EP2020672B1 - Hochfrequenzgenerator für Ionen- und Elektronenquellen - Google Patents

Hochfrequenzgenerator für Ionen- und Elektronenquellen Download PDF

Info

Publication number
EP2020672B1
EP2020672B1 EP08013495.0A EP08013495A EP2020672B1 EP 2020672 B1 EP2020672 B1 EP 2020672B1 EP 08013495 A EP08013495 A EP 08013495A EP 2020672 B1 EP2020672 B1 EP 2020672B1
Authority
EP
European Patent Office
Prior art keywords
frequency generator
coupling
frequency
coupling coil
previous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08013495.0A
Other languages
English (en)
French (fr)
Other versions
EP2020672A2 (de
EP2020672A3 (de
Inventor
Werner Kadrnoschka
Anton Lebeda
Johann Müller
Stefan Weis
Rainer Dr. Killinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArianeGroup GmbH
Original Assignee
ArianeGroup GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArianeGroup GmbH filed Critical ArianeGroup GmbH
Publication of EP2020672A2 publication Critical patent/EP2020672A2/de
Publication of EP2020672A3 publication Critical patent/EP2020672A3/de
Application granted granted Critical
Publication of EP2020672B1 publication Critical patent/EP2020672B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0018Arrangements or adaptations of power supply systems

Definitions

  • the invention relates to a device for coupling ionization energy into an inductively or inductively-capacitively excited ion or electron source.
  • an ion engine there is a high-frequency plasma to be excited within an isolated vessel, the so-called discharge vessel.
  • a coupling coil for feeding in a high-frequency energy necessary for plasma excitation is wound around the discharge vessel.
  • the plasma is thus inside the coupling coil. If there are changes in status, e.g. Changes in the density or conductivity, the plasma to changes in impedance, this causes detuning of the resonant circuit.
  • the impedance of a coupling network that connects the high-frequency generator to the coupling coil and changes due to plasma states must be compensated for by manual re-determination of an impedance matching network (so-called matchbox) or an actuator.
  • matchbox an impedance matching network
  • the result of the compensation is that the capacitance of a capacitor of the impedance matching network, e.g. by changing the surface, is suitably adjusted or the inductance of a coil of the impedance matching network is changed by retracting a ferrite.
  • the impedance matching via an impedance matching network can usually not be readjusted very quickly and can only be optimally adjusted over a small frequency load range. Not fast means that readjustment can take seconds. As a result, considerable power losses occur in the impedance matching networks.
  • the publication DE 199 48 229 C1 discloses a high frequency ion source with a high frequency generator equipped with a PLL control loop and with a high-frequency coil, the high-frequency coil forming a series or parallel resonance circuit with a capacitor.
  • the publication US 2007/114945 A1 discloses a high-frequency ion source with a high-frequency generator equipped with a PLL control loop and with a high-frequency coil, the high-frequency coil being connected to the high-frequency generator via an impedance network.
  • a gas to be ionized such as Xe, Kr, Ar, Ne, He, H 2 , O 2 , CO 2 , Cs or Hg
  • a coupling coil wound around the discharge vessel for feeding in a high-frequency
  • the at least one coupling capacitor and the coupling coil are connected to the high-frequency generator via a transformer, the transformer being capacitively coupled on the primary side and forming the resonance circuit on the secondary side with the at least one coupling capacitor and the coupling coil. This is useful, for example, in the event that very large impedance adaptations are required.
  • the coupling coil is connected to the high-frequency generator and forms a series or parallel resonance circuit with the coupling capacitor of the high-frequency generator.
  • the device corrects phase errors of current and voltage in the power output stage of the high-frequency generator by automatically tracking the frequency and phase of the resonant frequency of the load circuit.
  • the control principle is based on the fact that the PLL control circuit continuously compares the phase position of the sinusoidal high-frequency output current and the phase position of the generator output voltage via a digital phase detector and adjusts a phase error that occurs by adjusting the generator frequency via a voltage-controlled oscillator (VCO) to the frequency of the resonance circuit until the phase error Zero is present. Since the response time of the PLL control device is very short (depending on the design ⁇ 100 ⁇ sec), there are no longer lasting phase errors even with rapid changes in the resonance frequencies. The high-frequency generator is therefore adapted to the consumer with the highest possible efficiency.
  • the PLL control device ensures that current and voltage are always in phase and thus the maximum power can be coupled into the plasma via the coupling coil. This can be done without mechanical movement or in any other way.
  • the device according to the invention is characterized by its simplicity and great flexibility and the usability over a wide frequency range.
  • PLL phase locked loop
  • the transmission of power with a zero phase error means that current and voltage in the resonant circuit are in phase and therefore none Reactive currents flow. This means that no reactive power losses can occur, which means that switching losses are almost eliminated.
  • the high-frequency generator is characterized by the fact that operation with resonance and optimum phase adjustment is possible. Only sinusoidal currents flow through the PLL control device, both in the high-frequency generator and in the resonance circuit and thus in the coupling coil. The sinusoidal current allows a high efficiency of the high frequency generator and is therefore also at high operating frequencies, i.e. Frequencies above 0.5 MHz, between 90 and 95%.
  • a device according to the invention with a high-frequency generator with PLL control always works at the resonant frequency of the coupling network of the ion or electron source.
  • the coupling network of the invention is formed by the resonance circuit comprising a coupling coil and a coupling capacitor. This means that the high-frequency generator follows all frequency changes regardless of a frequency detuning and a frequency bandwidth quality by the PLL control.
  • the power adjustment of the high-frequency generator takes place in the microsecond range and leads through the exact phase adjustment of current and voltage in switching elements of the high-frequency generator and the resonance circuit to an almost loss-free switching and an optimal power coupling into the plasma.
  • a device according to the invention is therefore particularly suitable for the high-frequency energy supply of ion sources (TWK) and electron sources (NTR) with inductive excitation and for applications in which the lowest energy consumption is important.
  • TWK ion sources
  • NTR electron sources
  • the PLL control device carries out a frequency and / or phase control for impedance matching of the resonance circuit.
  • the power control of the high-frequency generator can be carried out by setting an input DC voltage and an input current of the high-frequency generator.
  • the high-frequency generator is thus characterized in that it generates a high-frequency output voltage from a direct voltage source that can be controlled in voltage and current strength.
  • This AC voltage source is connected to a resonance circuit, including the coupling coil necessary for inductive coupling and the additional coupling capacitor.
  • the high-frequency generator of the device according to the invention is connected to the coupling coil without the intermediary of an impedance matching network, a so-called matchbox.
  • the coupling of the high-frequency generator with PLL control nevertheless allows the electrical energy to be coupled directly into the plasma of the ion or electron source over a large power and frequency range.
  • the resonance circuit which is formed from the coupling coil and coupling capacitor, can optionally be designed as a series or parallel resonance circuit.
  • the impedance is adjusted by including the coupling coil and the design coupling capacitances between the plasma and the discharge vessel and the corresponding supply lines to the series or parallel / resonance circuit, with the PLL-controlled high-frequency generator automatically regulating the frequency and phase.
  • the coupling coil can have a center tap to which the high-frequency generator is connected. This allows the coupling coil to be cooled by supplying a cooling medium without the interposition of isolators, since the coil ends of the coupling coil are at a reference potential.
  • a cooling medium is preferred Water used.
  • the ground potential can serve as a reference potential, for example.
  • the coupling coil can be arranged between two or more coupling capacitors. It is expedient if the resonant circuit which forms forms a resonance frequency which lies within the so-called lock frequency of the PLL control device.
  • VCO Voltage Controlled Oscillator
  • a device for detecting current and voltage is expediently provided in the resonance circuit, which is coupled to the PLL control device in order to supply the measured current and the measured voltage as control variables.
  • a further embodiment of the invention provides that the at least one coupling capacitor is arranged in the high-frequency generator or outside it (as an external component).
  • the coupling coil is grounded on one side or operated in isolation from a ground potential.
  • a further embodiment provides that the coupling coil and the plasma form a transformer, the plasma representing a secondary winding of the transformer.
  • the high-frequency generator comprises a power output stage, which can optionally be designed as one of the variants listed below: half-bridge class D output stage; Full bridge class D power amplifier; Push-pull power amplifier; Class E power amplifier; Class F power amplifier; Class C power amplifier
  • the selection of which power output stage is provided in the high-frequency generator essentially depends on the required frequency and power range.
  • the impedance matching to the coupling resonance circuit takes place in all cases via a frequency phase control using the PLL control device.
  • Class D and class E output stages are preferably used as output stages for the high-frequency generator, which are characterized by a maximum current flow angle of 180 ° in the switching elements of the output stages (with bipolar or MOSFET transistors). If class D power amplifiers without PLL control are used in connection with resonance circuits, even the smallest frequency phase detunings, depending on the circuit quality of the resonance circuit, lead to considerable reactive currents, both capacitive or inductive, depending on the direction of the phase frequency detuning . The consequence of this is very high current loads on the output stage and consequently high losses in the output stages and coupling networks. The losses occur in the form of reactive current losses. They lead to a sharp drop in the power transmitted to the consumer.
  • the high-frequency generator can be used to set a resonance frequency in the range from 0.5 MHz to 30 MHz.
  • the power coupled into the high-frequency generator is in the range from 1 W to 10 kW.
  • the load impedance coupled to the high frequency generator is in a range from 0.1 ohm to 1 ohm or in a range from 1 ohm to 50 ohms.
  • the discharge vessel of the device according to the invention has a gas inlet and an outlet arranged opposite it with at least two extraction grids, each with a multi-hole mask, which serves as an electrical lens for focusing the ion beams to be extracted.
  • the extraction is carried out by an electric field that can be applied to the extraction grid.
  • the discharge vessel is made of a non-conductive Material with low high-frequency losses, such as quartz, ceramic, Vespel or boron nitride.
  • the discharge vessel serves as a discharge space for the gas to be ionized.
  • the coupling coil comprises a single-layer or a multi-layer or a bifilar winding.
  • the coupling coil is arranged around the discharge vessel or within the discharge vessel.
  • the coupling coil is cylindrical, conical, spherical or partially conical with a cylindrical transition body wound around the discharge vessel.
  • Fig. 1 shows a schematic representation of a device according to the invention for coupling ionization energy into an ion or electron source.
  • a gas tank 1 in which a gas to be ionized is stored under high pressure, is coupled to a filling and drainage area 2 via a line.
  • the filling and drainage area 2 is coupled to a flow control unit 3 via a further line.
  • This has two outputs.
  • a first outlet is connected to an inlet 6 of a discharge vessel 4 for ionizing the gas.
  • a second output of the flow control unit 3 is connected to a neutralizer 10.
  • the discharge vessel 4 consists of a non-conductive material that has only low radio frequency (HF) losses.
  • HF radio frequency
  • the discharge vessel 4 can consist, for example, of quartz, a ceramic, Vespel or boron nitride.
  • the discharge vessel 4 serves as a discharge space for the gas to be ionized, for example Xe, Kr, Ar, Ne, He, H 2 , O 2 , CO 2 , Cs or Hg.
  • An isolator 14 and a flow limiter 15 are located at the inlet 6 of the discharge vessel 4.
  • a coupling coil 5 is arranged around a cylindrical section of the discharge vessel 4, which is coupled to the inlet 6.
  • the coupling coil 5 can consist of a single-layer, multi-layer or bifilar winding, which is wound both around and inside the discharge vessel.
  • the shape of the winding of the coupling coil is arbitrary. It can be cylindrical, conical, spherical or partially conical with a cylindrical transition body.
  • the discharge vessel 4 with the coupling coil 5 surrounding it and the neutralizer 10 are surrounded by an engine housing 21.
  • the coupling coil 5 is connected to a high-frequency generator 16, which generates a high-frequency output voltage from a DC voltage source that can be controlled in voltage and current strength. Together with a coupling capacitor (not shown) provided in the high-frequency generator 16, the coupling coil 5 forms a resonance circuit.
  • the high-frequency generator which is a field coupling on inductive or combined inductive and capacitive Base can be used in the frequency range from 0.5 MHz to 30 MHz. The efficiency of the high-frequency generator can be achieved in the range between 90 and 95%.
  • At least two, preferably two or three, extraction grids 8 are arranged at an outlet 7 of the discharge vessel 4, each of which has at least one multi-hole mask.
  • the extraction grids 8 serve as an electrical lens for focusing the ion beams to be extracted.
  • the extraction is carried out by an electric field, which is applied to the extraction grid 8.
  • the extraction grids 8 are connected to an accelerator 18 and a plasma holder 17 (also called a plasma holder), which have different potentials. While the plasma receiver 17 has the function of an anode and generates a voltage of +1200 V, the accelerator 18 provides a voltage of -250 V.
  • a retarder 19 is also connected to the extraction grid.
  • the reference number 9 denotes the direction of the ejection of the positively charged ion beam e + from the extraction grid 8.
  • the positively charged ion beam is compensated at the output of the discharge vessel 4 by means of negatively charged electrons in order to prevent the device from being electrically charged.
  • Reference number 13 denotes the direction of ejection of electrons e-, these being ejected from the neutralizer 10.
  • the neutralizer 10 comprises a cathode heater 11 and a neutralization unit 12.
  • An electrode of the cathode heater 11 is connected to an electrode of the neutralization unit 12.
  • a respective other electrode of the cathode heater 11 and the neutralization unit 12 is coupled to the neutralizer 10.
  • FIG. 2 A simple electrical equivalent circuit diagram of the invention is shown in Fig. 2 shown.
  • the coupling coil 5 and the plasma operate in the simplified sense like a transformer (reference number 36), the plasma corresponding to a secondary winding 37 of the transformer 36.
  • the primary winding is formed by the coupling coil 5.
  • Resistors 35 and 38 represent line resistances.
  • the coupling capacitor, which forms the resonance circuit with the coupling coil 5, is identified by the reference symbol 22.
  • Parasitic components (resistor 35 and capacitor 46) are contained in the resonant circuit.
  • the parasitic capacitor 46 represents, for example, capacitances of a (coaxial) cable and of output transistors.
  • a high-frequency generator 16 is connected to the feeding voltage source, so that the input voltage Uin and the input current Jin are present. On the output side, the high-frequency generator 16 is connected to the coupling capacitor 22.
  • the high-frequency generator is also identified in the figures with RFG (Radio Frequency Generator).
  • Fig. 3 shows a simplified equivalent circuit diagram of the device according to the invention.
  • the high-frequency generator 16 is connected to the feeding voltage source, so that the input voltage Uin and the input current Jin are present.
  • the high-frequency generator 16 is connected in series to the coupling coil 5 via the coupling capacitor 22.
  • the resistor 35 represents a line resistance. In simple terms, this means that the coupling coil 5, which is usually wound around the discharge vessel, is connected to the coupling capacitor to form a series or parallel resonance circuit.
  • Fig. 6 shows a schematic representation of the components necessary in a device according to the invention.
  • the invention is characterized in that the high-frequency generator 16 generates a high-frequency output voltage from a direct voltage source (energy supply 33) that can be controlled in voltage and current strength.
  • the high frequency generator 16 will be included the coupling coil 5 required for inductive coupling and an additional resonance capacitor, the so-called coupling capacitor 22, are connected to form a resonance circuit.
  • the power generated by the high-frequency generator 16 is transmitted via a frequency- and phase-controlled control loop, adjusted for resonance and zero phase errors. This can, for example, the temporal courses of current and voltage at the output of the high frequency generator Fig. 7 be removed.
  • the upper (rectangular) curve shows the voltage U
  • the middle (sine) curve the current I and the lower one the control of the output stage.
  • the current is also shown to clarify the phase equality.
  • Zero phase error means that current and voltage in the resonant circuit are in phase and therefore no reactive currents flow. This means that no reactive power losses can occur, which virtually eliminates switching losses.
  • By operating with resonance and optimum phase adjustment, produced by a PLL control device only sinusoidal currents flow both in the switching elements of the high-frequency generator 16 and in the resonance circuit and thus in the coupling coil 5.
  • the sinusoidal current allows switching elements to be switched in the zero current crossing. A high degree of efficiency in the range of 90 to 95% can thus be achieved.
  • the control loop is formed by the coupling coil 5 and the coupling capacitance 22, which in the exemplary embodiment of FIG Fig. 6 is arranged inside the high-frequency generator 16.
  • the coupling capacitor 22 could also be designed as an external component.
  • Two resistors 35 and 40, which represent line resistances, are also connected in the resonance circuit.
  • the coupling capacitor 22 is coupled via a line to a power stage (output stage) 24, the current flowing in this line being detected by a current measuring device 23.
  • the output stage 24 is designed, for example, as a class D output stage and is controlled by a control circuit 25, which comprises a flip-flop 47 and driver stages 48, 49.
  • the driver stages 48, 49 drive Via transformers, output stages 52, 53 of the output stage 24.
  • the control circuit 25, is connected to a PLL control device 34.
  • This includes a voltage-controlled oscillator 26 (VCO Voltage Controlled Oscillator), a filter 27 coupled to it and a digital phase comparator 28 coupled to the filter 27.
  • VCO Voltage Controlled Oscillator
  • the PLL control device 34 is coupled to the external power supply 33 via an input filter 31.
  • the output stage 24 is also connected to the power supply 33 via an input filter 32.
  • the PLL control device 34 more precisely the digital phase comparator 28, receives as input signal a current measured by the current measuring device 23, which is amplified by a signal amplifier 29.
  • a voltage present at the output of the output stage 24 is fed via an additional signal amplifier 30 to an input of the digital phase comparator 28. Power can be adjusted in the microsecond range by the exact phase matching of current and voltage in the switching elements of the control circuit 25 and the resonance circuit and leads to an almost loss-free switching of the output stage 24 and thus an optimal power coupling into the plasma introduced into the discharge vessel 4.
  • Such a high-frequency generator with PLL control is therefore particularly suitable for the high-frequency energy supply of ion sources (TWK) and in electron sources (NTR) with inductive excitation as well as for applications in which the lowest energy consumption is important.
  • the invention enables the use of half-bridges in connection with a PLL frequency and phase control as well as a resonance circuit coupling.
  • a series resonance circuit is shown, which can work in the frequency and power range from 600 kHz to 14 MHz or 1 W to 3 kW.
  • the output stage 24 designed as a half bridge is connected between a supply and a reference potential connection and comprises, in a known manner, two switching elements 44 connected in series with one another with their load paths, in the exemplary embodiment in the form of MOSFETs. These are controlled by the control circuit 25.
  • the coupling capacitance 22 is coupled to a node 38, which is in each case connected to a main connection of the switching elements 44.
  • a resistor 45 of the resonance circuit which represents a coil resistance, is connected to reference potential, for example ground.
  • the switching elements 44 are controlled by the control circuit 25, which is connected to an energy supply that is variable in current and voltage.
  • Fig. 5 shows a further basic circuit diagram of an output stage 24 of the high-frequency generator designed as a full bridge.
  • a power amplifier designed as a full bridge is suitable for a frequency range from 600 kHz to 5 MHz and a power range from 2 kW to 10 kW.
  • the output stage 24 each comprises two half-bridge branches connected in parallel, which are connected between a supply and a reference potential connection and each comprise two switching elements 44 connected in series with their load paths in the form of MOSFETs.
  • the resonance circuit comprising the coupling coil 5, the coupling capacitor 22 and the line resistor 35, is connected to a node 39 of a first half bridge and a node 41 of a second half bridge of the output stage 24.
  • a smoothing capacitor 54 is connected in parallel with the energy supply 33.
  • Fig. 8 represents an electrical circuit diagram of possible coupling of coupling coils to a high-frequency generator.
  • a coupling of the high-frequency generator 16 to the ion or electron source can take place via simple series resonance circuits or parallel resonance circuits in connection with a PLL phase control.
  • the coupling can take place via a series / parallel resonance circuit, the coupling coil 5 being a center tap owns (left half of the Fig. 8 ). Their two free ends can each be connected to a reference potential, in the exemplary embodiment ground.
  • a capacitor 55 is connected in parallel.
  • the PLL frequency / phase control is not shown.
  • the resonance circuit also includes the coupling capacitor 22 and the line resistor 35.
  • a voltage supplied to the PLL control loop is tapped via the resistor 35, these points being identified by v.
  • the current supplied to the PLL control loop as a controlled variable is tapped at the point marked I.
  • the coupling coil 5 is arranged between two coupling capacitors 22a and 22b. Both ends of the coupling coil 5 are connected capacitively. The line resistance is not shown.
  • the PLL frequency phase control provided according to the concept of the invention and the high frequency generator.
  • the coupling described increases the efficiency of the high-frequency generator and the efficiency of the ion or electron source considerably. No reactive currents occur in either module, which means that the power loss decreases.
  • Fig. 9 shows an exemplary schematic representation of the coupling of a coupling coil via an additional transformer 42 to the high-frequency generator 16.
  • the additional transformer 42 enables additional transformer impedance matching, in particular in the frequency and power range from 600 kHz to 5 MHz or 1 W to 1 kW possible.
  • the additional transformer 42 has a center tap in the exemplary embodiment.
  • a capacitor 54 connected downstream of the high-frequency generator 16 is used for decoupling the DC voltage of the additional transformer 42.
  • Fig. 10 shows a representation of frequency bandwidth and resonance circuit quality or frequency detuning and phase response of an ion source at different Plasma states.
  • the different quality curves of the resonance circuit are caused by different impedances of the plasma due to different degrees of ionization.
  • the steepest curve in the lower graphic has the greatest quality and the smallest bandwidth.
  • the illustration illustrates that the control loop according to the invention reacts to the most varied of grades and stably engages.
  • the curves given in the upper half of the figure show that a change in the plasma impedances results in ion currents of different phase positions, which are compensated for by the phase locked loop.
  • Fig. 11 shows a further block diagram, which shows the use of the PLL control device for controlling the high-frequency generator.
  • the output stage 24 is designed as a class D half bridge, the resonance circuit being coupled to the node 39.
  • a current measuring device 23 is provided between the node 39 and a resistor 35. Resistor 35 represents a line resistance. Resistor 45, connected in series, represents a coil resistance.
  • a voltage is tapped between the node 39 and a reference potential. This voltage and a current measured by the current measuring device 23 are fed to the inputs of a phase comparator 28.
  • the output voltage applied to the phase comparator 28 is filtered and fed to the input of the voltage-controlled oscillator 26.
  • This control voltage is changed by the phase comparator, which functions as an error amplifier, until there is frequency and phase equality at its inputs.
  • a flip-flop 47 drives driver stages 48, 49, which drive or drive output stages 52, 53 via transformers 50, 51.
  • Fig. 12 shows a device with a high frequency generator having a class D full bridge with PLL control.
  • the resonance circuit is designed as a series resonance circuit.
  • the other components and their wiring correspond to the description Fig. 11 .
  • FIG. 13 A device with a high frequency generator is shown, which has a class E output stage with PLL control.
  • the resonance circuit is designed as a series resonance circuit and comprises the coupling capacitor 22, the coupling coil 5 and the line resistance 35 and the coil resistance 45.
  • the use of a class E output stage circuit for the high-frequency generator with PLL frequency and phase control and resonance circuit coupling, in particular a series / Parallel resonance circuit including the coupling coil is preferably used in the frequency and power range from 600 kHz to 30 MHz or 1 W to 500 W.
  • the coil 56 is part of the class E amplifier and is many times larger than the coil 5. It serves as an energy store when the output stage 52 is blocked.
  • the other components and their wiring correspond to the description Fig. 11 .
  • Fig. 14 shows an electrical equivalent circuit diagram of a device with a high-frequency generator, which has a class D half-bridge with PLL control and additional transformer upward adaptation.
  • a transformer 57 and a capacitor 58 are connected to the output of the output stages 52, 53.
  • the capacitor 58 is connected in a known manner to a center tap of the transformer 57.
  • the other components and their wiring correspond to the description Fig. 11 .
  • Fig. 15 an embodiment of a possible capacitive impedance transformation, which can be used in all amplifier classes (class C, class D, class E, class F). With such an impedance transformation, it is possible to vary the impedance of the plasma or an input impedance Zi of the resonance circuit and thus to optimize the efficiency, the frequency range and the voltage range (for thrust resolution).
  • Resistor 38 represents the resistance of the plasma.
  • a capacitor 59 can be connected in parallel with the resistor 38.
  • the resistor 60 and the capacitor 61 connected in parallel represent elements of the high-frequency generator.
  • the capacitors 22, 61 represent resonance capacitors, the coil 5 is the coupling coil.
  • the advantage of all the variants described is that the energy generated by the high-frequency generator can be coupled directly into the plasma of the ion or electron source over a large power and frequency range without an impedance matching network.
  • the core of the power adjustment is the inclusion of the coupling coil, design-related coupling capacities between the plasma and the housing of the discharge vessel, as well as the cabling to a series or parallel resonance circuit, and the automatic frequency and phase control of the high-frequency generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Einkopplung von lonisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle.
  • Bei einem Ionentriebwerk befindet sich ein hochfrequent anzuregendes Plasma innerhalb eines isolierten Gefäßes, des sog. Entladungsgefäßes. Um das Entladungsgefäß ist eine Koppelspule zur Einspeisung einer zur Plasma-Anregung notwendigen Hochfrequenz-Energie gewickelt. Das Plasma befindet sich damit innerhalb der Koppelspule. Kommt es durch Zustandsänderungen, z.B. Änderungen der Dichte oder Leitfähigkeit, des Plasmas zu Impedanzänderungen, so bewirken diese Verstimmungen des Resonanzkreises.
  • Bei Hochfrequenzgeneratoren, die mit einer festen Frequenz, z.B. 13,56 MHz, betrieben werden, muss die sich durch Plasmazustände ändernde Impedanz eines den Hochfrequenzgenerator mit der Koppelspule verbindenden Einkoppelnetzwerks einstellende Fehlanpassung durch ein manuelles Nachbestimmen eines Impedanzanpassungsnetzwerks (sog. Matchbox) oder einen Stellantrieb kompensiert werden. Die Kompensation hat zur Folge, dass die Kapazität eines Kondensators des Impedanzanpassungsnetzwerks in ihrer Größe, z.B. durch Oberflächenveränderung, geeignet justiert wird oder die Induktivität einer Spule des Impedanzanpassungsnetzwerks durch das Einfahren eines Ferrites verändert wird. Die Impedanzanpassung über ein Impedanzanpassungsnetzwerk kann meist nicht sehr schnell und nur über einen kleinen Frequenz-Lastbereich optimal nachjustiert werden. Nicht schnell bedeutet, dass eine Nachjustierung im Bereich von Sekunden liegen kann. Hierdurch treten in den Impedanzanpassungsnetzwerken zum Teil erhebliche Verlustleistungen auf.
  • Die Druckschrift DE 199 48 229 C1 offenbart eine Hochfrequenz-Ionenquelle mit einem Hochfrequenzgenerator, der mit einem PLL-Regelkreis ausgestattet ist, und mit einer Hochfrequenzspule, wobei die Hochfrequenzspule mit einem Kondensator einen Serien- oder Parallel-Resonanzkreis bildet.
  • Die Druckschrift US 2007/114945 A1 offenbart eine Hochfrequenz-Ionenquelle mit einem Hochfrequenzgenerator, der mit einem PLL-Regelkreis ausgestattet ist, und mit einer Hochfrequenzspule, wobei die Hochfrequenzspule über ein Impedanznetzwerk mit dem Hochfrequenzgenerator verbunden ist.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Einkopplung von Ionisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle für den Einsatz in einem Ionentriebwerk anzugeben, welche die oben aufgeführten Nachteile nicht aufweist.
  • Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den abhängigen Patentansprüchen.
  • Eine erfindungsgemäße Vorrichtung zur Einkopplung von lonisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle umfasst: ein Entladungsgefäß für ein zu ionisierendes Gas, wie z.B. Xe, Kr, Ar, Ne, He, H2, O2, CO2, Cs oder Hg; einer um das Entladungsgefäß gewickelten Koppelspule zur Einspeisung einer zur Plasma-Anregung notwendigen Hochfrequenz-Energie; einen mit der Koppelspule elektrisch gekoppelten Koppelkondensator; und einen mit der Koppelspule elektronisch gekoppelten Hochfrequenzgenerator, der zusammen mit dem zumindest einen Koppelkondensator einen Resonanzkreis ausbildet, wobei der Hochfrequenzgenerator eine PLL-Regelungsvorrichtung zur automatischen Impedanzanpassung des Resonanzkreises aufweist, so dass der Resonanzkreis mit einer Resonanzfrequenz betreibbar ist. Erfindungsgemäß ist vorgesehen, dass der zumindest eine Koppelkondensator und die Koppelspule über einen Transformator an den Hochfrequenzgenerator angeschlossen sind, wobei der Transformator primärseitig kapazitiv mit dem Hochfrequenzgenerator gekoppelt ist und sekundärseitig mit dem zumindest einen Koppelkondensator und der Koppelspule den Resonanzkreis bildet. Dies ist beispielsweise für den Fall zweckmäßig, dass sehr große Impedanzanpassungen erforderlich sind.
  • Die Koppelspule wird an den Hochfrequenzgenerator angeschlossen und bildet mit dem Koppelkondensator des Hochfrequenzgenerators einen Serien- oder Parallelresonanzkreis.
  • Die erfindungsgemäße Vorrichtung korrigiert Phasenfehler von Strom und Spannung in der Leistungsendstufe des Hochfrequenzgenerators durch selbsttätiges Nachführen von Frequenz und Phase der Resonanzfrequenz des Lastkreises. Das Regelprinzip beruht darin, dass die PLL-Regelschaltung kontinuierlich die Phasenlage des sinusförmigen Hochfrequenzausgangsstroms und die Phasenlage der Generatorausgangsspannung über einen digitalen Phasendetektor vergleicht und einen auftretenden Phasenfehler durch Nachstellen der Generatorfrequenz über einen spannungskontrollierten Oszillator (VCO) auf die Frequenz des Resonanzkreises nachstimmt bis der Phasenfehler Null vorliegt. Da die Reaktionszeit der PLL-Regelungsvorrichtung sehr kurz ist (je nach Auslegung < 100 µsec) kommt es auch bei schnellen Änderungen der Resonanzfrequenzen zu keinen länger anhaltenden Phasenfehlern. Die Anpassung des Hochfrequenzgenerators an den Verbraucher erfolgt dadurch mit höchstmöglichem Wirkungsgrad. Durch die sehr schnelle Frequenznachführung und den Phasenabgleich mittels des digitalen Phasenkomparators sorgt die PLL-Regelungsvorrichtung dafür, dass Strom und Spannung immer in Phase sind und damit die maximale Leistung über die Koppelspule in das Plasma eingekoppelt werden kann. Dies kann dabei ohne mechanische Bewegung oder auf andere Weise erfolgen. Die erfindungsgemäße Vorrichtung zeichnet sich durch ihre Einfachheit und große Flexibilität und die Verwendbarkeit über einen großen Frequenzbereich aus.
  • Die erfindungsgemäße Vorgehensweise zur optimalen Impedanz- und Leistungsanpassung besteht somit darin, die von dem Hochfrequenzgenerator abgegebene Leistung über einen PLL-Regelkreis (PLL = Phase Locked Loop), auf Resonanz und Phasenfehler Null abzugleichen und an das Plasma zu übertragen. Die Übertragung der Leistung mit einem Phasenfehler Null bedeutet, dass Strom und Spannung in dem Resonanzkreis in Phase liegen und damit keine Blindströme fließen. Somit können auch keine Blindleistungsverluste auftreten, wodurch Schaltverluste nahezu eliminiert sind.
  • Zur Durchführung der automatischen Impedanzanpassung des Resonanzkreises werden Strom und Spannung in dem Resonanzkreis erfasst und der PLL-Regelungsvorrichtung als Regelgrößen zugeführt.
  • Der Hochfrequenzgenerator zeichnet sich dadurch aus, dass ein Betrieb bei Resonanz und optimalem Phasenabgleich möglich ist. Durch die PLL-Regelungsvorrichtung fließen nur sinusförmige Ströme, sowohl in dem Hochfrequenzgenerator als auch im Resonanzkreis und damit in der Koppelspule. Der sinusförmige Strom erlaubt einen hohen Wirkungsgrad des Hochfrequenzgenerators und beträgt daher auch bei hohen Betriebsfrequenzen, d.h. Frequenzen oberhalb von 0,5 MHz, zwischen 90 und 95 %.
  • Eine erfindungsgemäße Vorrichtung mit einem Hochfrequenzgenerator mit PLL-Regelung arbeitet immer auf der Resonanzfrequenz des Einkoppelnetzwerkes der lonen- oder Elektronenquelle. Das Einkoppelnetzwerk der Erfindung ist durch den Resonanzkreis aus Koppelspule und Koppelkondensator gebildet. Dies bedeutet, der Hochfrequenzgenerator folgt allen Frequenzänderungen unabhängig von einer Frequenzverstimmung und einer Frequenzbandbreiten-Kreisgüte phasengenau durch die PLL-Regelung. Die Leistungsanpassung des Hochfrequenzgenerators erfolgt im Mikrosekunden-Bereich und führt durch den exakten Phasenabgleich von Strom und Spannung in Schaltelementen des Hochfrequenzgenerators und dem Resonanzkreis zu einem nahezu verlustfreien Schalten und einer optimalen Leistungseinkopplung in das Plasma.
  • Eine erfindungsgemäße Vorrichtung eignet sich deshalb besonders für die Hochfrequenzenergieversorgung von Ionenquellen (TWK) und Elektronenquellen (NTR) mit induktiver Anregung und für Anwendungen, bei denen es auf geringsten Energieverbrauch ankommt.
  • Gemäß einer Ausführungsform wird durch die PLL-Regelungsvorrichtung eine Frequenz- und/oder Phasenregelung zur Impedanzanpassung des Resonanzkreises durchgeführt. Die Leistungsregelung des Hochfrequenzgenerators ist durch Einstellung einer Eingangsgleichspannung und eines Eingangsstroms des Hochfrequenzgenerators vornehmbar. Der Hochfrequenzgenerator zeichnet sich somit dadurch aus, dass er aus einer in Spannungs- und Stromstärke steuerbaren Gleichspannungsquelle eine hochfrequente Ausgangsspannung erzeugt. Diese Wechselspannungsquelle wird unter Einbeziehung der für eine induktive Einkopplung notwendigen Koppelspule und des zusätzlichen Koppelkondensators zu einem Resonanzkreis verschaltet.
  • Der Hochfrequenzgenerator der erfindungsgemäßen Vorrichtung ohne Zwischenschaltung eines Impedanzanpassungsnetzwerks, einer sog. Matchbox, mit der Koppelspule verbunden. Die Ankopplung des Hochfrequenzgenerators mit PLL-Regelung erlaubt es dennoch, über einen großen Leistungs- und Frequenzbereich, die elektrische Energie direkt in das Plasma der lonen- oder Elektronenquelle einzukoppeln.
  • Der Resonanzkreis, der aus Koppelspule und Koppelkondensator gebildet ist, kann wahlweise als Serien- oder Parallel-Resonanzkreis ausgebildet sein. Die Impedanzanpassung erfolgt dabei dadurch, dass die Koppelspule sowie konstruktive Koppelkapazitäten zwischen dem Plasma und dem Entladungsgefäß und entsprechender Zuleitungen zu dem Serien- oder Parallel-/Resonanzkreis einbezogen werden, wobei eine automatische Frequenz- und Phasenregelung durch den PLL-geregelten Hochfrequenzgenerator erfolgt.
  • In einer weiteren Ausführungsform kann die Koppelspule über eine Mittelpunktanzapfung verfügen, an welche der Hochfrequenzgenerator angeschlossen ist. Dies erlaubt die Kühlung der Koppelspule durch Zuführung eines Kühlmediums ohne die Zwischenschaltung von Isolatoren, da die Spulenenden der Koppelspule auf einem Bezugspotential liegen. Als Kühlmedium wird vorzugsweise Wasser verwendet. Als Bezugspotential kann beispielsweise das Massepotential dienen.
  • In einer weiteren Ausführungsform kann die Koppelspule zwischen zwei oder mehreren Koppelkondensatoren angeordnet sein. Zweckmäßig ist dabei, wenn der sich bildende Resonanzkreis eine Resonanzfrequenz bildet, welche innerhalb der sog. Lockfrequenz der PLL-Regelvorrichtung liegt. Der Hochfrequenzgenerator führt die Frequenz z.B. mittels eines spannungsgesteuerten Oszillators (VCO = Voltage Controlled Oscillator) und einem digitalen Phasenvergleich von Strom und Spannung im Resonanzkreis so lange nach, bis der Phasenfehler Null wird.
  • Zweckmäßigerweise ist eine Vorrichtung zur Erfassung von Strom und Spannung in dem Resonanzkreis vorgesehen, welche mit der PLL-Regelungsvorrichtung gekoppelt ist, um dieser den gemessenen Strom und die gemessene Spannung als Regelgrößen zuzuführen.
  • Eine weitere Ausführungsform der Erfindung sieht vor, dass der zumindest eine Koppelkondensator in dem Hochfrequenzgenerator oder außerhalb von diesem (als externes Bauelement) angeordnet ist.
  • Ferner kann vorgesehen sein, dass die Koppelspule einseitig geerdet oder isoliert zu einem Massepotential betrieben wird.
  • Eine weitere Ausführungsform sieht vor, dass die Koppelspule und das Plasma einen Transformator ausbilden, wobei das Plasma eine Sekundärwicklung des Transformators darstellt.
  • Der Hochfrequenzgenerator umfasst eine Leistungsendstufe, die wahlweise als eine der nachfolgend aufgeführten Varianten ausgebildet sein kann: Halbbrücken-Klasse-D-Endstufe; Vollbrücken-Klasse-D-Endstufe; Push-Pull-Endstufe; Endstufe der Klasse E; Endstufe der Klasse F; Endstufe der Klasse C. Die Auswahl, welche Leistungsendstufe in dem Hochfrequenzgenerator vorgesehen wird, hängt im Wesentlichen von dem geforderten Frequenz- und Leistungsbereich ab. Die Impedanzanpassung an den Einkoppelresonanzkreis erfolgt in allen Fällen über eine Frequenz-Phasenregelung mittels der PLL-Regelungsvorrichtung.
  • Als Endstufen für den Hochfrequenzgenerator werden vorzugsweise Klasse-D- und Klasse-E-Endstufen verwendet, welche sich durch einen maximalen Stromflusswinkel von 180° in den Schaltelementen der Endstufen (mit Bipolar- oder MOSFET-Transistoren) auszeichnen. Werden Klasse-D-Endstufen ohne PLL-Regelung im Zusammenhang mit Resonanzkreisen eingesetzt, so kommt es schon bei kleinsten Frequenz-Phasenverstimmungen, abhängig von der Kreisgüte des Resonanzkreises, zu erheblichen Blindströmen, sowohl kapazitiven oder induktiven Charakters, je nach Richtung der Phasen-Frequenzverstimmung. Die Folge davon sind sehr hohe Strombelastungen der Endstufe und demzufolge hohe Verluste in den Endstufen und Koppelnetzwerken. Die Verluste treten in Form von Blindstromverlusten auf. Sie führen zu einem starken Absinken der zum Verbraucher übertragenen Leistung. Durch den Einsatz der PLL-Regelung werden die erwähnten Probleme, d.h. Phasenfehler in den Endstufen, auch bei Klasse-D-, Klasse-E- und Klasse-F-Endstufen vollständig vermieden. Der Einsatz der PLL-Regelung ermöglicht die volle Performanzausnutzung dieser Endstufentypen, d.h. einen Stromflusswinkel von 180 °.
  • Durch den Hochfrequenzgenerator ist eine Resonanzfrequenz im Bereich von 0,5 MHz bis 30 MHz einstellbar. Die in den Hochfrequenzgenerator eingekoppelte Leistung liegt im Bereich von 1 W bis 10 kW. Die an den Hochfrequenzgenerator gekoppelte Lastimpedanz liegt in einem Bereich von 0,1 Ohm bis 1 Ohm oder in einem Bereich von 1 Ohm bis 50 Ohm.
  • In einer weiteren Ausgestaltung weist das Entladungsgefäß der erfindungsgemäßen Vorrichtung einen Gaseinlass und einen gegenüberliegend angeordneten Auslass mit zumindest zwei Extraktionsgittern mit jeweils einer Multilochmaske auf, welche als elektrische Linse zur Fokussierung der zu extrahierenden lonenstrahlen dient. Die Extraktion erfolgt durch ein elektrisches Feld, das an die Extraktionsgitter anlegbar ist. Das Entladungsgefäß ist aus einem nichtleitenden Material mit geringen Hochfrequenzverlusten gebildet, wie z.B. Quarz, Keramik, Vespel oder Bor-Nitrid. Das Entladegefäß dient als Entladeraum für das zu ionisierende Gas.
  • Die Koppelspule umfasst gemäß einer weiteren Ausführungsform eine einlagige oder eine mehrlagige oder eine bifilare Wicklung. Dabei ist die Koppelspule um das Entladungsgefäß oder innerhalb des Entladungsgefäßes angeordnet. Die Koppelspule ist zylindrisch, kegelig, sphärisch oder teilkonisch mit zylindrischem Übergangskörper um das Entladungsgefäß gewickelt.
  • Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Einkopplung von Ionisationsenergie in eine Ionen- oder Elektronenquelle;
    Fig. 2
    ein elektrisches Ersatzschaltbild der erfindungsgemäßen Vorrichtung;
    Fig. 3
    ein vereinfachtes erfindungsgemäßes Ersatzschaltbild der erfindungsgemäßen Vorrichtung;
    Fig. 4
    ein Prinzipschaltbild einer als Halbbrücke ausgeführten Endstufe eines Hochfrequenzgenerators mit einem Serienresonanzkreis;
    Fig. 5
    ein Prinzipschaltbild einer als Vollbrücke ausgestalteten Endstufe eines Hochfrequenzgenerators mit einem Serienresonanzkreis;
    Fig. 6
    eine schematische Darstellung der in einer erfindungsgemäßen Vorrichtung notwendigen Komponenten;
    Fig. 7
    die zeitlichen Verläufe von Strom und Spannung an einem Ausgang des Hochfrequenzgenerators;
    Fig. 8
    ein elektrisches Schaltbild zweier möglicher Ankopplungen von Koppelspulen an einen Hochfrequenzgenerator;
    Fig. 9
    eine beispielhafte Darstellung der Ankopplung einer Koppelspule über einen Zusatz-Transformator an den Hochfrequenzgenerator;
    Fig. 10
    eine Darstellung von Frequenzbandbreite und Resonanzkreisgüte bzw. Frequenzverstimmung sowie Phasengang einer lonenquelle bei verschiedenen Plasmazuständen;
    Fig. 11
    ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Halbbrücke mit PLL-Regelung aufweist;
    Fig. 12
    ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Vollbrücke mit PLL-Regelung aufweist;
    Fig. 13
    ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-E-Endstufe mit PLL-Regelung aufweist;
    Fig. 14
    ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Halbbrücke mit PLL-Regelung und zusätzlicher transformatorischer Aufwärtsanpassung aufweist; und
    Fig. 15
    eine schematische Darstellung einer Impedanztransformation am Ausgang des Hochfrequenzgenerators.
  • Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Einkopplung von Ionisationsenergie in eine lonen- oder Elektronenquelle. Ein Gastank 1, in dem ein zu ionisierendes Gas unter hohem Druck bevorratet ist, ist über eine Leitung mit einem Füll- und Abflussbereich 2 gekoppelt. Der Füll- und Abflussbereich 2 ist über eine weitere Leitung mit einer Flusssteuereinheit 3 gekoppelt. Diese weist zwei Ausgänge auf. Ein erster Ausgang ist mit einem Einlass 6 eines Entladungsgefäßes 4 zur Ionisation des Gases verbunden. Ein zweiter Ausgang der Flusssteuereinheit 3 ist mit einem Neutralisator 10 verbunden. Das Entladungsgefäß 4 besteht aus einem nichtleitenden Material, das nur geringe Hochfrequenz (HF)-Verluste aufweist. Das Entladungsgefäß 4 kann beispielsweise aus Quarz, einer Keramik, Vespel oder Bor-Nitrid bestehen. Das Entladungsgefäß 4 dient als Entladeraum für das zu ionisierende Gas, z.B. Xe, Kr, Ar, Ne, He, H2, O2, CO2, Cs oder Hg.
  • An dem Einlass 6 des Entladungsgefäßes 4 befinden sich ein Isolator 14 sowie ein Flussbegrenzer 15. Um einen zylinderförmigen Abschnitt des Entladungsgefäßes 4, der mit dem Einlass 6 gekoppelt ist, ist eine Koppelspule 5 angeordnet. Die Koppelspule 5 kann aus einer einlagigen, mehrlagigen oder bifilaren Wicklung bestehen, welche sowohl um als auch innerhalb des Entladungsgefäßes gewickelt ist. Die Form der Wicklung der Koppelspule ist dabei beliebig. Sie kann zylindrisch, kegelig, sphärisch oder teilkonisch mit zylindrischem Übergangskörper sein. Das Entladungsgefäß 4 mit der dieses umgebenden Koppelspule 5 sowie der Neutralisator 10 sind von einem Triebwerksgehäuse 21 umgeben.
  • Die Koppelspule 5 ist mit einem Hochfrequenzgenerator 16 verbunden, der aus einer in Spannung und Stromstärke steuerbaren Gleichspannungsquelle eine hochfrequente Ausgangsspannung erzeugt. Zusammen mit einem in dem Hochfrequenzgenerator 16 vorgesehenen Koppelkondensator (nicht dargestellt) bildet die Koppelspule 5 einen Resonanzkreis aus. Der Hochfrequenzgenerator, der eine Feldeinkopplung auf induktiver bzw. kombinierter induktiver und kapazitiver Basis vornehmen kann, ist für einen Einsatz im Frequenzbereich von 0,5 MHz bis 30 MHz geeignet. Dabei lässt sich ein Wirkungsgrad des Hochfrequenzgenerators erreichen, der im Bereich zwischen 90 und 95 % liegt.
  • An einem Auslass 7 des Entladungsgefäßes 4 sind zumindest zwei, bevorzugt zwei oder drei, Extraktionsgitter 8 angeordnet, die jeweils zumindest eine Multilochmaske aufweisen. Die Extraktionsgitter 8 dienen als elektrische Linse zur Fokussierung der zu extrahierenden lonenstrahlen. Die Extraktion erfolgt durch ein elektrisches Feld, das an die Extraktionsgitter 8 angelegt wird. Zu diesem Zweck sind die Extraktionsgitter 8 mit einem Beschleuniger 18 und einer Plasmaaufnahme 17 (auch Plasma Holder genannt) verbunden, die unterschiedliche Potentiale aufweisen. Während die Plasmaaufnahme 17 die Funktion einer Anode hat und eine Spannung von +1200 V erzeugt, stellt der Beschleuniger 18 eine Spannung von -250 V bereit. An die Extraktionsgitter ist ferner ein Verzögerer 19 angeschlossen. Mit dem Bezugszeichen 9 ist die Richtung des Ausstoßes des positiv geladenen lonenstrahls e+ aus dem Extraktionsgitter 8 gekennzeichnet. Der positiv geladene lonenstrahl wird am Ausgang des Entladungsgefäßes 4 mittels negativ geladener Elektronen kompensiert, um eine elektrische Aufladung der Vorrichtung zu verhindern. Mit dem Bezugszeichen 13 ist die Ausstoßrichtung von Elektronen e- gekennzeichnet, wobei diese aus dem Neutralisator 10 ausgestoßen werden.
  • Der Neutralisator 10 umfasst eine Kathodenheizung 11 sowie eine Neutralisationseinheit 12. Eine Elektrode der Kathodenheizung 11 ist mit einer Elektrode der Neutralisationseinheit 12 verbunden. Eine jeweils andere Elektrode der Kathodenheizung 11 und der Neutralisationseinheit 12 ist mit dem Neutralisator 10 gekoppelt. Zwischen den Elektroden der Kathodenheizung 10 besteht beispielsweise ein Potentialunterschied von 9 V, während zwischen den Elektroden der Neutralisationseinheit 12 ein Potentialunterschied von 15 V besteht.
  • Ein einfaches elektrisches Ersatzschaltbild der Erfindung ist in Fig. 2 dargestellt. In dem elektrischen Ersatzschaltbild wird das neben der erfindungsgemäßen Vorrichtung das in dem Entladungsgefäß befindliche Plasma berücksichtigt. Die Koppelspule 5 und das Plasma arbeiten im vereinfachten Sinne wie ein Transformator (Bezugszeichen 36), wobei das Plasma einer Sekundärwicklung 37 des Transformators 36 entspricht. Die Primärwicklung wird durch die Koppelspule 5 gebildet. Die Widerstände 35 und 38 repräsentieren Leitungswiderstände. Mit dem Bezugszeichen 22 ist der Koppelkondensator gekennzeichnet, der mit der Koppelspule 5 den Resonanzkreis ausbildet. In dem Resonanzkreis sind parasitäre Bauelemente (Widerstand 35 und Kondensator 46) enthalten. Der parasitäre Kondensator 46 repräsentiert z.B. Kapazitäten eines (Koaxial-)kabels und von Ausgangstransistoren. Bei kurzen Leitungslängen und Frequenzen unterhalb von 3 MHz kann die Kapazität des parasitären Kondensators 46 vernachlässigt werden. Ein Hochfrequenzgenerator 16 ist mit der speisenden Spannungsquelle verbunden, so dass die Eingangsspannung Uin und der Eingangsstrom Jin anliegen. Ausgangsseitig ist der Hochfrequenzgenerator 16 an den Koppelkondensator 22 angeschlossen. Der Hochfrequenzgenerator ist in den Figuren auch mit RFG (Radio Frequency Generator) gekennzeichnet.
  • Fig. 3 zeigt ein vereinfachtes Ersatzschaltbild der erfindungsgemäßen Vorrichtung. Der Hochfrequenzgenerator 16 ist mit der speisenden Spannungsquelle verbunden, so dass die Eingangsspannung Uin und der Eingangsstrom Jin anliegen. Ausgangsseitig ist der Hochfrequenzgenerator 16 über den Koppelkondensator 22 seriell mit der Koppelspule 5 verbunden. Der Widerstand 35 repräsentiert einen Leitungswiderstand. Vereinfacht ausgedrückt, bedeutet dies, dass die Koppelspule 5, welche üblicherweise um das Entladungsgefäß gewickelt ist, mit dem Koppelkondensator zu einem Serien- oder Parallelresonanzkreis verschaltet ist.
  • Fig. 6 zeigt eine schematische Darstellung der in einer erfindungsgemäßen Vorrichtung notwendigen Komponenten. Die Erfindung zeichnet sich dadurch aus, dass der Hochfrequenzgenerator 16 aus einer in Spannungs- und Stromstärke steuerbaren Gleichspannungsquelle (Energieversorgung 33) eine hochfrequente Ausgangsspannung erzeugt. Der Hochfrequenzgenerator 16 wird unter Einbeziehung der für die induktive Einkopplung notwendigen Koppelspule 5 und eines zusätzlichen Resonanzkondensators, dem sog. Koppelkondensator 22, zu einem Resonanzkreis verschaltet. Zur optimalen Impedanz- und Leistungsanpassung wird die von dem Hochfrequenzgenerator 16 erzeugte Leistung über einen frequenz- und phasengeführten Regelkreis, auf Resonanz und Phasenfehler Null abgeglichen, übertragen. Dies kann beispielsweise den zeitlichen Verläufen von Strom und Spannung am Ausgang des Hochfrequenzgenerators der Fig. 7 entnommen werden. Die obere (Rechteck-)Kurve bildet die Spannung U, die mittlere (Sinus-)Kurve den Strom I und die untere die Ansteuerung der Endstufe ab. In der oberen Abbildung ist zusätzlich der Strom dargestellt um die Phasengleichheit zu verdeutlichen. Phasenfehler Null bedeutet, dass Strom und Spannung in dem Resonanzkreis in Phase liegen und somit keine Blindströme fließen. Damit können keine Blindleistungsverluste auftreten, wodurch Schaltverluste nahezu eliminiert sind. Durch den Betrieb bei Resonanz und optimalem Phasenabgleich, hergestellt durch eine PLL-Regelungsvorrichtung, fließen nur sinusförmige Ströme sowohl in den Schaltelementen des Hochfrequenzgenerators 16 als auch im Resonanzkreis und damit in der Koppelspule 5. Der sinusförmige Strom erlaubt das Schalten von Schaltelementen im StromNulldurchgang. Damit ist ein hoher Wirkungsgrad im Bereich von 90 bis 95 % erzielbar.
  • Der Regelkreis wird, wie bereits erläutert, durch die Koppelspule 5 und die Koppelkapazität 22 gebildet, die im Ausführungsbeispiel der Fig. 6 im Inneren des Hochfrequenzgenerators 16 angeordnet ist. In einer alternativen, nicht dargestellten Ausführungsform, könnte der Koppelkondensator 22 auch als externes Bauteil ausgebildet sein. In dem Resonanzkreis sind ferner zwei Widerstände 35 und 40 verschaltet, welche Leitungswiderstände repräsentieren. Der Koppelkondensator 22 ist über eine Leitung mit einer Leistungsstufe (Endstufe) 24 gekoppelt, wobei der in dieser Leitung fließende Strom mit einer Strommesseinrichtung 23 erfasst wird. Die Endstufe 24 ist beispielhaft als Klasse-D-Endstufe ausgebildet und wird von einer Ansteuerschaltung 25 angesteuert, welche ein Flip-Flop 47 und Treiberstufen 48, 49 umfasst. Die Treiberstufen 48, 49 treiben über Transformatoren Endstufen 52, 53 der Endstufe 24. Die Ansteuerschaltung 25 ihrerseits ist mit einer PLL-Regelungseinrichtung 34 verbunden. Diese umfasst einen spannungsgesteuerten Oszillator 26 (VCO = Voltage Controlled Oscillator), ein damit gekoppeltes Filter 27 sowie einen mit dem Filter 27 gekoppelten digitalen Phasenkomparator 28. Die PLL-Regelungsvorrichtung 34 ist über ein Eingangsfilter 31 mit der externen Energieversorgung 33 gekoppelt. Über ein Eingangsfilter 32 ist ebenfalls die Endstufe 24 mit der Energieversorgung 33 verbunden. Die PLL-Regelungsvorrichtung 34, genauer der digitale Phasenkomparator 28, erhält als Eingangssignal einen durch die Strommesseinrichtung 23 gemessenen Strom, der durch einen Signalverstärker 29 verstärkt ist. Ferner wird eine am Ausgang der Endstufe 24 anliegende Spannung über einen weiteren Signalverstärker 30 einem Eingang des digitalen Phasencomparators 28 zugeführt. Eine Leistungsanpassung kann im Mikrosekunden-Bereich durch den exakten Phasenabgleich von Strom und Spannung in den Schaltelementen der Ansteuerschaltung 25 und dem Resonanzkreis erfolgen und führt zu einem nahezu verlustfreien Schalten der Endstufe 24 und damit einer optimalen Leistungseinkopplung in das in das Entladungsgefäß 4 eingeleitete Plasma.
  • Ein derartiger Hochfrequenzgenerator mit PLL-Regelung eignet sich deshalb besonders für die hochfrequente Energieversorgung von lonenquellen (TWK) sowie in Elektronenquellen (NTR) mit induktiver Anregung sowie für Anwendungen, bei denen es auf geringsten Energieverbrauch ankommt.
  • Die Erfindung ermöglicht als Endstufe in dem Hochfrequenzgenerator 16 den Einsatz von Halbbrücken in Verbindung mit einer PLL-Frequenz- und Phasenregelung sowie einer Resonanzkreisankopplung. Im Ausführungsbeispiel der Fig. 4 ist ein Serienresonanzkreis dargestellt, welcher im Frequenz- und Leistungsbereich von 600 kHz bis 14 MHz bzw. 1 W bis 3 kW arbeiten kann. Die als Halbbrücke ausgebildete Endstufe 24 ist zwischen einem Versorgungs- und einem Bezugspotentialanschluss verschaltet und umfasst in bekannter Weise zwei mit ihren Laststrecken seriell zueinander verschaltete Schaltelemente 44, im Ausführungsbeispiel in Form von MOSFETs. Diese werden durch die Ansteuerschaltung 25 angesteuert. Die Koppelkapazität 22 ist mit einem Knotenpunkt 38, welcher jeweils mit einem Hauptanschluss der Schaltelemente 44 verbunden ist, gekoppelt. Ein Widerstand 45 des Resonanzkreises, der einen Spulenwiderstand repräsentiert, ist mit Bezugspotential, z.B. Masse, verbunden. Die Schaltelemente 44 werden durch die Ansteuerschaltung 25 angesteuert, die mit einer in Strom und Spannung veränderlichen Energieversorgung verbunden ist.
  • Fig. 5 zeigt ein weiteres Prinzipschaltbild einer als Vollbrücke ausgestalteten Endstufe 24 des Hochfrequenzgenerators. Eine als Vollbrücke ausgebildete Endstufe eignet sich für einen Frequenzbereich von 600 kHz bis 5 MHz und einen Leistungsbereich von 2 kW bis 10 kW. In bekannter Weise umfasst die Endstufe 24 jeweils zwei parallel verschaltene Halbbrückenzweige, die zwischen einem Versorgungs- und einem Bezugspotentialanschluss verschaltet sind und jeweils zwei mit ihren Laststrecken seriell verschaltete Schaltelemente 44 in Form von MOSFETS umfassen. Der Resonanzkreis, umfassend die Koppelspule 5, den Koppelkondensator 22 sowie den Leitungswiderstand 35, ist mit einem Knotenpunkt 39 einer ersten Halbbrücke und einem Knotenpunkt 41 einer zweiten Halbbrücke der Endstufe 24 verbunden. Ferner ist der Energieversorgung 33 ein Glättungskondensator 54 parallel geschaltet.
  • Der Übersichtlichkeit halber sind in den Fig. 4 und 5 weder die Ansteuerschaltung zur Ansteuerung der Schaltelemente 44 noch die PLL-Regelungsvorrichtung zur Anpassung der Frequenz und Phase dargestellt.
  • Fig. 8 stellt ein elektrisches Schaltbild möglicher Ankopplungen von Koppelspulen an einen Hochfrequenzgenerator dar. Eine Ankopplung des Hochfrequenzgenerators 16 an die lonen- oder Elektronenquelle kann über einfache Serienresonanzkreise oder Parallelresonanzkreise in Verbindung mit einer PLL-Phasenregelung erfolgen. Ebenso kann die Ankopplung über einen Serien-/Parallelresonanzkreis erfolgen, wobei die Koppelspule 5 eine Mittelanzapfung besitzt (linke Hälfte der Fig. 8). Deren zwei freie Enden können jeweils mit einem Bezugspotential, im Ausführungsbeispiel Masse, verbunden sein. Parallel dazu ist ein Kondensator 55 verschaltet. Nicht dargestellt ist der Einfachheit halber die PLL-Frequenz-/Phasenregelung. Der Resonanzkreis umfasst ferner den Koppelkondensator 22 sowie den Leitungswiderstand 35. Eine dem PLL-Regelkreis zugeführte Spannung wird über den Widerstand 35 abgegriffen, wobei diese Punkte mit v gekennzeichnet sind. Der dem PLL-Regelkreis als Regelgröße zugeführte Strom wird an dem mit I gekennzeichneten Punkt abgegriffen. In der rechten Hälfte der Fig. 8 ist eine Darstellung gewählt, bei der die Koppelspule 5 zwischen zwei Koppelkondensatoren 22a und 22b angeordnet ist. Beide Enden der Koppelspule 5 sind kapazitiv angeschlossen. Nicht dargestellt ist der Leitungswiderstand. Nicht dargestellt ist ferner die gemäß dem erfindungsgemäßen Gedanken vorgesehene PLL-Frequenz-Phasenregelung sowie der Hochfrequenzgenerator. Durch die beschriebene Ankopplung steigen der Wirkungsgrad des Hochfrequenzgenerators und der Wirkungsgrad der Ionen- oder Elektronenquelle erheblich. In beiden Baugruppen treten keine Blindströme auf, wodurch die Verlustleistung jeweils sinkt. Durch eine optimierte Wahl der Windungszahl der Spule können sowohl eine optimale Plasmaeinkopplung als auch optimale Betriebsparameter (Betriebsspannung und Strom) des Hochfrequenzgenerators erreicht werden.
  • Fig. 9 zeigt eine beispielhafte schematische Darstellung der Ankopplung einer Koppelspule über einen Zusatz-Transformator 42 an den Hochfrequenzgenerator 16. Durch den Zusatz-Transformator 42 ist eine zusätzliche transformatorische Impedanzanpassung, insbesondere im Frequenz- und Leistungsbereich von 600 kHz bis 5 MHz bzw. 1 W bis 1 kW möglich. Der Zusatz-Transformator 42 weist im Ausführungsbeispiel eine Mittelanzapfung auf. Ein dem Hochfrequenzgenerator 16 nachgeschalteter Kondensator 54 dient zur Gleichspannungsentkopplung des Zusatz-Transformators 42.
  • Fig. 10 zeigt eine Darstellung von Frequenzbandbreite und Resonanzkreisgüte bzw. Frequenzverstimmung sowie Phasengang einer lonenquelle bei verschiedenen Plasmazuständen. Die unterschiedlichen Gütekurven des Resonanzkreises sind durch unterschiedliche Impedanzen des Plasmas aufgrund unterschiedlicher Ionisationsgrade verursacht. So hat die steilste Kurve in der unteren Graphik die größte Güte und die kleinste Bandbreite. Die Darstellung veranschaulicht, dass der erfindungsgemäße Regelkreis auf Güten unterschiedlichster Art reagiert und stabil einrastet. Die in der oberen Hälfte der Figur angegebenen Kurven zeigen, dass sich durch eine Veränderung der Plasma-Impedanzen Ionenströme unterschiedlicher Phasenlage ergeben, welche durch den Phasenregelkreis kompensiert werden.
  • Fig. 11 zeigt ein weiteres Prinzipschaltbild, das den Einsatz der PLL-Regelungsvorrichtung zur Steuerung des Hochfrequenzgenerators darstellt. Die Endstufe 24 ist im Beispiel als Klasse-D-Halbbrücke ausgebildet, wobei der Resonanzkreis mit dem Knotenpunkt 39 gekoppelt ist. Zwischen dem Knotenpunkt 39 und einem Widerstand 35 ist eine Strommesseinrichtung 23 vorgesehen. Der Widerstand 35 stellt einen Leitungswiderstand dar. Der seriell dazu verschaltete Widerstand 45 repräsentiert einen Spulenwiderstand. Zwischen dem Knotenpunkt 39 und einem Bezugspotential wird eine Spannung abgegriffen. Diese Spannung und ein durch die Strommesseinrichtung 23 gemessener Strom werden den Eingängen eines Phasenkomparators 28 zugeführt. Die an dem Phasenkomparator 28 anliegende Ausgangsspannung wird gefiltert an den Eingang des spannungsgesteuerten Oszillators 26 zugeführt. Diese Steuerspannung wird von dem Phasenkomparator, der die Funktion eines Fehlerverstärkers hat, verändert, bis an seinen Eingängen eine Frequenz- und Phasengleichheit vorliegt. Über ein Flip-Flop 47 werden Treiberstufen 48, 49 angesteuert, die über Transformatoren 50, 51 Endstufen 52, 53 ansteuern bzw. treiben.
  • Fig. 12 zeigt eine Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Vollbrücke mit PLL-Regelung aufweist. Der Resonanzkreis ist als Serienresonanzkreis ausgebildet. Die übrigen Bauelemente und deren Verschaltung entsprechen der Beschreibung zu Fig. 11.
  • In Fig. 13 ist eine Vorrichtung mit einem Hochfrequenzgenerator dargestellt, der eine Klasse-E-Endstufe mit PLL-Regelung aufweist. Der Resonanzkreis ist als Serienresonanzkreis ausgebildet und umfasst den Koppelkondensator 22, die Koppelspule 5 und den Leitungswiderstand 35 und den Spulenwiderstand 45. Der Einsatz einer Klasse-E-Endstufenschaltung für den Hochfrequenzgenerator mit PLL-Frequenz- und Phasenregelung und Resonanzkreisankopplung, insbesondere einem Serien-/Parallelresonanzkreis einschließlich der Koppelspule, wird bevorzugt im Frequenz- und Leistungsbereich von 600 kHz bis 30 MHz bzw. 1 W bis 500 W eingesetzt. Die Spule 56 ist Bestandteil des Klasse-E-Verstärkers und um ein Vielfaches größer als die Spule 5. Sie dient als Energiespeicher, wenn die Endstufe 52 gesperrt ist. Die übrigen Bauelemente und deren Verschaltung entsprechen der Beschreibung zu Fig. 11.
  • Fig. 14 zeigt ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Halbbrücke mit PLL-Regelung und zusätzlicher transformatorischer Aufwärtsanpassung aufweist. Hierzu sind ein Transformator 57 und ein Kondensator 58 mit dem Ausgang der Endstufen 52, 53 verschaltet. Der Kondensator 58 ist dabei in bekannter Weise mit einer Mittelpunktsanzapfung des Transformators 57 verbunden. Die übrigen Bauelemente und deren Verschaltung entsprechen der Beschreibung zu Fig. 11.
  • Schließlich zeigt Fig. 15 ein Ausführungsbeispiel einer möglichen kapazitiven Impedanztransformation, welche bei sämtlichen Verstärkerklassen (Klasse C, Klasse D, Klasse E, Klasse F) zum Einsatz kommen kann. Mit einer derartigen Impedanztransformation ist es möglich, die Impedanz des Plasmas bzw. eine Eingangsimpedanz Zi des Resonanzkreises zu variieren und damit die Effizienz, den Frequenzbereich sowie den Spannungsbereich (zur Schubauflösung) zu optimieren. Der Widerstand 38 repräsentiert den Widerstand des Plasmas. Dem Widerstand 38 kann ein Kondensator 59 parallel geschaltet sein. Der Widerstand 60 und der dazu parallel geschaltete Kondensator 61 repräsentieren Elemente des Hochfrequenzgenerators. Die Kondensatoren 22, 61 repräsentieren Resonanzkondensatoren, die Spule 5 ist die Koppelspule.
  • Der Vorteil sämtlicher beschriebener Varianten besteht darin, dass eine Leistungseinkopplung der von dem Hochfrequenzgenerator erzeugten Energie über einen großen Leistungs- und Frequenzbereich ohne Impedanzanpassungsnetzwerk direkt in das Plasma der lonen- oder Elektronenquelle möglich ist. Kern der Leistungsanpassung ist dabei die Einbeziehung der Koppelspule, konstruktionsbedingter Koppelkapazitäten zwischen dem Plasma und dem Gehäuse des Entladungsgefäßes sowie der Verkabelung zu einem Serien-/oder Parallelresonanzkreis, sowie die automatische Frequenz- und Phasenregelung des Hochfrequenzgenerators.

Claims (21)

  1. Vorrichtung zur Einkopplung von Ionisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte Ionen- oder Elektronenquelle, mit
    - einem Entladungsgefäß (4) für ein zu ionisierendes Gas,
    - einer um das Entladungsgefäß (4) gewickelten Koppelspule (5) zur Einspeisung einer zur Plasma-Anregung notwendigen Hochfrequenz-Energie,
    - einem mit der Koppelspule (5) elektrisch gekoppelten Koppelkondensator (22),
    - einem mit der Koppelspule (5) elektrisch gekoppelten Hochfrequenzgenerator (16), der zusammen mit dem zumindest einen Koppelkondensator (22) einen Resonanzkreis ausbildet, wobei der Hochfrequenzgenerator (16) eine PLL-Regelungsvorrichtung (34) zur automatischen Impedanzanpassung des Resonanzkreises aufweist, so dass der Resonanzkreis mit einer Resonanzfrequenz betreibbar ist,
    wobei der zumindest eine Koppelkondensator (22) und die Koppelspule über einen Transformator (42) an den Hochfrequenzgenerator angeschlossen sind, wobei der Transformator (42) primärseitig kapazitiv mit dem Hochfrequenzgenerator gekoppelt ist und sekundärseitig mit dem zumindest einen Koppelkondensator (22) und der Koppelspule (5) den Resonanzkreis bildet, dadurch gekennzeichnet,
    dass der Hochfrequenzgenerator (16) ohne Zwischenschaltung eines Impedanzanpassungsnetzwerks mit der Koppelspule verbunden ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass durch die PLL-Regelungsvorrichtung (34) eine Frequenz- und/oder Phasenregelung zur Impedanzanpassung des Resonanzkreises durchgeführt wird.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Leistungsregelung des Hochfrequenzgenerators (16) durch Einstellung einer Eingangsgleichspannung (Uin) und eines Eingangsstroms (Jin) des Hochfrequenzgenerators (16) vornehmbar ist.
  4. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Resonanzkreis als Serien- oder Parallelresonanzkreis ausgebildet ist.
  5. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) über eine Mittelpunktanzapfung (41) verfügt, an welche der Hochfrequenzgenerator (16) angeschlossen ist.
  6. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) zwischen zwei oder mehreren Koppelkondensatoren (22a, 22b) angeordnet ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Vorrichtung zur Erfassung von Strom und Spannung in dem Resonanzkreis vorgesehen ist, welche mit der PLL-Regelungsvorrichtung (34) gekoppelt ist, um dieser den gemessenen Strom und die gemessene Spannung als Regelgrößen zuzuführen.
  8. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Koppelkondensator (22) in dem Hochfrequenzgenerator (16) oder außerhalb von diesem angeordnet ist.
  9. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) einseitig geerdet ist.
  10. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) isoliert zu einem Bezugspotential über den Resonanzkreis angeschlossen ist.
  11. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) und das Plasma einen Transformator ausbilden, wobei das Plasma eine Sekundärwicklung des Transformators darstellt.
  12. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Hochfrequenzgenerator (16) eine Leistungsendstufe (24) umfasst.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Leistungsendstufe (24) wahlweise als eine der nachfolgend aufgeführten Varianten ausgebildet ist:
    - Halbbrücken-Klasse-D-Endstufe;
    - Vollbrücken-Klasse-D-Endstufe;
    - Push-Pull-Endstufe;
    - Endstufe der Klasse E;
    - Endstufe der Klasse F;
    - Endstufe der Klasse C.
  14. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass durch den Hochfrequenzgenerator (16) eine Resonanzfrequenz im Bereich von 0,5 MHz bis 30 MHz einstellbar ist.
  15. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die in den Hochfrequenzgenerator (16) eingekoppelte Leistung im Bereich von 1 W bis 10 kW ist.
  16. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die an den Hochfrequenzgenerator (16) gekoppelte Lastimpedanz in einem Bereich von 0,1 Ohm bis 1 Ohm oder in einem Bereich von 1 Ohm bis 50 Ohm liegt.
  17. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Entladungsgefäß (4) einen Gaseinlass (6) und einen gegenüberliegend angeordneten Auslass (7) mit zumindest zwei Extraktionsgittern (8) mit jeweils einer Multilochmaske umfasst, welche als elektrische Linse zur Fokussierung der zu extrahierenden Ionenstrahlen dient.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass an die Extraktionsgitter (8) ein elektrisches Feld anlegbar ist.
  19. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) eine einlagige oder eine mehrlagige oder eine bifilare Wicklung umfasst.
  20. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) um das Entladungsgefäß (4) oder innerhalb des Entladungsgefäßes angeordnet ist.
  21. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) zylindrisch, kegelförmig, sphärisch oder teilkonisch mit zylindrischem Übergangskörper um das Entladungsgefäß entsprechender Form gewickelt ist.
EP08013495.0A 2007-08-02 2008-07-26 Hochfrequenzgenerator für Ionen- und Elektronenquellen Active EP2020672B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007036592.8A DE102007036592B4 (de) 2007-08-02 2007-08-02 Hochfrequenzgenerator für Ionen- und Elektronenquellen

Publications (3)

Publication Number Publication Date
EP2020672A2 EP2020672A2 (de) 2009-02-04
EP2020672A3 EP2020672A3 (de) 2010-11-10
EP2020672B1 true EP2020672B1 (de) 2020-05-06

Family

ID=39944376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08013495.0A Active EP2020672B1 (de) 2007-08-02 2008-07-26 Hochfrequenzgenerator für Ionen- und Elektronenquellen

Country Status (4)

Country Link
US (1) US8294370B2 (de)
EP (1) EP2020672B1 (de)
DE (1) DE102007036592B4 (de)
RU (1) RU2461908C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076404B4 (de) 2011-05-24 2014-06-26 TRUMPF Hüttinger GmbH + Co. KG Verfahren zur Impedanzanpassung der Ausgangsimpedanz einer Hochfrequenzleistungsversorgungsanordnung an die Impedanz einer Plasmalast und Hochfrequenzleistungsversorgungsanordnung
RU2499320C2 (ru) * 2011-11-28 2013-11-20 Ильшат Гайсеевич Мусин Индуктивно-емкостный генератор (lc-генератор)
EP3340746B1 (de) 2016-12-22 2021-05-05 Technische Hochschule Mittelhessen Steuerungseinheit zur steuerung eines hochfrequenzgenerators
KR20180109351A (ko) * 2017-03-28 2018-10-08 엘에스산전 주식회사 비례공명 전류제어기
DE102017107177A1 (de) 2017-04-04 2018-10-04 Tesat-Spacecom Gmbh & Co. Kg Frequenzregelung für einen Frequenzgenerator eines Ionentriebwerks
RU2695541C1 (ru) * 2018-07-02 2019-07-24 Акционерное общество "Концерн "Созвзедие" Устройство ввода энергии в газоразрядную плазму
EP3754187B1 (de) * 2019-06-18 2023-12-13 ThrustMe Hochfrequenzgenerator für eine plasmaquelle und verfahren zu dessen einstellung
DE102020106692A1 (de) 2020-03-11 2021-09-16 Analytik Jena Gmbh Generator für die Spektrometrie
CN111577564A (zh) * 2020-06-30 2020-08-25 中国人民解放军国防科技大学 单级复合双脉冲增强电离型感应式脉冲等离子体推力器
DE102020117402A1 (de) 2020-07-01 2022-01-05 Analytik Jena Gmbh Generator für die Spektrometrie
CN118092243B (zh) * 2024-01-26 2024-08-09 佛山市元粒宝智能电器科技有限公司 一种离子量输出控制电路及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507588A (en) * 1983-02-28 1985-03-26 Board Of Trustees Operating Michigan State University Ion generating apparatus and method for the use thereof
RU2095877C1 (ru) * 1995-06-19 1997-11-10 Государственный научно-исследовательский институт прикладной механики и электродинамики Московского авиационного института Способ получения ионов и источник ионов для его осуществления
US5965034A (en) * 1995-12-04 1999-10-12 Mc Electronics Co., Ltd. High frequency plasma process wherein the plasma is executed by an inductive structure in which the phase and anti-phase portion of the capacitive currents between the inductive structure and the plasma are balanced
US5824606A (en) * 1996-03-29 1998-10-20 Lam Research Corporation Methods and apparatuses for controlling phase difference in plasma processing systems
US5770922A (en) 1996-07-22 1998-06-23 Eni Technologies, Inc. Baseband V-I probe
KR100542459B1 (ko) * 1999-03-09 2006-01-12 가부시끼가이샤 히다치 세이사꾸쇼 플라즈마처리장치 및 플라즈마처리방법
DE19948229C1 (de) * 1999-10-07 2001-05-03 Daimler Chrysler Ag Hochfrequenz-Ionenquelle
DE10215660B4 (de) * 2002-04-09 2008-01-17 Eads Space Transportation Gmbh Hochfrequenz-Elektronenquelle, insbesondere Neutralisator
US6703080B2 (en) * 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
JP4901094B2 (ja) * 2004-11-30 2012-03-21 株式会社Sen ビーム照射装置
US7459899B2 (en) * 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAUL HOROWITZ, WINFRIED HILL: "The Art of Electronics, Second Edition", 1989, CAMBRIDGE UNIVERSITY PRESS, Cambridge, UK, ISBN: 0-521-37095-7, pages: 644 - 646 *

Also Published As

Publication number Publication date
EP2020672A2 (de) 2009-02-04
DE102007036592B4 (de) 2014-07-10
RU2461908C2 (ru) 2012-09-20
US8294370B2 (en) 2012-10-23
EP2020672A3 (de) 2010-11-10
RU2008131500A (ru) 2010-02-10
US20090058303A1 (en) 2009-03-05
DE102007036592A1 (de) 2009-02-19

Similar Documents

Publication Publication Date Title
EP2020672B1 (de) Hochfrequenzgenerator für Ionen- und Elektronenquellen
EP1701376B1 (de) Vakuumplasmagenerator
EP0261338B1 (de) Induktiv angeregte Ionenquelle
DE68922807T2 (de) Phasengeteilter Treiber für ein Plasmaätzsystem.
DE69914435T2 (de) Abstimmbare und anpassbare Resonator-Spulenanordnung für Ionenimplantation-Linearbeschleuniger
DE938851C (de) Kathodenstrahlablenkeinrichtung mit Spartransformator
EP1062679B1 (de) Plasmaätzanlage
DE102009001355A1 (de) Impedanzanpassungsschaltung
DE112013005486B4 (de) HF-Transformator, Energieversorgung mit HF-Transformator, Ionenoptisches System mit Energieversorgungsanordnung, Verfahren zum Betreiben eines HF-Transformators zur Energieversorgung, Verfahren zum Steuern eines ionenoptischen Systems
DE4112161A1 (de) Hochspannungsgenerator fuer elektrische, kapazitive anteile enthaltende lasten, insbesondere fuer laser
EP3513625A1 (de) Umrichtergespeister lichtbogenofen mit kondensatoranordnung im sekundärkreis
EP1203396B1 (de) Verfahren zum ätzen eines substrates mittels eines induktiv gekoppelten plasmas
WO2001063982A1 (de) Hochfrequenz-anpanetzwerk
EP0462377B1 (de) Ionenquelle
EP3340746B1 (de) Steuerungseinheit zur steuerung eines hochfrequenzgenerators
DE1541926A1 (de) Mikrowellenroehre mit gekreuzten elektrischen und magnetischen Feldern
DE3930699C2 (de) Vorrichtung zur Energieeinkopplung in eine durchströmte elektrische Gasentladung
DE69318137T2 (de) Erzeugung von geladenen teilchen
DE2939167A1 (de) Vorrichtung und verfahren zur leistungszufuehrung an eine von dem entladungsplasma einer zerstaeubungsvorrichtung gebildeten last
DE19719168A1 (de) Energieversorgungseinrichtung
DE460426C (de) Einrichtung zur UEbermittlung elektrischer Wellen mit mehreren Vakuumroehren-Verstaerkern in Hintereinanderschaltung
DE10008485B4 (de) Hochfrequenz-Anpassnetzwerk
EP0590343A1 (de) Hochfrequenzangeregter Laser für hohe Eingangsleistungen, insbesondere CO2-Bandleiterlaser
DE4404077C2 (de) Anordnung und Verfahren zum plasmagestützten Bearbeiten von Werkstücken
DE652506C (de) Entladungsroehre zur Erzeugung von Schwingungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20110423

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20130219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARIANEGROUP GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017078

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008017078

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240729

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240725

Year of fee payment: 17