EP1999764B1 - Cryostat muni d'un systeme de bobines magnetiques qui comprend une section lts surrefroidie et une section hts disposee dans un reservoir d'helium separe - Google Patents

Cryostat muni d'un systeme de bobines magnetiques qui comprend une section lts surrefroidie et une section hts disposee dans un reservoir d'helium separe Download PDF

Info

Publication number
EP1999764B1
EP1999764B1 EP07723070A EP07723070A EP1999764B1 EP 1999764 B1 EP1999764 B1 EP 1999764B1 EP 07723070 A EP07723070 A EP 07723070A EP 07723070 A EP07723070 A EP 07723070A EP 1999764 B1 EP1999764 B1 EP 1999764B1
Authority
EP
European Patent Office
Prior art keywords
cryostat
helium
hts
section
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07723070A
Other languages
German (de)
English (en)
Other versions
EP1999764A1 (fr
Inventor
Theo Schneider
Gerhard Roth
Arne Kasten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin GmbH
Karlsruher Institut fuer Technologie KIT
Original Assignee
Bruker Biospin GmbH
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin GmbH, Karlsruher Institut fuer Technologie KIT filed Critical Bruker Biospin GmbH
Publication of EP1999764A1 publication Critical patent/EP1999764A1/fr
Application granted granted Critical
Publication of EP1999764B1 publication Critical patent/EP1999764B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the invention relates to a cryostat comprising a magnetic coil system comprising a superconductive conductor for generating a magnetic field B 0 in a measuring volume, comprising a plurality of radially-nested, electrically series-wound, solenoid-shaped coil sections, of which at least one LTS section comprises a conventional cryogenic superconductor (LTS ) and at least one HTS section comprises a high temperature superconductor (HTS), wherein the liquid helium LTS section is located in a first helium tank of the cryostat at a helium temperature T L ⁇ 4K.
  • LTS conventional cryogenic superconductor
  • HTS high temperature superconductor
  • cryostat has become known, for example from the DE 10 2004 007 340 A1 .
  • LTS low-temperature superconductors
  • NbTi and Nb 3 Sn are relatively easy to process and reliable in use.
  • the conductor of an LTS coil section usually consists of a good normal conductive metallic matrix (eg copper), in which superconducting filaments are located, which completely take over the current during normal operation.
  • NbTi these are usually tens to hundreds, in the case of Nb 3 Sn, it may be more than a hundred thousand.
  • the inner structure of the ladder is a bit more complex, but this does not matter in the present context.
  • the coil sections are cooled with liquid helium in a cryostat.
  • the superconducting coil sections generally dive at least partially into liquid helium.
  • the coil sections are possibly operated with supercooled helium at a temperature below 4 K, whereby their current carrying capacity and their critical magnetic field can be increased even more.
  • the temperature may be at or below the so-called lambda point (about 2.2 K) at which the liquid helium becomes superfluous.
  • HTS high-temperature superconductor
  • HTS or ceramic superconductors are mainly available as bismuth conductors with HTS filaments in a silver-containing matrix.
  • the ladders are predominantly in the form of ribbons.
  • a cryostat of the type presented at the outset which is characterized in that the HTS section is arranged radially inside the LTS section in a separate helium tank of the normal liquid helium cryostat and from the LTS section at least one wall between the two helium tanks is separated.
  • the present invention is based on the finding that the "ballooning" is caused by supercooled, at least temporarily superfluid helium, which penetrates into the interior of the HTS material, where it expands or evaporates.
  • HTS material is ceramic and therefore typically has some porosity.
  • the liquid helium can penetrate through the pores into the interior of the HTS.
  • the superfluid state of helium which is below the ⁇ -point temperature of about 2.2 K (by fluctuations u.U., also slightly above 2.2 K)
  • the helium can penetrate even the smallest column.
  • the helium increases strongly in volume during evaporation. If the heating is too rapid, the vaporizing helium can not escape from the pores in time, and significant pressure builds up in the pores of the HTS. Since HTS is a ceramic and therefore brittle material, the HTS can finally be blown up by this pressure.
  • the HTS section or HTS sections of the magnet coil system is located in the separate helium tank of the cryostat between the inner wall of the first helium tank and the room temperature bore. In the separate helium tank certainly no superfluid helium is present.
  • the operating temperature of the HTS section may well be slightly higher than that of the LTS sections in the first helium tank, because at or below 4 K, the critical current of the HTS conductor depends only very little on the temperature, in contrast to the situation with the LTS sections.
  • cryostat Preferred is an embodiment of the cryostat according to the invention, wherein the temperature of the liquid helium in the first tank T L ⁇ 2.5 K, in particular ⁇ 2.2 K. At these low temperatures is the danger a Ballooning without the measures according to the invention particularly large, so that the advantages of the invention come into its own. Since the critical current densities of the conductors of the LTS sections increase with decreasing temperature, the low temperatures permit higher magnetic field strengths B 0 and / or more compact LTS sections.
  • a preferred embodiment of the cryostat according to the invention provides that superconducting leads also run to the at least one HTS section in the separate helium tank, specifically at least as far as the supply lines contain HTS. This protects all HTS material up to and including the joints from superfluid helium.
  • a conductor of conventional superconducting material e.g. a NbTi multifilamentary wire, to a passage in the first helium tank.
  • the superconducting conductor is passed through this feedthrough so that the full magnet current can pass losslessly from the HTS section to the LTS sections and back.
  • a superconductive switch for lossless continuous current operation is usually located in a separate helium tank, with a vertically arranged solenoid above the LTS sections.
  • the radiation shield reduces heat input by radiation from the room temperature hole into the HTS section.
  • a preferred embodiment provides that the magnetic field B 0 generated in the measurement volume by the magnet coil system is greater than 20 T, in particular greater than 23 T. These strong magnetic fields are easily accessible by means of HTS section and the cryostat according to the invention. In contrast, with conventional magnet systems based only on LTS sections, the theoretical limit is almost reached at these field strengths, and the critical current density tends toward zero.
  • the coil sections of the magnet coil system can be superconductingly short-circuited during operation. As a result, a particularly stable magnetic field B 0 is achieved.
  • the separate helium tank has a temperature of the liquid helium contained therein of about 4.2 K. This makes refilling this tank particularly easy and safe.
  • the separate helium tank is preferably separated from the first by a vacuum barrier, but connected to the first helium tank (see, eg US 5,220,800 ).
  • the liquid helium in the first helium tank has a temperature T L ⁇ 4K.
  • the separate helium tank is arranged partially above the first helium tank about a common, preferably vertical room temperature bore.
  • the two tanks can be separated by a vacuum barrier and coupled via a narrow, eg gap-shaped connection.
  • the upper tank may be at about normal pressure or slightly above it so that overall refilling of helium can be easier and safer.
  • the tanks do not oscillate with the sections in them against each other and thereby the stability of measurements suffers, they can be rigidly connected. This is done on the one hand on the suspensions of the tanks in the cryostat or on preferably thermally poorly conductive spacers, possibly with tikförmigem contact from the usually provided in the Kryostatenbau therefor materials. If the associated thermal contact can be accepted, the sections or their supports can also be attached to a common floor panel or strut e.g. be attached to steel or titanium, which is part of the helium tanks or firmly connected with these.
  • the sections or their carriers can in turn be rigidly connected to the tanks. It may be sufficient if the connected LTS sections are at the bottom of the first tank and the HTS section is at the bottom of the separate tank.
  • the FIG. 1 shows an embodiment of a cryostat according to the invention, 1.
  • the cryostat 1 has a room temperature bore 2, in which a measuring volume 3 is provided for a sample.
  • the measuring volume 3 is located in the center of a magnetic coil system, which is formed here by three solenoid-shaped coil sections 4, 5, 6.
  • the middle coil section 5 is wound with Nb 3 Sn wire and the outermost coil section 6 is wound with NbTi wire.
  • the coil sections 4, 5, 6 are electrically connected in series with one another, by way of example with the two superconducting transition points (joints) 7a and 7b.
  • the HTS material of a lead 4a to the HTS coil section 4 is connected to a junction piece 8 made of NbTi, and at the joint 7b, the junction piece 8 is connected to the Nb 3 Sn wire of the LTS section 5.
  • the transition piece 8 enters a passage 18 through a vacuum barrier 9a between a first helium tank 9, in which the LTS sections 5 and 6 are nested in one another, and a separate helium tank 19, in which the HTS section 4 is located.
  • the passage 18 is a connection of the two tanks 9, 19 and sealed against the vacuum 14 of the cryostat.
  • the first helium tank 9 is filled with liquid helium.
  • the liquid helium in the helium tank 9 has a temperature T L ⁇ 4 K, in particular about 2 K.
  • the helium tank 9 is for isolation, in particular radially outwardly surrounded by a radiation shield 10.
  • the radiation shield 10 also extends between the HTS section 4 and the room temperature bore 2.
  • the radiation shield 10 is cooled with liquid nitrogen, which can be filled into container 10a.
  • further radiation shields can be provided, which are usually also cooled by evaporating helium gas.
  • a radiation shield can also be thermally coupled directly to the separate helium tank 19 and substantially surround the first tank 9.
  • the radiation shields can be battery-cooled, whereby the nitrogen tank 10a can be omitted.
  • the refrigerator can also be a Re-cooling the evaporating helium take over, so that the refill intervals are extended for liquid helium or refilling is necessary only after a major accident.
  • the HTS coil section 4 While the LTS coil sections 5, 6 are immersed in possibly superfluid helium, the HTS coil section 4 together with the supply line 4a and the joint 7a is arranged in the separate helium tank 19, which contains only normal liquid or gaseous helium. This ensures that no superfluid helium in HTS material of the HTS coil section 4 or its lead 4a can penetrate. As a result, it can not happen that superfluid helium inside the HTS material evaporates again and the volume increase can cause the HTS material to burst from the inside.
  • a heater 17 is provided for the HTS section 4 including supply line 4a and joint 7a, so that superfluid helium can by no means occur in the separate tank 19 ,
  • the entirety of the evacuated interior of the cryostat 1 forms the vacuum part 14 of the cryostat 1.
  • the vacuum part 14 there is a pressure of less than 10 -5 mbar.
  • the HTS section 4 is slightly warmer than the LTS sections 5 and 6.
  • a bottom plate 15 forms with a radially outer part of the lower wall of the helium tank 9.
  • the bottom plate 15 continues radially inward to below the HTS section 4 on.
  • On the bottom plate 15 has two annular flanges 16a, 16b attached.
  • the LTS section 6 is directly attached, and the LTS section 5 via a coil carrier, not shown.
  • the bottom plate 15 with the bottom plate 15a of the separate helium tank 19, on the HTS section. 4 is firmly mounted, rigidly connected.
  • the bottom plate 15 is preferably formed in one piece. The arrangement described allows simultaneous handling of all coil sections 4, 5, 6 during assembly of the cryostat 1 via the common base plate 15.
  • the cryostat 1 of the FIG. 1 is preferably part of an NMR apparatus, such as an NMR spectrometer or an NMR tomograph, in particular a high-resolution high-field NMR spectrometer with a magnetic field B 0 > 20 T, preferably> 23 T in the measurement volume, wherein the magnetic coil system with respect to the homogeneity the magnetic field B 0 in the measurement volume and the time stability of B 0 meets the requirements of high-resolution NMR spectroscopy, which usually requires that the coil sections of the magnetic coil system can be superconductingly short-circuited during operation.
  • the coil axes and the room temperature bore are vertical.
  • the invention also relates to cryostats with horizontal bore, which are preferably used in the imaging area (MRI) or for ion cyclotron resonance spectrometer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Claims (14)

  1. Cryostat (1),
    muni d'un système de bobines magnétiques comprenant des conducteurs supraconducteurs en vue de générer un champ magnétique B0 dans un volume de mesure (3), de plusieurs sections de bobines (4, 5, 6) en forme de solénoïdes emboîtées radialement les unes dans les autres, connectées électriquement en série, parmi lesquelles au moins une section LTS (5, 6) comprend un supraconducteur à basse température conventionnel (LTS) et au moins une section HTS (4) un supraconducteur à haute température (HTS), la section LTS se trouvant avec de l'hélium liquide dans un premier réservoir d'hélium (9) du cryostat (1) à une température d'hélium TL < 4 K,
    caractérisé en ce
    que la section HTS (4) est disposée radialement à l'intérieur de la section LTS (5, 6) dans un réservoir d'hélium séparé (19) du cryostat (1) avec de l'hélium liquide normal et séparée de la section LTS (5, 6) par au moins une paroi entre les deux réservoirs d'hélium.
  2. Cryostat (1) selon la revendication 1, caractérisé en ce que la température de l'hélium liquide dans le premier réservoir (9) est TL < 2,5 K, en particulier < 2,2 K.
  3. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que la température de l'hélium liquide dans le réservoir séparé (19) est TH > 2,5 K, en particulier > 4 K.
  4. Cryostat (1) selon une des revendications précédentes, caractérisé en ce qu'un chauffage (17) est prévu dans le réservoir d'hélium séparé (19).
  5. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que les deux réservoirs d'hélium (9, 19) sont séparés par une barrière à vide (9a).
  6. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que des conduites d'amenée (4a) ou des jonctions (7a) supraconductrices s'étendent aussi vers au moins une section HTS (4) dans le réservoir d'hélium séparé (19), et cela au moins dans la mesure où les conduites d'amenée (4a) ou jonctions (7a) contiennent des HTS.
  7. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que les deux réservoirs d'hélium (9, 19) sont reliés mécaniquement rigidement par des moyens (16a, 16b) mauvais conducteurs thermiquement, de telle manière que des vibrations des sections (4, 5, 6) les unes par rapport aux autres soient en grande partie empêchées.
  8. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que les sections (4, 5, 6) sont reliées mécaniquement rigidement aux réservoirs d'hélium (9, 19), de telle manière que des vibrations des sections (4, 5, 6) les unes par rapport aux autres soient en grande partie empêchées.
  9. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que le système de bobines magnétiques entoure un axe vertical.
  10. Cryostat (1) selon une des revendications précédentes, caractérisé en ce qu'il présente un alésage à température ambiante (2) contenant le volume de mesure (3), qui est entouré par le système de bobines magnétiques.
  11. Cryostat (1) selon une des revendications précédentes, caractérisé en ce qu'au moins un écran anti-rayonnement (10) se trouve entre le réservoir d'hélium séparé (19) et l'alésage à température ambiante (2).
  12. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que le champ magnétique B0 généré par le système de bobines magnétiques dans le volume de mesure (3) est supérieur à 20 T, en particulier supérieur à 23 T.
  13. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que les sections de bobines (4, 5, 6) du système de bobines magnétiques peuvent être court-circuitées de manière supraconductrice en fonctionnement.
  14. Cryostat (1) selon une des revendications précédentes, caractérisé en ce que le système de bobines magnétiques satisfait aux exigences de la spectroscopie RMN à haute résolution en ce qui concerne l'homogénéité du champ magnétique B0 dans le volume de mesure (3) et la stabilité dans le temps de B0.
EP07723070A 2006-03-18 2007-03-07 Cryostat muni d'un systeme de bobines magnetiques qui comprend une section lts surrefroidie et une section hts disposee dans un reservoir d'helium separe Not-in-force EP1999764B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012511A DE102006012511B3 (de) 2006-03-18 2006-03-18 Kryostat mit einem Magnetspulensystem, das eine unterkühlte LTS- und eine in einem separaten Heliumtank angeordnete HTS-Sektion umfasst
PCT/EP2007/001925 WO2007107239A1 (fr) 2006-03-18 2007-03-07 Cryostat muni d'un système de bobines magnétiques qui comprend une section LTS surrefroidie et une section HTS disposée dans un réservoir d'hélium séparé

Publications (2)

Publication Number Publication Date
EP1999764A1 EP1999764A1 (fr) 2008-12-10
EP1999764B1 true EP1999764B1 (fr) 2012-09-19

Family

ID=38016634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723070A Not-in-force EP1999764B1 (fr) 2006-03-18 2007-03-07 Cryostat muni d'un systeme de bobines magnetiques qui comprend une section lts surrefroidie et une section hts disposee dans un reservoir d'helium separe

Country Status (4)

Country Link
US (1) US8255022B2 (fr)
EP (1) EP1999764B1 (fr)
DE (1) DE102006012511B3 (fr)
WO (1) WO2007107239A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889213A (zh) * 2007-12-10 2010-11-17 皇家飞利浦电子股份有限公司 具有冷却系统的超导磁体系统
CN101983370B (zh) 2008-04-01 2014-10-01 皇家飞利浦电子股份有限公司 用于交互式表面的指向装置
DE102012209754B4 (de) * 2012-06-12 2016-09-22 Siemens Healthcare Gmbh Spuleneinrichtung für einen Kernspintomographen
DE102013220142A1 (de) 2013-10-04 2015-04-09 Bruker Biospin Gmbh Magnetspulenanordnung umfassend einen HTSL-Bandleiter und einen LTS-Draht, die einen Joint ausbilden
DE102014214796A1 (de) * 2014-07-28 2016-01-28 Bruker Biospin Ag Verfahren zum Laden einer supraleitfähigen Magnetanordnung mit Strom
RU2601218C1 (ru) * 2015-04-08 2016-10-27 Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН (ИЯФ СО РАН) Способ криостатирования и запитки сверхпроводящей обмотки индукционного накопителя и устройство для его реализации
DE102015218019B4 (de) * 2015-09-18 2019-02-28 Bruker Biospin Gmbh Kryostat mit Magnetanordnung, die einen LTS-Bereich und einen HTS-Bereich umfasst
US10416253B2 (en) 2016-11-22 2019-09-17 Quantum Design International, Inc. Conical access split magnet system
DE102019211478A1 (de) * 2019-07-31 2021-02-04 Bruker Switzerland Ag Magnetspulensektion mit integrierten Joints, insbesondere HTS-LTS-Joints, und zugehörige Magnetanordnung
CN112712959B (zh) * 2020-12-22 2022-08-16 中国科学院合肥物质科学研究院 一种液氦浸泡式大孔径实验类密绕高场复合超导磁体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924198A (en) * 1988-07-05 1990-05-08 General Electric Company Superconductive magnetic resonance magnet without cryogens
JP2726499B2 (ja) * 1989-07-06 1998-03-11 古河電気工業株式会社 超電導利用機器
GB2247942B (en) * 1990-09-05 1994-08-03 Mitsubishi Electric Corp Cryostat
DE20113547U1 (de) * 2001-05-25 2002-02-14 Bruker Analytik Gmbh Supraleitfähige Höchstfeldmagnetspule mit HTS-Spulensektion
DE102004007340B4 (de) 2004-02-16 2008-10-16 Bruker Biospin Gmbh Driftarmes supraleitendes Hochfeldmagnetsystem und hochauflösendes magnetisches Resonanzspektrometer
DE102006012509B3 (de) * 2006-03-18 2007-10-04 Bruker Biospin Gmbh Kryostat mit einem Magnetspulensystem, das eine LTS- und eine im Vakuumteil angeordnete HTS-Sektion umfasst

Also Published As

Publication number Publication date
WO2007107239A1 (fr) 2007-09-27
US20090291850A1 (en) 2009-11-26
US8255022B2 (en) 2012-08-28
EP1999764A1 (fr) 2008-12-10
DE102006012511B3 (de) 2007-11-22

Similar Documents

Publication Publication Date Title
EP1999764B1 (fr) Cryostat muni d&#39;un systeme de bobines magnetiques qui comprend une section lts surrefroidie et une section hts disposee dans un reservoir d&#39;helium separe
EP1997116B1 (fr) Cryostat muni d&#39;un système de bobines magnétiques qui comprend une section lts et une section hts disposée dans la partie sous vide
DE102006012508B3 (de) Kryostat mit einem Magnetspulensystem, das eine LTS- und eine gekapselte HTS-Sektion umfasst
EP1504458B1 (fr) Dispositif de supraconductivite comportant un aimant supraconducteur et une unite de refroidissement
EP2698794B1 (fr) Agencement doté d&#39;au moins un câble supraconducteur
DE102011078608B4 (de) Kryostatanordnung
DE102005028414B4 (de) Einrichtung zur Erzeugung eines gepulsten Magnetfelds
DE102004007340B4 (de) Driftarmes supraleitendes Hochfeldmagnetsystem und hochauflösendes magnetisches Resonanzspektrometer
EP2685469B1 (fr) Agencement doté d&#39;au moins un câble supraconducteur
EP2901460B1 (fr) Ensemble bobine magnetique comprenant un supraconducteur à haute température sous forme de bande et un supraconducteur à basse température sous forme de fil, formant un joint
DE102004061869A1 (de) Einrichtung der Supraleitungstechnik
DE19548272C1 (de) Supraleitende NMR-Magnetanordnung
EP0154779B1 (fr) Système supraconducteur magnétique pour le fonctionnement à 13K
DE102015218019B4 (de) Kryostat mit Magnetanordnung, die einen LTS-Bereich und einen HTS-Bereich umfasst
EP1742234B1 (fr) Ensemble de cryostat horizontal en surfusion
EP0485395A1 (fr) Bobine magnetique supraconductrice homogene a champ eleve.
EP3611528A1 (fr) Dispositif cryostat pourvu de système de bobines magnétiques supraconducteur à ancrage thermique de la structure de fixation
EP2005447B1 (fr) Cryostat muni d&#39;un systeme de bobines magnetiques qui comprend une section lts et une section hts chauffante
EP3467852B1 (fr) Dispositif magnétique pourvu de cryostat et de système de bobines magnétiques, d&#39;accumulateurs de froid sur les alimentations en courant
EP3953724B1 (fr) Ensemble de mesure à résonance magnétique nucléaire (rmn) à trou froid du cryostat
EP3844445A1 (fr) Dispositif de refroidissement d&#39;un élément supraconducteur
DE19938985A1 (de) Einrichtung der Supraleitungstechnik mit einer rotierenden, supraleitenden Wicklung
EP2587492B1 (fr) Dispositif de refroidissement d&#39;au moins un câble supraconducteur
WO2017121532A1 (fr) Dispositif et procédé de mesurage de signaux de résonance magnétique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB LI

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB LI

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

Owner name: BRUKER BIOSPIN GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190325

Year of fee payment: 13

Ref country code: FR

Payment date: 20190326

Year of fee payment: 13

Ref country code: GB

Payment date: 20190325

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200307