EP2005121B1 - Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser - Google Patents

Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser Download PDF

Info

Publication number
EP2005121B1
EP2005121B1 EP07752495.7A EP07752495A EP2005121B1 EP 2005121 B1 EP2005121 B1 EP 2005121B1 EP 07752495 A EP07752495 A EP 07752495A EP 2005121 B1 EP2005121 B1 EP 2005121B1
Authority
EP
European Patent Office
Prior art keywords
signal
fluid
filter
coil
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07752495.7A
Other languages
English (en)
French (fr)
Other versions
EP2005121A2 (de
Inventor
Scott R. Foss
Kirk A. Hunter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of EP2005121A2 publication Critical patent/EP2005121A2/de
Application granted granted Critical
Publication of EP2005121B1 publication Critical patent/EP2005121B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Definitions

  • the present invention relates to magnetic flowmeters that sense liquids flowing in industrial process plants.
  • the present invention relates to noise detected by electrodes in such magnetic flowmeters.
  • Magnetic flowmeters utilize an electrically insulated flowtube that carries liquid flowing past an electromagnet and electrodes.
  • the electrodes are carried in the flowtube and make electrical contact with the flowing liquid.
  • the electrodes sense an electromotive force (EMF) which is magnetically induced in the liquid and which is proportional to flow rate of the fluid according to Faraday's law of electromagnetic induction.
  • EMF electromotive force
  • undesired noise is often received from the electrodes of the magnetic flow tube.
  • This electrical noise is indicative of undesired operating conditions associated with the flowing liquid such as poor liquid grounding connections, excessive electrical resistivity in the flowing liquid, particles in the liquid impacting the electrodes, ongoing dissolving of particles in the liquid, ongoing chemical reactions in the liquid, entrained gas bubbles and the like.
  • Electrode noise that originates in the liquid can give rise to measurement instability or variability in the flow output of the transmitter.
  • Patent Documents US A4 651 286 and JP H11 83578 A each relate to an electromagnetic flowmeter according to the preamble of the independent claims.
  • a magnetic flowmeter and method are provided in which sensitivity to noise is reduced by inverting portions of a fluid voltage signal and/or filtering the fluid voltage signal in accordance with a non-linear filter.
  • Magnetic flowmeter 102 is an example of one type of process variable transmitter which can be configured to monitor one or more process variables associated with fluids in a process plant such as slurries, liquids, vapors and gases in chemicals, pulp, petroleum, gas, pharmaceutical, food and other fluid processing plants.
  • the monitored process variable relates to velocity of process fluid through flow tube 108.
  • Magnetic flowmeter 102 outputs are configured for transmission over long distances to a controller or indicator via communication bus 112.
  • communication bus 112 can be a 4-20 mA current loop, a fieldbus connection, a pulse output/frequency output, a HART protocol communication ethernet or a fiberoptic connection to a controller such as system controller/monitor 110.
  • System controller 110 is programmed as a process monitor, to display flow information for a human operator or as a process controller to control the process using control valve 106 over communication bus 112.
  • Flowmeter 102 includes electronics housing 120 connected to flow tube 108.
  • Flow tube 108 includes electromagnetic coils 122 which are used to induce a magnetic field in fluid flowing through flow tube 108.
  • the electrodes 124 in flow tube 108 provide an EMF sensor which senses the EMF generated in the fluid due to the velocity of the flow and the applied magnetic field and which are also sensitive to noise.
  • Coil driver circuitry 130 shown in Figure 3 ) in electronic housing 120 provides a drive signal to electromagnetic coils 122 and electrodes 124 provide EMF output 134 to EMF signal amplifier 132 (also shown in Figure 3 ).
  • FIG. 3 a block diagram shows one embodiment of magnetic flowmeter 102 for measuring a flow of a conductive process fluid through flow tube assembly 108.
  • Coils 122 are configured to apply an external magnetic field in the fluid flow in response to an applied drive current from coil driver 130.
  • EMF sensors (electrodes) 124 electrically couple to the fluid flow and provide an EMF ,signal output 134 to amplifier 132 related to an EMF generated in the fluid flow due to the applied magnetic field, fluid velocity, and noise.
  • Analog to digital converter 142 provides a digitized EMF signal to microprocessor system 148.
  • a signal processor 150 is implemented in microprocessor system 148 of flowmeter electronics 140 which couples to the EMF output 134 to provide an output 152 related to fluid velocity.
  • a digital to analog converter 158 coupled to microprocessor system 148 generates an analog transmitter output 160 for coupling to communication bus 106.
  • a digital communication circuit 162 generates a digital transmitter output 164. The analog output 160 and the digital output 164 can be coupled to process controllers or monitors as desired.
  • magnetic flowmeter 102 measures flow using the EMF signal induced in a conductive fluid.
  • This EMF signal is at a relatively low level and is typically imbedded with very high levels of process noise.
  • coils of the flow meter are typically driven at very high levels, for example hundreds of milliamps of current, in order to generate magnetic fields which are large enough to produce electrode voltages that are measurable relative to the noise.
  • the coils are driven at relatively low frequencies due to the large time constant of the magnetic coils. At these low frequencies, the 1/f noise is considerable.
  • Figure 4 is a graph of a coil timer signal, electrode voltage and coil current versus time, for an example, flow meter.
  • a pulse DC magnetic flow meter typically applies a square wave to the coils of the flow tube. The voltage is read from electrodes which are positioned 90 degrees relative to the coils. This voltage is proportioned to the flow of the conductive liquid in the flow tube. Typically, the electrode voltage is measured by taking the last 20% of each half of the square wave and then computing the difference between the two half cycles. The first part of each half cycle is ignored due to effects such as eddy currents and nulling spikes and to allow the coil current to settle due to the time constant of the coils.
  • Lock-in amplifiers can be used to detect and measure very small AC signals. They provide a DC output that is proportional to the RMS value of the AC signal. Lock-in amplifiers synchronously demodulate the input signal using a reference signal. They require a reference signal of the same frequency and phase as that of the input signal. This is usually accomplished by modulating the input signal from the same source as the reference signal. The lock-in amplifier will track any changes to the input frequency because the reference circuit is locked to the signal.
  • FIG. 5 is an example diagram of a lock-in amplifier 200 including an AC gain amplifier 202 which provides a signal to a mixer 204.
  • Mixer 204 also receives a reference signal and provides an output to low pass filter 206.
  • a DC gain amplifier 208 amplifies the output from low pass filter 206.
  • the DC level is representative of the RMS value of the input signal that is in phase with the reference signal. Due to the tracking nature of lock-in amplifiers, extremely small bandwidths can be used to improve the signal-to-noise ratio. Because of this, lock-in amplifiers can give effective "Q" values which are in excess of 100 dB. In contrast, with a normal band pass filter, it is difficult to obtain a "Q" value greater than 50. As a result, noise signals at frequencies and phases other than the reference frequency are rejected and do not affect the measurement. Accurate measurements can be made even when a small signal is obscured by much larger noise sources.
  • Some or all of the components in Figure 5 can be implemented in software using a digital signal processor and analog to digital converter or the like.
  • An averaging filter for example with a period of one coil cycle, can be used to prevent oscillations if the input is DC coupled.
  • a software implementation provides a number of advantages over hardware implementations of lock-in amplifiers including enhanced configurability and more advanced filtering functions.
  • FIG. 6 is a block diagram of a lock-in amplifier implemented in a digital signal processor 220.
  • an analog to digital converter 222 provides a digitized signal to digital signal processor 220 along with a digitized signal of the coil drive signal from analog to digital converter 224.
  • a mixer 226 is implemented along with a low pass filter 228 and circuitry 230 to convert the information to flow velocity.
  • it is relatively straightforward to mix only the trailing 20% of each half period of the coil frequency. This allows the circuitry to use calibration constants that are available for analog circuitry used with existing flow tubes. Transient effects, such as nulling spikes, eddy currents, etc, of the switching coil current can be ignored.
  • FIG. 7 is a simplified block diagram showing a flow chart 300 of software implementing the present invention.
  • a half period of the electrode signal is acquired and at block 304 the trailing 20% of the half cycle is stored in a memory buffer. Note that any portion of the waveform can be used and the invention is not limited to 20%.
  • a software mixer 306 is implemented in software and includes checking if the coil phase is high in block 308. If the phase is high, control is passed to block 310.
  • control is passed to block 312 where the buffered signal is inverted, control is then passed to block 310.
  • an averaging filter is applied over one coil period.
  • a non-linear filter at block 314 is applied to the signal.
  • a low pass damping filter is applied at block 316 and control is passed to block 318 where the average of the filtered 20% buffer is determined. This data is then converted into a flow measurement using the techniques discussed above at block 320 and an output is provided at block 322.
  • Figure 8 is a flow chart 350 of another example embodiment. Elements in Figure 8 which are similar to elements in Figure 7 have retained their numbering. In Figure 8 , some additional functionality is inserted after acquiring the half period of the electrode signal at block 302. Specifically, at block 354, after acquiring the trailing 20% of the half cycle and storing the information in a buffer, this information is provided to an averaging filter at block 356 which averages the data over one coil period to remove the flow signal. At block 358, this filtered signal is subtracted from the original signal to remove low frequency noise.
  • the software lock-in amplifier configuration discussed above provides a number of advantages in signal processing.
  • the transfer function of the filter drops off relatively rapidly as the frequency moves away from the coil frequency.
  • the coil frequency should be as high as possible.
  • the configuration significantly reduces linear signals that are outside of the reference frequency.
  • non-linear noise caused by, for example, an impingement of an electrode can still cause large spikes in the flow data.
  • a non-linear filter 310 can be implemented such as a median filter.
  • electrical noise caused by material hitting or debris rubbing against the electrodes of the flow tube can cause large spikes in the voltage difference between the electrodes.
  • the median filter 310 can be inserted after the demodulation at block 306 and before the damping filter 314. In this example of a non-linear filter, the median filter sorts the incoming data within a fixed window size and uses the middle point or points. For example, a median filter of 150 milliseconds results in a delay of one half of the window size, or 75 milliseconds.
  • non-linear filter refers to any filter that is used to remove nonGaussian noise, typically in the form of outliers or impulse tyP ⁇ e> noise signatures.
  • non-linear filters include Recursive median filter, Weighted median filter, Center Weighted median filter, Permutation-Weighted median filter, Nonlinear Noise Reduction, and Locally Projective Noise Reduction.
  • the signal detection implemented in software of the present invention can be synchronized with the coil drive signal. For example, when using a mixer implemented in software, the mixer mixes the received electrode voltage signal along with the coil drive signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Claims (10)

  1. Magnetischer Strömungsmesser (102) zum Messen der Strömung eines Prozessfluids, umfassend:
    eine Spule (122), die dazu ausgelegt ist, ein Magnetfeld an das Prozessfluid anzulegen;
    einen Spulentreiber (130), der dazu ausgelegt ist, ein Spulenantriebssignal an die Spule (122) anzulegen;
    Elektroden (124), die dazu eingerichtet sind, ein auf das angelegte Magnetfeld und die Fluidströmung bezogenes Fluidspannungssignal abzufühlen;
    einen Analog/Digital-Wandler (222) mit einem digitalen Ausgang, der eine Vielzahl von auf das abgefühlte Fluidspannungssignal bezogene digitalisierte Proben und ein digitalisiertes Signal des Spulenantriebssignals umfasst; und
    eine digitale Rechenschaltung (220), die dazu ausgelegt ist, die Vielzahl der digitalisierten Proben zu empfangen, die Proben zu filtern und im Ansprechen darauf einen auf die Strömung bezogenen Ausgang bereitzustellen, wobei die digitale Rechenschaltung (220) zumindest einen Teil des digitalisierten, abgefühlten Fluidsignals invertiert, und wobei der Teil einen Nachlaufteil eines halben Zyklus des Fluidspannungssignals umfasst;
    dadurch gekennzeichnet, dass
    die digitale Rechenschaltung (220) die Proben in Übereinstimmung mit einem nichtlinearen Filter filtert; und
    die digitale Rechenschaltung (220) dazu angepasst ist, das Spulenantriebssignal als Referenzsignal zu empfangen, wobei die digitale Rechenschaltung (220) dazu angepasst ist, das Referenzsignal und die Vielzahl der digitalisierten Proben zu mischen, wobei eine derartige Demodulation das lineare Rauschen bei anderen Frequenzen als der Frequenz des Referenzsignals reduziert.
  2. Vorrichtung nach Anspruch 1, wobei die Rechenschaltung (220) eine in einem Mikroprozessorsystem implementierte Software umfasst.
  3. Vorrichtung nach Anspruch 1, wobei der nichtlineare Filter einen Zentralwertfilter umfasst.
  4. Vorrichtung nach Anspruch 1, wobei der Teil 20 % einer halben Periode der Fluidspannung umfasst.
  5. Vorrichtung nach Anspruch 1, wobei das Invertieren mit dem Spulenantriebssignal synchronisiert ist.
  6. Vorrichtung nach Anspruch 1, wobei die Rechenschaltung (220) einen Mittewert eines Teils der digitalisierten Proben berechnet.
  7. Vorrichtung nach Anspruch 6, wobei der Mittelwert über einen Zeitraum des Spulenantriebssignals ermittelt wird.
  8. Vorrichtung nach Anspruch 1, einen Tiefpassfilter aufweisend, der zum Filtern der digitalisierten Proben ausgelegt ist.
  9. Verfahren zum Messen einer Strömung in einem Prozessfluid, umfassend:
    Anlegen eines Spulenantriebssignals an eine dem Prozessfluid naheliegende Spule (122) und dadurch Anlegen eines Magnetfelds an das Prozessfluid;
    Abfühlen eines auf das angelegte Magnetfeld und die Fluidströmung bezogenen Fluidspannungssignals im Prozessfluid;
    Digitalisieren der abgefühlten Fluidströmung und des Spulenantriebssignals;
    Filtern von Proben des Spannungssignals; und
    Bestimmen einer Strömung auf Grundlage der gefilterten Proben, wobei das Verfahren beinhaltet, zumindest einen Teil des digitalisierten, abgefühlten Fluidströmungssignals zu invertieren, wobei der Teil einen Nachlaufteil eines halben Zyklus des Fluidspannungssignals umfasst,
    dadurch gekennzeichnet, dass
    das Filtern des Spannungssignals in Übereinstimmung mit einem nichtlinearen Filter verarbeitet wird, und wobei der Filter das Spulenantriebssignal als Referenzsignal empfängt, das mit dem Eingangssignal gemischt ist, um ein Signal mit reduziertem Hintergrundrauschen bereitzustellen, wobei eine derartige Demodulation das lineare Rauschen bei anderen Frequenzen als der Frequenz des Referenzsignals reduziert.
  10. Verfahren nach Anspruch 9, wobei der nichtlineare Filter einen Zentralwertfilter umfasst.
EP07752495.7A 2006-03-14 2007-03-06 Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser Active EP2005121B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/375,168 US7353119B2 (en) 2006-03-14 2006-03-14 Reduced noise sensitivity in magnetic flowmeter
PCT/US2007/005802 WO2007106359A2 (en) 2006-03-14 2007-03-06 Reduced noise sensitivity in magnetic flowmeter

Publications (2)

Publication Number Publication Date
EP2005121A2 EP2005121A2 (de) 2008-12-24
EP2005121B1 true EP2005121B1 (de) 2019-12-11

Family

ID=38434255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07752495.7A Active EP2005121B1 (de) 2006-03-14 2007-03-06 Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser

Country Status (5)

Country Link
US (1) US7353119B2 (de)
EP (1) EP2005121B1 (de)
JP (1) JP5575469B2 (de)
CN (1) CN101410698B (de)
WO (1) WO2007106359A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137626B2 (en) 2006-05-19 2012-03-20 California Institute Of Technology Fluorescence detector, filter device and related methods
US8187541B2 (en) 2006-09-18 2012-05-29 California Institute Of Technology Apparatus for detecting target molecules and related methods
DE102007052047B4 (de) * 2007-10-31 2014-06-26 Abb Ag Verfahren und Einrichtung zur Messung von Fremdkörpern im Messmedium
US7779702B2 (en) * 2008-11-03 2010-08-24 Rosemount Inc. Flow disturbance compensation for magnetic flowmeter
US20120037729A1 (en) * 2010-08-16 2012-02-16 Lee Joseph C Insertion Type Fluid Volume Meter and Control System
US9182258B2 (en) 2011-06-28 2015-11-10 Rosemount Inc. Variable frequency magnetic flowmeter
US9021890B2 (en) 2012-09-26 2015-05-05 Rosemount Inc. Magnetic flowmeter with multiple coils
US8991264B2 (en) 2012-09-26 2015-03-31 Rosemount Inc. Integrally molded magnetic flowmeter
US10663331B2 (en) * 2013-09-26 2020-05-26 Rosemount Inc. Magnetic flowmeter with power limit and over-current detection
US10132665B2 (en) * 2015-02-05 2018-11-20 Schneider Electric Systems Usa, Inc. Electromagnetic flowmeter and method of using same
US11085803B2 (en) * 2015-09-24 2021-08-10 Micro Motion, Inc. Entrained fluid detection diagnostic
CN109974793B (zh) * 2019-04-22 2020-08-04 合肥工业大学 一种电磁式涡街流量计测量含气导电液体流量的信号处理方法
US11156486B2 (en) * 2019-09-13 2021-10-26 Micro Motion, Inc. Magnetic flowmeter with improved processing
CN111060168A (zh) * 2019-12-26 2020-04-24 深圳市佳运通电子有限公司 一种流量信号采样方法和装置
CN114152296A (zh) * 2021-11-30 2022-03-08 宁夏隆基宁光仪表股份有限公司 一种基于fpga的电磁水表信号处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749812A (en) * 1980-09-10 1982-03-24 Toshiba Corp Electromagnetic flowmeter converter
US4773274A (en) * 1987-03-03 1988-09-27 Yokogawa Electric Corporation Electromagnetic flow meter
JPH1183578A (ja) * 1997-09-12 1999-03-26 Yamatake Honeywell Co Ltd 電磁流量計

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262543A (en) * 1979-10-09 1981-04-21 Emerson Electric Co. Magnetic flowmeter having multiple stage amplifier with automatic zeroing
US4309909A (en) * 1979-10-09 1982-01-12 Emerson Electric Co. Crystal stabilized voltage to frequency converter with digital calibration for flowmeters
JPS604811A (ja) * 1983-06-23 1985-01-11 Yokogawa Hokushin Electric Corp 電磁流量計
FR2589571B1 (fr) * 1985-10-31 1990-02-09 Sereg Soc Debitmetre electromagnetique a champ magnetique pulse
JPS63195523A (ja) * 1987-02-09 1988-08-12 Hitachi Ltd 電磁流量計
JP2727694B2 (ja) * 1989-10-20 1998-03-11 株式会社島津製作所 電磁流量計
JP2637330B2 (ja) * 1992-03-30 1997-08-06 株式会社島津製作所 電磁流量計
JP3357582B2 (ja) * 1997-09-10 2002-12-16 株式会社山武 電磁流量計
WO2000019174A1 (en) 1998-09-29 2000-04-06 Scientific Generics Limited Magnetic flow meter
US6611775B1 (en) 1998-12-10 2003-08-26 Rosemount Inc. Electrode leakage diagnostics in a magnetic flow meter
US6615149B1 (en) 1998-12-10 2003-09-02 Rosemount Inc. Spectral diagnostics in a magnetic flow meter
US6505517B1 (en) 1999-07-23 2003-01-14 Rosemount Inc. High accuracy signal processing for magnetic flowmeter
US6453272B1 (en) * 2000-02-28 2002-09-17 The Foxboro Company Spurious noise filter
JP4008779B2 (ja) * 2002-07-31 2007-11-14 株式会社山武 2線式電磁流量計
DE10329540A1 (de) 2003-06-30 2005-02-24 Endress + Hauser Flowtec Ag, Reinach Verfahren zum Betrieb eines magnetisch-induktiven Durchflußmessers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749812A (en) * 1980-09-10 1982-03-24 Toshiba Corp Electromagnetic flowmeter converter
US4773274A (en) * 1987-03-03 1988-09-27 Yokogawa Electric Corporation Electromagnetic flow meter
JPH1183578A (ja) * 1997-09-12 1999-03-26 Yamatake Honeywell Co Ltd 電磁流量計

Also Published As

Publication number Publication date
CN101410698B (zh) 2012-04-25
CN101410698A (zh) 2009-04-15
JP2009530610A (ja) 2009-08-27
WO2007106359A3 (en) 2007-11-22
US20070225922A1 (en) 2007-09-27
JP5575469B2 (ja) 2014-08-20
EP2005121A2 (de) 2008-12-24
US7353119B2 (en) 2008-04-01
WO2007106359A2 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP2005121B1 (de) Verringerte rauschempfindlichkeit in einem magnetischen strömungsmesser
EP1042651B1 (de) Integritätsprüfung von elektroden
EP1125098B1 (de) Magnetischer durchflussmesser
US6564612B2 (en) Measuring instrument, and method for testing the measuring operation of a measuring instrument
EP2253954B1 (de) Vorrichtung und Verfahren für induktive Messungen - Signalrekonstruktion
EP1423715B1 (de) Diagnose fuer piezoelektrischen sensor
EP2253953A1 (de) Vorrichtung und Verfahren für induktive Messungen - Selbsttest
EP0629843A1 (de) Magnetisch-induktiver Durchflussmesser und dazu gehöriges Messprinzip
EP1085301B1 (de) Wirbel-Durchflussmesser
KR100186888B1 (ko) 전자유량계
US7508222B2 (en) Electromagnetic flow meter
US20240344860A1 (en) Method for Flow Measurement Subject to Interference, Magneto-Inductive Flow Meter and Computer Program Product
CN213147944U (zh) 磁性流量计
US6820499B2 (en) Method for determining the uncertainty factor of a measuring procedure employing a measuring frequency
US11092470B2 (en) Magnetic flowmeter with noise adaptive dead time
CN213021744U (zh) 磁流量计
Perovic et al. Electromagnetic flowmeters as a source of diagnostic information
JPH07218304A (ja) 電磁流量計測方法および電磁流量計
JPH11237262A (ja) 電磁流量計
JPH0868676A (ja) 電磁流量計

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080930

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE LI

17Q First examination report despatched

Effective date: 20090402

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICRO MOTION, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER UND PARTNER AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007059601

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200401

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007059601

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230221

Year of fee payment: 17