EP2018523A1 - Magnetisch-induktives durchflussmessgerät - Google Patents

Magnetisch-induktives durchflussmessgerät

Info

Publication number
EP2018523A1
EP2018523A1 EP07729240A EP07729240A EP2018523A1 EP 2018523 A1 EP2018523 A1 EP 2018523A1 EP 07729240 A EP07729240 A EP 07729240A EP 07729240 A EP07729240 A EP 07729240A EP 2018523 A1 EP2018523 A1 EP 2018523A1
Authority
EP
European Patent Office
Prior art keywords
measuring
medium
measuring tube
magnetic field
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07729240A
Other languages
German (de)
English (en)
French (fr)
Inventor
Thomas Budmiger
Georg Szaloky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP2018523A1 publication Critical patent/EP2018523A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/584Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of electrodes, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Definitions

  • the invention relates to a magneto-inductive flow measuring device, that is to say a device for measuring the volume or mass flow of a medium which flows through a measuring tube in the direction of the measuring tube axis, with a magnet system which essentially comprises a measuring tube passing through the measuring tube. generates transverse to the Meßrohrachse extending magnetic field, with at least one measuring electrode which is in contact with the medium in a defined surface area, and with a control / evaluation, based on the at least one measuring electrode induced measuring voltage information about the volume or mass flow of the medium in the measuring tube.
  • Flow measurement is based on the principle of electrodynamic induction: charge carriers of the medium moving perpendicularly to a magnetic field induce a measuring voltage in measuring electrodes arranged essentially perpendicular to the flow direction of the medium.
  • the measuring voltage induced in the measuring electrodes is proportional to the average flow velocity of the medium over the cross section of the measuring tube; it is therefore proportional to the volume flow.
  • the measuring voltage is usually tapped via a measuring electrode pair, which is arranged in the region of maximum magnetic field strength and where consequently the maximum measuring voltage is to be expected.
  • the measuring electrodes themselves are coupled to the medium either galvanically or capacitively.
  • the medium to be measured is a medium with a low conductivity, which flows through the measuring tube at a relatively high flow rate. Due to the influence of the relatively large interference voltage on the measurement voltage then there is the danger that the measurement voltage disappears in the noise, whereby a reliable and repeatable flow measurement is impossible.
  • the invention has for its object to propose a magneto-inductive flowmeter whose accuracy is largely unaffected by electrochemical interference potentials.
  • the object is achieved in that at least the medium-contacting
  • the chemically inert and electrochemically and mechanically resistant material is diamond, which is rendered electrically conductive via a suitable doping.
  • the diamond material is boron-doped for this purpose.
  • a sensor with microelectrodes consisting of diamond has already become known from WO 2005/017514.
  • the known sensor serves to determine a chemical property or a chemical process variable of a liquid.
  • the sensor consists of a housing, an insulating layer of a non-conductive diamond material, a plurality of microelectrodes of a conductive diamond material, and a circuit connected to each of the microelectrodes. Based on the measured signals recorded by the microelectrodes, the corresponding chemical process variable of the medium is determined.
  • the microelectrodes are arranged in a regular or irregular pattern. Preferably, they are integrated into the insulating diamond material so as to be in direct or indirect contact with the medium.
  • a synthetic diamond can also be used in connection with the present invention.
  • Diamond has the properties that it has on the one hand a high hardness and thus a high mechanical and electrochemical resistance; on the other hand has diamond the advantage that it is largely chemically inert. This eliminates the problem occurring in conventional magnetic inductive flow measuring devices that the actual measurement signals at the measuring electrodes superimposed on a time-varying interference signal, which is caused by variable electrochemical interference potentials at the measuring electrodes.
  • the flowmeter according to the invention is characterized by an optimized signal / noise ratio. This makes it possible with the flowmeter according to the invention to determine even low flow velocities of a medium with low conductivity with a sufficiently high reproducibility and accuracy.
  • measuring electrodes made of diamond have the advantage that they have a long service life and are extremely low maintenance.
  • the magnet system consists of two diametrically arranged electromagnets, wherein the control / off value unit controls the electromagnets so that they produce a periodically alternating or a constant magnetic field in the measuring tube.
  • the constant magnetic field over
  • an advantageous embodiment of the invention proposes a power supply unit which provides the energy required to operate the flowmeter.
  • the energy supply unit is a battery, a solar cell or a fuel cell.
  • the energy supply unit is preferably integrated in the transmitter or in the control / evaluation unit of the magneto-inductive flowmeter.
  • Fig. 1 a schematic representation of a first embodiment of the device according to the invention
  • Fig. 2 a schematic representation of a second embodiment of the device according to the invention.
  • Fig. 1 shows a sdiematische representation of a first embodiment of the device according to the invention.
  • the measuring tube 2 is flowed through by the medium 11 in the direction of the measuring tube axis 3.
  • the medium 11 is at least to a small extent electrically conductive.
  • the measuring tube 2 itself is made of a non-conductive material, or it is lined at least on its inner surface with a non-conductive material.
  • the perpendicular to the flow direction of the medium 11 aligned magnetic field B is generated via the two diametrically arranged electromagnets 6, 7.
  • the magnetic field B is either a constant magnetic field or an alternating field that periodically reverses its direction.
  • charge carriers located in the medium 11 migrate according to their polarity to one of the two oppositely poled measuring electrodes 4, 5.
  • the voltage which builds up between the measuring electrodes 4, 5 is proportional to the flow velocity averaged over the cross section of the measuring tube 2 Medium 11, ie, it is a measure of the volume flow of the medium 11 in the measuring tube 2.
  • the measuring tube 2 is incidentally via connecting elements, for. As flanges, which are not shown separately in the drawing, connected to a pipe system through which the medium 11 passes.
  • the measuring electrodes 4, 5 are in direct contact with the medium 11.
  • at least the medium-contacting surface area of the measuring electrodes 4, 5 is made of diamond with a suitable conductive doping.
  • the medium-contacting surface region of each measuring electrode 6 preferably exists; 7 made of boron-doped diamond.
  • the control / evaluation unit 8 is connected via the connecting line 16 with an input / output unit 9 and possibly via a data bus with a parent Connected control room. It goes without saying that the communication can also be carried out by radio.
  • the evaluation / control unit 8 is also associated with the storage unit 10.
  • Fig. 2 shows a schematic representation of a second embodiment of the device according to the invention.
  • the essential difference between the two embodiments is the magnet system used: While electromagnets 6, 7 are used in the embodiment shown in FIG. 1, permanent magnets 17 are used in the embodiment shown in FIG. In both cases, the magnet system is configured and / or arranged such that the electromagnets 6, 7 or the permanent magnets 17 generate a largely homogeneous magnetic field B over the cross section of the measuring tube 2.
  • the advantage of the embodiment shown in Fig. 2 with constant magnetic field B is the fact that here a continuous measurement of the volume or mass flow is possible.
  • the time that is not available for the measurement after switching the magnetic field is eliminated, and the measuring time can be selected arbitrarily long. In particular, it is optimized so that a desired measurement accuracy is achieved. Due to the optimizable measurement time can therefore be achieved with the device according to the invention best measurement results.
  • a constant magnetic field can also be generated via the electromagnets 6, 7.
  • a power supply unit 18 is integrated directly into the control / evaluation unit 8.
  • the power supply unit 18 is preferably a battery, a fuel cell or u.U. also a solar cell.
EP07729240A 2006-05-19 2007-05-16 Magnetisch-induktives durchflussmessgerät Withdrawn EP2018523A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006023916A DE102006023916A1 (de) 2006-05-19 2006-05-19 Magnetisch-induktives Durchflussmessgerät
PCT/EP2007/054792 WO2007135075A1 (de) 2006-05-19 2007-05-16 Magnetisch-induktives durchflussmessgerät

Publications (1)

Publication Number Publication Date
EP2018523A1 true EP2018523A1 (de) 2009-01-28

Family

ID=38445600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07729240A Withdrawn EP2018523A1 (de) 2006-05-19 2007-05-16 Magnetisch-induktives durchflussmessgerät

Country Status (6)

Country Link
US (1) US8042410B2 (ru)
EP (1) EP2018523A1 (ru)
CN (1) CN101636640B (ru)
DE (1) DE102006023916A1 (ru)
RU (1) RU2413182C2 (ru)
WO (1) WO2007135075A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152434A2 (en) * 2008-06-13 2009-12-17 University Of Utah Research Foundation Method and apparatus for measuring magnetic fields
EP2383548A1 (de) * 2010-04-29 2011-11-02 Zylum Beteiligungsgesellschaft mbH & Co. Patente II KG Messvorrichtung und Verfahren zur Messung der Fließgeschwindigkeit eines ein Messrohr durchfließenden Mediums
JP2012015043A (ja) * 2010-07-05 2012-01-19 Yamatake Corp 電池内蔵型フィールド機器
CN102661764B (zh) * 2012-05-25 2014-02-12 山东泽谊自控技术有限公司 石英管电磁流量传感器
DE102013105832B4 (de) * 2013-06-06 2015-03-12 Zylum Beteiligungsgesellschaft Mbh & Co. Patente Ii Kg Vorrichtung und Verfahren zur magnetisch-induktiven Durchflussmessung
US9056464B2 (en) 2013-07-16 2015-06-16 Xerox Corporation System and method for optimized application of release agent in an inkjet printer with in-line coating
DE102014107200A1 (de) * 2014-05-22 2015-11-26 Endress + Hauser Flowtec Ag Vorrichtung zum Messen des Volumenstroms eines Fluids
DE102015112018B3 (de) * 2015-07-23 2016-07-14 Endress+Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät zur Messung der Durchflussgeschwindigkeit oder dem Volumendurchfluss von Medien in einer Rohrleitung und Verfahren zur Herstellung eines solchen Durchflussmessgeräts
DE102016112742A1 (de) * 2016-07-12 2018-01-18 Endress+Hauser Flowtec Ag Verfahren zum Messen der Durchflussgeschwindigkeit oder des Volumendurchflusses eines Mediums mittels eines magnetisch-induktiven Durchflussmessgeräts und ein magnetisch-induktives Durchflussmessgerät
DE102018130793B4 (de) * 2018-12-04 2024-01-25 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786680A (en) 1972-11-01 1974-01-22 D Clark Voltage sensing system
US4312231A (en) * 1979-07-06 1982-01-26 Nippon Steel Corporation Apparatus for generating and detecting an electromagnetic ultrasonic wave
US4296636A (en) * 1980-05-22 1981-10-27 Fischer & Porter Co. Noise-reducing electrodes for electromagnetic flowmeter
US4565619A (en) 1983-02-18 1986-01-21 The Foxboro Company Composite electrode structure
DE3329899A1 (de) * 1983-08-18 1985-03-07 Siemens AG, 1000 Berlin und 8000 München Verfahren zur induktiven stroemungsmessung und vorrichtung
US5041792A (en) * 1990-03-22 1991-08-20 Exxon Production Research Company Electrodes incorporating intercalation compounds for mangetotelluric, electroseismic and other electrical survey applications
GB9025798D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Diamond fluid flow sensor
JP2836790B2 (ja) 1991-01-08 1998-12-14 株式会社神戸製鋼所 ダイヤモンド薄膜へのオーミック電極形成方法
DE4105311C2 (de) 1991-02-20 2001-09-27 Fischer & Porter Gmbh Elektrode in einem Meßrohr eines induktiven Durchflußmessers
DE19603093C2 (de) 1996-01-29 1999-12-16 Fraunhofer Ges Forschung Stabförmige Elektrode mit einer Korrosionsschutzschicht und Verfahren zur Herstellung derselben
DE19722977C1 (de) * 1997-06-02 1999-02-11 Danfoss As Elektromagnetischer Durchflußmesser
DE19911746A1 (de) * 1999-03-16 2000-09-21 Basf Ag Diamantelektroden
DE10049781A1 (de) * 2000-10-09 2002-04-18 Gerd Stange Verfahren zur magnetisch-induktiven Messung der Fließgeschwindigkeit flüssiger Medien mit Permanentmagneten
JP2002131101A (ja) 2000-10-30 2002-05-09 Shimadzu Corp 電磁流量計
WO2003027614A1 (fr) * 2001-09-20 2003-04-03 Yamatake Corporation Fluxmetre electromagnetique
DE10260561A1 (de) 2002-12-21 2004-07-01 Abb Patent Gmbh Magnetisch induktiver Durchflussmesser
US7314540B2 (en) 2003-05-26 2008-01-01 Sumitomo Electric Industries, Ltd. Diamond-coated electrode and method for producing same
GB2404738B (en) * 2003-08-04 2005-09-28 Schlumberger Holdings System and method for sensing using diamond based microelectrodes
DE102004022518A1 (de) * 2004-05-05 2005-12-15 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zum Messen des Durchflusses eines Messmediums
DE102005019418B4 (de) 2005-04-25 2007-03-15 Krohne Messtechnik Gmbh & Co. Kg Magnetisch-induktives Durchflußmeßgerät und Verfahren zur Herstellung eines magnetisch-induktiven Durchflußmeßgeräts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007135075A1 *

Also Published As

Publication number Publication date
CN101636640B (zh) 2011-12-21
US20090301218A1 (en) 2009-12-10
CN101636640A (zh) 2010-01-27
WO2007135075A1 (de) 2007-11-29
US8042410B2 (en) 2011-10-25
RU2008150387A (ru) 2010-06-27
RU2413182C2 (ru) 2011-02-27
DE102006023916A1 (de) 2007-11-22

Similar Documents

Publication Publication Date Title
WO2007135075A1 (de) Magnetisch-induktives durchflussmessgerät
EP2338035B1 (de) Verfahren zum energiesparenden betreiben eines magnetisch-induktiven durchflussmessgerätes
EP1893951B1 (de) Magnetisch-induktives durchflussmessgerät
DE102005019418B4 (de) Magnetisch-induktives Durchflußmeßgerät und Verfahren zur Herstellung eines magnetisch-induktiven Durchflußmeßgeräts
EP3268698B1 (de) Magnetisch-induktives durchflussmessgerät mit verringerter stromaufnahme
WO2018002135A1 (de) Magnetisch-induktiver durchflussmesser
EP1915593A1 (de) Magnetisch-induktives durchflussmessgerät
EP4147012A1 (de) Magnetisch-induktive durchflussmessvorrichtung und verfahren zum ermitteln eines füllstandes
DE10118002B4 (de) Magnetisch-induktives Durchflußmeßverfahren und magnetisch-induktives Durchflußmeßgerät
EP0917644A1 (de) Magnetisch-induktives durchflussmessgerät für strömende medien
DE102013013991A1 (de) Magnetisch-induktives Durchflussmessgerät
EP1460394A2 (de) Method of regulating the coil current of electromagnetic flow sensors
DE102013105832B4 (de) Vorrichtung und Verfahren zur magnetisch-induktiven Durchflussmessung
DE10260561A1 (de) Magnetisch induktiver Durchflussmesser
DE10356008A1 (de) Verfahren zum Betreiben eines Meßgeräts
DE102014119512A1 (de) Durchflussmessgerät
EP1108989B1 (de) Vorrichtung zum Messen des Durchflusses eines Messmediums durch ein Messrohr
DE102009045274A1 (de) Magnetisch induktives Durchflussmessgerät
EP3899438A1 (de) Magnetisch-induktive durchflussmesssonde, messaufbau und verfahren zur ermittlung eines durchflusses und/oder eines einbauwinkels
DE102004044606A1 (de) Vorrichtung und Verfahren zur Messung einer Prozessgröße
DE10116776A1 (de) Magnetisch-induktiver Durchflussmesser
DE3037913A1 (de) Magnetisch-induktive messsonde
DE102014105837A1 (de) Vorrichtung zum Messen des Durchflusses eines Fluids durch ein Messrohr
WO2003004977A1 (de) Vorrichtung und verfahren zur bestimmung des durchflusses eines mediums
DE102011008295A1 (de) Verfahren zur Durchflussmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151201