EP2005447B1 - Kryostat mit einem magnetspulensystem, das eine lts- und eine beheizbare hts-sektion umfasst - Google Patents

Kryostat mit einem magnetspulensystem, das eine lts- und eine beheizbare hts-sektion umfasst Download PDF

Info

Publication number
EP2005447B1
EP2005447B1 EP07723072A EP07723072A EP2005447B1 EP 2005447 B1 EP2005447 B1 EP 2005447B1 EP 07723072 A EP07723072 A EP 07723072A EP 07723072 A EP07723072 A EP 07723072A EP 2005447 B1 EP2005447 B1 EP 2005447B1
Authority
EP
European Patent Office
Prior art keywords
cryostat
hts
section
helium
coil system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07723072A
Other languages
English (en)
French (fr)
Other versions
EP2005447A1 (de
Inventor
Gerhard Roth
Axel Lausch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin GmbH
Original Assignee
Bruker Biospin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin GmbH filed Critical Bruker Biospin GmbH
Publication of EP2005447A1 publication Critical patent/EP2005447A1/de
Application granted granted Critical
Publication of EP2005447B1 publication Critical patent/EP2005447B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the invention relates to a cryostat having a magnetic coil system comprising a superconductive conductor for generating a magnetic field B 0 in a measuring volume with a plurality of radially nested, electrically connected coil sections, of which at least one LTS section comprises a conventional low temperature superconductor (LTS). and at least one HTS section comprises a high temperature superconductor (HTS), wherein the liquid helium magnetic levitation system is in a helium tank of the cryostat at a helium temperature T L ⁇ 4K.
  • LTS low temperature superconductor
  • HTS high temperature superconductor
  • cryostat has become known, for example from the DE 10 2004 007 340 A1 .
  • LTS low-temperature superconductors
  • NbTi and Nb 3 Sn are relatively easy to process and reliable in use.
  • the conductor of an LTS coil section usually consists of a good normal conductive metallic matrix (copper), in which superconducting filaments are located, which completely take over the current during normal operation.
  • NbTi these are usually tens to hundreds, in the case of Nb 3 Sn, it may be more than a hundred thousand.
  • the inner structure of the ladder is a bit more complex, but this does not matter in the present context.
  • the coil sections are cooled with liquid helium in a cryostat.
  • the superconducting coil sections dip at least partially into liquid helium.
  • HTS high-temperature superconductors
  • HTS or ceramic superconductors are mainly available as bismuth conductors with HTS filaments in a silver-containing matrix.
  • the ladders are predominantly in the form of ribbons.
  • cryostat of the type described above, which is characterized in that heating means are provided which keep the HTS at any time at an elevated temperature T H > T L and T H > 2.2 K.
  • the present invention is based on the finding that the "ballooning" is caused by superfluid helium, which expands or evaporates in the interior of the HTS material.
  • helium liquefies at atmospheric pressure below about 4.2 K.
  • Helium continues to exhibit a phase transition of the second kind ( ⁇ point) at a temperature of 2.2 K.
  • ⁇ point phase transition of the second kind
  • liquid helium becomes superfluous, ie the helium can flow without friction and has an infinitely high thermal conductivity.
  • the former effect ensures that it penetrates even the smallest gaps, especially in spite of the sheathing through the matrix in the cavities inside a ceramic HTS. In contrast, a compression of the ceramic material helps nothing.
  • the HTS is maintained by the heating means according to the invention at a temperature at which superfluid helium does not occur. This ensures that no superfluid helium penetrates into the HTS. This can not come to the "ballooning".
  • the temperature T L of most of the liquid helium in the helium tank of the cryostat can be equal to or lower than the ⁇ -point temperature of 2.2 K according to the invention.
  • the HTS only needs to be kept warm enough locally.
  • a temperature T L of 2.2 K or below is favorable even for particularly stable conditions for the LTS sections, in particular, mechanical deformations due to temperature differences are minimized. But above all, a T L ⁇ 2.2 K increases the current carrying capacity and the critical magnetic field strength in the co-cooled LTS sections.
  • a preferred embodiment of the cryostat according to the invention provides that the heating means keep the HTS at an elevated temperature T H > 2.5 K at all times. Even above the ⁇ -point temperature of 2.2 K, superfluid helium phase can briefly occur. With this embodiment, a sufficient buffer is set up against such fluctuations and the HTS is even better protected.
  • the HTS section forms the radially innermost section.
  • the largest magnetic field strengths and the expensive and problematic HTS is used particularly effectively. Furthermore, this arrangement facilitates only local cooling of the HTS section.
  • cryostat has a room temperature bore surrounded by the magnetic coil system, in which the measurement volume is located, is preferred.
  • the room temperature hole allows easy placement of a sample at room or variable temperature in the measurement volume.
  • a preferred development of this embodiment provides that there is a thermal contact between the innermost section and the wall of the helium tank facing the room temperature bore, wherein the contact forwards radiated heat radiation to this wall.
  • This passive heating of the HTS section is particularly reliable, since a sufficient temperature for heating the HTS section on the design of radiation shields and the mechanical coupling to the wall of the helium tank and possibly the prevention of convection in the helium tank to the HTS section easy to ensure around. In particular, the passive heating makes a power failure for the HTS harmless.
  • Another advantageous embodiment provides that there is a thermal contact between the HTS section through the wall of the helium tank to a radiation shield as a heating means, wherein the radiation shield is at a temperature T S > T L , in particular wherein T S is about 40 K. , This heating is passive and thus energy saving. Again, a power failure in particular for the HTS is safe.
  • the heating means comprise an electric heater.
  • the electric heater is easy to control and allows accurate temperature control of the HTS section even outside normal operating conditions, especially when filling or emptying the helium tank or when quenching.
  • cryostat which provides that the HTS section and possibly also the thermal contact has a jacket for thermal insulation against the surrounding helium.
  • This embodiment reduces the necessary cooling power for the liquid helium in the cryostat, which compensates for the heat input of the heating means.
  • the HTS is also mechanically protected against superfluid helium.
  • the sheath also extends to superconducting leads to the HTS section, at least as far as the leads HTS included. This also includes the joints in the protection against penetrating superfluid helium.
  • sheath is formed of plastic, in particular by a multilayer epoxy resin.
  • a preferred embodiment provides that the magnetic field B 0 generated in the measurement volume by the magnet coil system is greater than 20 T, in particular greater than 23 T. These strong magnetic fields are easily accessible by means of HTS section and the cryostat according to the invention. In contrast, with conventional magnet systems based only on LTS sections, the theoretical limit is already reached at these field strengths, and the critical current density tends toward zero.
  • the coil sections of the magnet coil system can be superconductingly short-circuited during operation.
  • NMR and ICR Ion cyclotron resonance
  • an embodiment which is characterized in that the magnetic coil system with respect to the homogeneity of the magnetic field B 0 in the measurement volume and the time stability of B 0 meets the requirements of high-resolution NMR spectroscopy, which requires a special design of the magnetic coil system and the cryostat which is known per se for pure LTS systems.
  • cryostat according to the invention which provides that means are provided in the helium tank for minimizing convection of helium around the HTS section.
  • These means are, for example, mechanical barriers located on or near the surface of the HTS section and obstructing the helium flows on the surface of the HTS section or on the surface of parts that are thermally coupled to the HTS section.
  • the reduced convection reduces heat input by the heating means into the liquid helium, and conversely reduces the cooling efficiency of the liquid helium at the HTS section.
  • the cryostat is more economical and stable to operate.
  • the FIG. 1 schematically shows a first embodiment of a cryostat 1 according to the invention.
  • the cryostat 1 has a room temperature bore 2, in which an examination volume 3 is provided for a sample.
  • the examination volume is located in the center of a magnetic coil system which is formed from here three solenoid-shaped coil sections 4, 5, 6.
  • the magnet coil system generates a homogeneous magnetic field B 0 in the examination volume 3.
  • the middle coil section 5 is wound with Nb 3 Sn wire and the outermost coil section 6 is wound with NbTi wire.
  • the coil sections 4, 5, 6 are electrically connected in series with one another, by way of example with the two superconducting transition points (joints) 7a and 7b.
  • the HTS material of the HTS section 4 is connected to an NbTi transition piece 8
  • the transition piece 8 is connected to the Nb 3 Sn wire of the LTS section 5.
  • the coil sections 4, 5, 6 are located inside a helium tank 9, which is largely filled with liquid helium.
  • the liquid helium in the helium tank 9 has a temperature T L of less than 4 K, for example about 2.0 K.
  • the helium in the helium tank 9 is constantly cooled by a cooling device, not shown, to compensate for heat input from the outside and to keep T L constant , see eg US 5,220,800 .
  • a cooling device not shown
  • the helium tank like in the US 5,220,800 have two chambers separated by a thermal barrier, which are at temperatures of about 2 K and 4 K, wherein the magnetic coil system is disposed in the 2 K chamber.
  • the LTS coil sections 5, 6 located in this helium bath have likewise assumed the temperature T L.
  • the situation is different with the HTS coil section 4.
  • This has a thermal contact 10, which connects the HTS section 4 with the wall 11 of the helium tank 9, which faces the room temperature bore 2 (and the examination volume 3), heat-conducting.
  • Thermal radiation which impinges on the wall 11 then provides heat input via the thermal contact 10 into the HTS section 4.
  • This heat radiation can be emitted, for example, from the radiation shield 12 surrounding the helium tank 9.
  • the radiation shield 12 in particular undergoes heat radiation from the wall of the room temperature bore 2.
  • the radiation shield 12 has a temperature of approximately 40 K.
  • T H which is greater than T L , and according to the invention also greater than the temperature of the ⁇ point of FIG. 4, arises at the HTS section 4 He is about 2.2K.
  • T H is about 3.0 K. This value of T H is sufficient to prevent ingress of superfluid helium into the HTS section and into the HTS itself, ie helium remains in the area of the surface of the HTS section 4 normal liquid and can not penetrate deeper.
  • FIG. 2 shows a slightly modified embodiment of the cryostat 1. If the heat input by radiant heat to the wall 11 and thus in the thermal contact 10 should not be sufficient to sufficiently heat the HTS section 4, contact fields 21 may be provided. These contact springs 21 connect a relatively warm part of the cryostat 1 (warmer than T L and warmer than 2.2 K), namely here the radiation shield 12 (with T S about 40 K), with the wall eleventh
  • the FIG. 3 shows a third embodiment of a cryostat 1 according to the invention.
  • the HTS section 4 is connected to another thermal contact 31.
  • This thermal contact 31 is guided through the bottom 32 of the helium tank 9 and connected to the radiation shield 12 in the bottom region thereof.
  • the radiation shield 12 has a temperature T S of about 40 K and thus can deliver sufficient heat to the HTS section 4 to prevent ingress of superfluid helium in the HTS section 4.
  • the heat input can be easily adjusted, for example, via the diameter of the thermal contact 31.
  • the thermal contact 31 is preferably thermally insulated over its entire length to the ends, for example by a plastic jacket.
  • means 33 are provided at the upper edge of the HTS section 4, which prevent helium between the thermal contact 31 and the wall 11 of the helium tank 9 can flow.
  • the means 33 are annular for this purpose.
  • the function of the means can also be taken over by the thermal contact 31 itself, or the HTS section 4 is sufficiently close to the wall 11, so that no convection can occur.
  • FIG. 4 shows a fourth embodiment of a cryostat 1 according to the invention.
  • the HTS section 4 is not actively (only) actively heated via thermal contacts but via an electric heater 41.
  • run heating coil for example made of copper
  • the heating power is chosen so that the desired temperature T H of the HTS section 4 results.
  • a temperature sensor may be provided on or in the HTS section 4 in order to control T H. In general, a constant heating current is used.
  • the electrical leads and the power supply of the electric heater 41 are not shown.
  • the HTS section 4 is additionally surrounded by a sheath 42 of three-layered epoxy resin, which thermally isolates the HTS section 4 from the surrounding liquid helium and also mechanically separates it.
  • the jacket 42 also includes the joint 7a, so that all HTS material is enclosed by the jacket 42. In the area of the joint 7a, an additional heating coil is provided.
  • the cryostat 1 of the FIGS. 1 to 4 are preferably parts of an NMR apparatus, such as an NMR spectrometer or an NMR tomograph, in particular a high-resolution high-field NMR spectrometer with a magnetic field B 0 > 20 T, preferably> 23 T in the measurement volume, the magnetic coil system with respect to the homogeneity the magnetic field B 0 in the measurement volume and the time stability of B 0 meets the requirements of high-resolution NMR spectroscopy, which usually requires that the coil sections of the magnetic coil system can be superconductingly short-circuited during operation.
  • an NMR apparatus such as an NMR spectrometer or an NMR tomograph

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

    Hintergrund der Erfindung
  • Die Erfindung betrifft einen Kryostaten, mit einem supraleitfähige Leiter umfassenden Magnetspulensystem zur Erzeugung eines Magnetfelds B0 in einem Messvolumen mit mehreren, radial ineinander geschachtelt angeordneten, elektrisch in Serie geschalteten, solenoidförmigen Spulensektionen, von denen mindesten eine LTS-Sektion einen konventionellen Tieftemperatursupraleiter (LTS) und mindestens eine HTS-Sektion einen Hochtemperatursupraleiter (HTS) umfasst, wobei sich das Magnetsputensystem mit flüssigem Helium in einem Heliumtank des Kryostaten bei einer Helium-Temperatur TL < 4 K befindet.
  • Ein solcher Kryostat ist beispielsweise bekannt geworden aus der DE 10 2004 007 340 A1 .
  • Zum Beispiel für Kernspinresonanz-Apparaturen, insbesondere Spektrometer, werden sehr starke, homogene und stabile Magnetfelder benötigt. Je stärker das Magnetfeld, desto besser ist das Signal-zu-Rausch-Verhältnis und die spektrale Auflösung der NMR-Messung.
  • Zur Erzeugung starker Magnetfelder werden supraleitende Magnetspulensysteme eingesetzt. Weit verbreitet sind Magnetspulensysteme mit solenoidförmigen Spulensektionen, die ineinander geschachtelt sind und in Serie betrieben werden. Supraleiter können elektrischen Strom verlustfrei tragen. Die Supraleitung stellt sich unterhalb einer materialabhängigen Sprungtemperatur ein. Als Supraleitermaterial werden typischerweise konventionelle Tieftemperatur-Supraleiter (LTS) eingesetzt. Diese Metalllegierungen wie beispielsweise NbTi und Nb3Sn sind verhältnismäßig leicht zu verarbeiten und zuverlässig in der Anwendung. Der Leiter einer LTS-Spulensektion besteht in der Regel aus einer gut normalleitenden metallischen Matrix (Kupfer), in der sich supraleitende Filamente befinden, die im Normalbetrieb vollständig den Strom übernehmen. Im Fall von NbTi sind das üblicherweise einige zehn bis hundert, im Fall von Nb3Sn können es mehr als hunderttausend sein. Tatsächlich ist der innere Aufbau der Leiter noch etwas komplexer, was aber im vorliegenden Zusammenhang keine Rolle spielt.
  • Um die Spulensektionen unter die Sprungtemperatur abzukühlen, werden die Spulensektionen mit flüssigem Helium in einem Kryostaten gekühlt. Die supraleitenden Spulensektionen tauchen dabei zumindest teilweise in flüssiges Helium ein.
  • Um die erreichbare Magnetfeldstärke in einem Magnetspulensystem weiter zu steigern, ist es wünschenswert, auch Hochtemperatur-Supraleiter (HTS) einzusetzen. Bei gleicher Temperatur können Leiter, die HTS enthalten, sehr viel mehr Strom tragen und höhere Magnetfeldstärken erreichen als solche mit LTS. HTS-Material bietet sich somit vor allem als Material für die innersten Spulensektionen eines Magnetspulensystems an.
  • HTS oder auch keramische Supraleiter gibt es derzeit vor allem als Wismut-Leiter mit HTS-Filamenten in einer silberhaltigen Matrix. Die Leiter haben vorwiegend die Form von Bändchen.
  • Spulensektionen aus HTS in unterkühltem Helium haben sich bisher allerdings als kurzlebig und unzuverlässig erwiesen. Eine Untersuchung von ausgefallenen HTS-Sektionen hat ergeben, dass das HTS-Material aufplatzt und die Stromtragfähigkeit des HTS-Leiters damit zerstört wird. Dieser an sich auch in anderen Zusammenhängen bekannte Effekt wird gelegentlich als "ballooning" bezeichnet.
  • Aufgabe der Erfindung
  • Demnach ist es die Aufgabe der vorliegenden Erfindung, einen Kryostaten bereitzustellen, in dem eine HTS-Spulensektion langfristig und zuverlässig eingesetzt werden kann, und insbesondere kein "ballooning" auftritt.
  • Kurze Beschreibung der Erfindung
  • Diese Aufgabe wird gelöst durch einen Kryostaten der eingangs vorgestellten Art, der dadurch gekennzeichnet ist, dass Heizmittel vorgesehen sind, die den HTS jederzeit auf einer erhöhten Temperatur TH > TL sowie TH > 2,2 K halten.
  • Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass das "ballooning" durch superflüssiges Helium verursacht wird, das im Inneren des HTS-Materials expandiert oder verdampft. Bekanntermaßen verflüssigt sich Helium bei Normaldruck unterhalb von ca. 4,2 K. Helium zeigt aber weiterhin bei einer Temperatur von 2,2 K einen Phasenübergang 2. Art (λ-Punkt). Unterhalb des λ-Punkts wird flüssiges Helium superflüssig, d.h. das Helium kann reibungsfrei fließen und hat eine unendlich hohe Wärmeleitfähigkeit. Der erstere Effekt sorgt dafür, dass es auch in kleinste Spalten eindringt, insbesondere trotz der Ummantelung durch die Matrix auch in die Hohlräume im Inneren eines keramischen HTS. Dagegen hilft auch eine Verdichtung des Keramikmaterials nichts. Im Falle einer späteren Erwärmung über den λ-Punkt bleibt das Helium im HTS gefangen. Die Erwärmung sorgt aber auch für eine Expansion des gefangenen Heliums, insbesondere wenn die Erwärmung so stark ist, dass das Helium verdampft. Dadurch wird im Inneren des HTS ein erheblicher Druck aufgebaut. Da HTS ein keramisches und damit sprödes Material ist, wird der HTS schließlich lokal vom Druck gesprengt und der Leiter degradiert.
  • Dies kann durch den erfindungsgemäßen Kryostaten verhindert werden. Der HTS wird durch die erfindungsgemäßen Heizmittel auf einer Temperatur gehalten, bei der superflüssiges Helium nicht auftritt. Dadurch ist sichergestellt, dass auch kein superflüssiges Helium in den HTS eindringt. Damit kann es nicht zum "ballooning" kommen.
  • Man beachte, dass die Temperatur TL des größten Teils des flüssigen Heliums im Heliumtank des Kryostaten dabei erfindungsgemäß durchaus gleich oder niedriger als die λ-Punkt-Temperatur von 2,2 K sein kann. Der HTS braucht lediglich lokal ausreichend warm gehalten zu werden. Eine Temperatur TL von 2,2 K oder darunter ist sogar wegen besonders stabiler Verhältnisse für die LTS-Sektionen günstig, insbesondere sind mechanische Verformungen aufgrund von Temperaturdifferenzen minimiert. Aber vor allem erhöht ein TL < 2,2 K die Stromtragfähigkeit und die kritische Magnetfeldstärke bei den mitgekühlten LTS-Sektionen.
  • Eine bevorzugte Ausführungsform des erfindungsgemäßen Kryostaten sieht vor, dass die Heizmittel den HTS jederzeit auf einer erhöhten Temperatur TH > 2,5 K halten. Auch oberhalb der λ-Punkt-Temperatur von 2,2 K kann kurzzeitig superflüssige Heliumphase auftreten. Mit dieser Ausführungsform wird ein ausreichender Puffer gegen solche Fluktuationen eingerichtet und der HTS noch besser geschützt.
  • Besonders bevorzugt ist auch eine Ausführungsform, bei der die HTS-Sektion die radial innerste Sektion bildet. Hier treten die größten Magnetfeldstärken auf, und der teure und problematische HTS ist besonders effektiv eingesetzt. Weiterhin erleichtert diese Anordnung die lediglich lokale Kühlung der HTS-Sektion.
  • Weiterhin ist bevorzugt eine Ausführungsform, bei der der Kryostat eine von dem Magnetspulensystem umgebene Raumtemperaturbohrung aufweist, in der sich das Messvolumen befindet. Die Raumtemperaturbohrung gestattet eine einfache Platzierung einer Probe bei Raum- oder variabler Temperatur im Messvolumen.
  • Eine bevorzugte Weiterbildung dieser Ausführungsform sieht vor, dass als Heizmittel ein thermischer Kontakt zwischen der innersten Sektion und der der Raumtemperaturbohrung zugewandten Wand des Heliumtanks besteht, wobei der Kontakt auf diese Wand eingestrahlte Wärmestrahlung weiterleitet. Diese passive Beheizung der HTS-Sektion ist besonders zuverlässig, da eine für die Beheizung der HTS-Sektion ausreichende Temperatur über die Auslegung von Strahlungsschildern sowie der mechanischen Ankopplung an die Wand des Heliumtanks sowie ggf. der Unterbindung von Konvektion im Heliumtank um die HTS-Sektion herum leicht zu gewährleisten ist. Insbesondere ist durch die passive Beheizung ein Stromausfall für den HTS ungefährlich.
  • Eine andere vorteilhafte Ausführungsform sieht vor, dass als Heizmittel ein thermischer Kontakt zwischen der HTS-Sektion durch die Wand des Heliumtanks zu einem Strahlungsschild besteht, wobei sich der Strahlungsschild auf einer Temperatur TS > TL befindet, insbesondere wobei TS ungefähr 40 K beträgt. Diese Beheizung ist passiv und somit energiesparend. Auch hier ist insbesondere ein Stromausfall für den HTS ungefährlich.
  • Vorteilhaft ist auch eine Ausführungsform, bei der die Heizmittel eine elektrische Heizung umfassen. Die elektrische Heizung ist leicht zu steuern und gestattet auch außerhalb des normalen Betriebszustands eine genaue Temperaturkontrolle der HTS-Sektion, insbesondere beim Befüllen oder Leeren des Heliumtanks bzw. im Quenchfall.
  • Besonders bevorzugt ist auch eine Ausführungsform des erfindungsgemäßen Kryostaten, die vorsieht, dass die HTS-Sektion und ggf. auch der thermische Kontakt eine Ummantelung zur thermischen Isolierung gegen das umgebende Helium aufweist. Diese Ausführungsform reduziert die notwendige Kühlleistung für das flüssige Helium im Kryostaten, die den Wärmeeintrag der Heizmittel ausgleicht. Weiterhin wird der HTS auch mechanisch vor superflüssigem Helium zusätzlich geschützt.
  • In einer bevorzugten Weiterbildung dieser Ausführungsform erstreckt die Ummantelung sich auch auf supraleitende Zuleitungen zur HTS-Sektion, und zwar mindestens so weit die Zuleitungen HTS enthalten. Damit sind auch die Joints in den Schutz vor eindringendem superflüssigem Helium einbezogen.
  • Eine weitere Weiterbildung sieht vor, dass die Ummantelung aus Kunststoff ausgebildet ist, insbesondere durch ein mehrschichtiges Epoxyharz.
  • Eine bevorzugte Ausführungsform sieht vor, dass das im Messvolumen durch das Magnetspulensystem erzeugte Magnetfeld B0 größer als 20 T, insbesondere größer als 23 T ist. Diese starken Magnetfelder sind mittels HTS-Sektion und dem erfindungsgemäßen Kryostaten gut erreichbar. Im Gegensatz dazu wird mit konventionellen Magnetsystemen, die nur auf LTS-Sektionen basieren, bei diesen Feldstärken schon die theoretische Grenze erreicht, und die kritische Stromdichte strebt gegen null.
  • Bevorzugt ist weiterhin eine Ausführungsform, bei der die Spulensektionen des Magnetspulensystems im Betrieb supraleitend kurzgeschlossen werden können. Dadurch wird die beispielsweise für NMR- und ICR (Ionenzyklotronresonanz) erforderliche Stabilität erreicht.
  • Ebenfalls bevorzugt ist eine Ausführungsform, die dadurch gekennzeichnet ist, dass das Magnetspulensystem bezüglich der Homogenität des Magnetfelds B0 im Messvolumen und der zeitlichen Stabilität von B0 die Anforderungen der hochauflösenden NMR-Spektroskopie erfüllt, was eine spezielle Gestaltung des Magnetspulensystems und des Kryostaten erfordert, die für reine LTS-Systeme an sich bekannt ist.
  • Schließlich ist noch eine Ausführungsform des erfindungsgemäßen Kryostaten bevorzugt, die vorsieht, dass im Heliumtank Mittel vorgesehen sind, die eine Konvektion von Helium um die HTS-Sektion herum minimieren. Diese Mittel sind beispielsweise mechanische Barrieren, die an der Oberfläche der HTS-Sektion oder in deren Nähe angeordnet sind und die Heliumströmungen an der Oberfläche der HTS-Sektion oder an der Oberfläche von Teilen, die thermisch an die HTS-Sektion angekoppelt sind, behindern. Durch die verringerte Konvektion wird ein Wärmeeintrag durch die Heizmittel in das flüssige Helium reduziert, und umgekehrt die Kühlleistung des flüssigen Heliums an der HTS-Sektion reduziert. Dadurch ist der Kryostat wirtschaftlicher und stabiler zu betreiben.
  • Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter ausgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
  • Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    eine erste Ausführungsform eines erfindungsgemäßen Kryostaten mit thermischem Kontakt der HTS-Sektion zur Wand des Heliumtanks, die der Raumtemperaturbohrung zugewandt ist, in schematischer Darstellung;
    Fig. 2
    eine zweite Ausführungsform ähnlich Fig. 1, mit zusätzlichen wärmeleitenden Kontaktfedern zum Strahlungsschild im Bereich der Raumtemperaturbohrung;
    Fig. 3
    eine dritte Ausführungsform eines erfindungsgemäßen Kryostaten, mit einem thermischen Kontakt der HTS-Sektion zum Strahlungsschild im Bereich des Bodens in schematischer Darstellung;
    Fig. 4
    eine vierte Ausführungsform eines erfindungsgemäßen Kryostaten mit einer elektrischen Heizung in schematischer Darstellung.
  • Die Figur 1 zeigt schematisch eine erste Ausführungsform eines erfindungsgemäßen Kryostaten 1. Der Kryostat 1 weist eine Raumtemperaturbohrung 2 auf, in der ein Untersuchungsvolumen 3 für eine Probe vorgesehen ist. Das Untersuchungsvolumen befindet sich im Zentrum eines Magnetspulensystems, das gebildet wird von hier drei solenoidförmigen Spulensektionen 4,5,6. Das Magnetspulensystem erzeugt im Untersuchungsvolumen 3 ein homogenes Magnetfeld B0. Die radial innerste Spulensektion 4 ist mit einem Draht aus Hochtemperatursupraleiter(=HTS) gewickelt. Die mittlere Spulensektion 5 ist mit Nb3Sn-Draht gewickelt, und die äußerste Spulensektion 6 ist mit NbTi-Draht gewickelt. Die Spulensektionen 5, 6 stellen somit Tieftemperatursupraleiter(=LTS)-Spulensektionen dar. Die Spulensektionen 4, 5, 6 sind in Serie elektrisch miteinander verbunden, beispielhaft ist dies mit den beiden supraleitenden Übergangsstellen (Joints) 7a und 7b dargestellt. Am Joint 7a wird das HTS-Material der HTS-Sektion 4 mit einem Übergangsstück 8 aus NbTi verbunden, und am Joint 7b wird das Übergangsstück 8 mit dem Nb3Sn-Draht der LTS-Sektion 5 verbunden.
  • Die Spulensektionen 4, 5, 6 befinden sich im Inneren eines Heliumtanks 9, der weitgehend mit flüssigem Helium gefüllt ist. Das flüssige Helium im Heliumtank 9 hat eine Temperatur TL von weniger als 4 K, beispielsweise ca. 2,0 K. Das Helium im Heliumtank 9 wird durch eine nicht dargestellte Kühlvorrichtung ständig gekühlt, um Wärmeeinträge von außen auszugleichen und TL konstant zu halten, siehe z.B. US 5,220,800 . Alternativ zur Gestaltung gemäß Fig. 1 kann der Heliumtank wie in der US 5,220,800 zwei durch eine thermische Barriere getrennte Kammern aufweisen, die sich auf Temperaturen von etwa 2 K bzw. 4 K befinden, wobei das Magnetspulensystem in der 2 K-Kammer angeordnet ist.
  • Die in diesem Heliumbad befindlichen LTS-Spulensektionen 5, 6 haben ebenfalls die Temperatur TL angenommen. Anders verhält es sich mit der HTS-Spulensektion 4. Diese weist einen thermischen Kontakt 10 auf, der die HTS-Sektion 4 mit der Wand 11 des Heliumtanks 9, welche der Raumtemperaturbohrung 2 (und dem Untersuchungsvolumen 3) zugewandt ist, wärmeleitend verbindet. Wärmestrahlung, die auf die Wand 11 trifft, sorgt dann für einen Wärmeeintrag über den thermischen Kontakt 10 in die HTS-Sektion 4. Diese Wärmestrahlung kann beispielsweise von dem Strahlungsschild 12, welches den Heliumtank 9 umgibt, abgegeben werden. Das Strahlungsschild 12 erfährt insbesondere Wärmeeinstrahlung von der Wand der Raumtemperaturbohrung 2. Das Strahlungsschild 12 hat eine Temperatur von ca. 40 K.
  • Im Gleichgewicht zwischen Wärmeeintrag über den thermischen Kontakt 10 und der Kühlung durch das umgebende flüssige Helium stellt sich an der HTS-Sektion 4 eine Temperatur TH ein, die größer als TL ist und erfindungsgemäß auch größer als die Temperatur des λ-Punkts von 4He von ca. 2,2 K ist. Beispielsweise beträgt TH ca. 3,0 K. Dieser Wert von TH reicht aus, um ein Eindringen von superflüssigem Helium in die HTS-Sektion und in den HTS selbst zu verhindern, d.h. Helium bleibt im Bereich der Oberfläche der HTS-Sektion 4 normalflüssig und kann nicht tiefer eindringen.
  • Die Figur 2 zeigt eine leicht abgewandelte Ausführungsform des Kryostaten 1. Falls der Wärmeeintrag durch Strahlungswärme auf die Wand 11 und damit in den thermischen Kontakt 10 nicht ausreichen sollte, um die HTS-Sektion 4 ausreichend zu erwärmen, können Kontaktfeldern 21 vorgesehen sein. Diese Kontaktfedern 21 verbinden einen relativ warmen Teil des Kryostaten 1 (wärmer als TL und wärmer als 2,2 K), hier nämlich den Strahlungsschild 12 (mit TS ca. 40 K), mit der Wand 11.
  • Die Figur 3 zeigt eine dritte Ausführungsform eines erfindungsgemäßen Kryostaten 1. Die HTS-Sektion 4 ist mit einem anderen thermischen Kontakt 31 verbunden. Dieser thermische Kontakt 31 ist durch den Boden 32 des Heliumtanks 9 geführt und mit dem Strahlungsschild 12 in dessen Bodenbereich verbunden. Das Strahlungsschild 12 hat eine Temperatur TS von ca. 40 K und kann damit genügend Wärme an die HTS-Sektion 4 abgeben, um ein Eindringen von superflüssigem Helium in die HTS-Sektion 4 zu verhindern. Der Wärmeeintrag kann beispielsweise über den Durchmesser des thermischen Kontakts 31 leicht eingestellt werden. Der thermische Kontakt 31 ist bevorzugt über seine gesamte Länge bis auf die Enden thermisch isoliert, beispielsweise durch eine Kunststoffummantelung.
  • Weiterhin sind Mittel 33 an der oberen Kante der HTS-Sektion 4 vorgesehen, die verhindern, dass Helium zwischen dem thermischen Kontakt 31 und der Wand 11 des Heliumtanks 9 strömen kann. Die Mittel 33 sind hierfür ringförmig ausgebildet. Alternativ kann die Funktion der Mittel auch durch den thermischen Kontakt 31 selbst übernommen werden, oder die HTS-Sektion 4 liegt ausreichend eng an der Wand 11 an, so dass keine Konvektion auftreten kann.
  • Die Figur 4 zeigt schließlich eine vierte Ausführungsform eines erfindungsgemäßen Kryostaten 1. Die HTS-Sektion 4 wird nicht (nur) über thermische Kontakte, sondern über eine elektrische Heizung 41 aktiv beheizt. Dazu verlaufen Heizwendel (beispielsweise aus Kupfer) an der Oberfläche oder im Inneren der HTS-Sektion 4. Die Heizleistung wird so gewählt, dass sich die gewünschte Temperatur TH der HTS-Sektion 4 ergibt. Erfindungsgemäß kann an oder in der HTS-Sektion 4 ein Temperatursensor vorgesehen sein, um TH zu kontrollieren. Im Allgemeinen wird ein zeitlich konstanter Heizstrom verwendet. Zur Vereinfachung sind die elektrischen Zuleitungen und die Stromversorgung der elektrischen Heizung 41 nicht dargestellt.
  • Die HTS-Sektion 4 ist zusätzlich mit einer Ummantelung 42 aus dreischichtigem Epoxyharz umgeben, die die HTS-Sektion 4 thermisch vom umgebenden flüssigen Helium isoliert und auch mechanisch abtrennt. Die Ummantelung 42 schließt dabei auch den Joint 7a mit ein, so dass alles HTS-Material von der Ummantelung 42 eingeschlossen ist. Im Bereich des Joints 7a ist eine zusätzliche Heizwendel vorgesehen.
  • Die Kryostaten 1 der Figuren 1 bis 4 sind bevorzugt Teile einer NMR-Apparatur, wie etwa eines NMR-Spektrometers oder eines NMR-Tomographen, insbesondere eines hochauflösenden Hochfeld-NMR-Spektrometers mit einem Magnetfeld B0 > 20 T, vorzugsweise > 23 T im Messvolumen, wobei das Magnetspulensystem bezüglich der Homogenität des Magnetfelds B0 im Messvolumen und der zeitlichen Stabilität von B0 die Anforderungen der hochauflösenden NMR-Spektroskopie erfüllt, was in der Regel voraussetzt, dass die Spulensektionen des Magnetspulensystems im Betrieb supraleitend kurzgeschlossen werden können.

Claims (14)

  1. Kryostat (1),
    mit einem supraleitfähige Leiter umfassenden Magnetspulensystem zur Erzeugung eines Magnetfelds B0 in einem Messvolumen (3)
    mit mehreren, radial ineinander geschachtelt angeordneten, elektrisch in Serie geschalteten, solenoidförmigen Spulensektionen (4, 5, 6),
    von denen mindesten eine LTS-Sektion (5, 6) einen konventionellen Tieftemperatursupraleiter (LTS) und mindestens eine HTS-Sektion (4) einen Hochtemperatursupraleiter (HTS) umfasst,
    wobei sich das Magnetspulensystem mit flüssigem Helium in einem Heliumtank (9) des Kryostaten (1) bei einer Helium-Temperatur TL < 4 K befindet,
    dadurch gekennzeichnet,
    dass Heizmittel vorgesehen sind, die den HTS jederzeit auf einer erhöhten Temperatur TH > TL sowie TH > 2,2 K halten.
  2. Kryostat (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Heizmittel den HTS jederzeit auf einer erhöhten Temperatur TH > 2,5 K halten.
  3. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die HTS-Sektion (4) die radial innerste Sektion (4) bildet.
  4. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kryostat (1) eine von dem Magnetspulensystem umgebene Raumtemperaturbohrung (2) aufweist, in der sich das Messvolumen (3) befindet.
  5. Kryostat nach Anspruch 3 und 4, dadurch gekennzeichnet, dass als Heizmittel ein thermischer Kontakt (10) zwischen der innersten Sektion (4) und der der Raumtemperaturbohrung (2) zugewandten Wand (11) des Heliumtanks (9) besteht, wobei der Kontakt (10) auf diese Wand (11) eingestrahlte Wärmestrahlung weiterleitet.
  6. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Heizmittel ein thermischer Kontakt (31) zwischen der HTS-Sektion (4) und einem Strahlungsschild (12) besteht, wobei sich das Strahlungsschild (12) auf einer Temperatur TS > TL befindet, insbesondere wobei TS ungefähr 40 K beträgt.
  7. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizmittel eine elektrische Heizung (41) umfassen.
  8. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die HTS-Sektion (4) und ggf. auch der thermische Kontakt (10, 31) eine Ummantelung (42) zur thermischen Isolierung gegen das umgebende Helium aufweist.
  9. Kryostat (1) nach Anspruch 8, dadurch gekennzeichnet, dass die Ummantelung (42) sich auch auf supraleitende Zuleitungen zur HTS-Sektion (4) erstreckt, und zwar mindestens so weit die Zuleitungen HTS enthalten.
  10. Kryostat (1) nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Ummantelung (42) aus Kunststoff ausgebildet ist, insbesondere durch ein mehrschichtiges Epoxyharz.
  11. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das im Messvolumen (3) durch das Magnetspulensystem erzeugte Magnetfeld B0 größer als 20 T, insbesondere größer als 23 T ist.
  12. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spulensektionen (4, 5, 6) des Magnetspulensystems im Betrieb supraleitend kurzgeschlossen werden können.
  13. Kryostat (1) nach Anspruch 12, dadurch gekennzeichnet, dass das Magnetspulensystem bezüglich der Homogenität des Magnetfelds B0 im Messvolumen und der zeitlichen Stabilität von B0 die Anforderungen der hochauflösenden NMR-Spektroskopie erfüllt.
  14. Kryostat (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Heliumtank (9) Mittel (33) vorgesehen sind, die eine Konvektion von Helium um die HTS-Sektion (4) herum minimieren.
EP07723072A 2006-03-18 2007-03-07 Kryostat mit einem magnetspulensystem, das eine lts- und eine beheizbare hts-sektion umfasst Not-in-force EP2005447B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012506A DE102006012506A1 (de) 2006-03-18 2006-03-18 Kryostat mit einem Magnetspulensystem, das eine LTS- und eine beheizbare HTS-Sektion umfasst
PCT/EP2007/001927 WO2007107241A1 (de) 2006-03-18 2007-03-07 Kryostat mit einem magnetspulensystem, das eine lts- und eine beheizbare hts-sektion umfasst

Publications (2)

Publication Number Publication Date
EP2005447A1 EP2005447A1 (de) 2008-12-24
EP2005447B1 true EP2005447B1 (de) 2009-10-28

Family

ID=38016709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723072A Not-in-force EP2005447B1 (de) 2006-03-18 2007-03-07 Kryostat mit einem magnetspulensystem, das eine lts- und eine beheizbare hts-sektion umfasst

Country Status (4)

Country Link
US (1) US8406833B2 (de)
EP (1) EP2005447B1 (de)
DE (2) DE102006012506A1 (de)
WO (1) WO2007107241A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889213A (zh) * 2007-12-10 2010-11-17 皇家飞利浦电子股份有限公司 具有冷却系统的超导磁体系统
DE102014214796A1 (de) * 2014-07-28 2016-01-28 Bruker Biospin Ag Verfahren zum Laden einer supraleitfähigen Magnetanordnung mit Strom
DE102019209160B3 (de) 2019-06-25 2020-10-08 Bruker Switzerland Ag Kryostatanordnung mit federndem, wärmeleitendem Verbindungselement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924198A (en) * 1988-07-05 1990-05-08 General Electric Company Superconductive magnetic resonance magnet without cryogens
GB8920345D0 (en) * 1989-09-08 1989-10-25 Oxford Advanced Tech Magnetic field generating system
GB2247942B (en) * 1990-09-05 1994-08-03 Mitsubishi Electric Corp Cryostat
JP2002008917A (ja) * 2000-06-26 2002-01-11 Inst Of Physical & Chemical Res 超伝導体磁場応用装置の制御方法とこの方法を用いた核磁気共鳴装置と超伝導磁石装置
DE10125429B4 (de) * 2001-05-25 2004-06-17 Bruker Biospin Gmbh Supraleitfähige Höchstfeldmagnetspule mit HTS-Spulensektion und Herstellungsverfahren
NO20015691A (no) * 2001-11-21 2002-10-28 Sintef Energiforskning As Superledende spoleanordning
DE102004007340B4 (de) * 2004-02-16 2008-10-16 Bruker Biospin Gmbh Driftarmes supraleitendes Hochfeldmagnetsystem und hochauflösendes magnetisches Resonanzspektrometer

Also Published As

Publication number Publication date
EP2005447A1 (de) 2008-12-24
DE502007001861D1 (de) 2009-12-10
WO2007107241A1 (de) 2007-09-27
US20090275477A1 (en) 2009-11-05
DE102006012506A1 (de) 2007-09-20
US8406833B2 (en) 2013-03-26

Similar Documents

Publication Publication Date Title
EP1997116B1 (de) Kryostat mit einem magnetspulensystem, das eine lts- und eine im vakuumteil angeordnete hts-sektion umfasst
EP1999764B1 (de) Kryostat mit einem magnetspulensystem, das eine unterkühlte lts- und eine in einem separaten heliumtank angeordnete hts-sektion umfasst
EP2698794B1 (de) Anordnung mit mindestens einem supraleitfähigen Kabel
EP1738376B1 (de) Supraleitendes kabel und verfahren zur herstellung desselben
DE102006012508B3 (de) Kryostat mit einem Magnetspulensystem, das eine LTS- und eine gekapselte HTS-Sektion umfasst
DE69333128T2 (de) Stromzuleitung für supraleitendes Magnetsystem ohne flüssiges Helium
DE602004006913T2 (de) Supraleitende RF-Spule für NMR-Apparatur
EP2685469B1 (de) Anordnung mit mindestens einem supraleitfähigen Kabel
EP3281211B1 (de) Vorrichtung zur gleichstromübertragung
DE102013220142A1 (de) Magnetspulenanordnung umfassend einen HTSL-Bandleiter und einen LTS-Draht, die einen Joint ausbilden
EP0154779A1 (de) Supraleitendes Magnetsystem für den Betrieb bei 13K
EP2426676A1 (de) Anordnung mit mindestens einem supraleitfähigen Kabel
EP2005447B1 (de) Kryostat mit einem magnetspulensystem, das eine lts- und eine beheizbare hts-sektion umfasst
DE102004058006B3 (de) Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
DE3811051C2 (de)
EP3696559A1 (de) Mas-probenkopf mit thermisch isolierter probenkammer
EP0485395A1 (de) Supraleitende homogene hochfeldmagnetspule.
EP1774601A1 (de) Supraleitfähiges leiterelement mit verstärkung
EP0082409B1 (de) Thermisches Verfahren zum schnellen Überführen einer supraleitenden Wicklung vom supraleitenden in den normalleitenden Zustand und Vorrichtung zur Durchführung des Verfahrens
DE2163270B1 (de) Stromzuführung fur elektrische Ein richtungen mit auf Tieftemperatur ge kühlten Leitern
WO2016083203A1 (de) Vorrichtung der supraleitungstechnik mit spuleneinrichtungen und kühlvorrichtung sowie damit ausgestattetes fahrzeug
EP3467852A1 (de) Magnetanordnung mit kryostat und magnetspulensystem, mit kältespeichern an den stromzuführungen
WO2015193163A1 (de) Stromzuführung für eine supraleitende spuleneinrichtung
WO1993004487A1 (de) Tieftemperatur-stromzuführung mit wärmetauscher
EP3503329B1 (de) Verfahren zum kühlen eines supraleitfähigen kabelsystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502007001861

Country of ref document: DE

Date of ref document: 20091210

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200324

Year of fee payment: 14

Ref country code: GB

Payment date: 20200325

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200325

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007001861

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001