EP2008358A1 - Système de commande pour machine électrique - Google Patents

Système de commande pour machine électrique

Info

Publication number
EP2008358A1
EP2008358A1 EP07724286A EP07724286A EP2008358A1 EP 2008358 A1 EP2008358 A1 EP 2008358A1 EP 07724286 A EP07724286 A EP 07724286A EP 07724286 A EP07724286 A EP 07724286A EP 2008358 A1 EP2008358 A1 EP 2008358A1
Authority
EP
European Patent Office
Prior art keywords
speed
output stage
electric machine
phase short
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07724286A
Other languages
German (de)
English (en)
Inventor
Lothar Rehm
Thomas Von Raumer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2008358A1 publication Critical patent/EP2008358A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a drive system for a permanent-magnet electric machine according to claim 1 and a method for controlling a permanent-magnet electric machine according to claim 4.
  • each phase of the electric machine is associated with a half-bridge arrangement having a first and a second switching element for power supply via an intermediate circuit.
  • An operating state of a drive system is monitored and compared with a threshold value. When the threshold value is exceeded, a fault condition is detected and a short circuit between the phases of the electrical machine is generated.
  • Permanent-magnet electric machines are used, for example, as vehicle drive motors which receive electric energy from a power supply in hybrid drive systems.
  • the power supply takes place, for example, by a battery connected via a power converter and a DC link, in electrically powered vehicles by a so-called traction battery or by a generator driven by an internal combustion engine.
  • traction battery or by a generator driven by an internal combustion engine.
  • the fundamental problem that due to the relative movement between the armature windings and the permanent magnets occurring during operation is that a countervoltage, known as the pole wheel voltage, is induced in the armature windings. This induced voltage increases with increasing speed and can reach and exceed the amount of the supply voltage of the electric machine.
  • the object of the invention is to reduce the braking torque of a switched off and still rotating electric machine.
  • a drive system for an electric machine in which a three-phase short circuit of the output stage by shorting the three upper circuit breaker or the three lower circuit breaker is feasible for switching off the electric machine, if the speed Dl does not fall below a definable limit GRl or one Voltage U_DC of the output stage exceeds a limit Umax.
  • the switching elements of the output stage are referred to as a circuit breaker.
  • Advantage of the solution according to the invention is that a three-phase short circuit is performed only under such boundary conditions in which no disturbing braking torque can occur.
  • all circuit breakers of the output stage are obviously for switching off the electrical machine when the speed Dl is below the threshold GR and a voltage U_DC of the final stage falls below a limit Umax.
  • FIG. 1 is a schematic circuit diagram of an inventive proper drive system in conjunction with a permanent-magnet electric machine
  • Fig. 2 is an exemplary representation of a speed-dependent error response and the associated braking torque.
  • Fig. 1 shows an electrical machine 1 with an embodiment of a drive system according to the invention.
  • the electric machine 1 is connected to an output stage 2.
  • the output stage 2 can be designed as a converter or as a power converter.
  • the illustrated output stage 2 has three upper switching elements 2ol, 2o2, 2o3 and three lower switching elements 2ul, 2u2, 2u3.
  • the switching elements are typically designed as a circuit breaker. These switching elements form three half-bridge arrangements, each consisting of two of the switching elements 2ol, 2ul; 2o2, 2u2 and 2o3, 2u3 are formed and each one of the three phases of the electric machine 1 drive.
  • the output stage 2 is via a, not shown in Fig. 1.
  • Main contactor with a, not shown in Fig. 1, supply device of the electric machine 1 (for example, a battery) connected.
  • the supply device supplies the output stage 2 with a supply voltage U_DC.
  • the supply device can be switched on and off via the main contactor.
  • the output stage 2 is connected to a logic module 5 and is controlled by this.
  • the power amplifier 2 information about the supply voltage U_DC and information about a correct implementation of a three-phase short circuit to the logic device 5 on.
  • information about correct conversion of an opening of the switching elements 2ol, 2o2, 2o3, 2ul, 2u2 or 2u3 or about a voltage U_CE of a switching element 2ol, 2o2, 2o3, 2ul, 2u2 or 2u3 can be forwarded to the logic module 5.
  • the logic module 5 is connected to a function computer 3 and a monitoring computer 4 and receives from these data.
  • the function computer 3 and the monitoring computer 4 are also connected to each other and exchange data with each other. In this case, the monitoring computer 4 monitors the error-free operation of the function computer 3.
  • the function computer 3 receives the information of a speed sensor 6, which preferably detects a speed Dl of the electric machine 1.
  • one or more other speed sensors 7 may be provided for detecting one or more rotational speeds D2.
  • the speed of the electric machine 1 can also be detected as the speed D2.
  • a speed of a gear connected to the electric machine 1 a wheel speed of a vehicle wheel or another relevant speed can be detected.
  • a wheel speed sensor of a vehicle wheel of an electronic stability program is provided as a speed sensor 7.
  • the rotational speed sensor 7 is connected to the function computer 3. About this connection receives the function calculator 3 information of the speed sensor 7 on the detected speed D2.
  • the function computer 3 has an area 8. This area 8 is referred to as the first level in a two-level monitoring system or a three-level monitoring system. In this case, the first level is monitored by a second level and possibly a third level.
  • the current ⁇ n suedsignale for controlling the electric machine 1 are calculated. These control signals are passed from the area 8 of the function computer 3 to a switch 10 of the logic module 5.
  • the switch 10 of the logic module 5 is the drive signals via a control line to a switch 14 of the logic block 5 on.
  • the switch 14 of the logic module 5 outputs the control signals via a control line to a switch 16 of the logic module 5 on.
  • the switch 16 of the logic module 5 is the drive signals via a control line to the power amplifier 2 on.
  • the output stage 2 sets its switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 in accordance with the control signals and controls the electric machine 1 in accordance with the control signals.
  • the functional computer 3 is connected via a shutdown path to an element 9 of the logic module 5.
  • a connection is referred to as Abschaltpfad over which either an enable signal or a shutdown signal can be passed.
  • the monitoring computer 4 is also connected via a Abschaltpfad with the element 9 of the logic device 5.
  • the shutdown signal is provided as a voltage-free default state. Will through If no error is transmitted by the function computer 3 or by the monitoring computer 4 to the logic module 5, then the logic component 5 interprets this as the shutdown signal.
  • the element 9 is formed in the embodiment shown in Fig. 1 as a "logical AND" element
  • logic module 5 can be represented as an electronic component, as a structure within a logic module or by means of software. If the "logical AND" 9 receives a release signal both from the function computer 3 and from the monitoring computer 4, then there is an enable signal to the switch
  • the element 9 is implemented as a "logical OR" or the like, in which case the element 9 issues a switch-off signal to the switch 10 when it receives a switch-off signal from the function computer 3 or from the monitoring computer 4 or both.
  • the switch 10 receives a switch-off signal from the element 9, it switches over and thus interrupts the forwarding of the control signals calculated by region 8 of the function computer 3. Instead of the drive signals of area 8, the drive signals of an element 11 of the logic module 5 are now passed on.
  • the element 11 is typically a permanent memory in which the drive signals for a three-phase short circuit are permanently stored.
  • the drive signals may provide a three-phase short circuit of the switching elements 2ol, 2o2, 2o3 or the switching elements 2ul, 2u2, 2u3. It can also be provided to switch to the respective other variant of a three-phase short circuit if information about the operating state of the switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 allow the conclusion that the selected three-phase short circuit can not be performed without errors or has been performed.
  • the switch 14 is connected to an element 19.
  • the element 19 is a logic that sends a switch-off signal to the switch 14 in the presence of specified input data.
  • the switch-off signal causes the switch 14 to be switched to a switching state in which it can pass on its associated drive signals for opening all switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 of the output stage 2 for switching off the electrical machine 1.
  • the element 19 is connected via an element 20 with the speed sensor 6.
  • the element 20 receives from the rotational speed sensor 6 information about the detected by the speed sensor 6 speed Dl.
  • the speed Dl is preferably a speed of the electric machine 1.
  • the element 20 checks whether the speed Dl is below a threshold GRl. In one embodiment, the element 20 provides a signal to the element 19, if that is the case.
  • this test is arranged in an element 18.
  • element 19 evaluates the information supplied by element 20 about the rotational speed D 1 of sensor 6 only when, in addition, element 18 signals to element 19 that rotational speed sensor 6 and the signal transmission of the value for D 1 operate without errors. If this is not the case, then in a further development, a permanently stored speed value can be assumed.
  • the element 19 is connected to the function computer 3 via an element 17.
  • the element 17 receives from the function computer 3 a speed information D2 of an additional sensor 7.
  • the element 17, alternatively to the embodiment shown in FIG. 1, may also be arranged in the function computer 3.
  • the element 17 only transmits a signal to the element 19 when the
  • the speed information D2 supplied by the additional rotational speed sensor 7 to the function computer 3 is replaced by the rotational speed information D1 supplied by the rotational speed sensor 6 when the functional computer 3 detects a fault of the rotational speed sensor 7 or the data transmission of the rotational speed sensor 7.
  • element 17 only sends a signal to element 19, when the speed information Dl detected in the function calculator 3 falls below the limit value GR1.
  • a signal is then transmitted to the element 14 in the element 19 when the elements 17 and 20 each detect a limit underrun and there is no information about an erroneous detection or transmission of the limit below the signals.
  • the drive signals, which the switch 10 transmits via the control line to the switch 14, are also forwarded to an element 12.
  • the element 12 Based on the control signals from switch 10, the element 12 detects whether a
  • the element 12 forwards this information to the function computer 3 and to the element 19 of the logic module 5.
  • the element 12 is also connected to the output stage 2 and receives from this information about the operating state or the operating state of their switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3. Typically, it is transmitted whether a voltage U_CE of the switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 assumes a permissible value. Based on the information from the power amplifier 2, the element 12 detects whether the power amplifier 2 generates a three-phase short circuit of the electric machine 1. If there is a properly performed three-phase short circuit, element 12 gives this information to the function computer 3 and to an element 19 of the logic module 5.
  • the element 19 sends a switch-off signal to switch 14, if the element 19 receives the information that the function calculator 3 via the element 17 detects a speed D2 or Dl below its associated limit value GR2 or GRL has and the element 12 has detected a three-phase short circuit of the output stage 2 and no concern of a shutdown signal from element 9 to switch 10.
  • the function computer 3 operates without errors.
  • the signal passed through the element 17 can be trusted and, when the limit value GR2 or GR1 is undershot, the switching to open switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 can be initiated by sending a switch-off signal to switch 14 ,
  • This behavior can be used to include a shutdown command supplied by an external control device and not based on fault detection of the function computer 3 or the monitoring computer 4 in the method. This makes it possible to trigger a three-phase short circuit or a shutdown of the electric machine by opening all the switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3, depending on a voltage U_DC, even for an external shutdown command.
  • the element 19 sends a switch-off signal to switch 14, if the element 19 receives the information that the element 20 has detected the rotational speed Dl as lying below the limit value GRl associated with it and the element 12 has a three-phase short circuit Amplifier 2 and the concern of a Shutdown signal from element 9 to switch 10 has detected. If a switch-off signal from element 9 to switch 10, the data from the function computer 3 and monitoring computer 4 can no longer be trusted. Therefore, in this case, it makes sense not to use the speed signal transmitted by the function computer 3 to the element 17, but instead to rely on the speed signal D 1 transmitted directly from the sensor 6 to the logic module 5.
  • the element 18 in addition to the embodiment illustrated in FIG. 1, the element 18 must signal to the element 19 that the sensor 6 operates without errors. If this is not the case, then a permanently stored speed value can be assumed. This also applies to the case where the element 17 has been replaced by the speed D 1 and element 18 detects an error of the sensor 6.
  • the switch 14 If the switch 14 receives a switch-off signal from the element 19, it switches over and thus interrupts the transfer of the drive signals coming from element 10. Instead of these drive signals now the information of an element 13 of the logic device 5 are passed.
  • the element 13 is typically a permanent memory in which the control signals for an opening of all switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 of the output stage 2 are permanently stored.
  • These drive signals of the element 13 are fed via the switch 14 in the control line and passed through switch 16 to the power amplifier 2.
  • the output stage 2 opens its switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 in accordance with the control signals supplied to them operating parameters and thus controls the electric machine 1 at.
  • the information which the switch 14 transmits via the control line to the switch 16 is also forwarded to an element 21.
  • the element 21 Based on the information from switch 14, the element 21 detects whether all switching elements 2ol, 2o2, 2o3, 2ul, 2u2, 2u3 should be opened. This information is the element 21 to the function computer 3 on.
  • the output stage 2 transmits information about the voltages U_CE applied to it to an element 22.
  • Element 22 is a comparator which compares the supplied value for voltage U_CE with a value Umax and forwards a turn-off signal to switch 16 when U_CE is greater than Umax.
  • the switch 16 of element 22 receives a switch-off signal, it switches over and thus interrupts the transfer of the drive signals coming from element 14. Instead of these drive signals, the drive signals of an element 15 of the logic module 5 are now passed on.
  • the element 15 is typically a permanent memory in which the drive signals for a three-phase short circuit of the output stage 2 are permanently stored.
  • FIG. 2 shows by way of example how a speed-dependent error reaction according to the invention affects the braking torque.
  • FIG. 2 schematically shows the course of the operating voltage U_DC, the induced voltages U_ind and the induced braking torque M_ind of a device according to the invention, in which the main contactor arranged between the power supply and output stage 2 is closed, ie the output stage 2 is supplied with a constant voltage U_DC. How to In this case, the induced voltage U_ind increases in proportion to the speed.
  • the speed detection of Dl operates properly, i. below the speed limit GRl switching off the electric machine 1 by opening all circuit breakers, from the limit speed by three-phase short circuit. Due to the three-phase short circuit, only a low braking torque is induced at higher speeds (> GRl).
  • a voltage limit Umax is provided, beyond which the shutdown of the electric machine 1 is in each case switched to a three-phase short circuit. This represents a protection of the electric machine against too high a supply voltage U_DC.
  • the electric machine 1 and the output stage 2 are independent of a faulty speed detection one with the power supply off, if necessary, also inductively generated, protected to high supply voltage.

Abstract

L'invention concerne un système de commande conçu pour une machine électrique à excitation permanente (1), ainsi qu'un procédé correspondant. Lorsqu'un ordinateur de traitement de fonction (3) et/ou un ordinateur de surveillance (4) du système de commande détecte une erreur, la machine électrique (1) est désactivée. L'objectif de cette invention est de réduire le couple de freinage d'une machine électrique (1) qui a été désactivée mais qui est encore animée d'un mouvement de rotation. A cet effet, un court-circuit triphasé de l'étage terminal (2) est réalisé pour désactiver la machine électrique (1), si le régime (d1) ne descend pas en deçà d'une valeur-seuil (GR1) déterminable, ou si la tension U_DC de l'étage terminal (2) ne dépasse pas une valeur-seuil (Umax), ou autre possibilité, si le régime (D1) se situe en deçà de la valeur-seuil déterminable (GR1) et qu'une tension U_DC de l'étage final (2) ne dépasse pas une valeur-seuil Umax, tous les disjoncteurs (2o1, 2o2, 2o3, 2u1, 2u2, 2u3) de l'étage final (2) sont ouverts pour désactiver la machine électrique (1).
EP07724286A 2006-04-19 2007-04-17 Système de commande pour machine électrique Withdrawn EP2008358A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006018053A DE102006018053A1 (de) 2006-04-19 2006-04-19 Ansteuersystem für eine elektrische Maschine
PCT/EP2007/003348 WO2007121889A1 (fr) 2006-04-19 2007-04-17 Système de commande pour machine électrique

Publications (1)

Publication Number Publication Date
EP2008358A1 true EP2008358A1 (fr) 2008-12-31

Family

ID=38292647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07724286A Withdrawn EP2008358A1 (fr) 2006-04-19 2007-04-17 Système de commande pour machine électrique

Country Status (6)

Country Link
US (1) US8054014B2 (fr)
EP (1) EP2008358A1 (fr)
JP (1) JP5281567B2 (fr)
CN (1) CN101427456B (fr)
DE (1) DE102006018053A1 (fr)
WO (1) WO2007121889A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279862B1 (en) * 2006-08-04 2007-10-09 Gm Global Technology Operations, Inc. Fault handling of inverter driven PM motor drives
DE102006061561A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP4240149B1 (ja) * 2008-02-14 2009-03-18 トヨタ自動車株式会社 モータ駆動装置およびハイブリッド駆動装置
JP4906825B2 (ja) * 2008-10-07 2012-03-28 三菱電機株式会社 車両挙動制御装置
DE102010001593A1 (de) * 2010-02-04 2011-08-04 Continental Automotive GmbH, 30165 Schaltungsanordnung und Verfahren und Vorrichtung zum Betreiben der Schaltungsanordnung
DE102010017863A1 (de) 2010-04-22 2011-10-27 Daimler Ag Verfahren zur Fehlererkennung in einem Hybridantriebsstrang
DE102012002023A1 (de) * 2011-06-21 2012-12-27 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben einer Wechselrichterschaltung einer Elektromaschine
DE102011081173A1 (de) 2011-08-18 2013-02-21 Robert Bosch Gmbh Betriebszustandsschaltung für Wechselrichter und Verfahren zum Einstellen von Betriebszuständen eines Wechselrichters
US8575879B2 (en) * 2011-08-19 2013-11-05 GM Global Technology Operations LLC Methods, systems and apparatus for controlling a multi-phase inverter
DE102012209144A1 (de) 2012-05-31 2013-12-05 Robert Bosch Gmbh Verfahren zur Überführung eines elektrischen Antriebsystems in einen sicheren Zustand und Anordnung zur Durchführung des Verfahrens
CN103066898B (zh) * 2013-01-23 2016-06-15 苏州汇川技术有限公司 锥形电机停机制动系统及方法
DE102013213045A1 (de) * 2013-07-04 2015-01-08 Voith Patent Gmbh Vermeidung von Bremsmomenten bei permanenterregten Synchronmaschinen
DE102013213044A1 (de) * 2013-07-04 2015-01-08 Voith Patent Gmbh Permanentmagneterregte Elektromaschine
DE102013213046A1 (de) * 2013-07-04 2014-12-31 Voith Patent Gmbh Elektroantrieb mit Wechselrichter
DE102013220727A1 (de) * 2013-10-14 2015-04-16 Schmidhauser Ag Steuergerät
DE102013226577A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer elektrischen Maschine
DE102015222352A1 (de) * 2015-11-12 2017-05-18 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb einer elektrischen Maschine
DE102016105947A1 (de) * 2016-03-31 2017-10-05 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor mit aktiver Bremsung
DE102016210238A1 (de) * 2016-06-09 2017-12-14 Volkswagen Aktiengesellschaft Verfahren und Schutzvorrichtung zur Drehmomentbegrenzung für eine elektrische Maschine
CN108092595B (zh) * 2016-11-21 2021-08-31 德昌电机(深圳)有限公司 电机应用设备
JP6915331B2 (ja) * 2017-03-22 2021-08-04 株式会社アイシン 車両用開閉体制御装置
IT201700034687A1 (it) * 2017-03-29 2018-09-29 Phase Motion Control S P A Metodo per proteggere un dispositivo di azionamento per un motore brushless e corrispondente sistema di azionamento e controllo per un motore brushless
CN107124124B (zh) * 2017-04-01 2019-12-17 苏州汇川联合动力系统有限公司 一种电机三相定子绕组主动短路系统以及方法
GB2563028B (en) * 2017-05-30 2020-06-24 Protean Electric Ltd A controller for an electric machine
DE102019217836A1 (de) * 2019-11-19 2021-05-20 Vitesco Technologies Germany Gmbh Verfahren zur Betriebssteuerung einer elektrischen Fahrzeugantriebseinheit mit zwei Steuerungen
CN110888357B (zh) * 2019-11-22 2021-06-29 珠海格力智能装备有限公司 机器人的控制方法及装置
CN112787554A (zh) * 2020-12-29 2021-05-11 深圳市大地和电气股份有限公司 基于三相交流永磁同步电机安全状态的执行方法和系统
DE102021201859A1 (de) 2021-02-26 2022-09-01 Vitesco Technologies Germany Gmbh Verfahren und Steuereinheit zur Umschaltung eines Elektroantriebs zwischen einem Betriebsmodus mit aktivem Kurzschluss und einem Freilauf-Betriebsmodus
DE102022207048A1 (de) 2022-07-11 2024-01-11 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Begrenzen einer Zwischenkreisspannung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754211A (en) * 1985-02-05 1988-06-28 Vaino Karjalainen Method of and a device for braking an asynchronous motor
JP2774907B2 (ja) * 1992-09-18 1998-07-09 株式会社日立製作所 電気自動車の制御装置
JP3542197B2 (ja) * 1995-04-28 2004-07-14 本田技研工業株式会社 電動車両の制御装置
US5914582A (en) * 1997-01-27 1999-06-22 Hitachi, Ltd. Permanent magnet synchronous motor controller and electric vehicle controller
US5986416A (en) * 1997-12-09 1999-11-16 Dubois; Jean-Marie Apparatus and method for driving a mechanically-driven device in an electrical vehicle
ES2158782B1 (es) * 1998-05-12 2002-03-01 Mannesmann Sachs Ag Sistema y procedimiento de mando para un motor electrico excitado permanentemente con al menos una fase.
DE19835576A1 (de) * 1998-05-12 1999-11-18 Mannesmann Sachs Ag Ansteuersystem für einen permanenterregten Elektromotor mit wenigstens einem Strang
EP1063753B1 (fr) * 1999-06-22 2009-07-22 Levitronix LLC Entraînement électrique rotatif comprenant un rotor suspendu magnétiquement
US6760653B2 (en) * 2001-05-15 2004-07-06 Trw Inc. Electric power assisted steering system having a single integrated circuit with two processors
JP3791375B2 (ja) * 2001-09-27 2006-06-28 株式会社明電舎 電動車両の制御方法と装置
JP2005033932A (ja) * 2003-07-07 2005-02-03 Nissan Motor Co Ltd モータ制御装置
EP1676358A4 (fr) * 2003-10-01 2012-06-27 J L Behmer Corp Commande d'angle de phase pour commande de machine synchrone
JP4193704B2 (ja) * 2004-01-20 2008-12-10 トヨタ自動車株式会社 電源装置およびそれを搭載する自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007121889A1 *

Also Published As

Publication number Publication date
US20090099703A1 (en) 2009-04-16
US8054014B2 (en) 2011-11-08
CN101427456A (zh) 2009-05-06
CN101427456B (zh) 2012-01-25
DE102006018053A1 (de) 2007-10-31
JP5281567B2 (ja) 2013-09-04
JP2009535001A (ja) 2009-09-24
WO2007121889A1 (fr) 2007-11-01

Similar Documents

Publication Publication Date Title
EP2008358A1 (fr) Système de commande pour machine électrique
DE102007063856B3 (de) Steuersystem für eine mehrphasige rotierende elektrische Maschine
EP1655829B1 (fr) Circuit et procédé pour le contrôle d'un moteur électrique, en praticulier d'une machine à laver
EP3469705B1 (fr) Procédé et dispositif de protection pour limiter le couple d'une machine électrique
DE102006052423B4 (de) Servolenkungsvorrichtung
DE102008026549A1 (de) Schutz für Permanentmagnetmotor-Steuerungsschaltungen
DE102011001762A1 (de) Motorsteuervorrichtung
WO2017186436A1 (fr) Système de court-circuitage actif de phases d'un onduleur et entraînement de véhicule automobile
DE102013226763A1 (de) Sicherheitsschaltungsanordnung für eine elektrische Antriebseinheit
DE102014114122B4 (de) Drehende elektrische Maschine, die an einem Fahrzeug befestigt ist
WO2013068158A2 (fr) Procédé et dispositif de commande d'un moteur électrique
DE112012003822B4 (de) Steuersystem für eine elektrische Drehmaschine und Steuerverfahren für eine drehende elektrische Maschine
EP2588340A2 (fr) Procédé pour faire fonctionner une machine électrique au moins triphasée faisant office de mécanisme d'entraînement dans un véhicule automobile et appareil de commande pour onduleur
DE102012101508A1 (de) Verfahren und Vorrichtung zum Betreiben einer elektrischen Maschine
WO2011042237A1 (fr) Procédé pour faire fonctionner un système d'entraînement ainsi que système d'entraînement
DE102010049169A1 (de) Verfahren zur Steuerung einer elektrischen Drehfeldmaschine einer mobilen Arbeitsmaschine
DE102020112679A1 (de) Fahrzeugantriebsvorrichtung
DE102020206478A1 (de) Steuervorrichtung für einen Stromrichter, elektrisches Antriebssystem und Verfahren zum Einstellen eines sicheren Betriebszustandes
EP2499730A2 (fr) Onduleur avec circuit de calage de tension
DE102014106218B4 (de) Drehende elektrische Maschine für ein Fahrzeug
DE102015120023A1 (de) Elektrischer Antrieb für einen industriellen Roboter
EP2714489B1 (fr) Procédé et dispositif permettant de faire fonctionner un moteur sans balais
WO2010046156A1 (fr) Procédé de fonctionnement d'une machine électrique tournante ou d'une machine électrique à ondes progressives
WO2007000285A1 (fr) Systeme de commande pour une machine electrique a excitation permanente
DE102019131121B4 (de) Fahrzeugantriebsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20110216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181101