C zp , C nz .
  • the cascade control 100A is supplemented by an optional feedforward control S1, S2, which is shown here schematically in dashed form.
  • the cascade control 100A is described in the following without feedforward control S1, S2.
  • the three control loops 11, 12, 13 of the cascade control 100A are nested in one another.
  • the screed height Z bo is adjusted.
  • the dynamic behavior of the "screed" controlled system is described by the transfer function G bo .
  • the output variable of this controlled system is the detected screed height Z bo .
  • the screed height Z bo is determined by the screed sensor H bo , which is located near a rear edge 14 of the screed (see Figures 1 and 2 ) is installed.
  • the corresponding sensor signal y bo is fed back to the controller C bo .
  • the input variable of the transfer function G bo is the measured actual value of the tow point position z zp .
  • the corresponding target value of the tow point position r zp is the actuating signal from the first Controller C bo (screed controller) and is calculated from the set value of the screed height r bo stored here and the sensor signal y bo
  • the actuating signal r zp of the outer control loop 13 is the reference signal of the central control loop 12, which regulates the tow point position Z zp with the aid of the tow point controller C zp .
  • the actual value of the tow point position z zp is detected by the sensor H zp , which determines the distance of the tow point from the reference L (for example a rope or guide wire stretched next to the roadway).
  • the tow point position Z zp is the output variable of the tow point mechanics G zp .
  • the resulting sensor signal y zp is fed back to the traction point controller C zp .
  • the actuating signal of the traction point controller C zp is the set value of the leveling cylinder position r zp .
  • the actuating signal from the traction point controller C zp represents the command variable of the inner control loop 11, the actual value of which is the leveling cylinder position s nz .
  • the inner control circuit 11 includes the leveling cylinder function G nz as the controlled system, with the sensor H nz detecting the leveling cylinder position and feeding it to the leveling cylinder controller C nz .
  • u nz is the actuating signal of the leveling cylinder controller C nz , which acts on the leveling cylinder 7 .
  • d zp is due to the interaction of the chassis fw with the ground 3, here in 2 Subsoil to u , given.
  • the signals y bo , y nz , y zp are recorded and the screed disturbance d bo (x) at the waypoint x is calculated from the tow point disturbance dzp of the previous waypoint x ⁇ szh .
  • the information regarding the paving thickness s es (x) can be displayed to the operator, for example on a display at the outside control station of the screed.
  • the above cascade control 100A can be expanded by a layer thickness calculation module for layer thickness control, which can be provided with a target layer thickness as the desired layer thickness, on the basis of which the layer thickness calculation module calculates the target value of the plank height r bo .
  • the special feature of the layer thickness calculation module is that the relationship between layer thickness and plank height is algebraic. This means that a change in layer thickness corresponds exactly to the same change in plank height. Two variants are conceivable for implementing a layer thickness control.
  • the current layer thickness is determined from the course of the sensor measurements and compared with the target layer thickness provided. This deviation is processed in the screed controller to change the screed height.
  • the context s it x y bo x ⁇ y zp x ⁇ s zh ⁇ s bo ⁇ y na x ⁇ s zh ⁇ s bo + s zp be used to determine the nominal value of the plank height r bo directly from the desired layer thickness.
  • the difference between the cascade control and the cascade control extended by the layer thickness calculation module is essentially whether the user enters a target value for the plank height or for the layer thickness.
  • the cascade control 100A described above can be expanded by the in 2 Disturbance variable switching S1, S2 shown in dashed lines can be expanded.
  • Information regarding the subsoil zu and the resulting disturbances d bo and d zp are recorded and fed to the screed controller C bo and the traction point controller C zp , which use them to calculate the desired traction point and leveling cylinder position r zp , r nz in order to proactively Compensate for disturbance variables d bo and d zp without waiting for them to flow into the control variables Z bo , Z zp .
  • the control signal calculation in the screed controller C bo takes into account that the disturbance d bo lags behind the disturbance d zp with a dead time that depends on the paving speed.
  • Both the computational determination of the disturbance variables d bo and d zp , as described above, and the direct measurement of the disturbance variables d bo and d zp using suitable measuring systems H dbo and H dzp (eg scanners, etc.) are possible.
  • the measurement can be carried out both "online”, ie during installation, and "offline", ie before installation, for example using a digital terrain model (DGM). Courses measured offline are stored in the control system.
  • DGM digital terrain model
  • the leveling method is not limited to any particular sensor technology.
  • measuring systems such as tachymeters and/or laser receivers can be used to record the position of the screed and the tow point.
  • An inclination sensor that measures the angle of attack of the screed would also be conceivable.
  • One of the two ultrasonic sensors could be replaced by such a tilt sensor.
  • the distance measured by the replaced sensor could then be determined by trigonometric relationships.
  • it is also possible to deviate from the specified sensor positions at the towing point and the rear edge of the screed which can have advantages in practice.
  • the use of measuring systems without a fixed reference for example a BigSki mounted on the drawbar 5 of the road finisher 1, which measures the distance to the subsurface 3 at different positions, could possibly also be used with a loss of accuracy.
  • the underground profile z u is not known.
  • a sufficiently accurate digital terrain model (DGM) is given by this model and d zp can be calculated using the chassis fw of the road finisher 1 .
  • the towing point 6 is influenced by a known disturbance.
  • the middle control circuit 12 including the sensor H zp is no longer required and can be replaced by a traction point control C' zp .
  • the information regarding z u can be used for an optional feedforward control.
  • the measuring devices H dbo and H dzp can consequently also be omitted.
  • Figure 12 shows the embodiment including a leveling system 10B with a digital terrain model (DTM) processing cascade controller 100B.
  • the screed controller C bo is in comparison to the basic version 3 almost unchanged.
  • a difference to the variant shown 3 consists in the fact that, if a disturbance variable compensation is used, the disturbance d bo in the screed controller C bo is calculated from z u .
  • the traction point controller C zp in 4 no longer available, but is calculated by the traction point control C' zp , which calculates a target value position r nz of the leveling cylinder from the known subsurface profile z u and the target position of the traction point r zp . This calculation is based on equations (2) and (3).
  • Equation (3) is then solved for dzp .
  • d zp fw(z u ) applies.

Description

Die vorliegende Erfindung bezieht sich auf einen Straßenfertiger mit einem Nivelliersystem gemäß dem Anspruch 1. Ferner betrifft die vorliegende Erfindung ein Verfahren zum Nivellieren einer Einbaubohle eines Straßenfertigers gemäß dem Verfahrensanspruch 14.The present invention relates to a road finisher with a leveling system according to claim 1. The present invention also relates to a method for leveling a screed of a road finisher according to method claim 14.

Bekannte Straßenfertiger sind mit Nivelliersystemen ausgestattet, die während einer Einbaufahrt zum Ausgleich von Unebenheiten des Untergrunds, die auf das Fahrwerk des Straßenfertigers oder direkt auf die Einbaubohle des Straßenfertigers wirken, dienen. Basierend auf den Sensormessungen eines Nivelliersystems kann die Einbaubohle des Straßenfertigers mittels eines Nivellierzylinders, der einen mit der Einbaubohle gekoppelten ausfahrbaren Kolben aufweist, zur Herstellung einer ebenen Einbauschicht höhenverstellt werden.Known road finishers are equipped with leveling systems that are used during a paving journey to compensate for unevenness in the subsoil that acts on the road finisher's chassis or directly on the screed of the road finisher. Based on the sensor measurements of a leveling system, the screed of the road finisher can be adjusted in height by means of a leveling cylinder, which has an extendable piston coupled to the screed, in order to produce a level paving layer.

Bei herkömmlichen Nivelliersystemen ist, wenn mittels Leitdraht und Abstandssensor nivelliert wird, der Abstandssensor am Zugholm zwischen einem daran ausgebildeten vorderen Zugpunkt, woran der Kolben des Nivellierzylinders befestigt ist, und dem mittels des Zugholms geschleppten Bohlenkörper installiert, d.h. in Fahrtrichtung ungefähr auf Höhe der Querverteilereinrichtung. Von dieser Position aus erfasst der Abstandssensor weder die exakte Position der dahinterliegenden Bohlenhinterkante, die allgemein eine Bohlenhöhe definiert und die maßgeblich die Ebenheit des eingebauten Belags bestimmt, noch den Einfluss von Bodenunebenheiten auf den vorderen Zugpunkt. Diese ungenauen Sensormessungen geben den vorliegenden Untergrund nicht profilgenau wieder, sodass darauf basierend keine Nivellierung der Einbaubohle zustande kommt, wodurch sich Unebenheiten des Untergrunds präzise kompensieren lassen.In conventional leveling systems, when leveling is carried out using a stringline and distance sensor, the distance sensor is installed on the towing beam between a front towing point formed thereon, to which the piston of the leveling cylinder is attached, and the screed body towed by the towing beam, i.e. approximately at the level of the transverse distributor device in the direction of travel. From this position, the distance sensor detects neither the exact position of the rear edge of the screed behind it, which generally defines a screed height and which decisively determines the evenness of the installed covering, nor the influence of uneven ground on the front traction point. These imprecise sensor measurements do not reflect the profile of the existing subsoil so that the screed cannot be leveled based on this, which means that unevenness in the subsoil can be precisely compensated for.

DE 196 47 150 A1 offenbart einen Straßenfertiger mit einem Nivelliersystem, das einen auf Basis einer gemessenen Höhenlage der Hinterkante der Einbaubohle arbeitenden Höhenregelkreis als Führungsregler aufweist. Dieser ist dazu konfiguriert, ein Stellsignal als Führungssignal für einen als Folgeregler ausgebildeten Zugpunktregelkreis zu erzeugen, welcher darauf basierend und hinsichtlich einer erfassten Neigung des Zugarms der Einbaubohle ein Hydraulikventil eines mit dem vorderen Zugpunkt der Einbaubohle gekoppelten Nivellierzylinders ansteuert. DE 196 47 150 A1 discloses a road finisher with a leveling system that has a height control circuit as master controller that works on the basis of a measured height of the rear edge of the screed. This is configured to generate an actuating signal as a command signal for a towing point control loop designed as a slave controller, which based on this and with regard to a detected inclination of the towing arm of the screed actuates a hydraulic valve of a leveling cylinder coupled to the front towing point of the screed.

DE 100 25 474 B4 offenbart ein Nivelliersystem, das als Führungsregler einen Schichtdickenregelkreis einsetzt, aus dem ein Stellsignal auf Basis eines berechneten Schichtdicken-Istwertes und auf Basis eines Schichtdicken-Sollwerts hervorgeht. Dieses Stellsignal gibt einen Neigungs-Soll-Wert vor, der einem als Folgeregler ausgebildeten Ebenheits-Regelkreis vorhaltbar ist. Dieser Ebenheits-Regelkreis berechnet auf Basis des ihm vorgehaltenen Neigungs-Sollwertes und auf Basis einer während der Einbaufahrt erfassten Zugarmneigung eine Stellgröße zum Ansteuern eines Nivellierzylinders zur Höhenverstellung der Einbaubohle. DE 100 25 474 B4 discloses a leveling system that uses a layer thickness control circuit as a master controller, from which an actuating signal based on a calculated actual layer thickness value and based on a layer thickness setpoint value emerges. This control signal specifies an inclination target value that can be supplied to a levelness control circuit designed as a follow-up controller. This evenness control circuit calculates and Based on an inclination of the towing arm detected during the paving journey, a control variable for controlling a leveling cylinder for adjusting the height of the screed.

In DE 196 47 150 A1 und DE 100 25 474 B4 lässt sich der störende Einfluss des Untergrunds auf eine Zugpunktposition nicht einwandfrei mittels der zweistufigen Reglereinrichtung eliminieren. Dies wird durch den Einsatz von Neigungssensoren, die auf Unebenheiten im Untergrund besonders störempfindlich sind, erschwert.In DE 196 47 150 A1 and DE 100 25 474 B4 the disturbing influence of the ground on a towing point position cannot be eliminated properly by means of the two-stage controller device. This is made more difficult by the use of inclination sensors, which are particularly susceptible to interference from uneven ground.

Aufgabe der Erfindung ist es, einen Straßenfertiger mit einem Nivelliersystem zur Verfügung zu stellen, anhand dessen sich ein störender Einfluss des Untergrunds auf die Zugpunktposition der Einbaubohle nahezu vollständig kompensieren lässt. Weiter ist es die Aufgabe der Erfindung, ein auf das vorliegende Untergrundprofil präzise ansprechendes Nivellierverfahren für einen Straßenfertiger zur Verfügung zu stellen.The object of the invention is to provide a road finisher with a leveling system that can be used to almost completely compensate for any disruptive influence of the subsoil on the tow point position of the screed. It is also the object of the invention to provide a leveling method for a road finisher that responds precisely to the existing subsurface profile.

Diese Aufgabe wird gelöst durch einen Straßenfertiger gemäß Anspruch 1 oder mittels eines Verfahrens zum Nivellieren einer Einbaubohle eines Straßenfertigers gemäß Anspruch 14. Vorteilhafte Weiterbildungen der Erfindung sind durch die Unteransprüche gegeben.This object is achieved by a road finisher according to claim 1 or by means of a method for leveling a screed of a road finisher according to claim 14. Advantageous developments of the invention are given by the dependent claims.

Die Erfindung bezieht sich auf einen Straßenfertiger mit einer Einbaubohle zur Herstellung einer Einbauschicht auf einem Untergrund, auf welchem sich der Straßenfertiger während einer Einbaufahrt in Fahrtrichtung fortbewegt. Der erfindungsgemäße Straßenfertiger umfasst zum Ausgleich von Unebenheiten des Untergrunds ein Nivelliersystem zur Höhenverstellung der Einbaubohle, wobei das Nivelliersystem eine Kaskadenregelung aufweist.The invention relates to a road finisher with a screed for producing a paving layer on a subsoil on which the road finisher moves in the direction of travel during a paving run. To compensate for unevenness in the subsoil, the road finisher according to the invention comprises a leveling system for adjusting the height of the screed, the leveling system having a cascade control.

Die Kaskadenregelung umfasst einen äußeren Regelkreis, der einen ersten Regler (im Folgenden auch Bohlenregler genannt) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts einer Bohlenhöhe der Einbaubohle relativ zu einer vorbestimmten Referenz und auf Basis eines ihm vorhaltbaren Sollwerts der Bohlenhöhe relativ zu der vorbestimmten Referenz einen Sollwert einer Zugpunktposition eines Zugpunkts der Einbaubohle relativ zu der vorbestimmten Referenz zu bestimmen. Als Bohlenhöhe ist hier insbesondere die Höhe einer Bohlenhinterkante der Einbaubohle gemeint. Die Zugpunktposition ist vorzugsweise durch ein vorderes Ende des Zugarms der Einbaubohle bestimmt.The cascade control comprises an outer control loop, which has a first controller (also referred to below as a screed controller), which is designed to, on the basis of a detected actual value of a screed height of the screed relative to a predetermined reference and on the basis of a target value of the screed height relative to it the predetermined reference to determine a target value of a towing point position of a towing point of the screed relative to the predetermined reference. The screed height here means in particular the height of a rear edge of the screed of the paving screed. The tow point position is preferably determined by a front end of the tow arm of the screed.

Weiter umfasst die Kaskadenregelung einen inneren Regelkreis, der einen zweiten Regler (im Folgenden auch Nivellierzylinderregler genannt) aufweist, der dazu ausgebildet ist, auf Basis eines erfassten Istwerts einer Nivellierzylinderposition eines am Zugpunkt befestigten, ausfahrbaren Kolbens eines Nivellierzylinders und auf Basis eines dem zweiten Regler vorgehaltenen Sollwerts der Nivellierzylinderposition ein Stellsignal für den Nivellierzylinder zu bestimmen, anhand dessen der Nivellierzylinder ansteuerbar ist.The cascade control system also includes an inner control loop, which has a second controller (also referred to below as a leveling cylinder controller), which is designed to, on the basis of a detected actual value of a leveling cylinder position of an extendable piston of a leveling cylinder that is attached to the towing point, and on the basis of a leveling cylinder held up to the second controller setpoint the leveling cylinder position to determine an actuating signal for the leveling cylinder, on the basis of which the leveling cylinder can be controlled.

Erfindungsgemäß umfasst die Kaskadenregelung entweder zwischen dem äußeren und dem inneren Regelkreis einen mittleren Regelkreis, der einen dritten Regler (im Folgenden auch Zugpunktregler genannt) aufweist, welcher dazu ausgebildet ist, auf Basis eines erfassten Istwerts der Zugpunktposition des Zugpunkts der Einbaubohle zur vorbestimmten Referenz und auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition den Sollwert der Nivellierzylinderposition für den zweiten Regler zu bestimmen, oder die Kaskadenregelung weist zwischen dem äußeren und dem inneren Regelkreis eine Zugpunktsteuerung auf, die dazu ausgebildet ist, auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition des Zugpunkts der Einbaubohle und insbesondere auf Basis eines der Zugpunktsteuerung vorgehaltenen, digitalen Geländemodells des Untergrunds, auf welchem sich der Straßenfertiger zur Herstellung der Einbauschicht fortbewegt, den Sollwert der Nivellierzylinderposition für den zweiten Regler zu bestimmen.According to the invention, the cascade control comprises either a middle control loop between the outer and the inner control loop, which has a third controller (also referred to below as the towing point controller), which is designed to, on the basis of a detected actual value of the towing point position of the towing point of the screed for the predetermined reference and on To determine the setpoint of the leveling cylinder position for the second controller on the basis of the setpoint of the tow point position determined by means of the first controller, or the cascade control has a tow point control between the outer and the inner control circuit, which is designed to do this on the basis of the setpoint determined by means of the first controller the traction point position of the traction point of the screed and in particular on the basis of a digital terrain model of the subsoil provided to the traction point control, on which the road finisher moves to produce the paving layer, to determine the target value of the leveling cylinder position for the second controller.

Bei der ersten erfindungsgemäßen Alternative umfasst die Kaskadenregelung mindestens drei Regelkreise, nämlich einen äußeren, einen mittleren und einen inneren Regelkreis, die zur Herstellung des Stellsignals für den Nivellierzylinder ineinander verschachtelt sind. Anhand des dadurch bereitgestellten dreistufigen Kaskadennivelliersystems, insbesondere unter Einsatz des mittleren, unmittelbar auf Untergrundunebenheiten ansprechenden Regelkreises, kann eine unbekannte Zugpunktstörung, die vom Untergrundprofil über das Fahrwerk des Straßenfertigers auf den Zugpunkt wirkt, einwandfrei kompensiert werden.In the first alternative according to the invention, the cascade control comprises at least three control circuits, namely an outer, a middle and an inner control circuit, which are nested in one another to produce the actuating signal for the leveling cylinder. Using the three-stage cascade leveling system thus provided, in particular using the central control circuit, which responds directly to unevenness in the subsoil, an unknown traction point disturbance, which affects the traction point from the subsurface profile via the chassis of the road finisher, can be perfectly compensated.

Die zweite Alternative des erfindungsgemäßen Straßenfertigers stellt eine Kaskadenregelung mit integrierter Zugpunktsteuerung zur verbesserten Nivellierung der Einbaubohle zur Verfügung. Die hierfür eingesetrte Zugpunktsteuerung bildet für den inneren Regelkreis eine Führungssteuerung und für den äußeren Regelkreis eine Folgesteuerung aus und kann auf Basis des ihr vorgehaltenen, digitalen Geländemodells, worin Untergrundunebenheiten als bekannt berücksichtigt sind, die Zugpunktstörung nahezu vollständig kompensieren.The second alternative of the road finisher according to the invention provides a cascade control with integrated traction point control for improved leveling of the screed. The tow point control used for this forms a command control for the inner control loop and a follow-up control for the outer control loop and can almost completely compensate for the tow point disturbance on the basis of the digital terrain model provided, in which unevenness in the subsoil is taken into account as known.

Anhand beider Alternativen ist eine bessere Kompensation von Unebenheiten des Untergrunds möglich, weil sowohl der Einfluss von Unebenheiten auf die Bohlenhöhe als auch der Einfluss von Unebenheiten auf die Zugpunktmechanik direkt erfasst und zur Erzeugung des Stellsignals für die Einstellung des Nivellierzylinders berücksichtigt werden.With both alternatives, better compensation for unevenness in the ground is possible because both the influence of unevenness on the screed height and the influence of unevenness on the traction point mechanics are recorded directly and taken into account to generate the control signal for setting the leveling cylinder.

Beide o.g. Alternativen des erfindungsgemäßen Straßenfertigers ermöglichen es, dass durch im Untergrund ausgebildete Unebenheiten verursachte, störende Einflüsse auf die Zugpunktposition und die Einbaubohle präzise erfasst und dementsprechend nahezu vollständig ausgeregelt werden können. Dies liegt vor allen Dingen daran, dass das Nivelliersystem in mehrere Regel-/Steuerstreckenabschnitte aufgeteilt ist, die hinsichtlich deren jeweiligen Regel-/Steuerstrecke besser auslegbar sind, um vorliegende Unebenheiten des Untergrunds sowie andere in der Praxis vorkommende Störgrößen bei der Nivellierung der Einbaubohle nahezu vollständig zu kompensieren.Both of the above-mentioned alternatives of the road finisher according to the invention make it possible for disturbing influences on the traction point position and the screed caused by unevenness in the subsoil to be precisely detected and accordingly almost completely corrected. This is primarily due to the fact that the leveling system is divided into several controlled/controlled system sections, which can be better designed with regard to their respective controlled/controlled system in order to almost completely compensate for any unevenness in the subsoil and other disturbance variables that occur in practice when leveling the screed to compensate.

Positiv zur Kompensation der Unebenheiten des Untergrunds wirkt sich insbesondere die Aufteilung der zusammenhängenden Regelstecke des äußeren Regelkreises in die oben genannten Alternativen aus, nämlich die Kombination der einander überlagerten inneren und mittleren Regelschleifen oder die Kombination der inneren Regelschleife mit der vorausgehenden Zugpunktsteuerung. Diese alternativen Kombinationen ermöglichen es jeweils, dass die zusammengefasste Regelstrecke des äußeren Regelkreises aufgrund ihrer Aufteilung in Teilabschnitte besser zum Zwecke einer effektiven Störgrößenkompensation kontrollierbar ist.The division of the coherent control section of the outer control loop into the above-mentioned alternatives, namely the combination of the superimposed inner and middle control loops or the combination of the inner control loop with the preceding traction point control, has a particularly positive effect on compensating for the unevenness of the ground. Each of these alternative combinations makes it possible for the combined controlled system of the outer control loop to be better controllable for the purpose of effective disturbance variable compensation due to its division into subsections.

Vorzugsweise umfasst der äußere Regelkreis eine Regelstrecke, deren Ausgangsgröße (Regelgröße) der erfasste Istwert der Bohlenhöhe der Einbaubohle relativ zu der vorbestimmten Referenz und/oder deren Eingangsgröße der erfasste Istwert der Zugpunktposition des Zugpunkts der Einbaubohle relativ zu der vorbestimmten Referenz ist. Alternativ kann die Eingangsgröße ein in Abhängigkeit eines erfassten Istwerts der Nivellierzylinderposition berechneter Istwert der Zugpunktposition des Zugpunkts sein. Der äußere Regelkreis ermöglicht es, die Bohlenhöhe hinsichtlich der vorbestimmten Referenz, beispielsweise einem neben der Fahrbahn gespannten Leitdraht, einzuregeln.The outer control loop preferably includes a controlled system whose output variable (controlled variable) is the detected actual value of the screed height relative to the predetermined reference and/or whose input variable is the detected actual value of the tow point position of the tow point of the screed relative to the predetermined reference. Alternatively, the input variable can be an actual value of the towing point position of the towing point calculated as a function of a detected actual value of the leveling cylinder position. The outer control circuit makes it possible to regulate the screed height with regard to the predetermined reference, for example a guide wire stretched next to the roadway.

Eine Variante sieht vor, dass das Nivelliersystem für den äußeren Regelkreis mindestens einen ersten Sensor aufweist, der zum Erfassen des Istwerts der Bohlenhöhe ausgebildet ist. Im Folgenden wird dieser Sensor daher auch Bohlensensor genannt. Insbesondere ist der erste Sensor zum Erfassen eines Abstands der Bohlenhinterkante der Einbaubohle zur vorbestimmten Referenz ausgebildet. Gemäß einer Ausführungsform der Erfindung ist der erste Sensor ein im Bereich einer Bohlenhinterkante der Einbaubohle positionierter Abstandssensor zum Erfassen eines Abstands zur vorbestimmten Referenz. Beispielsweise ist der Sensor an einem Seitenschieber der Einbaubohle befestigt. Damit kann die tatsächliche Höhenposition der Einbaubohle als Regelgröße, vor allem eine Höhenposition der daran ausgebildeten Hinterkante, präzise erfasst und per Rückkopplung dem ersten Regler des äußeren Regelkreises zugeführt werden. Die äußere Rücckopplung kann auf der Rückkopplung des inneren Regelkreises aufbauen, wobei die innere Rücckopplung bevorzugt schneller abläuft, sodass die Störgrößenkompensation mittels der inneren Regelschleife bzw. Regelschleifen und das Führungsverhalten der äußeren Regelschleife besser aufeinander abgestimmt werden können.A variant provides that the leveling system for the outer control loop has at least one first sensor, which is designed to detect the actual value of the screed height. This sensor is therefore also referred to below as a screed sensor. In particular, the first sensor is designed to detect a distance between the trailing edge of the screed and the predetermined reference. According to one embodiment of the invention, the first sensor is a distance sensor positioned in the area of a trailing edge of the screed for detecting a distance from the predetermined reference. For example, the sensor is attached to a side shifter of the screed. In this way, the actual height position of the screed can be precisely detected as a controlled variable, above all a height position of the rear edge formed thereon, and fed back to the first controller of the outer control loop. The outer feedback can be based on the feedback of the inner control loop, with the inner feedback preferably taking place more quickly, so that the disturbance variable compensation by means of the inner control loop or control loops and the control behavior of the outer control loop can be better matched to one another.

Vorzugsweise umfasst der innere Regelkreis eine Regelstrecke, deren Ausgangsgröße der erfasste Istwert der Nivellierzylinderposition des am Zugpunkt befestigten, ausfahrbaren Kolbens des Nivellierzylinders und/oder deren Eingangsgröße das Stellsignal für den Nivellierzylinder ist.The inner control circuit preferably includes a controlled system whose output variable is the detected actual value of the leveling cylinder position of the extendable piston of the leveling cylinder attached to the towing point and/or whose input variable is the control signal for the leveling cylinder.

Eine vorteilhafte Variante sieht vor, dass das Nivelliersystem für den inneren Regelkreis mindestens einen zweiten Sensor aufweist, der zum Erfassen des Istwerts der Nivellierzylinderposition ausgebildet ist. Dieser Sensor wird im Folgenden auch Nivellierzylindersensorgenannt. Vorteilhaft ist es, wenn der zweite Sensor ein im Bereich des Nivellierzylinders positionierter Abstandssensor zum Erfassen eines Ausfahrwegs des Kolbens des Nivellierzylinders ist. Damit kann die Nivellierzylinderstellung als Regelgröße, insbesondere der aktuelle Ausfahrweg des Nivellierzylinder-Kolbens, präzise erfasst und per Rückkopplung dem zweiten Regler des inneren Regelkreises zugeführt werden.An advantageous variant provides that the leveling system for the inner control loop has at least one second sensor, which is designed to detect the actual value of the leveling cylinder position. This sensor is also referred to below as the leveling cylinder sensor. It is advantageous if the second sensor is a distance sensor positioned in the area of the leveling cylinder for detecting an extension path of the piston of the leveling cylinder. This means that the leveling cylinder position can be precisely recorded as a controlled variable, in particular the current extension path of the leveling cylinder piston, and fed back to the second controller of the inner control loop.

Zweckmäßig ist es, wenn der mittlere Regelkreis eine Regelstrecke aufweist, deren Ausgangsgröße der erfasste Istwert der Zugpunktposition der Einbaubohle und/oder deren Eingangsgröße der erfasste Istwert der Nivellierzylinderposition ist.It is expedient if the middle control loop has a controlled system whose output variable is the detected actual value of the tow point position of the screed and/or whose input variable is the detected actual value of the leveling cylinder position.

Gemäß einer Ausführungsform der Erfindung weist das Nivelliersystem für den mittleren Regelkreis mindestens einen dritten Sensor (im Folgenden auch Zugpunktsensor genannt) auf, der zum Erfassen des Istwerts der Zugpunktposition zur vorbestimmten Referenz ausgebildet ist. Zweckmäßig ist es, wenn der dritte Sensor ein im Bereich des Zugpunkts der Einbaubohle positionierter Abstandssensor zum Erfassen eines Abstands zur vorbestimmten Referenz ist. Damit kann die durch Unebenheiten direkt beeinflusste Zugpunktposition als Regelgröße präzise erfasst und per Rückkopplung dem dritten Regler des mittleren Regelkreises zugeführt werden.According to one embodiment of the invention, the leveling system for the central control loop has at least one third sensor (also referred to below as the tow point sensor), which is designed to detect the actual value of the tow point position relative to the predetermined reference. It is expedient if the third sensor is a distance sensor positioned in the area of the towing point of the screed for detecting a distance from the predetermined reference. This means that the tow point position, which is directly influenced by unevenness, can be precisely recorded as a controlled variable and fed back to the third controller of the middle control loop.

Insbesondere die Sensoren zum Erfassen der Bohlen- und Zugpunktposition können als Wegmesssensoren ausgebildet sein. Vorstellbar wäre der Einsatz von Laser-, Ultraschall-, LIDAR- und/oder Radarsensoren. Als Messeinrichtung für das Erfassen der Bohlen- und Zugpunktposition kann gemäß einer bevorzugten Variante mindestens ein am Straßenfertiger angeordnetes Tachymeter und/oder am Bohlenverbund befestigter Laserempfänger eingesetzt werden. Vorstellbar ist es, dass das Tachymeter zur Zielverfolgung der vorbestimmten Referenz motorisiert selbsttätig verstellbar ausgebildet ist.In particular, the sensors for detecting the position of the screed and the tow point can be designed as path measuring sensors. The use of laser, ultrasonic, LIDAR and/or radar sensors would be conceivable. According to a preferred variant, at least one tachymeter arranged on the road finisher and/or a laser receiver attached to the assembly of screeds can be used as a measuring device for detecting the position of the screed and the tow point. It is conceivable that the tachymeter for target tracking of the predetermined reference is designed to be automatically adjustable in a motorized manner.

Es wäre vorstellbar, dass anstelle von zwei Abstandssensoren, die an der Bohlenhinterkante und am Zugpunkt installiert sind, ein Längsneigungssensor in Kombination mit einem Abstandssensor zum Einsatz kommen. Dabei kann der Abstandssensor am Bohlenholm an einem beliebigen Punkt zwischen der Bohlenhinterkante und dem Zugpunkt installiert werden. Der Neigungssensor misst den Anstellwinkel der Bohle. Dabei ist es aufgrund der bekannten Bohlengeometrie unerheblich, an welcher Position der Einbaubohle oder des Zugholms der Neigungssensor installiert ist. Kommt die hier beschriebene Sensorkombination zum Einsatz, können die Abstände der Bohlenhinterkante und des Zugpunkts zur Referenz (siehe die in Fig.2 dargestellten Abstände y bo und yzp ) durch trigonometrische Berechnungen basierend auf dem gemessenen Winkel und dem gemessenen Abstand ermittelt werden. Der Aufbau und die Parametrierung der Regler bleiben davon unberührt. Diese Sensorkonfiguration kann auch zum Einsatz kommen, wenn ein Untergrundmodell als Referenz (im Folgenden auch virtuelle Referenz genannt) zum Einsatz kommt.It would be conceivable that instead of two distance sensors installed at the trailing edge of the screed and at the tow point, a pitch sensor would be used in combination with a distance sensor. The distance sensor can be installed on the screed beam at any point between the rear edge of the screed and the towing point. The inclination sensor measures the angle of attack of the screed. Due to the known geometry of the screed, it is irrelevant at which position of the screed or the drawbar the inclination sensor is installed. If the sensor combination described here is used, the distances between the trailing edge of the screed and the towing point can be used as a reference (see the in Fig.2 distances y bo and y zp shown) can be determined by trigonometric calculations based on the measured angle and the measured distance. The structure and parameterization of the controller remain unaffected. This sensor configuration can also be used if an underground model is used as a reference (also referred to below as a virtual reference).

Vorzugsweise weist die Kaskadenregelung mindestens eine Störgrößenaufschaltung auf. Es wäre möglich, dass die Störgrößenaufschaltung auf Basis einer rechnerischen, indirekten Bestimmung mindestens einer Störgröße und/oder auf Basis mindestens einer direkt messbaren Störgröße funktioniert. Anhand der Störgrößenaufschaltung kann proaktiv mittels einer vorgeschalteten Übertragungsfunktion eine Stellgröße, beispielsweise die Stellgröße für die Zugpunktposition angepasst werden, anstatt die Auswirkung der Störgröße auf die am Ausgang vorliegende Regelgröße zuzulassen.The cascade control preferably has at least one feedforward control of disturbance variables. It would be possible for the feedforward control to function on the basis of a calculated, indirect determination of at least one disturbance variable and/or on the basis of at least one directly measurable disturbance variable. Based on the feedforward feedforward, a manipulated variable, for example the manipulated variable for the towing point position, can be adjusted proactively by means of an upstream transfer function, instead of allowing the influence of the disturbance variable on the controlled variable present at the output.

Vorstellbar ist es, dass die Störgrößenaufschaltung mit mindestens einem Filter zum Glätten von berechneten bzw. erfassten Störgrößen ausgestattet ist. Damit kann die Reaktion des funktional mit der Störgrößenaufschaltung verbundenen Reglers gedämpft werden. Für die Störgrößenaufschaltung können mittels eines Scanners aufgenommene Messungen eines Untergrundprofils eingesetzt und/oder ein digitales Geländemodell eingesetzt werden.It is conceivable that the disturbance variable control is equipped with at least one filter for smoothing calculated or recorded disturbance variables. In this way, the reaction of the controller functionally connected to the feedforward control can be dampened. Measurements of a subsoil profile recorded by means of a scanner and/or a digital terrain model can be used for the disturbance variables.

Insbesondere umfasst die Kaskadenregelung eine erste Störgrößenaufschaltung für den äußeren Regelkreis und eine zweite Störgrößenaufschaltung für den mittleren Regelkreis. Damit können Unebenheiten des Untergrunds und/oder andere während des Einbaus vorkommende Störgrö-ßen, beispielsweise Störgrößen betreffend mechanische und/oder hydraulische Systeme des Straßenfertigers, reaktionsschnell proaktiv kompensiert werden, ohne dass diese die kaskadierte Rückkopplung der Regelgrößen spürbar beeinflussen.In particular, the cascade control includes a first feedforward control for the outer control loop and a second feedforward control for the middle control loop. This means that unevenness in the subsoil and/or other disturbance variables occurring during paving, for example disturbance variables relating to the mechanical and/or hydraulic systems of the road finisher, can be proactively compensated for in a fast-reacting manner, without them noticeably influencing the cascaded feedback of the controlled variables.

Die jeweiligen Störgrößenaufschaltungen können unabhängig voneinander einzeln oder gemeinsam aktiviert und deaktiviert werden. Vorstellbar ist es, dass basierend auf mindestens einem am Straßenfertiger während des Einbaubetriebs gemessenen Prozessparameters und/oder auf Basis einer gemessenen Eigenschaft der hergestellten Einbauschicht mindestens eine auf den Prozessparameter und/oder die Eigenschaft der Einbauschicht direkt oder indirekt ansprechende Störgrößenaufschaltung automatisch aktivierbar ist.The respective disturbance variables can be activated and deactivated independently of one another, individually or together. It is conceivable that based on at least one process parameter measured on the road finisher during paving operation and/or based on a measured property of the paving layer produced, at least one disturbance variable triggering that responds directly or indirectly to the process parameter and/or the property of the paving layer can be automatically activated.

Vorzugsweise ist die Kaskadenregelung um ein Schichtstärkenberechnungsmodul ergänzt, das dazu ausgebildet ist, auf Basis einer ermittelten aktuellen Schichtdicke der hergestellten Einbauschicht und/oder auf Basis eines ihm vorgehaltenen Sollwerts der Schichtdicke der herzustellenden Einbauschicht für den äußeren Regelkreis den Sollwert der Bohlenhöhe als Führungsgröße zu bestimmen. Anhand dieser Kaskadenregelung lässt sich die Kompensierung von Untergrundunebenheiten durch die Herstellung einer gewünschten Schichtdicke komplettieren.Preferably, the cascade control is supplemented by a layer thickness calculation module, which is designed to determine the target value of the plank height as a reference variable based on a determined current layer thickness of the paving layer produced and/or on the basis of a target value of the layer thickness of the paving layer to be produced that is held available to it for the outer control loop. With the help of this cascade control, the compensation of unevenness in the substrate can be completed by producing a desired layer thickness.

Eine Variante sieht vor, dass das Schichtstärkenberechnungsmodul dazu konfiguriert ist, die Schichtdicke aus einem Verlauf der für die Nivellierung eingesetzten, ggf. temporär abgespeicherten, Sensormessungen zu ermitteln.One variant provides that the layer thickness calculation module is configured to determine the layer thickness from a profile of the sensor measurements used for the leveling, possibly temporarily stored.

Der Istwert der Schichtdicke kann mittels eines am Straßenfertiger ausgebildeten Schichtdickenmesssystems ermittelt werden. Vorstellbar wäre es, dass zum Ermitteln der hergestellten Schichtdicke die Messergebnisse mindestens eines Abstandssensors verwendet werden, dessen Messergebnisse auch für den Betrieb des Nivelliersystems dienen.The actual value of the layer thickness can be determined using a layer thickness measuring system installed on the road finisher. It would be conceivable for the measurement results of at least one distance sensor to be used to determine the layer thickness produced, the measurement results of which are also used for the operation of the leveling system.

Die Referenz ist gemäß einer Variante als reale physikalische Referenz ausgeführt (z.B. Leitdraht). In der Praxis ist jedoch nicht immer eine physikalische Referenz vorhanden. In diesem Fall kommt eine, hier als "virtuell" bezeichnete, Referenz zum Einsatz. Dies kann zum Beispiel ein Rotationslaser und ein, an der Einbaubohle montierter, Laserempfänger oder ein Tachymeter, welches ein an der Einbaubohle montiertes Prisma verfolgt, sein. Bei diesen beiden Messmethoden kommen keine typischen Abstandssensoren zum Einsatz, da Referenz und Sensor ein System bilden.According to one variant, the reference is designed as a real physical reference (e.g. guide wire). In practice, however, a physical reference is not always available. In this case, a reference referred to here as "virtual" is used. This can be, for example, a rotating laser and a laser receiver mounted on the screed or a tachymeter that tracks a prism mounted on the screed. Typical distance sensors are not used for these two measurement methods, since the reference and sensor form a system.

Eine aus praktischer Sicht ausführungsgemäße virtuelle Referenz ist ein mathematisches Modell des Untergrundes, das als digitales Geländemodell (DGM) oder in anderer digitaler Form (Daten eines (Laser-)Scanners) vorliegt. Bei dem Einsatz einer solchen Referenz ermitteln weiterhin Abstandssensoren den Abstand zum Untergrund und somit zur Referenz. Der entsprechende Sollabstand für Bohle und Zugpunkt zum Untergrund wird in diesem Fall in Abhängigkeit des Ortes so gewählt, dass sich die gewünschte Bohlenhöhe einstellt. Für den Sollwert des Bohlenreglers gilt rbo (x) = zbosoll (x) - zref (x) mit rbo (x) > 0 ∀x. Bei dem Zugpunktregler wird analog das Stellsignal des Bohlenreglers mit dem negativen Verlauf der Referenz überlagert, um die von dem Bohlenregler gewünschte Zugpunktposition zu erreichen.From a practical point of view, an executable virtual reference is a mathematical model of the subsoil, which is available as a digital terrain model (DTM) or in another digital form (data from a (laser) scanner). When using such a reference, distance sensors continue to determine the distance to the ground and thus to the reference. In this case, the corresponding target distance for the screed and towing point to the ground is selected depending on the location so that the desired screed height is set. For the nominal value of the screed controller, r bo ( x ) = z bo applies should ( x ) − z ref ( x ) with r bo ( x ) > 0 ∀ x . In the case of the traction point controller, the actuating signal of the screed controller is overlaid with the negative progression of the reference in order to achieve the traction point position desired by the screed controller.

Die Erfindung betrifft ferner ein Verfahren zum Nivellieren einer Einbaubohle eines Straßenfertigers zur Herstellung einer Einbauschicht auf einem Untergrund, auf welchem sich der Straßenfertiger während einer Einbaufahrt in Fahrtrichtung fortbewegt. Erfindungsgemäß werden Unebenheiten im Untergrund mittels eines Nivelliersystems ausgeglichen, das mittels einer Kaskadenregelung eine Höhenverstellung der Einbaubohle durchführt.The invention also relates to a method for leveling a paving screed of a road finisher in order to produce a paving layer on a subsoil on which the road finisher moves in the direction of travel during a paving run. According to the invention, unevenness in the subsoil is compensated for by means of a leveling system, which adjusts the height of the screed by means of a cascade control.

Beim erfindungsgemäßen Verfahren bestimmt ein äußerer Regelkreis der Kaskadenregelung mittels eines ersten Reglers auf Basis eines erfassten Istwerts einer Bohlenhöhe der Einbaubohle relativ zu einer vorbestimmten Referenz und auf Basis eines dem ersten Regler als Führungsgröße vorhaltbaren Sollwerts der Bohlenhöhe relativ zu der vorbestimmten Referenz einen Sollwert einer Zugpunktposition eines Zugpunkts der Einbaubohle relativ zu der vorbestimmten Referenz.In the method according to the invention, an outer control loop of the cascade control uses a first controller to determine a setpoint value for a tow point position of a screed relative to a predetermined reference based on a detected actual value of a screed height relative to a predetermined reference and based on a setpoint value of the screed height that can be provided to the first controller as a reference variable Pull point of the screed relative to the predetermined reference.

Ferner bestimmt ein innerer Regelkreis der Kaskadenregelung mittels eines zweiten Reglers auf Basis eines erfassten Istwerts einer Nivellierzylinderposition eines am Zugpunkt der Einbaubohle befestigten, ausfahrbaren Kolbens eines Nivellierzylinders und auf Basis eines dem zweiten Regler vorgehaltenen Sollwerts der Nivellierzylinderposition ein Stellsignal für den Nivellierzylinder, anhand dessen der Nivellierzylinder für die Höhenverstellung der Einbaubohle angesteuert wird.Furthermore, an inner control loop of the cascade control uses a second controller to determine an actuating signal for the leveling cylinder based on a detected actual value of a leveling cylinder position of an extendable piston of a leveling cylinder attached to the traction point of the screed and on the basis of a setpoint value of the leveling cylinder position provided to the second controller for adjusting the height of the screed.

Das erfindungsgemäße Verfahren sieht vor, dass entweder ein zwischen dem äußeren und dem inneren Regelkreis integrierter mittlerer Regelkreis der Kaskadenregelung mittels eines dritten Reglers auf Basis eines erfassten Istwerts der Zugpunktposition des Zugpunkts der Einbaubohle relativ zur vorbestimmten Referenz und auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition den Sollwert der Nivellierzylinderposition für den zweiten Regler bestimmt, oder dass eine zwischen dem äußeren und dem inneren Regelkreis funktional eingebundene Zugpunktsteuerung auf Basis des mittels des ersten Reglers bestimmten Sollwerts der Zugpunktposition des Zugpunkts der Einbaubohle und insbesondere auf Basis eines der Zugpunktsteuerung vorgehaltenen, digitalen Geländemodells des Untergrunds, auf welchem sich der Straßenfertiger zur Herstellung der Einbauschicht fortbewegt, den Sollwert der Nivellierzylinderposition für den zweiten Regler bestimmt.The method according to the invention provides that either a central control loop of the cascade control integrated between the outer and inner control loops is controlled by means of a third controller on the basis of a detected actual value of the towing point position of the towing point of the screed relative to the predetermined reference and on the basis of the setpoint value determined by means of the first controller the towing point position determines the target value of the leveling cylinder position for the second controller, or that a towing point control functionally integrated between the outer and the inner control circuit based on the target value of the towing point position of the towing point of the screed determined by means of the first controller and in particular on the basis of a digital signal provided to the towing point control Terrain model of the subsoil on which the road finisher moves to produce the paving layer, determines the target value of the leveling cylinder position for the second controller.

Demzufolge wird anhand des erfindungsgemäßen Verfahrens der als Führungsgröße für die Einstellung des Nivellierzylinders vorgesehene Sollwert der Nivellierzylinderposition und damit auch die davon benötigte Stellgröße für den Nivellierzylinder entweder mittels einer dreistufigen, ineinander verschachtelten Kaskadenregelung, sprich anhand der einander überlagerten ersten, zweiten und dritten Regelkreise, bestimmt oder auf Basis des äußeren und inneren Regelkreises sowie der dazwischen ausgebildeten Zugpunktsteuerung. Anhand beider Alternativen ist eine bessere Kompensation von Unebenheiten des Untergrunds möglich, weil sowohl der Einfluss von Unebenheiten auf die Bohlenhöhe als auch der Einfluss von Unebenheiten auf die Zugpunktmechanik direkt erfasst und zur Erzeugung des Stellsignals für die Einstellung des Nivellierzylinders berücksichtigt werden.Accordingly, using the method according to the invention, the setpoint value of the leveling cylinder position provided as the reference variable for setting the leveling cylinder and thus also the required manipulated variable for the leveling cylinder are determined either by means of a three-stage, nested cascade control, i.e. using the superimposed first, second and third control circuits or on the basis of the outer and inner control loops and the traction point control formed in between. Based on both alternatives is one Better compensation for unevenness in the subsoil is possible because both the influence of unevenness on the screed height and the influence of unevenness on the traction point mechanism are recorded directly and taken into account to generate the control signal for setting the leveling cylinder.

Vorzugsweise wird die Kaskadenregelung um mindestens eine Störgrößenaufschaltung ergänzt. Diese kann proaktiv zur Bestimmung der sollwertigen Zugpunkt- und/oder Nivellierzylinderposition auf Unebenheiten des Untergrunds und andere Störgrößen ansprechen und diese zuverlässig kompensieren, indem sie die damit zusammenhängenden Störgrößen dem Bohlenregler, d.h. dem Regler des äußeren Regelkreises, und/oder dem Zugpunktregler, d.h. dem Regler des mittleren Regelkreises, mittels einer vorbestimmten Übertragungsfunktion zuführt.The cascade control is preferably supplemented by at least one feedforward control. This can proactively respond to unevenness in the ground and other disturbance variables in order to determine the desired traction point and/or leveling cylinder position and reliably compensate for these by transmitting the associated disturbance variables to the screed controller, i.e. the controller of the outer control loop, and/or the traction point controller, i.e. the Controller of the middle loop, by means of a predetermined transfer function.

Gemäß einer Ausführungsform wird die Kaskadenregelung um ein Schichtstärkenberechnungsmodul ergänzt, das auf Basis einer während der Einbaufahrt ermittelten Schichtdicke der hergestellten Einbauschicht und/oder auf Basis eines ihm vorgehaltenen Sollwerts der Schichtdicke der herzustellenden Einbauschicht für den äußeren Regelkreis den Sollwert der Bohlenhöhe bestimmt. Das Schichtstärkenberechnungsmodul könnte beispielsweise die Nivelliersensorsignale verwenden, um die Sollbohlenhöhe zu berechnen.According to one embodiment, the cascade control is supplemented by a layer thickness calculation module, which determines the target value of the plank height for the outer control loop on the basis of a layer thickness of the paving layer that has been produced and/or on the basis of a target value of the layer thickness of the paving layer to be produced that is held available to it. For example, the layer thickness calculation module could use the leveling sensor signals to calculate the target screed height.

Ausführungsbeispiele der Erfindung werden anhand der folgenden Figuren genauer erläutert. Es zeigen:

Fig. 1
einen Straßenfertiger zum Herstellen einer Einbauschicht auf einem Untergrund,
Fig. 2
eine isolierte, schematische Darstellung einer Einbaubohle des Straßenfertigers in einem Bezugskoordinatensystem,
Fig. 3
eine schematische Darstellung einer ersten Variante des erfindungsgemäßen Nivelliersystems für die Einbaubohle des Straßenfertigers, und
Fig. 4
eine schematische Darstellung einer zweiten Variante des erfindungsgemäßen Nivelliersystems für die Einbaubohle des Straßenfertigers.
Exemplary embodiments of the invention are explained in more detail with reference to the following figures. Show it:
1
a road finisher for producing an installation layer on a subsoil,
2
an isolated, schematic representation of a screed of the road finisher in a reference coordinate system,
3
a schematic representation of a first variant of the leveling system according to the invention for the screed of the road finisher, and
4
a schematic representation of a second variant of the leveling system according to the invention for the screed of the road finisher.

Technische Merkmale sind in den Figuren durchgängig mit gleichen Bezugszeichen versehen.Technical features are given the same reference symbols throughout the figures.

Fig. 1 zeigt einen Straßenfertiger 1, der eine Einbauschicht 2 mit einer gewünschten Schichtdicke S auf einem Untergrund 3 herstellt, auf dem sich der Straßenfertiger 1 während einer Einbaufahrt in einer Fahrtrichtung R fortbewegt. Der Straßenfertiger 1 besitzt eine nivellierbare Einbaubohle 4 zum Verdichten der Einbauschicht 2. Die Einbaubohle 4 weist einen Zugarm 5 auf, der an einem vorderen Zugpunkt 6 mit einem am Chassis des Straßenfertigers 1 befestigten Nivellierzylinder 7 verbunden ist. Der Nivellierzylinder 7 kann den Zugarm 5 am vorderen Zugpunkt 6 anheben und absenken, sodass sich ein Anstellwinkel der geschleppten Einbaubohle 4 während der Einbaufahrt einstellen lässt, wobei in Reaktion darauf die Einbaubohle 4 angehoben oder abgesenkt wird. Insbesondere können durch eine dynamische Regelung der Nivellierzylindereinstellung Unebenheiten 8 des Untergrunds 3 ausgeglichen werden. 1 shows a road finisher 1, which produces a paving layer 2 with a desired layer thickness S on a substrate 3, on which the road finisher 1 moves in a travel direction R during a paving run. The road finisher 1 has a levelable screed 4 for compacting the paving layer 2. The screed 4 has a pull arm 5, which at one front towing point 6 is connected to a leveling cylinder 7 attached to the chassis of the road finisher 1 . The leveling cylinder 7 can raise and lower the towing arm 5 at the front towing point 6 so that an angle of attack of the towed screed 4 can be set during the paving journey, with the screed 4 being raised or lowered in response thereto. In particular, unevenness 8 in the subsurface 3 can be compensated for by dynamic control of the leveling cylinder setting.

Fig. 2 zeigt eine isolierte, schematische Darstellung der Einbaubohle 4 in einem Bezugskoordinatensystem K, einschließlich den Untergrund 3 und die Bohlengeometrie betreffende Abmessungen, die im Zusammenhang mit den Fig. 3 und 4 im Folgenden genauer erläutert werden. 2 shows an isolated, schematic representation of the paving screed 4 in a reference coordinate system K, including the subsoil 3 and the dimensions relating to the screed geometry, which are associated with the Figures 3 and 4 are explained in more detail below.

Fig. 3 zeigt ein Nivelliersystem 10A, das zum Nivellieren der Einbaubohle 4 ausgebildet ist. Das Nivelliersystem 10A umfasst eine Kaskadenregelung 100A, die drei einander überlagerte Regelkreise, nämlich einen inneren Regelkreis 11, einen mittleren Regelkreis 12 und einen äußeren Regelkreis 13 umfasst. 3 FIG. 1 shows a leveling system 10A that is designed to level the screed 4. FIG. The leveling system 10A includes a cascade control 100A, which includes three superimposed control loops, namely an inner control loop 11, a middle control loop 12 and an outer control loop 13.

Der äußere Regelkreis 13 weist einen ersten Sensor Hbo (Bohlensensor), der innere Regelkreis 11 einen zweiten Sensor Hnz (Nivellierzylindersensor) und der mittlere Regelkreis 12 einen dritten Sensor Hzp (Zugpunktsensor) auf. Jeder der drei Regelkreise 11, 12, 13 weist somit gemäß Fig. 2 jeweils einen gesonderten Sensor auf. Die Sensoren Hbo, Hnz, Hzp sind dazu konfiguriert, die in Fig. 2 dargestellten Abstände zu messen, insbesondere den Ausfahrweg des Nivellierzylinders snz, die Bohlenhöhe zbo und die Zugpunktposition zzp. Dementsprechende Sensorsignale ybo, ynz, yzp werden von den jeweiligen Sensoren Hbo, Hnz, Hzp als Ist-Regelgrößen den drei Reglern Cbo, Czp, Cnz zugeführt.The outer control loop 13 has a first sensor H bo (screed sensor), the inner control loop 11 has a second sensor H nz (leveling cylinder sensor) and the middle control loop 12 has a third sensor H zp (traction point sensor). Each of the three control circuits 11, 12, 13 thus has according to 2 each have a separate sensor. The sensors H bo , H nz , H zp are configured to use the in 2 to measure the distances shown, in particular the extension path of the leveling cylinder s nz , the screed height z bo and the towing point position z zp . Corresponding sensor signals y bo , y nz , y zp are fed from the respective sensors H bo , H nz , H zp as actual controlled variables to the three controllers C bo , C zp , C nz .

Gemäß Fig. 2 ist die Kaskadenregelung 100A um eine optionale Störgrößenaufschaltung S1, S2 ergänzt, die hier schematisch, in gestrichelter Form dargestellt ist.According to 2 the cascade control 100A is supplemented by an optional feedforward control S1, S2, which is shown here schematically in dashed form.

Zunächst wird die Kaskadenregelung 100A im Folgenden ohne Störgrößenaufschaltung S1, S2 beschrieben. Die drei Regelkreise 11, 12, 13 der Kaskadenregelung 100A sind ineinander verschachtelt. Im äußeren Regelkreis 13 wird die Bohlenhöhe Zbo eingeregelt. Das dynamische Verhalten der Regelstrecke "Einbaubohle" wird durch die Übertragungsfunktion Gbo beschrieben. Ausgangsgröße dieser Regelstrecke ist die erfasste Bohlenhöhe Zbo. Die Bohlenhöhe Zbo wird durch den Bohlensensor Hbo, welcher nahe einer Bohlenhinterkante 14 (siehe Figuren 1 und 2) installiert ist, erfasst. Das entsprechende Sensorsignal ybo wird dem Regler Cbo per Rückkopplung zugeführt. Eingangsgröße der Übertragungsfunktion Gbo ist der gemessene Istwert der Zugpunktposition zzp. Der entsprechende Sollwert der Zugpunktposition rzp ist das Stellsignal vom ersten Regler Cbo (Bohlenregler) und wird aus dem hier vorgehaltenen Sollwert der Bohlenhöhe rbo und dem Sensorsignal ybo berechnet.First, the cascade control 100A is described in the following without feedforward control S1, S2. The three control loops 11, 12, 13 of the cascade control 100A are nested in one another. In the outer control loop 13, the screed height Z bo is adjusted. The dynamic behavior of the "screed" controlled system is described by the transfer function G bo . The output variable of this controlled system is the detected screed height Z bo . The screed height Z bo is determined by the screed sensor H bo , which is located near a rear edge 14 of the screed (see Figures 1 and 2 ) is installed. The corresponding sensor signal y bo is fed back to the controller C bo . The input variable of the transfer function G bo is the measured actual value of the tow point position z zp . The corresponding target value of the tow point position r zp is the actuating signal from the first Controller C bo (screed controller) and is calculated from the set value of the screed height r bo stored here and the sensor signal y bo .

Das Stellsignal rzp des äußeren Regelkreises 13 ist das Führungssignal des mittleren Regelkreises 12, welcher die Zugpunktposition Zzp mit Hilfe des Zugpunktreglers Czp einregelt. Der Istwert der Zugpunktposition zzp wird mittels des Sensors Hzp erfasst, welcher den Abstand des Zugpunktes von der Referenz L (beispielsweise einem neben der Fahrbahn gespannten Seil oder Leitdraht) ermittelt. Dabei ist die Zugpunktposition Zzp die Ausgangsgröße der Zugpunktmechanik Gzp. Das resultierende Sensorsignal yzp wird zum Zugpunktregler Czp zurückgeführt. Das Stellsignal des Zugpunktreglers Czp ist der Sollwert der Nivellierzylinderposition rzp.The actuating signal r zp of the outer control loop 13 is the reference signal of the central control loop 12, which regulates the tow point position Z zp with the aid of the tow point controller C zp . The actual value of the tow point position z zp is detected by the sensor H zp , which determines the distance of the tow point from the reference L (for example a rope or guide wire stretched next to the roadway). The tow point position Z zp is the output variable of the tow point mechanics G zp . The resulting sensor signal y zp is fed back to the traction point controller C zp . The actuating signal of the traction point controller C zp is the set value of the leveling cylinder position r zp .

Somit stellt das Stellsignal vom Zugpunktregler Czp die Führungsgröße des inneren Regelkreises 11 dar, dessen Istwert die Nivellierzylinderposition snz ist. Der innere Regelkreis 11 umfasst als Regelstrecke die Nivellierzylinderfunktion Gnz, wobei der Sensor Hnz die Nivellierzylinderstellung erfasst und dem Nivellierzylinderregler Cnz zuführt. Dabei ist unz das Stellsignal des Nivellierzylinderreglers Cnz, welches auf den Nivellierzylinder 7 wirkt.Thus, the actuating signal from the traction point controller C zp represents the command variable of the inner control loop 11, the actual value of which is the leveling cylinder position s nz . The inner control circuit 11 includes the leveling cylinder function G nz as the controlled system, with the sensor H nz detecting the leveling cylinder position and feeding it to the leveling cylinder controller C nz . In this case, u nz is the actuating signal of the leveling cylinder controller C nz , which acts on the leveling cylinder 7 .

Mittels der vorangehend beschriebenen Kaskadenregelung 100A kann der störende Einfluss des Untergrunds dzp auf die Zugpunktposition Zzp nahezu vollständig ausgeregelt werden. Zudem kann aufgrund der genauen Erfassung der Bohlenhöhe Zbo diese direkt eingeregelt werden und der Störung dbo, welche auf zbo wirkt, kann besser entgegengewirkt werden.By means of the cascade control 100A described above, the disturbing influence of the subsoil d zp on the tow point position Z zp can be almost completely eliminated. In addition, due to the precise detection of the plank height Z bo , this can be adjusted directly and the disturbance d bo , which affects z bo , can be better counteracted.

Auf Basis der drei Sensorsignale ybo, ynz, yzp sowie hinsichtlich des in Fig. 2 dargestellten Aufbaus können die folgenden Zusammenhänge hergeleitet werden: z bo = y bo + z ref

Figure imgb0001
d zp = y zp + z ref + y nz s zp 0
Figure imgb0002
Based on the three sensor signals y bo , y nz , y zp and in terms of in 2 The following relationships can be derived from the structure shown: e.g bo = y bo + e.g ref
Figure imgb0001
i.e zp = y zp + e.g ref + y na s zp 0
Figure imgb0002

Dabei ist dzp durch die Wechselwirkung des Fahrwerks fw mit dem Untergrund 3, hier in Fig. 2 Untergrund zu, gegeben. Somit gilt dzp = fw(zu). Folglich kann das Untergrundprofil durch die Umkehrfunktion der Fahrwerksfunktion berechnet werden. Es gilt z u = fw 1 d zp .

Figure imgb0003
Here d zp is due to the interaction of the chassis fw with the ground 3, here in 2 Subsoil to u , given. Thus d zp = fw(z u ) applies. Consequently, the ground profile can be calculated by the inverse function of the landing gear function. It applies e.g and = fw 1 i.e zp .
Figure imgb0003

Da für die Schichtdicke ses = zbo - zu gilt, kann die Schichtdicke Ses mit Hilfe der Zusammenhänge (1) - (3) durch die drei Sensorsignale ybo, ynz, yzp ermittelt werden. Es gilt s es = y bo + z ref fw 1 y zp + z ref + y nz s zp 0

Figure imgb0004
Since the layer thickness s es =z bo -z u applies, the layer thickness S es can be determined using the relationships (1)-(3) from the three sensor signals y bo , y nz , y zp . It applies s it = y bo + e.g ref fw 1 y zp + e.g ref + y na s zp 0
Figure imgb0004

Wird der Fahrwerkseinfluss vernachlässigt, d.h. zu ≈ dzp wird angenommen, gilt s es = y bo y zp y nz + s zp 0

Figure imgb0005
d bo = d zp
Figure imgb0006
If the chassis influence is neglected, ie zu ≈ d zp is assumed, the following applies s it = y bo y zp y na + s zp 0
Figure imgb0005
i.e bo = i.e zp
Figure imgb0006

Bei der Implementierung der Gleichungen (5) und (6) ist die Ortsabhängigkeit zu berücksichtigen. Das bedeutet, es gilt d bo x = d zp x s zh

Figure imgb0007
und s es x = y bo x y zp x s zh s bo y nz x s zh s bo + s zp 0
Figure imgb0008
When implementing equations (5) and (6), the location dependency must be taken into account. That means it applies i.e bo x = i.e zp x s zh
Figure imgb0007
and s it x = y bo x y zp x s zh s bo y na x s zh s bo + s zp 0
Figure imgb0008

Somit werden die Signale ybo, ynz, yzp aufgezeichnet und die Bohlenstörung dbo(x) wird an dem Wegpunkt x aus der Zugpunktstörung dzp des vorangegangen Wegpunktes x - szh berechnet. Die Information bezüglich der Einbaustärke ses(x) kann dem Bediener angezeigt werden, beispielsweise auf einem Display am Außenbedienstand der Einbaubohle.Thus the signals y bo , y nz , y zp are recorded and the screed disturbance d bo (x) at the waypoint x is calculated from the tow point disturbance dzp of the previous waypoint x− szh . The information regarding the paving thickness s es (x) can be displayed to the operator, for example on a display at the outside control station of the screed.

Darüber hinaus kann obige Kaskadenregelung 100A durch ein Schichtstärkenberechnungsmodul zur Schichtstärkenregelung erweitert werden, welchem eine Sollschichtstärke als gewünschte Schichtstärke vorhaltbar ist, worauf basierend das Schichtstärkenberechnungsmodul den Sollwert der Bohlenhöhe rbo berechnet.In addition, the above cascade control 100A can be expanded by a layer thickness calculation module for layer thickness control, which can be provided with a target layer thickness as the desired layer thickness, on the basis of which the layer thickness calculation module calculates the target value of the plank height r bo .

Bei dem Schichtstärkenberechnungsmodul liegt die Besonderheit vor, dass der Zusammenhang zwischen Schichtstärke und Bohlenhöhe algebraisch ist. Das heißt, eine Änderung der Schichtstärke entspricht exakt der gleichen Änderung der Bohlenhöhe. Zur Umsetzung einer Schichtstärkenregelung sind zwei Varianten denkbar.The special feature of the layer thickness calculation module is that the relationship between layer thickness and plank height is algebraic. This means that a change in layer thickness corresponds exactly to the same change in plank height. Two variants are conceivable for implementing a layer thickness control.

Bei der ersten Variante wird die aktuelle Schichtstärke aus dem Verlauf der Sensormessungen ermittelt und mit der vorgehaltenen Sollschichtstärke verglichen. Diese Abweichung wird in dem Bohlenregler zu einer Änderung der Bohlenhöhe verarbeitet. Bei der zweiten Variante kann der Zusammenhang s es x = y bo x y zp x s zh s bo y nz x s zh s bo + s zp

Figure imgb0009
genutzt werden um den Sollwert der Bohlenhöhe rbo direkt aus der gewünschten Schichtstärke zu bestimmen. Zur Berechnung der Sollbohlenhöhe rbo aus der Sollschichtstärke res wird ses = res und ybo = rbo in obige Gleichung eingesetzt. Anschließend wir bezgl. rbo aufgelöst. Dies führt zu r bo x = r es x + y zp x s zh s bo + y nz x s zh s bo s zp 0 .
Figure imgb0010
In the first variant, the current layer thickness is determined from the course of the sensor measurements and compared with the target layer thickness provided. This deviation is processed in the screed controller to change the screed height. In the second variant, the context s it x = y bo x y zp x s zh s bo y na x s zh s bo + s zp
Figure imgb0009
be used to determine the nominal value of the plank height r bo directly from the desired layer thickness. To calculate the target pile height r bo from the target layer thickness r es , s es = r es and y bo = r bo are used in the above equation. Then we regarding r bo dissolved. this leads to right bo x = right it x + y zp x s zh s bo + y na x s zh s bo s zp 0 .
Figure imgb0010

Somit liegt der Unterschied zwischen der Kaskadenregelung und der um das Schichtstärkenberechnungsmodul erweiterten Kaskadenregelung im Wesentlichen darin, ob der Benutzer einen Sollwert für die Bohlenhöhe oder für die Schichtstärke angibt.The difference between the cascade control and the cascade control extended by the layer thickness calculation module is essentially whether the user enters a target value for the plank height or for the layer thickness.

Die oben beschriebene Kaskadenregelung 100A kann um die in Fig. 2 gestrichelt dargestellte Störgrößenaufschaltung S1, S2 erweitert werden. Dabei werden Informationen bezüglich des Untergrunds zu und der resultierenden Störungen dbo und dzp erfasst und dem Bohlenregler Cbo sowie dem Zugpunktregler Czp zugeführt, welche diese zur Berechnung der gewünschten Zugpunkt- und Nivellierzylinderposition rzp, rnz verwenden, um proaktiv die Störgrößen dbo und dzp zu kompensieren, ohne abzuwarten, dass diese in die Regelgrößen Zbo, Zzp einfließen. Dabei wird bei der Stellsignalberechnung im Bohlenregler Cbo berücksichtigt, dass die Störung dbo mit einer von der Einbaugeschwindigkeit abhängigen Totzeit der Störung dzp nacheilt. Es ist sowohl die rechnerische Bestimmung der Störgrößen dbo und dzp, wie oben beschrieben, als auch das direkte Messen der Störgrößen dbo und dzp mittels geeigneter Messsysteme Hdbo und Hdzp (z.B. Scanner u.ä.) möglich. Dabei kann die Messung sowohl "online", d.h. während des Einbaus, als auch "offline", d.h. vor dem Einbau, beispielsweise anhand eines digitalen Geländemodells (DGM), erfolgen. Offline gemessene Verläufe werden dabei in dem Steuerungssystem gespeichert.The cascade control 100A described above can be expanded by the in 2 Disturbance variable switching S1, S2 shown in dashed lines can be expanded. Information regarding the subsoil zu and the resulting disturbances d bo and d zp are recorded and fed to the screed controller C bo and the traction point controller C zp , which use them to calculate the desired traction point and leveling cylinder position r zp , r nz in order to proactively Compensate for disturbance variables d bo and d zp without waiting for them to flow into the control variables Z bo , Z zp . The control signal calculation in the screed controller C bo takes into account that the disturbance d bo lags behind the disturbance d zp with a dead time that depends on the paving speed. Both the computational determination of the disturbance variables d bo and d zp , as described above, and the direct measurement of the disturbance variables d bo and d zp using suitable measuring systems H dbo and H dzp (eg scanners, etc.) are possible. The measurement can be carried out both "online", ie during installation, and "offline", ie before installation, for example using a digital terrain model (DGM). Courses measured offline are stored in the control system.

Die Nivelliermethode ist nicht auf eine bestimmte Sensortechnologie beschränkt. Zur Erfassung der Bohlen- und Zugpunktposition können insbesondere Messsysteme, wie z.B. Tachymeter und/oder Laserempfänger, zum Einsatz kommen. Auch ein Neigungssensor, der den Anstellwinkel der Bohle misst, wäre vorstellbar. Einer der beiden Ultraschallsensoren könnte durch solch einen Neigungssensor ersetzt werden. Der durch den ersetzten Sensor gemessene Abstand könnte dann durch trigonometrische Beziehungen bestimmt werden. Dadurch kann auch von den vorgegebenen Sensorpositionen am Zugpunkt und der Bohlenhinterkante abgewichen werden, was in der Praxis Vorteile bringen kann. Der Einsatz von Messsystemen ohne feste Referenz, beispielsweise ein am Zugholm 5 des dem Straßenfertigers 1 montierter BigSki, der den Abstand auf den Untergrund 3 an verschiedenen Positionen misst, wäre möglicherweise mit Genauigkeitseinbußen ebenfalls einsetzbar.The leveling method is not limited to any particular sensor technology. In particular, measuring systems such as tachymeters and/or laser receivers can be used to record the position of the screed and the tow point. An inclination sensor that measures the angle of attack of the screed would also be conceivable. One of the two ultrasonic sensors could be replaced by such a tilt sensor. The distance measured by the replaced sensor could then be determined by trigonometric relationships. As a result, it is also possible to deviate from the specified sensor positions at the towing point and the rear edge of the screed, which can have advantages in practice. The use of measuring systems without a fixed reference, for example a BigSki mounted on the drawbar 5 of the road finisher 1, which measures the distance to the subsurface 3 at different positions, could possibly also be used with a loss of accuracy.

Beim Nivelliersystem 10A ist das Untergrundprofil zu nicht bekannt. zu wirkt über das Fahrwerk fw auf den Zugpunkt 6 und bildet somit die unbekannte Zugpunktstörung dzp = fw(zu). Insbesondere um diese unbekannte Zugpunktstörung dzp = fw(zu) zu kompensieren, kommt der mittlere Regelkreis 12 der Kaskadenregelung 100A, welcher die Zugpunktposition Zzp einregelt, zum Einsatz.With the 10A leveling system, the underground profile z u is not known. z u acts on the traction point 6 via the chassis fw and thus forms the unknown traction point disturbance d zp = fw(z u ). The middle control circuit 12 of the cascade control 100A, which regulates the tow point position Z zp , is used in particular to compensate for this unknown tow point disturbance dzp =fw(z u ).

Liegt jedoch gemäß Fig. 4 ein ausreichend genaues digitales Geländemodell (DGM) vor, ist zu durch dieses Modell gegeben und dzp kann mit Hilfe des Fahrwerks fw des Straßenfertigers 1 berechnet werden. Somit wird der Zugpunkt 6 im vorliegenden Fall von einer bekannten Störung beeinflusst. Dies hat zur Folge, dass der mittlere Regelkreis 12 einschließlich des Sensors Hzp nicht mehr erforderlich sind, und durch eine Zugpunktsteuerung C'zp ersetzt werden können. Außerdem kann die Information bezüglich zu für eine optionale Störgrößenaufschaltung verwendet werden. Die Messeinrichtungen Hdbo und Hdzp können folglich ebenfalls entfallen.However, according to 4 a sufficiently accurate digital terrain model (DGM) is given by this model and d zp can be calculated using the chassis fw of the road finisher 1 . Thus, in the present case, the towing point 6 is influenced by a known disturbance. The consequence of this is that the middle control circuit 12 including the sensor H zp is no longer required and can be replaced by a traction point control C' zp . In addition, the information regarding z u can be used for an optional feedforward control. The measuring devices H dbo and H dzp can consequently also be omitted.

Fig. 4 zeigt die Ausführungsform, welche ein Nivelliersystem 10B mit einer Kaskadenregelung 100B umfasst, die ein digitales Geländemodell (DGM) verarbeitet. Der Bohlenregler Cbo ist im Vergleich zu der Grundausführung gemäß Fig. 3 nahezu unverändert. Ein Unterschied zur gezeigten Variante aus Fig. 3 besteht darin, dass, falls eine Störgrößenaufschaltung verwendet wird, die Störung dbo im Bohlenregler Cbo aus zu berechnet wird. Im Unterschied zur Grundausführung gemäß Fig. 3 ist der Zugpunktregler Czp in Fig. 4 nicht mehr vorhanden, sondern wird durch die Zugpunksteuerung C'zp, welche aus dem bekannten Untergrundprofil zu und der Sollposition des Zugpunktes rzp eine Sollwertstellung rnz des Nivellierzylinders berechnet. Diese Berechnung basiert auf den Gleichungen (2) und (3). Zunächst werden die Istwerte yzp und ynz durch die entsprechenden Sollwerte rzp und rnz ersetzt. Anschließend wird Gleichung (3) bezüglich dzp aufgelöst. Es gilt dzp = fw(zu). Einsetzen von yzp = rzp, ynZ = rnz und dzp = fw(zu) in Gleichung (2) und Auflösen bezüglich rnz führt zu r nz = fw z u r zp z ref + s zp0 ,

Figure imgb0011
wodurch der Steueralgorithmus für die Zugpunktsteuerung C'zp gegeben ist. 4 Figure 12 shows the embodiment including a leveling system 10B with a digital terrain model (DTM) processing cascade controller 100B. The screed controller C bo is in comparison to the basic version 3 almost unchanged. A difference to the variant shown 3 consists in the fact that, if a disturbance variable compensation is used, the disturbance d bo in the screed controller C bo is calculated from z u . In contrast to the basic version according to 3 is the traction point controller C zp in 4 no longer available, but is calculated by the traction point control C' zp , which calculates a target value position r nz of the leveling cylinder from the known subsurface profile z u and the target position of the traction point r zp . This calculation is based on equations (2) and (3). First, the actual values y zp and y nz are replaced by the corresponding setpoint values r zp and r nz . Equation (3) is then solved for dzp . d zp = fw(z u ) applies. Substituting y zp = r zp , y nZ = r nz and d zp = fw(z u ) into equation (2) and solving for r nz leads to right na = fw e.g and right zp e.g ref + s zp0 ,
Figure imgb0011
whereby the control algorithm for the tow point control C' zp is given.

Claims (15)

  1. Road finishing machine (1) with a screed (4) for producing a paving layer (2) on a subsoil (3) on which the road finishing machine (1) is moving in the laying direction (R) during a pavement drive, wherein the road finishing machine (1) comprises a leveling system (10A, 10B) for the height adjustment of the screed (4) for compensating irregularities (8) in the subsoil (3), wherein the leveling system (10A, 10B) includes a cascade control (100A, 100B) comprising an outer control loop (13) which includes a first control unit (Cbo) which is embodied to determine, on the basis of a detected actual value of a screed height (zbo) of the screed (4) relative to a predetermined reference (L), and on the basis of a desired value of the screed height (rbo) relative to the predetermined reference (L) which can be held available for it, a desired value of a pulling point position (rzp) of a pulling point (6) of the screed (4) relative to the predetermined reference (L), and which comprises an inner control loop (11) which includes a second control unit (Cnz) which is embodied to determine, on the basis of a detected actual value of a leveling cylinder position (snz) of an extendable piston of a leveling cylinder (7) attached to the pulling point (6), and on the basis of a desired value of the leveling cylinder position (rnz) held available for the second control unit (Cnz), a control signal (unz) for the leveling cylinder (7) by means of which the leveling cylinder (7) can be controlled,
    characterized in that
    the cascade control (100A) either comprises a central control loop (12) between the outer and the inner control loops (11, 13) that includes a third control unit (Czp) which is embodied to determine, on the basis of a detected actual value of the pulling point position (zzp) of the pulling point (6) of the screed (4) to the predetermined reference (L), and on the basis of the desired value of the pulling point position (rzp) determined by means of the first control unit (Cbo), the desired value of the leveling cylinder position (rnz) for the second control unit (Czp), or that the cascade control (100B) includes a pulling point control (C'zp) between the outer and the inner control loops (11, 13) which is embodied to determine, on the basis of the desired value of the pulling point position (rzp) of the pulling point (6) of the screed (4) determined by means of the first control unit (Cbo), and in particular on the basis of a digital terrain model (DGM) of the subsoil (3) on which the road finishing machine (1) is moving for producing the paving layer (2), which model is held available for the pulling point control (C'zp), the desired value of the leveling cylinder position (rnz) for the second control unit (Cnz).
  2. Road finishing machine according to claim 1, characterized in that the outer control loop (13) comprises a closed-loop controlled system (Gbo) whose output quantity is the detected actual value of the screed height (zbo) of the screed (4) relative to the predetermined reference (L), and/or whose input quantity is the detected actual value of the pulling point position (zzp) of the pulling point (6) of the screed (4) relative to the predetermined reference (L).
  3. Road finishing machine according to claim 1 or 2, characterized in that the leveling system (10A, 10B) for the outer control loop (13) includes at least one first sensor (Hbo) which is embodied to detect the actual value of the screed height (zbo).
  4. Road finishing machine according to claim 3, characterized in that the first sensor (Hbo) is a distance sensor for detecting a distance to the predetermined reference (L) which is positioned in the region of a screed's trailing edge (14) of the screed (4).
  5. Road finishing machine according to one of the preceding claims, characterized in that the inner control loop (11) comprises a closed-loop controlled system (Gnz) whose output quantity is the detected actual value of the leveling cylinder position (snz) of the extendable piston of the leveling cylinder (7) attached to the pulling point (6), and/or whose input quantity is the control signal (unz) for the leveling cylinder (7).
  6. Road finishing machine according to one of the preceding claims, characterized in that the leveling system (10A, 10B) for the inner control loop (11) includes at least one second sensor (Hnz) which is embodied to detect the actual value of the leveling cylinder position (snz).
  7. Road finishing machine according to claim 6, characterized in that the second sensor (Hnz) is a distance sensor positioned in the region of the leveling cylinder (7) for detecting the leveling cylinder position (snz) of the piston of the leveling cylinder (7).
  8. Road finishing machine according to one of the preceding claims, characterized in that the central control loop (12) comprises a closed-loop controlled system (Gzp) whose output quantity is the detected actual value of the pulling point position (zzp) of the screed (4), and/or whose input quantity is the detected actual value of the leveling cylinder position (snz).
  9. Road finishing machine according to one of the preceding claims, characterized in that the leveling system (10A, 10B) for the central control loop (12) includes a third sensor (Hzp) which is embodied to detect the actual value of the pulling point position (zzp) to the predetermined reference (L).
  10. Road finishing machine according to claim 9, characterized in that the third sensor (Hbo) is a distance sensor for detecting a distance to the predetermined reference (L) which is positioned in the region of the pulling point (6) of the screed (4).
  11. Road finishing machine according to one of the preceding claims, characterized in that the cascade control (100A, 100B) includes at least one disturbance variable feedforwarding (S1, S2).
  12. Road finishing machine according to one of the preceding claims, characterized in that the cascade control (100A, 100B) is supplemented by a layer thickness calculation module which is embodied to determine, on the basis of an identified current layer thickness (S) of the produced paving layer (2), and/or on the basis of a desired value of the layer thickness (S) of the paving layer (2) to be produced which is held available for it, the desired value of the screed height (rbo) for the outer control loop (13).
  13. Road finishing machine according to claim 12, characterized in that the layer thickness calculation module is embodied to determine the layer thickness (S) from a progression of the sensor measurements employed for leveling.
  14. Method of leveling a screed (4) of a road finishing machine (1) for producing a paving layer (2) on a subsoil (3) on which the road finishing machine (1) is moving in the laying direction (R) during a pavement drive, wherein irregularities (8) in the subsoil (3) are compensated by means of a leveling system (10A, 10B) which performs a leveling of the screed (4) by means of a cascade control (100A, 100B), wherein an outer control loop (13) of the cascade control (100A, 100B) determines, by means of a first control unit (Cbo), on the basis of a detected actual value of a screed height (zbo) of the screed (4) relative to a predetermined reference (L), and on the basis of a desired value of the screed height (rbo) relative to the predetermined reference (L) which can be held available for it, a desired value of a pulling point position (rzp) of a pulling point (6) of the screed (4) relative to the predetermined reference (L), and wherein an inner control loop (11) of the cascade control (100A, 100B) determines, by means of a second control unit (Cnz), on the basis of a detected actual value of a leveling cylinder position (snz) of an extendable piston of a leveling cylinder (7) attached to the pulling point (6) of the screed (4), and on the basis of a desired value (rnz) of the leveling cylinder position held available for the second control unit (Cnz), a control signal (unz) for the leveling cylinder (7) by means of which the leveling cylinder (7) is controlled for the height adjustment of the screed (4),
    characterized in that
    either a central control loop (12) present between the outer and the inner control loops (11, 13) of the cascade control (100A) determines, by means of a third control unit (Czp), on the basis of a detected actual value of the pulling point position (zzp) of the pulling point (6) of the screed (4) to the predetermined reference (L), and on the basis of the desired value of the pulling point position (rzp) determined by means of the first control unit (Cbo), the desired value of the leveling cylinder position (rnz) for the second control unit (Czp), or that a pulling point control (C'zp) present between the outer and the inner control loops (11, 13) of the cascade control (100B) determines, on the basis of the desired value of the pulling point position (rzp) of the pulling point (6) of the screed (4) determined by means of the first control unit (Cbo), and in particular on the basis of a digital terrain model (DGM) of the subsoil (3) on which the road finishing machine (1) is moving for producing the paving layer (2), which model is held available for the pulling point control (C'zp), the desired value of the leveling cylinder position (rnz) for the second control unit (Cnz).
  15. Method according to claim 14, characterized in that the cascade control (100A, 100B) is supplemented by at least one disturbance variable feedforwarding (S1, S2) and/or by a layer thickness calculation module which determines, on the basis of an identified layer thickness (S) of the produced paving layer (2), and/or on the basis of a desired value of a layer thickness (S) of the paving layer (2) to be produced which is held available for it, the desired value of the screed height (rbo) for the outer control loop (13).
EP21162228.7A 2021-03-12 2021-03-12 Road finisher with levelling cascade control Active EP4056760B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21162228.7A EP4056760B1 (en) 2021-03-12 2021-03-12 Road finisher with levelling cascade control
PL21162228.7T PL4056760T3 (en) 2021-03-12 2021-03-12 Road finisher with levelling cascade control
JP2022036233A JP2022140380A (en) 2021-03-12 2022-03-09 Road finisher with leveling cascade control
US17/691,602 US20220290382A1 (en) 2021-03-12 2022-03-10 Road finishing machine with leveling cascade control
BR102022004541-0A BR102022004541A2 (en) 2021-03-12 2022-03-11 ROAD FINISHING MACHINE WITH LEVELING SYSTEM AND LEVELING METHOD OF A TABLE OF A ROAD FINISHING MACHINE
CN202210249699.XA CN115075096A (en) 2021-03-12 2022-03-14 Road finishing machine with leveling cascade control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21162228.7A EP4056760B1 (en) 2021-03-12 2021-03-12 Road finisher with levelling cascade control

Publications (2)

Publication Number Publication Date
EP4056760A1 EP4056760A1 (en) 2022-09-14
EP4056760B1 true EP4056760B1 (en) 2023-08-09

Family

ID=74873534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21162228.7A Active EP4056760B1 (en) 2021-03-12 2021-03-12 Road finisher with levelling cascade control

Country Status (6)

Country Link
US (1) US20220290382A1 (en)
EP (1) EP4056760B1 (en)
JP (1) JP2022140380A (en)
CN (1) CN115075096A (en)
BR (1) BR102022004541A2 (en)
PL (1) PL4056760T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3795748B1 (en) * 2019-09-20 2022-08-31 MOBA Mobile Automation AG Levelling system for a road construction machine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647150C2 (en) 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Device and method for controlling the installation height of a road finisher
DE10025474B4 (en) 2000-05-23 2011-03-10 Moba - Mobile Automation Gmbh Coating thickness determination by relative position detection between the tractor and the traction arm of a paver
DE102005022266A1 (en) * 2005-05-10 2006-11-16 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Paver for floor-level installation of layers for roads or the like.
EP2025811B1 (en) * 2007-08-16 2019-04-24 Joseph Vögele AG Method for laying a road paving and paver for carrying out this method
US8371769B2 (en) * 2010-04-14 2013-02-12 Caterpillar Trimble Control Technologies Llc Paving machine control and method
CN102174792B (en) * 2011-03-22 2013-07-10 苌安 Intelligent GPS (global positioning system) elevation and average thickness control system of floated screed plate paver
EP2535458B2 (en) * 2011-06-15 2020-04-29 Joseph Vögele AG Road finisher with coating measuring device
CN102839592B (en) * 2012-09-18 2014-10-29 中联重科股份有限公司 Leveling device for spreading machine, control method thereof and spreading machine
DE102015001101A1 (en) * 2015-01-30 2016-08-04 Dynapac Gmbh Road paver and method of making a pavement
EP3130939A1 (en) * 2015-08-13 2017-02-15 Joseph Vögele AG Road finisher with a radar based levelling device and control method
EP3178992A1 (en) * 2015-12-07 2017-06-14 Ammann Schweiz AG Paver, screed for a paver, and operating method
DE102017005015A1 (en) * 2017-05-26 2018-11-29 Wirtgen Gmbh Machine train comprising a road milling machine and a road paver and method of operating a road milling machine and a road paver
CN107741719B (en) * 2017-11-29 2024-02-02 江苏徐工工程机械研究院有限公司 Paver longitudinal slope automatic leveling control device and method and paver
EP3498914A1 (en) * 2017-12-13 2019-06-19 Joseph Vögele AG Adjustment of the levelling cylinder in a road finisher
CN111601929B (en) * 2018-01-03 2022-04-19 沃尔沃建筑设备公司 Paver and method for height calibration of a screed of a paver
PL3739122T3 (en) * 2019-05-14 2021-11-29 Joseph Vögele AG Road finisher and method for determining a thickness of a layer of an established installation layer

Also Published As

Publication number Publication date
EP4056760A1 (en) 2022-09-14
PL4056760T3 (en) 2024-02-19
BR102022004541A2 (en) 2022-09-20
CN115075096A (en) 2022-09-20
US20220290382A1 (en) 2022-09-15
JP2022140380A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
EP2155968B1 (en) Paving train for applying a cover layer made of concrete or asphalt material
EP2025811B1 (en) Method for laying a road paving and paver for carrying out this method
EP1339920B1 (en) Laser height adjustment device for a construction machine
EP3739122B1 (en) Road finisher and method for determining a thickness of a layer of an established installation layer
DE102007026527B4 (en) Control system for an engine grader, engine grader and method for controlling an engine grader
DE102011001542B4 (en) Control and corresponding procedure for a tar machine
DE112009001767T5 (en) Road paver control and procedure
EP3647494B1 (en) Road construction machine and method for operating a road construction machine
WO2015140166A1 (en) Road paver comprising a layer thickness measuring device and method for measuring the thickness of a placed material layer
DE19647150A1 (en) Control system for built in material using road leveller
EP3498914A1 (en) Adjustment of the levelling cylinder in a road finisher
EP0834620A1 (en) Paving train
DE102014005077A1 (en) Self-propelled construction machine and method for controlling a self-propelled construction machine
EP0542297A1 (en) Ultrasonic control device for a road-finisher
EP3130939A1 (en) Road finisher with a radar based levelling device and control method
EP0388819A1 (en) Road-paving machine
DE102016225502B4 (en) Measuring system for coating thickness detection
EP3128077A1 (en) Paver and method for determining screed configuration
EP3892777B1 (en) Road finisher and method with transverse profile control
EP4056760B1 (en) Road finisher with levelling cascade control
DE102021106005A1 (en) ACTUATOR SPEED CALIBRATION SYSTEM BASED ON RELATIVE SPEED
DE102022106808B3 (en) Self-propelled ground milling machine and method of controlling a self-propelled ground milling machine
DE10025462A1 (en) Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor
EP4220070A1 (en) Measurement system and controller
EP3981918B1 (en) Road finisher and method for levelling the screed of a finisher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001173

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230809