EP2013896B1 - Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure - Google Patents

Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure Download PDF

Info

Publication number
EP2013896B1
EP2013896B1 EP07728560A EP07728560A EP2013896B1 EP 2013896 B1 EP2013896 B1 EP 2013896B1 EP 07728560 A EP07728560 A EP 07728560A EP 07728560 A EP07728560 A EP 07728560A EP 2013896 B1 EP2013896 B1 EP 2013896B1
Authority
EP
European Patent Office
Prior art keywords
metal
wire
carbide
wrapping
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07728560A
Other languages
German (de)
English (en)
Other versions
EP2013896A2 (fr
Inventor
Axel Bunk
Matthias Damm
Georg Rosenbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2013896A2 publication Critical patent/EP2013896A2/fr
Application granted granted Critical
Publication of EP2013896B1 publication Critical patent/EP2013896B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • H01K1/10Bodies of metal or carbon combined with other substance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/14Incandescent bodies characterised by the shape

Definitions

  • the invention relates to a halogen incandescent lamp with carbide-containing luminous element according to the preamble of claim 1. Such lamps are used for general lighting and for photo-optical purposes.
  • Luminous body used with a Umspinnungsplanetaryl Both wrapping wire and wound helix are made of tungsten.
  • core wire primarily the power consumption determining tungsten wire, hereinafter referred to as "core wire” wound by a thinner tungsten wire.
  • the aim of the Umspinnungsplanetaryl is the enlargement of the filament surface and thus the radiating surface.
  • the effective radiating surface is also determined by the helical geometry. In simple terms, by increasing the radiating surface, it is possible to radiate a specified power along a shorter piece of the light wire. It is assumed that the other influences affecting the energy balance remain essentially constant.
  • both the core wire and the Umspinnungsplanetaryl consist of TaC or contain this at least as the main chemical ingredient.
  • the aim of the wrap-around coil in these patents is to increase the radiation emission achieved by the geometric enlargement of the radiating surface.
  • Both wrapping wire and core wire are mainly tantalum carbide and no different material pairings of core wire and wrapping wire are proposed.
  • a relatively large winding spacing w of the wrapping wire with diameter d is provided, which lies between w> 0 and w ⁇ 2 d.
  • the core wire is not completely enveloped, as is clearly visible in the associated figures. It describes a single-layer wrapping coil, wherein in addition to connecting purposes, a carbon layer may be applied to the core wire, which is then used for heating for carburizing and local fusion of core and wrapping wire, so then no longer exists in the finished lamp.
  • the object of the present invention is to increase the lifetime of a generic lamp.
  • Tantalum carbide has a melting point about 500 K higher than tungsten.
  • the temperature of a luminous body of tantalum carbide can be set considerably higher than that of a filament of tungsten. Because of the higher temperature of the luminous element and the increased emission of tantalum carbide in the visible spectral range, considerably higher luminous efficiencies can be achieved in lamps with tantalum carbide as luminous element than in lamps with conventional filaments made of tungsten. Marketing of tantalum carbide lamps has been hindered mainly by the brittleness of tantalum carbide and the rapid decarburization or decomposition of the filament at high temperatures.
  • a TaC lamp in the same geometry should be built as a conventional low-voltage halogen lamp with a piston in quartz or hard glass technology. Also pistons made of alumina ceramic are possible similar to the available on the market metal halide lamps with ceramic discharge vessels.
  • a luminous body which is designed as a wrapping coil, consisting of core wire and wrapping.
  • a braiding usually a wrapping wire or a combination of coating and wrapping wire is used.
  • the wrapping may also comprise a plurality of wrapping wires.
  • a wrapping wire consisting of carburizable material such as tantalum wire, together with a core wire from another made of refractory material.
  • This other material is carburizable in a first embodiment under the chosen conditions, in particular that applies to Hf, Zr, Nb, V, Ti, W, or their alloys.
  • stanel lamps are built using these coils.
  • this luminaire is carburized in the open column lamp using a mixture of methane and hydrogen.
  • the metals usually change depending on the free reaction enthalpy for carbide formation and carbon solubility in the respective metal carbides.
  • the other material is non-carbide-forming metals, such as rhenium, osmium, iridium, ruthenium or even tungsten at a low temperature of the filament, under the conditions which have been suitably chosen. These materials remain in their pure metal form.
  • non-carbide-forming metals such as rhenium, osmium, iridium, ruthenium or even tungsten at a low temperature of the filament, under the conditions which have been suitably chosen.
  • These materials remain in their pure metal form.
  • the carburized stem lamps are then pumped out, filled with filling gas and finally the pump stems melted and thus closed the lamp.
  • a carburizing in the molten, closed lamp can be done instead of the filament carburizing in the open stud lamp.
  • the filling gas of the lamp is then to be provided with a carbon excess and adjust, but this is much more difficult and in practice mostly only at Wendelaufkohlungstemperaturen ⁇ 3200 K succeed.
  • limiting Factor is the melting point of pure metals.
  • tantalum has a melting point of 2996 ° C.
  • the embodiments described herein apply to both the pure luminous body metals and metal alloys as well as for the aufkarbur elected metals and metal alloys. However, the pure metals or metal alloys are converted at the latest when switching on the lamp in the respective metal carbides or metal carbide alloys.
  • the evaporation rate of carbon at a reference temperature of about 3400 K is many times higher than that of the tungsten filament.
  • the high evaporation rates of carbon over the TaC luminous body can be lowered by various measures. This is done above all by increasing the cold filling pressure of the lamp, by using carbon cyclic processes, by introducing a continuous flow from a carbon source into a carbon sink or by lowering the vapor pressure of the TaC luminous body at a constant color temperature.
  • a preferred measure here is the alloy formation HfC-TaC, ZrC-TaC, etc. or the formation of substoichiometric TaC.
  • the essential main factor influencing the carbon vapor pressure and thus - if there is no completely regenerative carbon cycle or complete stabilization of the luminous element in a C-containing atmosphere - the life of the tantalum carbide lamp is the luminous body temperature.
  • the luminaire temperature is not identical to the color temperature of the lamp, but is closely related to this, cf. eg Becker / Ewest: "The physical and radiological properties of tantalum carbide", Zeitschrift für indulge Physik, No. 6, p. 216 f. (1930 ). In the range of typical illuminant temperatures, the difference is usually smaller than 100 K. If, however, the color temperature of the filament decreases, the light emission in the visible range decreases rapidly in accordance with Planck's law of radiation. Thus, a significant life extension can be achieved because the carbon vapor pressure above the TaC or other metal carbides drops sharply with falling temperature.
  • a first task is to find solutions to achieve sufficient luminance even at relatively low luminous body temperature.
  • Helpful in this context is the higher emission of TaC compared to tungsten at least at temperatures of about 3000 to 3300 K.
  • An important objective when using tantalum carbide lamps is therefore the use of the higher Emissivity in the visible spectral range at the compared to the melting point of TaC "low" color temperatures by about 3000 K, so about color temperatures of 2500 to 3350 K.
  • Metal carbide lamps must not necessarily be operated at a higher temperature to higher compared to tungsten halogen lamps Achieving light efficiencies.
  • the failure mechanism usually follows at least in principle the "hot spot model" as described for lamps with tungsten filament, see H. Hörster, E. Kauer, W. Lechner, "On the life of incandescent lamps", Philips techn. Rsch. 32, 165-175 (1971/72 ). Due to a small “disturbance” along the filament wire, eg by an increased power input at a grain boundary, a small local change in material data, a localized reduction in the wire diameter, a local contamination in the light wire, too small a distance between two turns of a coil, etc.
  • An additional second task is therefore to avoid the described destructive mechanism or at least mitigate it, or generally implement measures to extend the life.
  • An additional third task is to stabilize the brittle and thus fracture-prone helix of metal carbide.
  • An advantageous feature of the invention is also to design coils of at least one metal carbide as wrapping wire or core wire and combine with another second material as wrapping wire or core wire.
  • the use of different materials for core wire and wound wire offers significant advantages for lamps with metal carbide helix US-A 3,237,284 and US Pat. No. 3,219,493 , With this design of the coil can be contributed to solve the described problem in a manner described below.
  • the light exit surface of a metal carbide incandescent filament is increased by enlarging the radiating filament surface.
  • this makes it possible, first of all, to increase the luminance or to achieve the same luminance at a lower luminous body temperature.
  • the achievement of high luminance is of particular interest for the use of the lamps in reflectors or optical projection systems.
  • the Umspinnungsdrähte have a typical diameter in the range 7 microns - 150 microns.
  • the core wires have a typical diameter in the range 80 microns to 800 microns.
  • a concrete example of a projection lamp with 24 V and 250 W has a wrapping wire diameter of 20 microns and a core wire diameter of 255 microns at 11 turns of the core wire and 3200 turns of Umspinnungsdrahtes. Typical power levels are 10 watts to 1000 watts.
  • the ratio of the diameter of wrapping wire and core wire from 1/3 to 1/20.
  • the ratio of wrapper wire (e.g., tantalum wire diameter 25 ⁇ m) to braided core wire (e.g., rhenium wire diameter 190 ⁇ m) should be about 1/5 to 1/15.
  • the pitch of the tungsten braid wire is always greater than the diameter of the braid wire, i. the pitch factor of the lap is always greater than 1.2 in practice.
  • the pitch factor of the tungsten wire is typically 1.8 and the pitch factor of the tungsten wire core is typically 1.3.
  • the distance between the outsides of two adjacent turns of the wrapping helix is always> 0, but less than twice the core wire diameter.
  • the diameters of the core wire as well as the slope factors and number of turns in the metal carbide spinning coil of various materials are similar to those of tungsten (diameter 80 ⁇ m - 800 ⁇ m and slope 1.1 - 2.0, number of turns 3 - 30).
  • the pitch ratios of the metal carbide rewinding helix of various materials are somewhat larger (1.1-3.0) because the increase in metal volume during carburizing changes the pitch of the reels somewhat and tends to tilt. Due to the larger pitch a turn conclusion should be avoided.
  • the gradient factors of the wrapping wire in the case of the metal-carbide wrapping helix made of various materials tend to be smaller than those of tungsten, since it is intended to produce a sheath which is as closed as possible. Since the increase in volume of the metal has to be taken into account during carburization, the slope factor before carburizing is always clearly greater than 1.0. In the present invention, however, this gradient factor in the baked state is preferably significantly less than 1.4, more preferably between 1.0 and 1.2. In addition, a "popping" of the filament in the spiral design must be taken into account, since the wrapping wire presses apart the individual turns due to its length expansion in the carburization.
  • the concrete design of the wrapping helix also helps to mitigate the described destructive mechanism in hot-spot formation, cf. the second additional task.
  • decarburizes first of the outer wrapping wire Since this contributes little to the power consumption is - in contrast to a simple, consisting of only one wire filament - at the beginning of training a hotter place at least initially entered relatively little more power in this place; ie the temperature increase at such a point is relatively slow.
  • the geometric design of the wrapping helix is advantageously carried out such that the winding spacing of the wrapping wire is in the range of the diameter of the wrapping wire, ie a gradient factor of 1.0 to 1.4, preferably from 1.01 to 1.2, is present.
  • the turns of the wrapping wire touch each other almost.
  • the core wire which may indeed consist of metal carbide or metal, can be prevented or pushed back the most efficient.
  • an increase in volume takes place.
  • a small winding spacing of approximately 5 to 10% of the diameter of the wrapping wire should initially be maintained during the wrapping process. After carburizing, this gap between the turns of the wrapping wire is almost completely closed by the volume increase, so that the winding distance less than 5% of the diameter, in particular 0.5 to 4.5%.
  • the procedure may be such that they are first wound from core wire and wrapping wire and subsequently carburized in the bar lamp under a hydrocarbon-containing atmosphere.
  • the carburizing can also take place later when the lamp is burned in at the customer, the carbon then being introduced either from carbonaceous additives to the filling gas and / or by transporting carbon from solid carbon fibers or carbon layers.
  • the carburization can be carried out in such a way that the core wire is first coated with carbon, for example by CVD or PVD coating, embedding, etc., or even with a carbon-containing drawing lubricant the wire is provided or is wrapped with a first layer of a thin carbon wrapping fiber (typically 5 to 12 microns, for example 7 microns). Only then is the wrapping wire wrapped around the core wire.
  • a thin carbon wrapping fiber typically 5 to 12 microns, for example 7 microns.
  • the carbon from the coating or from the fiber or from the remaining stock of drawing lubricant or from the first layer of the braiding is used for heating for carburization, ie the carbon layer or the carbon fiber is thinner, which leads to the reduction of the layer thickness and helps that the volume increase occurring during carburization can be largely compensated.
  • carbon can still be supplied via a hydrocarbon-containing atmosphere.
  • a certain part of the carbon required for carburizing the tantalum is taken from the gas phase, another part is taken from the carbon layer.
  • the carburizing process can be designed so or the carbon layer or the carbon fiber can be chosen so thick that even after the carburization carbon is still present.
  • the outer strapping wire decarburises in an at least incompletely regenerative cyclic process
  • carbon is replenished permanently from the carbon layer enclosed by the wrapping wire, ie the carbon layer or carbon fiber acts as a source in the sense of FIG DE-A 10 2004 052 044 , As described therein, in this case, a drain must be placed in the gas space of the lamp to avoid enrichment of the gas atmosphere with carbon.
  • the evaporation is preferably carried out by the outer surface of the Umspinnungsplanetaryl, resulting in an increase in the life and thus on the in US-A 3,237,284 and US Pat. No. 3,219,493 described benefits beyond.
  • a pitch factor of close to 1 that is, the individual turns of the wrapping helix envelop the core wire almost completely (preferably more than 95% of the surface)
  • the evaporation is preferably carried out by the outer surface of the Umspinnungs Listel, resulting in an increase in the life and thus on the in US-A 3,237,284 and US Pat. No. 3,219,493 described benefits beyond.
  • different materials are combined in the luminous body, then in addition to the already known geometrical enlargement of the light exit surface as well as the restriction of carbon evaporation to the wrapping wire, further advantages are added, see points (i) - (v) as discussed above.
  • the tantalum spun wire and the wound core wire are made of other refractory materials such as tantalum.
  • tungsten is the highest melting metal (3380 ° C)
  • it does react with carbon to form tungsten carbide, which has a much lower melting point of 2630 ° C.
  • a metal such as rhenium does not react with carbon, but at 3180 ° C has a slightly lower melting point than tungsten.
  • Hafnium reacts with carbon and HfC even has a melting point about 100 K higher than TaC, etc.
  • the winding spacing of the wrapping wire made of the material HfC (gradient factor close to 1) in the system core wire made of TaC / wrapping wire made of HfC.
  • the most closed envelope of preferably at least 95% of the core wire through the wrapping wire is a uniform Alloying the TaC to TaC / HfC 80/20 achieved.
  • the wrapping can also be performed in several layers. Further additional material pairings in core wire and wrapping wire are thus possible, such as a single-layer or multi-layer wrapping of Ta wire and optionally additionally carbon fiber or a carbon coating around a rhenium core wire.
  • a re-core wire is first wound with a carbon fiber / carbon layer and then with a tantalum wire.
  • the rhenium wire hardly absorbs carbon, and the carbon dioxide evaporating from the outer TaC wire is in the sense of DE-A 10 2004 052 044 replaced by carbon transported from the inside of the carbon fiber or the carbon layer by diffusion.
  • the increased evaporation of carbon can be suppressed by using a multi-layer wrap of Ta, Hf, Zr, V, Ti, W carbide, optionally with additional Kohlenstoffumspinnung / carbon layer.
  • a smallest possible winding spacing of the wrapping wires preferably corresponding to a coverage of at least 95% of the surface, is also desirable in order to obtain the most uniform possible casing formation.
  • Rhenium does not react with carbon, but at 3180 ° C has a relatively high melting point near tungsten (3380 ° C). If, in the simplest case, a rhenium core wire is spun with a braiding wire made of a tantalum alloy, a rhenium wire with almost, preferably at least 95% of the surface, closed tantalum carbide braiding is obtained after the carburization. Also, because rhenium does not react with carbon, the re-core wire does not change its chemical composition during carburization. The initial Ta wrapping converts to TaC wrapping.
  • An advantage of this combination of materials is that, while the desirable radiation physical properties of tantalum carbide on the large surface of the strand can be exploited photometrically, but that essentially rhenium indifferent to the carbon rhenium is responsible for the current transport alone. Decarburiert in lamp operation in an at least not completely regenerative running cycle of the outer tantalum Um Stammsdraht, the electrical resistance of the much thicker rhenium core wire changes only slightly. Since the decarburization essentially only affects the outer wrapping layer, the life of this coil made of the material combination Re-TaC is extended to at least twice.
  • Hafnium carbide has an even higher melting point than tantalum carbide. Hafnium is, however much harder to obtain and considerably more expensive than tantalum. Therefore, it is recommended that a wrapping coil be designed so that the core wire is made of TaC and the wrapping wire of HfC. This significantly reduces the material usage of Hf. Due to the higher melting point of HfC, a positive effect on the lifetime is obtained. If there is a diffusive mixing of the Ta from the TaC and the Hf from the HfC during lamp operation, the content of tantalum increases in the outer region of the luminous element. This leads to a further increase in the melting point and therefore has an additional positive effect on the service life.
  • the melting point maximum is at a composition of about 80% TaC + 20% HfC (Agte, Altherthum, Z. Physik, No. 6 (1930)). Melting point maxima are also present at about 80% TaC + 20% ZrC. Therefore, it is also particularly preferred to use an alloy of TaC / HfC or TaC / ZrC in a proportion of 15 to 25 wt .-% HfC or ZrC in the case of using a simple filament without wrapping.
  • the TaC-HfC wrapping coil is made by spinning the core wire of Ta (or of a Ta alloy) with a wrapping wire of Hf (or of a Hf alloy). Then, the wound wire having the material combination Ta / Hf (or Ta alloy / Hf alloy) is wound into a helix and finally carburized in the lamp or the finished lamp.
  • Third embodiment For special applications, even a wrapping of a tungsten core wire with a Wire of metal carbide advantageous. This happens despite a possible carburization of the tungsten, which leads to the above-mentioned melting point reduction for tungsten carbide of 2630 ° C. In this case, the different enthalpy of formation of tantalum carbide and tungsten carbide is exploited in the case of single-layer wound spinning.
  • the carburization can be controlled to minimize carburization of the tungsten due to the higher affinity of the tantalum to carbon.
  • a Umspinnungsplanetaryl of metal core wire, eg tungsten, and a Umspinnungsplanetaryl of metal carbide, eg tantalum carbide are produced. At least during operation of this filament below about 3000 K carburization of tungsten, ie a transfer of carbon from tantalum carbide (or other metal carbide) on the tungsten plays only a minor role. Also in this case, the use of tantalum carbide is still advantageous because of its selective radiating properties. Tungsten is therefore considered to be a non-carbide-forming metal under the selected conditions of a sufficiently low illuminant temperature.
  • the tungsten core wire is first wound with a rhenium wire, and then with another metal wire, so that a two-layer wrapping is formed.
  • the first layer rhenium wrapping wire acts as a carbon diffusion barrier.
  • Ir or Ru can be chosen as a material for the diffusion barrier also Os.
  • the second layer of wrapping wire consists of a carburizable metal. This is converted to carburization in a metal carbide.
  • tantalum or tantalum alloys should be used here as metal.
  • other metals or alloys of the same metals are suitable, in particular Hf, Nb, V, Zr, Ti, W.
  • the mechanical stabilization of a brittle core wire usually a metal carbide such as TaC
  • a less brittle pigtail the material is here C, Re, Os, Ir or a less brittle material such as Zr, Hf, Nb, V, Ti, W, carbide / metal carbide alloy, metal nitride, metal boride.
  • the reverse case of a mechanical stabilization of the brittle after carburization wire of metal carbide such as in particular TaC by a non-carburized braided core wire of metals such as in particular z. Rhenium, carbon or less brittle metal carbide alloys using e.g. Hf, Zr, Nb, Ti, V and W are possible as an alternative.
  • the designs described herein may also be applied to lamps with luminescent bodies of other metal carbides (e.g., hafnium carbide, zirconium carbide, niobium carbide, titanium carbide, vanadium carbide, tungsten carbide) and their alloys with metal nitrides and metal borides.
  • metal carbides e.g., hafnium carbide, zirconium carbide, niobium carbide, titanium carbide, vanadium carbide, tungsten carbide
  • their alloys with metal nitrides and metal borides e.g., hafnium carbide, zirconium carbide, niobium carbide, titanium carbide, vanadium carbide, tungsten carbide
  • FIG. 1 shows a bulb pinched on one side 1 with a piston made of quartz glass 2, a pinch seal 3, and inner power supply lines 6, the films 4 in the pinch seal 3 with a filament 7 connect.
  • the filament is a simple coiled, axially arranged TaC wire whose uncoiled ends 14 are continued across the lamp axis.
  • the outer leads 5 are attached to the outside of the foils 4.
  • the inner diameter of the piston is 9 mm.
  • the coil ends 14 are then bent parallel to the lamp axis and form the inner power supply lines 6 as an integral extension.
  • tantalum carbide filament schematically in FIG. 1 shown lamp, whose basic design largely corresponds to a commercially available low-voltage halogen incandescent lamp, is formed by carburizing a tantalum wire (diameter 125 microns) wound coil (12 turns).
  • xenon is used as the base gas to which hydrogen, nitrogen, hydrocarbon and halogen (J, Br, Cl, F) containing substances are added
  • the lamp has a power consumption of about 70 W when operating at 15 V, wherein the Color temperature is characteristically in the range 3200 - 3600 K.
  • FIG. 2 schematically the filament 7 is shown in more detail.
  • the pitch of the core wire 15, for example with a diameter of 125 microns, is about 350 microns at 12 turns.
  • the gradient factor of the wrapping wire 16, for example with a diameter of 25 microns, is about 1.2.
  • Suitable metal carbides are in particular those whose melting point is above that of tungsten or those whose melting point is at most 100 ° below that of tungsten.

Landscapes

  • Ropes Or Cables (AREA)
  • Resistance Heating (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne une lampe à incandescence comprenant un corps lumineux contenant du carbure, ainsi que des amenées de courant qui supportent ce corps lumineux. Selon l'invention, un corps lumineux ainsi qu'une substance de remplissage sont introduits dans une ampoule d'une manière étanche au vide. Ledit corps lumineux comprend un carbure métallique dont le point de fusion est de préférence plus élevé que celui du tungstène. En outre, le corps lumineux est hélicoïdal. Ce corps lumineux comprend un fil central et un filament spiralé, est constitué de différents matériaux, et comporte un carbure métallique.

Claims (19)

  1. Lampe ( 1 ) à incandescence ayant un corps ( 7 ) lumineux contenant du carbure et des entrées ( 6 ) de courant, qui maintiennent le corps ( 7 ) lumineux, un corps (7) lumineux bobiné étant introduit d'une manière étanche au vide ensemble avec un remplissage dans une ampoule ( 2 ), le corps ( 7 ) lumineux ayant un carbure métallique, dont le point de fusion est, de préférence, supérieur à celui du tungstène et le corps (7) lumineux étant constitué sous la forme d'un filament guipé composé d'un fil ( 15 ) d'âme et d'un guipage ( 16 ) qui l'entoure, caractérisée en ce que le fil ( 15 ) d'âme et le guipage ( 16 ) sont en des matériaux différents, au moins l'un des deux constituants étant en un carbure de métal à haut point de fusion.
  2. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le guipage est un fil de guipage, qui est à une seule ou à plusieurs couches et qui est constitué, notamment, de plusieurs fils de diamètre plus petit que celui du fil d'âme.
  3. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le carbure à haut point de fusion est du carbure de tantale ou un alliage de carbure de tantale avec d'autres carbures métalliques, des nitrures métalliques et des borures métalliques et en ce que le deuxième matériau est, après la mise en régime de la lampe, soit un autre composé métallique à haut point de fusion, soit un matériau ne formant pas de carbure dans les conditions sélectionnées et choisi dans le groupe W, Re, Os, Ir, Ru.
  4. Lampe à incandescence suivant la revendication 3, caractérisée en ce que l'autre composé métallique est un autre composé métallique choisi dans le groupe HfC, ZrC, NbC, VC, WC, TiC, SiC ou des alliages de ces carbures métalliques entre eux ou avec des nitrures métalliques correspondants et/ou des borures métalliques correspondants.
  5. Lampe à incandescence suivant la revendication 1, caractérisée en ce que l'ampoule enveloppante est en verre au quartz, en verre dur ou en céramique.
  6. Lampe à incandescence suivant la revendication 2, caractérisée en ce que la distance entre spire du fil de guipage représente au plus 1,5 fois le diamètre du fil de guipage.
  7. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme est revêtu de carbone ou encore d'un lubrifiant d'étirage au carbone provenant du tréfilage.
  8. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme soi-même est bobiné en une fibre de carbone ou en un faisceau de fibres de carbone.
  9. Lampe à incandescence suivant la revendication 7, caractérisée en ce que le fil d'âme soi-même revêtu de carbone est guipé à nouveau par un fil en carbure métallique ou en un alliage de carbures métalliques choisi dans le groupe TaC, HfV, ZrC, NbC, VC, WC, TiC ou des alliages de ces carbures métalliques avec des nitrures métalliques ou avec des borures métalliques.
  10. Lampe à incandescence suivant la revendication 8, caractérisée en ce que des fibres ou le faisceau soi-même est bobiné à nouveau en un fil en carbure métallique ou en un alliage de carbures métalliques choisi dans le groupe TaC, HfC, ZrC, NbC, VC, WC, TiC ou des alliages de ces carbures métalliques avec des nitrures métalliques ou avec des borures métalliques.
  11. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme est en un matériau ne formant pas de carbure ou n'en formant que dans une faible mesure, en étant notamment en rhénium, en ruthénium, en osmium ou en iridium, tandis que le fil de guipage est en un carbure métallique ou en un alliage de carbures métalliques choisi dans le groupe TaC, HfC, ZrC, NbC, VC, WC, TiC et, le cas échéant encore, des borures métalliques et des nitrures métalliques.
  12. Lampe à incandescence suivant la revendication 2, caractérisée en ce que le fil de guipage est bobiné en plusieurs couches autour du fil d'âme.
  13. Lampe à incandescence suivant la revendication 11, caractérisée en ce qu'au moins deux fils de guipage différents en des métaux ou en des alliages métalliques différents, notamment en des carbures métalliques, sont bobinés autour du fil d'âme.
  14. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme est en tungstène et le guipage est un fil, qui est en carbure de tantale produit notamment par carburation ciblée de seulement du tantale ou en d'autres carbures métalliques ou leurs alliages ( Hf, Zr, Nb, V, W, Ti ), des nitrures métalliques ou des borures métalliques pouvant être encore contenues éventuellement dans les alliages.
  15. Lampe à incandescence suivant la revendication 3, caractérisée en ce que le fil d'âme est en tungstène et le guipage a au moins deux couches, la première couche étant un fil de guipage, qui est en un matériau choisi dans le groupe rhénium, osmium, iridium agissant en tant que barrière de diffusion du carbone et une deuxième, et éventuellement d'autres couches, est un fil de guipage en un carbure métallique, de préférence en carbure de tantale ou en un alliage de carbure de tantale avec d'autres carbures métalliques, de nitrures métalliques ou de borures métalliques.
  16. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme est un fil de tungstène qui est revêtu d'un métal choisi dans le groupe rhénium, osmium, iridium, un fil de guipage étant mis sur cette couche et étant en un carbure métallique ou en un alliage de carbures métalliques, de nitrures métalliques ou de borures métalliques choisi dans le groupe des métaux Ta, Hf, Zr, Nb, V, W, Ti.
  17. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme est un fil de tungstène, le guipage étant constitué de trois couches, la première couche étant en un matériau choisi dans le groupe rhénium, osmium, iridium servant de barrière à la diffusion du carbone et la deuxième couche étant une fibre ou une couche qui est en un matériau choisi dans le groupe fibre de carbone ou une couche de carbone et la troisième couche est un fil de guipage en carbure métallique ou en un alliage de carbures métalliques choisi dans le groupe carbure de tantale, alliage de carbure de tantale, ZrC, HfC, NbC, VC, WC, TiC.
  18. Lampe à incandescence suivant la revendication 1, caractérisée en ce que le fil d'âme est en un matériau ne formant pas de carbure ou n'en formant guère, comme notamment le rhénium, l'osmium ou l'iridium, le fil d'âme étant d'abord en tant que deuxième couche enroulé d'une fibre de carbone ou revêtu de carbone et il est utilisé comme troisième couche un fil de guipage en un carbure métallique ou en un alliage de carbures métalliques avec d'autres carbures métalliques, nitrures métalliques ou borures métalliques.
  19. Procédé de fabrication d'une lampe à incandescence suivant l'une des revendications précédentes, caractérisé en ce que, dans la lampe finie, les métaux ou alliages métalliques à haut point de fusion sont d'abord à l'état non carburé et que ceux-ci ne sont carburés que lors de la mise en régime de la lampe par réaction sur un gaz de remplissage contenant du carbone ou en utilisant le carbone d'une fibre de carbone ou d'une couche de carbone.
EP07728560A 2006-05-03 2007-04-26 Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure Expired - Fee Related EP2013896B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006020581A DE102006020581A1 (de) 2006-05-03 2006-05-03 Zwei-Metall-Umspinnung
PCT/EP2007/054105 WO2007125077A2 (fr) 2006-05-03 2007-04-26 Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure

Publications (2)

Publication Number Publication Date
EP2013896A2 EP2013896A2 (fr) 2009-01-14
EP2013896B1 true EP2013896B1 (fr) 2011-02-09

Family

ID=38292707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728560A Expired - Fee Related EP2013896B1 (fr) 2006-05-03 2007-04-26 Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure

Country Status (7)

Country Link
US (1) US20100156289A1 (fr)
EP (1) EP2013896B1 (fr)
JP (1) JP2009535770A (fr)
CN (1) CN101438381B (fr)
CA (1) CA2649609A1 (fr)
DE (2) DE102006020581A1 (fr)
WO (1) WO2007125077A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105205B1 (fr) 2008-03-28 2011-08-10 ISI-Industrie-Produkte GmbH Elément d'ionisation et filtre électrostatique
DE102008059292A1 (de) * 2008-11-27 2010-06-02 Osram Gesellschaft mit beschränkter Haftung Glühlampe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854970A (en) * 1930-05-20 1932-04-19 Gen Electric Electric lamp and the illuminating body used therein
IT392129A (fr) * 1940-01-20
US3073986A (en) * 1960-04-20 1963-01-15 Gen Electric Electric incandescent lamp
US3237284A (en) * 1962-02-05 1966-03-01 Polaroid Corp Method of forming carbide coated coiled filaments for lamps
US3219493A (en) * 1962-02-05 1965-11-23 Polaroid Corp Method of making electric lamps
GB2041642B (en) * 1979-02-09 1982-11-17 Thorn Electrical Ind Ltd Lamp filament support
US5034656A (en) * 1989-09-26 1991-07-23 General Electric Company Tungsten halogen lamp including phosphorous and bromine
JP3835772B2 (ja) * 1996-11-06 2006-10-18 桜井 裕美子 フィラメント取り付け方法
JP2003508875A (ja) * 1999-08-22 2003-03-04 アイピーツーエイチ アーゲー 光源および光源を製造する方法
DE102004014211A1 (de) * 2004-03-23 2005-10-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Glühlampe mit carbidhaltigem Leuchtkörper
DE102004034807A1 (de) * 2004-07-19 2006-03-16 Ip2H Ag Lichtquelle und ein Verfahren zur mechanischen Stabilisierung des Filaments oder der Elektrode einer Lichtquelle

Also Published As

Publication number Publication date
CN101438381A (zh) 2009-05-20
DE102006020581A1 (de) 2007-11-08
CN101438381B (zh) 2011-01-19
JP2009535770A (ja) 2009-10-01
WO2007125077A2 (fr) 2007-11-08
DE502007006459D1 (de) 2011-03-24
WO2007125077A3 (fr) 2008-08-21
CA2649609A1 (fr) 2007-11-08
US20100156289A1 (en) 2010-06-24
EP2013896A2 (fr) 2009-01-14

Similar Documents

Publication Publication Date Title
EP1594158A2 (fr) Lampe à incandescence avec un corps lumineux contenant de carbide
EP1769526B1 (fr) Lampe a incandescence a element lumineux contenant du carbure
AT502301A2 (de) Röntgenanode und verfahren zur herstellung derselben
EP1805785B1 (fr) Lampe a incandescence ayant une lampe contenant un compose metallique resistant aux temperatures elevees
EP2013896B1 (fr) Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure
WO2006060995A2 (fr) Lampe a incandescence dotee d'un element lumineux contenant une liaison metallique resistant aux temperatures elevees
EP1774601A1 (fr) Element supraconducteur a renforcement
EP1776713A2 (fr) Source de lumiere et procede de stabilisation mecanique du filament ou de l'electrode d'une source de lumiere
DE19653572A1 (de) Verfahren zur Herstellung von helikal gewickelten Wendelkörpern und Wendelkörper, die nach dieser Methode hergestellt sind
WO2006007815A1 (fr) Lampe à incandescence à élément lumineux contenant du carbure
DE102009015545B4 (de) Beschichtungsanlage mit Aktivierungselement, deren Verwendung sowie Verfahren zur Abscheidung einer Beschichtung
DE102006035792A1 (de) Glühlampe mit einem carbidhaltigen Leuchtkörper
WO2007063008A2 (fr) Lampe a incandescence halogene comportant un corps luminescent contenant du carbure
DE1589128A1 (de) Gluehlampe,bei der Verbindungen des Fluors zu der Betriebsgasfuellung hinzugefuegt sind
DE3024167C2 (de) Halogenglühlampe mit Sauerstoffgetter
DE202009013860U1 (de) Halogenglühlampe
WO2007125075A2 (fr) Lampe halogène à incandescence pourvue d'un corps lumineux contenant du carbure
WO2008012277A2 (fr) Corps éclairant pour une lampe à incandescence et son procédé de fabrication
DE102011004290A1 (de) Halogenglühlampe für Fahrzeugscheinwerfer und Fahrzeugscheinwerfer
DE1558712A1 (de) Verfahren zur Herstellung von Heizfadenmaterialien
EP2052405B1 (fr) Corps de démarrage pour une lampe à décharge basse pression
DE2003884C (de) Verfahren zur Herstellung einer Ein sockel Wolfram Halogenlampe
DE10356651A1 (de) Glühlampe mit Kohlenstoff-Kreisprozess
DE202011100956U1 (de) Stromzuführungssystem und Lampe mit derartigem Stromzuführungssystem
DE4413859A1 (de) Verfahren zum Herstellen elektrischer Beleuchtungslampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080922

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BE DE HU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE HU

REF Corresponds to:

Ref document number: 502007006459

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006459

Country of ref document: DE

Effective date: 20110324

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010913

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007006459

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006459

Country of ref document: DE

Effective date: 20111110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007006459

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007006459

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20180413

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006459

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190427

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430