EP2005121B1 - Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser - Google Patents
Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser Download PDFInfo
- Publication number
- EP2005121B1 EP2005121B1 EP07752495.7A EP07752495A EP2005121B1 EP 2005121 B1 EP2005121 B1 EP 2005121B1 EP 07752495 A EP07752495 A EP 07752495A EP 2005121 B1 EP2005121 B1 EP 2005121B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- fluid
- filter
- coil
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
- G01F1/58—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
- G01F1/60—Circuits therefor
Definitions
- the present invention relates to magnetic flowmeters that sense liquids flowing in industrial process plants.
- the present invention relates to noise detected by electrodes in such magnetic flowmeters.
- Magnetic flowmeters utilize an electrically insulated flowtube that carries liquid flowing past an electromagnet and electrodes.
- the electrodes are carried in the flowtube and make electrical contact with the flowing liquid.
- the electrodes sense an electromotive force (EMF) which is magnetically induced in the liquid and which is proportional to flow rate of the fluid according to Faraday's law of electromagnetic induction.
- EMF electromotive force
- undesired noise is often received from the electrodes of the magnetic flow tube.
- This electrical noise is indicative of undesired operating conditions associated with the flowing liquid such as poor liquid grounding connections, excessive electrical resistivity in the flowing liquid, particles in the liquid impacting the electrodes, ongoing dissolving of particles in the liquid, ongoing chemical reactions in the liquid, entrained gas bubbles and the like.
- Electrode noise that originates in the liquid can give rise to measurement instability or variability in the flow output of the transmitter.
- Patent Documents US A4 651 286 and JP H11 83578 A each relate to an electromagnetic flowmeter according to the preamble of the independent claims.
- a magnetic flowmeter and method are provided in which sensitivity to noise is reduced by inverting portions of a fluid voltage signal and/or filtering the fluid voltage signal in accordance with a non-linear filter.
- Magnetic flowmeter 102 is an example of one type of process variable transmitter which can be configured to monitor one or more process variables associated with fluids in a process plant such as slurries, liquids, vapors and gases in chemicals, pulp, petroleum, gas, pharmaceutical, food and other fluid processing plants.
- the monitored process variable relates to velocity of process fluid through flow tube 108.
- Magnetic flowmeter 102 outputs are configured for transmission over long distances to a controller or indicator via communication bus 112.
- communication bus 112 can be a 4-20 mA current loop, a fieldbus connection, a pulse output/frequency output, a HART protocol communication ethernet or a fiberoptic connection to a controller such as system controller/monitor 110.
- System controller 110 is programmed as a process monitor, to display flow information for a human operator or as a process controller to control the process using control valve 106 over communication bus 112.
- Flowmeter 102 includes electronics housing 120 connected to flow tube 108.
- Flow tube 108 includes electromagnetic coils 122 which are used to induce a magnetic field in fluid flowing through flow tube 108.
- the electrodes 124 in flow tube 108 provide an EMF sensor which senses the EMF generated in the fluid due to the velocity of the flow and the applied magnetic field and which are also sensitive to noise.
- Coil driver circuitry 130 shown in Figure 3 ) in electronic housing 120 provides a drive signal to electromagnetic coils 122 and electrodes 124 provide EMF output 134 to EMF signal amplifier 132 (also shown in Figure 3 ).
- FIG. 3 a block diagram shows one embodiment of magnetic flowmeter 102 for measuring a flow of a conductive process fluid through flow tube assembly 108.
- Coils 122 are configured to apply an external magnetic field in the fluid flow in response to an applied drive current from coil driver 130.
- EMF sensors (electrodes) 124 electrically couple to the fluid flow and provide an EMF ,signal output 134 to amplifier 132 related to an EMF generated in the fluid flow due to the applied magnetic field, fluid velocity, and noise.
- Analog to digital converter 142 provides a digitized EMF signal to microprocessor system 148.
- a signal processor 150 is implemented in microprocessor system 148 of flowmeter electronics 140 which couples to the EMF output 134 to provide an output 152 related to fluid velocity.
- a digital to analog converter 158 coupled to microprocessor system 148 generates an analog transmitter output 160 for coupling to communication bus 106.
- a digital communication circuit 162 generates a digital transmitter output 164. The analog output 160 and the digital output 164 can be coupled to process controllers or monitors as desired.
- magnetic flowmeter 102 measures flow using the EMF signal induced in a conductive fluid.
- This EMF signal is at a relatively low level and is typically imbedded with very high levels of process noise.
- coils of the flow meter are typically driven at very high levels, for example hundreds of milliamps of current, in order to generate magnetic fields which are large enough to produce electrode voltages that are measurable relative to the noise.
- the coils are driven at relatively low frequencies due to the large time constant of the magnetic coils. At these low frequencies, the 1/f noise is considerable.
- Figure 4 is a graph of a coil timer signal, electrode voltage and coil current versus time, for an example, flow meter.
- a pulse DC magnetic flow meter typically applies a square wave to the coils of the flow tube. The voltage is read from electrodes which are positioned 90 degrees relative to the coils. This voltage is proportioned to the flow of the conductive liquid in the flow tube. Typically, the electrode voltage is measured by taking the last 20% of each half of the square wave and then computing the difference between the two half cycles. The first part of each half cycle is ignored due to effects such as eddy currents and nulling spikes and to allow the coil current to settle due to the time constant of the coils.
- Lock-in amplifiers can be used to detect and measure very small AC signals. They provide a DC output that is proportional to the RMS value of the AC signal. Lock-in amplifiers synchronously demodulate the input signal using a reference signal. They require a reference signal of the same frequency and phase as that of the input signal. This is usually accomplished by modulating the input signal from the same source as the reference signal. The lock-in amplifier will track any changes to the input frequency because the reference circuit is locked to the signal.
- FIG. 5 is an example diagram of a lock-in amplifier 200 including an AC gain amplifier 202 which provides a signal to a mixer 204.
- Mixer 204 also receives a reference signal and provides an output to low pass filter 206.
- a DC gain amplifier 208 amplifies the output from low pass filter 206.
- the DC level is representative of the RMS value of the input signal that is in phase with the reference signal. Due to the tracking nature of lock-in amplifiers, extremely small bandwidths can be used to improve the signal-to-noise ratio. Because of this, lock-in amplifiers can give effective "Q" values which are in excess of 100 dB. In contrast, with a normal band pass filter, it is difficult to obtain a "Q" value greater than 50. As a result, noise signals at frequencies and phases other than the reference frequency are rejected and do not affect the measurement. Accurate measurements can be made even when a small signal is obscured by much larger noise sources.
- Some or all of the components in Figure 5 can be implemented in software using a digital signal processor and analog to digital converter or the like.
- An averaging filter for example with a period of one coil cycle, can be used to prevent oscillations if the input is DC coupled.
- a software implementation provides a number of advantages over hardware implementations of lock-in amplifiers including enhanced configurability and more advanced filtering functions.
- FIG. 6 is a block diagram of a lock-in amplifier implemented in a digital signal processor 220.
- an analog to digital converter 222 provides a digitized signal to digital signal processor 220 along with a digitized signal of the coil drive signal from analog to digital converter 224.
- a mixer 226 is implemented along with a low pass filter 228 and circuitry 230 to convert the information to flow velocity.
- it is relatively straightforward to mix only the trailing 20% of each half period of the coil frequency. This allows the circuitry to use calibration constants that are available for analog circuitry used with existing flow tubes. Transient effects, such as nulling spikes, eddy currents, etc, of the switching coil current can be ignored.
- FIG. 7 is a simplified block diagram showing a flow chart 300 of software implementing the present invention.
- a half period of the electrode signal is acquired and at block 304 the trailing 20% of the half cycle is stored in a memory buffer. Note that any portion of the waveform can be used and the invention is not limited to 20%.
- a software mixer 306 is implemented in software and includes checking if the coil phase is high in block 308. If the phase is high, control is passed to block 310.
- control is passed to block 312 where the buffered signal is inverted, control is then passed to block 310.
- an averaging filter is applied over one coil period.
- a non-linear filter at block 314 is applied to the signal.
- a low pass damping filter is applied at block 316 and control is passed to block 318 where the average of the filtered 20% buffer is determined. This data is then converted into a flow measurement using the techniques discussed above at block 320 and an output is provided at block 322.
- Figure 8 is a flow chart 350 of another example embodiment. Elements in Figure 8 which are similar to elements in Figure 7 have retained their numbering. In Figure 8 , some additional functionality is inserted after acquiring the half period of the electrode signal at block 302. Specifically, at block 354, after acquiring the trailing 20% of the half cycle and storing the information in a buffer, this information is provided to an averaging filter at block 356 which averages the data over one coil period to remove the flow signal. At block 358, this filtered signal is subtracted from the original signal to remove low frequency noise.
- the software lock-in amplifier configuration discussed above provides a number of advantages in signal processing.
- the transfer function of the filter drops off relatively rapidly as the frequency moves away from the coil frequency.
- the coil frequency should be as high as possible.
- the configuration significantly reduces linear signals that are outside of the reference frequency.
- non-linear noise caused by, for example, an impingement of an electrode can still cause large spikes in the flow data.
- a non-linear filter 310 can be implemented such as a median filter.
- electrical noise caused by material hitting or debris rubbing against the electrodes of the flow tube can cause large spikes in the voltage difference between the electrodes.
- the median filter 310 can be inserted after the demodulation at block 306 and before the damping filter 314. In this example of a non-linear filter, the median filter sorts the incoming data within a fixed window size and uses the middle point or points. For example, a median filter of 150 milliseconds results in a delay of one half of the window size, or 75 milliseconds.
- non-linear filter refers to any filter that is used to remove nonGaussian noise, typically in the form of outliers or impulse tyP ⁇ e> noise signatures.
- non-linear filters include Recursive median filter, Weighted median filter, Center Weighted median filter, Permutation-Weighted median filter, Nonlinear Noise Reduction, and Locally Projective Noise Reduction.
- the signal detection implemented in software of the present invention can be synchronized with the coil drive signal. For example, when using a mixer implemented in software, the mixer mixes the received electrode voltage signal along with the coil drive signal.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Claims (10)
- Magnetischer Strömungsmesser (102) zum Messen der Strömung eines Prozessfluids, umfassend:eine Spule (122), die dazu ausgelegt ist, ein Magnetfeld an das Prozessfluid anzulegen;einen Spulentreiber (130), der dazu ausgelegt ist, ein Spulenantriebssignal an die Spule (122) anzulegen;Elektroden (124), die dazu eingerichtet sind, ein auf das angelegte Magnetfeld und die Fluidströmung bezogenes Fluidspannungssignal abzufühlen;einen Analog/Digital-Wandler (222) mit einem digitalen Ausgang, der eine Vielzahl von auf das abgefühlte Fluidspannungssignal bezogene digitalisierte Proben und ein digitalisiertes Signal des Spulenantriebssignals umfasst; undeine digitale Rechenschaltung (220), die dazu ausgelegt ist, die Vielzahl der digitalisierten Proben zu empfangen, die Proben zu filtern und im Ansprechen darauf einen auf die Strömung bezogenen Ausgang bereitzustellen, wobei die digitale Rechenschaltung (220) zumindest einen Teil des digitalisierten, abgefühlten Fluidsignals invertiert, und wobei der Teil einen Nachlaufteil eines halben Zyklus des Fluidspannungssignals umfasst;dadurch gekennzeichnet, dassdie digitale Rechenschaltung (220) die Proben in Übereinstimmung mit einem nichtlinearen Filter filtert; unddie digitale Rechenschaltung (220) dazu angepasst ist, das Spulenantriebssignal als Referenzsignal zu empfangen, wobei die digitale Rechenschaltung (220) dazu angepasst ist, das Referenzsignal und die Vielzahl der digitalisierten Proben zu mischen, wobei eine derartige Demodulation das lineare Rauschen bei anderen Frequenzen als der Frequenz des Referenzsignals reduziert.
- Vorrichtung nach Anspruch 1, wobei die Rechenschaltung (220) eine in einem Mikroprozessorsystem implementierte Software umfasst.
- Vorrichtung nach Anspruch 1, wobei der nichtlineare Filter einen Zentralwertfilter umfasst.
- Vorrichtung nach Anspruch 1, wobei der Teil 20 % einer halben Periode der Fluidspannung umfasst.
- Vorrichtung nach Anspruch 1, wobei das Invertieren mit dem Spulenantriebssignal synchronisiert ist.
- Vorrichtung nach Anspruch 1, wobei die Rechenschaltung (220) einen Mittewert eines Teils der digitalisierten Proben berechnet.
- Vorrichtung nach Anspruch 6, wobei der Mittelwert über einen Zeitraum des Spulenantriebssignals ermittelt wird.
- Vorrichtung nach Anspruch 1, einen Tiefpassfilter aufweisend, der zum Filtern der digitalisierten Proben ausgelegt ist.
- Verfahren zum Messen einer Strömung in einem Prozessfluid, umfassend:Anlegen eines Spulenantriebssignals an eine dem Prozessfluid naheliegende Spule (122) und dadurch Anlegen eines Magnetfelds an das Prozessfluid;Abfühlen eines auf das angelegte Magnetfeld und die Fluidströmung bezogenen Fluidspannungssignals im Prozessfluid;Digitalisieren der abgefühlten Fluidströmung und des Spulenantriebssignals;Filtern von Proben des Spannungssignals; undBestimmen einer Strömung auf Grundlage der gefilterten Proben, wobei das Verfahren beinhaltet, zumindest einen Teil des digitalisierten, abgefühlten Fluidströmungssignals zu invertieren, wobei der Teil einen Nachlaufteil eines halben Zyklus des Fluidspannungssignals umfasst,dadurch gekennzeichnet, dassdas Filtern des Spannungssignals in Übereinstimmung mit einem nichtlinearen Filter verarbeitet wird, und wobei der Filter das Spulenantriebssignal als Referenzsignal empfängt, das mit dem Eingangssignal gemischt ist, um ein Signal mit reduziertem Hintergrundrauschen bereitzustellen, wobei eine derartige Demodulation das lineare Rauschen bei anderen Frequenzen als der Frequenz des Referenzsignals reduziert.
- Verfahren nach Anspruch 9, wobei der nichtlineare Filter einen Zentralwertfilter umfasst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/375,168 US7353119B2 (en) | 2006-03-14 | 2006-03-14 | Reduced noise sensitivity in magnetic flowmeter |
PCT/US2007/005802 WO2007106359A2 (en) | 2006-03-14 | 2007-03-06 | Reduced noise sensitivity in magnetic flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2005121A2 EP2005121A2 (de) | 2008-12-24 |
EP2005121B1 true EP2005121B1 (de) | 2019-12-11 |
Family
ID=38434255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07752495.7A Active EP2005121B1 (de) | 2006-03-14 | 2007-03-06 | Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser |
Country Status (5)
Country | Link |
---|---|
US (1) | US7353119B2 (de) |
EP (1) | EP2005121B1 (de) |
JP (1) | JP5575469B2 (de) |
CN (1) | CN101410698B (de) |
WO (1) | WO2007106359A2 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8137626B2 (en) | 2006-05-19 | 2012-03-20 | California Institute Of Technology | Fluorescence detector, filter device and related methods |
US8187541B2 (en) | 2006-09-18 | 2012-05-29 | California Institute Of Technology | Apparatus for detecting target molecules and related methods |
DE102007052047B4 (de) * | 2007-10-31 | 2014-06-26 | Abb Ag | Verfahren und Einrichtung zur Messung von Fremdkörpern im Messmedium |
US7779702B2 (en) * | 2008-11-03 | 2010-08-24 | Rosemount Inc. | Flow disturbance compensation for magnetic flowmeter |
US20120037729A1 (en) * | 2010-08-16 | 2012-02-16 | Lee Joseph C | Insertion Type Fluid Volume Meter and Control System |
US9182258B2 (en) | 2011-06-28 | 2015-11-10 | Rosemount Inc. | Variable frequency magnetic flowmeter |
US9021890B2 (en) | 2012-09-26 | 2015-05-05 | Rosemount Inc. | Magnetic flowmeter with multiple coils |
US8991264B2 (en) | 2012-09-26 | 2015-03-31 | Rosemount Inc. | Integrally molded magnetic flowmeter |
US10663331B2 (en) * | 2013-09-26 | 2020-05-26 | Rosemount Inc. | Magnetic flowmeter with power limit and over-current detection |
US10132665B2 (en) * | 2015-02-05 | 2018-11-20 | Schneider Electric Systems Usa, Inc. | Electromagnetic flowmeter and method of using same |
US11085803B2 (en) * | 2015-09-24 | 2021-08-10 | Micro Motion, Inc. | Entrained fluid detection diagnostic |
CN109974793B (zh) * | 2019-04-22 | 2020-08-04 | 合肥工业大学 | 一种电磁式涡街流量计测量含气导电液体流量的信号处理方法 |
US11156486B2 (en) * | 2019-09-13 | 2021-10-26 | Micro Motion, Inc. | Magnetic flowmeter with improved processing |
CN111060168A (zh) * | 2019-12-26 | 2020-04-24 | 深圳市佳运通电子有限公司 | 一种流量信号采样方法和装置 |
CN114152296A (zh) * | 2021-11-30 | 2022-03-08 | 宁夏隆基宁光仪表股份有限公司 | 一种基于fpga的电磁水表信号处理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5749812A (en) * | 1980-09-10 | 1982-03-24 | Toshiba Corp | Electromagnetic flowmeter converter |
US4773274A (en) * | 1987-03-03 | 1988-09-27 | Yokogawa Electric Corporation | Electromagnetic flow meter |
JPH1183578A (ja) * | 1997-09-12 | 1999-03-26 | Yamatake Honeywell Co Ltd | 電磁流量計 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4262543A (en) * | 1979-10-09 | 1981-04-21 | Emerson Electric Co. | Magnetic flowmeter having multiple stage amplifier with automatic zeroing |
US4309909A (en) * | 1979-10-09 | 1982-01-12 | Emerson Electric Co. | Crystal stabilized voltage to frequency converter with digital calibration for flowmeters |
JPS604811A (ja) * | 1983-06-23 | 1985-01-11 | Yokogawa Hokushin Electric Corp | 電磁流量計 |
FR2589571B1 (fr) * | 1985-10-31 | 1990-02-09 | Sereg Soc | Debitmetre electromagnetique a champ magnetique pulse |
JPS63195523A (ja) * | 1987-02-09 | 1988-08-12 | Hitachi Ltd | 電磁流量計 |
JP2727694B2 (ja) * | 1989-10-20 | 1998-03-11 | 株式会社島津製作所 | 電磁流量計 |
JP2637330B2 (ja) * | 1992-03-30 | 1997-08-06 | 株式会社島津製作所 | 電磁流量計 |
JP3357582B2 (ja) * | 1997-09-10 | 2002-12-16 | 株式会社山武 | 電磁流量計 |
WO2000019174A1 (en) | 1998-09-29 | 2000-04-06 | Scientific Generics Limited | Magnetic flow meter |
US6611775B1 (en) | 1998-12-10 | 2003-08-26 | Rosemount Inc. | Electrode leakage diagnostics in a magnetic flow meter |
US6615149B1 (en) | 1998-12-10 | 2003-09-02 | Rosemount Inc. | Spectral diagnostics in a magnetic flow meter |
US6505517B1 (en) | 1999-07-23 | 2003-01-14 | Rosemount Inc. | High accuracy signal processing for magnetic flowmeter |
US6453272B1 (en) * | 2000-02-28 | 2002-09-17 | The Foxboro Company | Spurious noise filter |
JP4008779B2 (ja) * | 2002-07-31 | 2007-11-14 | 株式会社山武 | 2線式電磁流量計 |
DE10329540A1 (de) | 2003-06-30 | 2005-02-24 | Endress + Hauser Flowtec Ag, Reinach | Verfahren zum Betrieb eines magnetisch-induktiven Durchflußmessers |
-
2006
- 2006-03-14 US US11/375,168 patent/US7353119B2/en active Active
-
2007
- 2007-03-06 JP JP2009500387A patent/JP5575469B2/ja not_active Expired - Fee Related
- 2007-03-06 EP EP07752495.7A patent/EP2005121B1/de active Active
- 2007-03-06 CN CN200780008923XA patent/CN101410698B/zh active Active
- 2007-03-06 WO PCT/US2007/005802 patent/WO2007106359A2/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5749812A (en) * | 1980-09-10 | 1982-03-24 | Toshiba Corp | Electromagnetic flowmeter converter |
US4773274A (en) * | 1987-03-03 | 1988-09-27 | Yokogawa Electric Corporation | Electromagnetic flow meter |
JPH1183578A (ja) * | 1997-09-12 | 1999-03-26 | Yamatake Honeywell Co Ltd | 電磁流量計 |
Also Published As
Publication number | Publication date |
---|---|
CN101410698B (zh) | 2012-04-25 |
CN101410698A (zh) | 2009-04-15 |
JP2009530610A (ja) | 2009-08-27 |
WO2007106359A3 (en) | 2007-11-22 |
US20070225922A1 (en) | 2007-09-27 |
JP5575469B2 (ja) | 2014-08-20 |
EP2005121A2 (de) | 2008-12-24 |
US7353119B2 (en) | 2008-04-01 |
WO2007106359A2 (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2005121B1 (de) | Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser | |
EP1042651B1 (de) | Integritätsprüfung von elektroden | |
EP1125098B1 (de) | Magnetischer durchflussmesser | |
US6564612B2 (en) | Measuring instrument, and method for testing the measuring operation of a measuring instrument | |
EP2253954B1 (de) | Vorrichtung und Verfahren für induktive Messungen - Signalrekonstruktion | |
EP1423715B1 (de) | Diagnose fuer piezoelektrischen sensor | |
EP2253953A1 (de) | Vorrichtung und Verfahren für induktive Messungen - Selbsttest | |
EP0629843A1 (de) | Magnetisch-induktiver Durchflussmesser und dazu gehöriges Messprinzip | |
EP1085301B1 (de) | Wirbel-Durchflussmesser | |
KR100186888B1 (ko) | 전자유량계 | |
US7508222B2 (en) | Electromagnetic flow meter | |
US20240344860A1 (en) | Method for Flow Measurement Subject to Interference, Magneto-Inductive Flow Meter and Computer Program Product | |
CN213147944U (zh) | 磁性流量计 | |
US6820499B2 (en) | Method for determining the uncertainty factor of a measuring procedure employing a measuring frequency | |
US11092470B2 (en) | Magnetic flowmeter with noise adaptive dead time | |
CN213021744U (zh) | 磁流量计 | |
Perovic et al. | Electromagnetic flowmeters as a source of diagnostic information | |
JPH07218304A (ja) | 電磁流量計測方法および電磁流量計 | |
JPH11237262A (ja) | 電磁流量計 | |
JPH0868676A (ja) | 電磁流量計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080930 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE LI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE LI |
|
17Q | First examination report despatched |
Effective date: 20090402 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MICRO MOTION, INC. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20190625 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: FELBER UND PARTNER AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007059601 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200401 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007059601 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200914 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230221 Year of fee payment: 17 |