EP1996494A1 - Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel - Google Patents

Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel

Info

Publication number
EP1996494A1
EP1996494A1 EP07726658A EP07726658A EP1996494A1 EP 1996494 A1 EP1996494 A1 EP 1996494A1 EP 07726658 A EP07726658 A EP 07726658A EP 07726658 A EP07726658 A EP 07726658A EP 1996494 A1 EP1996494 A1 EP 1996494A1
Authority
EP
European Patent Office
Prior art keywords
polymer particles
pneumatic conveying
water
less
conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07726658A
Other languages
German (de)
English (en)
French (fr)
Inventor
Rüdiger Funk
Hanno Rüdiger WOLF
Hermann Josef Feise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP07726658A priority Critical patent/EP1996494A1/de
Publication of EP1996494A1 publication Critical patent/EP1996494A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to methods for the pneumatic conveying of water-absorbing polymer particles, wherein the compressor used for pneumatic conveying has a steep characteristic.
  • Water-absorbing polymers are, in particular, polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives.
  • Such polymers are used as aqueous solution-absorbing products for the production of diapers, tampons, sanitary towels and other hygiene articles, but also as water-retaining agents in agricultural horticulture.
  • Water-absorbing polymers typically have a centrifuge retention capacity of 25 to 60 g / g, preferably of at least 30 g / g, preferably of at least 32 g / g, more preferably of at least 34 g / g, most preferably of at least 35 g /G.
  • Centrifuge retention capacity is determined according to the EDANA (European Disposables and Nonwovens Association) recommended test method no. 441.2-02 "Centrifuge retention capacity".
  • water-absorbing polymers are described, for example, in "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, pages 69 to 17.
  • water-absorbing polymer particles are transported by means of pneumatic conveying systems. The inevitably occurring mechanical stress leads to undesirable abrasion. Therefore, low transport speeds and thus reduced mechanical loads should be strived for.
  • Dense flow conveying (plug conveying, impulse delivery) with high pressure loss.
  • the pressure delivery can work at slower delivery speeds than the suction, since the pressure reserves in the overpressure are greater than in a vacuum, and there increases with increasing pressure counselgas Why that propels the product increases.
  • Too low conveying speeds in the field of strands promotion are problematic, since in the unstable region between the dense phase promotion and Strandscine no stable promotion is possible. Rather, the mechanical stresses that occur can lead to serious damage to the conveyor system, up to the tearing of the delivery lines from the brackets.
  • the object of the present invention was to provide an improved process for the pneumatic transport of water-absorbing polymer particles, in particular at low conveying speeds safe operation is possible.
  • the problem was solved by a method for pneumatic conveying of water-absorbing polymer particles, characterized in that the volume flow of the compressor used for pneumatic conveying at pressure rise of idle to 800 mbar falls by less than 50% and the initial gas velocity in promoting a Froude number of 10 to 18 corresponds.
  • the volume flow decrease of the compressors used is preferably less than 30%, most preferably less than 20%, most preferably less than 10%.
  • the volume flow decrease can either be measured or determined on the basis of the compressor characteristic curve.
  • the compressors used in the process according to the invention have a steep characteristic.
  • Preferred compressors are forced compressors.
  • a particularly suitable forced-circulation compressor with a steep characteristic curve is a rotary piston blower.
  • the optimum gas start speed for pneumatic delivery depends on the diameter of the delivery line. This dependency is best described by the Froude number:
  • the Froude number in the pneumatic conveying according to the invention is preferably from 10 to 16, more preferably from 1 to 15, most preferably from 12 to 14.
  • the randomlygutbeladung the pneumatic conveying is preferably from 0.5 to 20 kg / kg, more preferably from 1 to 10 kg / kg, most preferably from 2 to 8 kg / kg, wherein the strategicallygutbeladung is the quotient of strategicallygutmassenstrom and gas mass flow.
  • the diameter of the pipeline, in which the pneumatic conveying is carried out is preferably from 3 to 30 cm, more preferably from 4 to 25 cm, most preferably from 5 to 20 cm. Too low pipe diameters lead to a higher mechanical load due to the pneumatic conveying and thus promote the undesirable abrasion. Too large pipe diameters allow one as well unwanted settling of the water-absorbing polymer particles in the delivery line.
  • a pipeline in a pneumatic Conveyor system is the section between the feed device for the water-absorbing polymer particles and the receiving container, ie the area in which the water-absorbing polymer particles are transported in the gas stream.
  • the water content of the water-absorbing polymer particles is preferably less than 10 wt .-%, more preferably less than 5 wt .-%, most preferably from 1 to 5 wt .-%, wherein the water content according to the EDANA (European Disposables and Nonwovens Association) recommended test method No. 430.2-02 "Moisture content" is determined.
  • the mechanical stability of the water-absorbing polymer particles decreases with the water content, i. the unwanted abrasion increases. Too high water contents during the pneumatic conveying can lead to the plastic deformation of the polymer particles (angel hair formation) or to blockages.
  • the water-absorbing polymer particles preferably have at least 90% by weight, a particle diameter of less than 1000 ⁇ m, particularly preferably at least 95% by weight, a particle diameter of less than 900 ⁇ m, very particularly preferably at least 98% by weight Particle diameter of less than 800 microns, on.
  • the mechanical load during pneumatic conveying is reduced to such an extent that the proportion of polymer particles having a particle diameter of less than 150 ⁇ m by pneumatic conveying is preferably less than 1% by weight, particularly preferably less than 0 , 7 wt .-%, most preferably by less than 0.5 wt .-%, each based on the total amount of polymer particles, is increased and the permeability of the polymer particles by the pneumatic conveying preferably by less than 5x10 "7 cm 3 s / g, more preferably less than 4x10 "7 cm 3 s / g, most preferably less than 3x10" 7 cm 3 sec / g, decreases.
  • the water-absorbing polymer particles which can be used in the process according to the invention can be obtained by polymerization of a monomer solution containing
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • R 4 Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids can be mono-, di- or tricarboxylic acids.
  • R 4 is particularly preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, especially preferably around 50 ppm by weight, hydroquinone halide, in each case based on acrylic acid, wherein acrylic acid salts are taken into account mathematically as acrylic acid with.
  • acrylic acid salts are taken into account mathematically as acrylic acid with.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
  • the water-absorbing polymers are crosslinked, i. the polymerization is carried out in the presence of compounds having at least two polymerisable groups which can be radically copolymerized into the polymer network.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-A-0 530 438, di- and triacrylates, as in EP-A-0 547 847, EP-A-0 559 476, EP-A-0 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 and DE-A-10331450, mixed acrylates which contain, in addition to acrylate groups contain ethylenically unsaturated groups, as described in DE-A-103 31 4
  • Suitable crosslinkers b) are especially N, N'-methylenebisacrylamide and N 1 N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids lyolen of Po, such as diacrylate or triacrylate, for example butanediol or ethylene glycol and also trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A-0 343 427.
  • esters of unsaturated mono- or polycarboxylic acids lyolen of Po such as diacrylate or triacrylate, for example butanediol or ethylene glycol and also trimethylolpropane
  • crosslinkers b) are pentaerythritol di-, pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol di- and
  • Glyceryl triallyl ether polyallyl ether based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight between 300 and 1000.
  • crosslinkers b) are di- and triacrylates of 3 to 20 times ethoxylated glycerol, 3 to 20 times ethoxylated trimethylolpropane, 3 to 20 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-times ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, and the 3-times mixed ethoxylated or propoxylated glycerol or trimethylolpropane, the 15-times ethoxylated glycerol or trimethylolpropane, and at least 40-times ethoxylated glycerol, trimethylolpropane lethanes or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in DE-A-103 19 462.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • the amount of crosslinker b) is preferably 0.01 to 1 wt .-%, particularly preferably 0.05 to 0.5 wt .-%, most preferably 0.1 to 0.3 wt .-%, respectively based on the monomer a).
  • Examples of ethylenically unsaturated monomers c) copolymerizable with the monomers a) are acrylamide, methacrylamide, crotonamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate.
  • water-soluble polymers d) it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, polyglycols or polyacrylic acids, preferably polyvinyl alcohol and starch.
  • Suitable reactors are kneading reactors or belt reactors.
  • the polymer gel formed in the polymerization of an aqueous monomer solution is comminuted continuously by, for example, counter-rotating stirring shafts, as described in WO-A-
  • the hydrogel After leaving the polymerization reactor, the hydrogel is advantageously stored even at a higher temperature, preferably at least 50 ° C., more preferably at least 70 ° C., very preferably at least 80 ° C., and preferably less than 100 ° C., for example in isolated containers. By storage, usually 2 to 12 hours, the monomer conversion is further increased.
  • the acid groups of the hydrogels obtained are usually partially neutralized, preferably from 25 to 95 mol%, preferably from 50 to 80 mol%, particularly preferably from 60 to 75 mol%, the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • alkali metal salts it is also possible to use ammonium salts.
  • Sodium and potassium are considered
  • Alkali metals are particularly preferred, but very particularly preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution, as a melt, or preferably as a solid.
  • sodium hydroxide with a water content well below 50 wt .-% may be present as a waxy mass with a melting point above 23 ° C. In this case, a dosage as general cargo or melt at elevated temperature is possible.
  • the hydrogel stage it is also possible to carry out the neutralization after the polymerization at the hydrogel stage. Furthermore, it is possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups prior to the polymerization by adding a part of the neutralizing agent to the monomer solution and the desired final degree of neutralization is adjusted only after the polymerization at the level of the hydrogel. If the hydrogel is at least partially neutralized after the polymerization, the hydrogel is preferably comminuted mechanically, for example by means of a meat grinder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed. For this purpose, the gel mass obtained can be further gewolfft for homogenization.
  • the hydrogel is then preferably dried with a belt dryer until the residual moisture content is preferably below 15% by weight, in particular below 10% by weight, the water content being determined in accordance with the test method No. 430.2- recommended by EDANA (European Disposables and Nonwovens Association). 02 "Moisture content" is determined.
  • a fluidized bed dryer or a heated ploughshare mixer can be used for drying but also a fluidized bed dryer or a heated ploughshare mixer.
  • the dryer temperature must be optimized, the air supply and removal must be controlled, and it is in any case to ensure adequate ventilation. The drying is naturally simpler and the product is the whiter, if the solids content of the gel is as high as possible.
  • the solids content of the gel before drying is therefore preferably between 30 and 80% by weight.
  • Particularly advantageous is the ventilation of the dryer with nitrogen or other non-oxidizing inert gas.
  • sufficient ventilation and removal of the water vapor also leads to an acceptable product.
  • Advantageous in terms of color and product quality is usually the shortest possible drying time.
  • the dried hydrogel is thereafter ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills can be used.
  • Suitable postcrosslinkers e) for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxylate groups of the polymers.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as described in EP-AO 083 022, EP-A-543 303 and EP-A-937 736, polyhydric alcohols, as in DE-C No. 2,314,019, DE-C-35 23 617 and EP-A-450 922, or ⁇ -hydroxyalkylamides as described in DE-A-102 04 938 and US Pat. No.
  • 6,239,230 are also suitable.
  • compounds having mixed functionality such as glycidol, 3-ethyl-3-oxetanemethanol (trimethylolpropane oxetane), as described in EP-A-1 199 327, aminoethanol, diethanolamine, triethanolamine or compounds which form a further functionality after the first reaction such as ethylene oxide, propylene oxide, isobutylene oxide, aziridine, azetidine or oxetane.
  • cyclic carbonates in DE-A-198 07 502 2-oxazolidone and its derivatives, such as N- (2-hydroxyethyl) -2-oxazolidone, in DE-A-198 07 992 Bis- and poly-2-oxazolidinone, in DE-A-198 54 573 2-oxotetrahydro-1,3-oxazine and its derivatives, in DE-A-198 54 574 N-acyl-2-oxazolidone, in DE-A Cyclic ureas, in DE-A-103 34 584 bicyclic amide acetals, in EP-A-1 199 327 oxetanes and cyclic ureas and in WO-A-03/031482 morpholine-2,3-dione and its derivatives as suitable postcrosslinkers e) are described.
  • Preferred postcrosslinkers e) are oxazolidone and its derivatives, in particular N- (2-hydroxye
  • the amount of postcrosslinker e) is preferably 0.01 to 1 wt .-%, particularly preferably 0.05 to 0.5 wt .-%, most preferably 0.1 to 0.2 wt .-%, each based on the polymer.
  • the postcrosslinking is usually carried out so that a solution of the crosslinker e) is sprayed onto the hydrogel or the dry polymer particles. Subsequent to the spraying, it is thermally dried, whereby the postcrosslinking reaction can take place both before and during the drying.
  • the spraying of a solution of the crosslinker is preferably carried out in mixers with moving mixing tools, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • moving mixing tools such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • Vertical mixers are particularly preferred, plowshare mixers and paddle mixers are very particularly preferred.
  • Suitable mixers are, for example, Lödige® mixers, Bepex® mixers, Nauta® mixers, Processall® mixers and Schugi® mixers.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
  • Suitable dryers are, for example, Bepex® T rockner and Nara® T rockner.
  • fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air. Also suitable is a downstream dryer, such as a hopper dryer, a rotary kiln or a heatable screw. However, it is also possible, for example, to use an azeotropic distillation as the drying process.
  • Preferred drying temperatures are in the range 170 to 250 ° C, preferably 180 to 220 ° C, and particularly preferably 190 to 210 ° C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes.
  • the water-absorbing polymer particles can additionally be aftertreated with at least one polyvalent cation f).
  • Suitable cations f) are, for example, divalent cations, such as the cations of zinc, magnesium, calcium and
  • Strontium trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of titanium and zirconium.
  • trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese
  • tetravalent cations such as the cations of titanium and zirconium.
  • Aluminum sulfate is preferred.
  • the multivalent cation f) is used as an aqueous solution.
  • concentration of the polyvalent cation f) in the aqueous solution is for example 0.1 to 12 wt .-%, preferably 0.5 to 8 wt .-%, particularly preferably 1, 5 to 4 wt .-%.
  • the amount of polyvalent cation f) is preferably 0.001 to 0.25 wt .-%, more preferably 0.005 to 0.2 wt .-%, most preferably 0.01 to 0.15 wt .-%, each based on the Polymer.
  • the polyvalent cations f) are preferably applied during the postcrosslinking, wherein postcrosslinker e) and cation f) are preferably metered in via separate solutions.
  • the process according to the invention enables the reliable transport of water-absorbing polymer particles in the area of the strands promotion.
  • the inventive method is extremely reliable and allows the pneumatic conveying at significantly lower conveyor speeds. With conventional compressors with a flat characteristic, such as fans, such a high level of operational reliability can not be achieved.
  • Measurements should be taken at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%, unless otherwise specified.
  • the water-absorbing polymer particles are thoroughly mixed before the measurement.
  • the absorption under pressure is determined according to the test method No. 442.2-02 "Absorption under pressure" recommended by the EDANA (European Disposables and Nonwovens Association). Permeability (SFC Saline Flow Conductivity)
  • the permeability of a swollen gel layer under pressure of 0.3 psi (2070 Pa) is determined as described in EP-A-0 640 330, as gel-layer permeability of a quenched gel layer of superabsorbent polymer, which in the aforementioned patent application Page 19 and described in Figure 8 apparatus was modified to the effect that the glass frit (40) is no longer used, the punch (39) made of the same plastic material as the cylinder (37) and now evenly distributed over the entire support surface contains 21 equal holes , The procedure and evaluation of the measurement remain unchanged compared to EP-A-0 640 330. The flow is detected automatically.
  • the permeability (SFC) is calculated as follows:
  • LO is the thickness of the gel layer in cm
  • d the density of the NaCl solution in g / cm 3
  • A is the area of the gel layer in cm 2
  • WP is the hydrostatic pressure over the gel layer in dynes / cm 2 .
  • Polyethylene glycol 400 diacrylate (diacrylate of a polyethylene glycol having an average molecular weight of 400 g / mol) is used as the polyethylenically unsaturated crosslinker.
  • the amount used was 2 kg per ton of monomer solution.
  • the throughput of the monomer solution was 18 t / h.
  • the individual components are continuously metered into a 6.3 ml 3 volume List Contikneter reactor (List, Arisdorf, Switzerland) in the following quantities:
  • the reaction solution had a temperature of 23.5 ° C. at the inlet.
  • the reactor was operated at a shaft speed of 38rpm.
  • the residence time of the reaction mixture in the reactor was 15 minutes.
  • the aqueous polymer gel was applied to a belt dryer. In total, 18.3 t / h of aqueous polymer gel having a water content of 55% by weight were dried. The gel was applied from a height of 30 cm by means of a swivel tape on the conveyor belt of the dryer. The height of the gel layer was about 10 cm.
  • the belt speed of the dryer belt was 0.02 m / s and the residence time on the dryer belt was about 37 minutes.
  • the dried hydrogel was ground and sieved. The fraction with the particle size 150 to 800 microns was postcrosslinked.
  • the postcrosslinker solution was sprayed onto the polymer particles in a Schugi® mixer.
  • the postcrosslinker solution was a 1.2% strength by weight solution of ethylene glycol diglycidyl ether in propylene glycol / water weight ratio 1: 2). Based on the polymer particles 5 wt .-% solution were sprayed. It was then dried for 60 minutes at 150 ° C. and postcrosslinked.
  • the delivery line used was a smooth aluminum pipeline with a length of 153 m and an internal diameter of 108.5 mm.
  • the delivery line consisted of two horizontal and two vertical sections, the sections being connected by arches. The vertical elevation totaled 10 m.
  • the delivery rate was 6,400 kg / h of water-absorbing polymer particles, the delivery air volume was 1,050 kg / h and the gas velocity was 17.8 m / s at the beginning of the delivery line and 26 m / s at the delivery line end.
  • the pressure in the delivery line was from +500 to 0 mbar, based on the ambient pressure.
  • the transported load was 6.2 kg / kg and the Froude number at the beginning of the feed was 16.8.
  • the water-absorbing polymer particles had g, an absorption under pressure of 24.9 g /, and a permeability of 40.1 x 10 "7 cm 3 s / g.
  • the water-absorbing polymer particles After the pneumatic transportation, the water-absorbing polymer particles had g, an absorption under pressure of 22.4 g / and a permeability of 30,4x10 "7 cm 3 s / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
EP07726658A 2006-03-14 2007-03-06 Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel Ceased EP1996494A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07726658A EP1996494A1 (de) 2006-03-14 2007-03-06 Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06111108 2006-03-14
EP07726658A EP1996494A1 (de) 2006-03-14 2007-03-06 Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
PCT/EP2007/052100 WO2007104676A1 (de) 2006-03-14 2007-03-06 Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel

Publications (1)

Publication Number Publication Date
EP1996494A1 true EP1996494A1 (de) 2008-12-03

Family

ID=38091208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07726658A Ceased EP1996494A1 (de) 2006-03-14 2007-03-06 Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel

Country Status (6)

Country Link
US (1) US8591152B2 (ja)
EP (1) EP1996494A1 (ja)
JP (1) JP5264512B2 (ja)
CN (1) CN101400589B (ja)
TW (1) TW200744929A (ja)
WO (1) WO2007104676A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135669B1 (en) 2007-03-29 2019-10-30 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for producing the same
EP2263939B1 (en) 2008-03-13 2016-07-13 Nippon Shokubai Co., Ltd. Method of filling a particulate water-absorbing agent composed principally of a water-absorbing resin
US9096732B2 (en) 2008-03-28 2015-08-04 Nippon Shokubai Co., Ltd. Conveyance method for water-absorbing resin powder substance
EP2415822B1 (en) 2009-03-31 2019-03-20 Nippon Shokubai Co., Ltd. Process for producing particulate water-absorbing resin
JP5718816B2 (ja) 2009-09-16 2015-05-13 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011042468A2 (de) 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
CN102666670B (zh) 2009-10-09 2014-02-19 巴斯夫欧洲公司 再润湿表面后交联的吸水性聚合物颗粒的方法
DE102010000706A1 (de) * 2010-01-06 2010-10-14 Basf Se Verfahren zum Fördern eines Stroms einer (Meth)acrylmonomere enthaltenden Flüssigkeit F
EP2535369B1 (en) 2010-02-10 2021-03-24 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
US9272068B2 (en) 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
JP6113084B2 (ja) * 2011-03-08 2017-04-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 改善された浸透性を有する吸水性ポリマー粒子を製造する方法
US8742026B2 (en) * 2011-03-08 2014-06-03 Basf Se Process for producing water-absorbing polymer particles with improved permeability
EP2825583B1 (de) 2012-03-15 2016-09-14 Huntsman P&A Uerdingen GmbH Verfahren zur granulierung von teilchenhaltigem material aus industriellen prozessen, das so hergestellte granulat
WO2014032909A1 (en) * 2012-08-29 2014-03-06 Basf Se Process for producing water-absorbing polymer particles
US20160096693A1 (en) * 2013-03-29 2016-04-07 Matsui Mfg. Co., Ltd. Material conveyance device and material conveyance method
CN105110014B (zh) * 2015-07-20 2017-06-06 云南红渊投资有限公司 一种带冷却的粉状磷酸一铵输送方法
US10875972B2 (en) 2016-05-31 2020-12-29 Basf Se Method for the production of superabsorbers
DE102017206842A1 (de) * 2017-04-24 2018-10-25 Coperion Gmbh Verfahren zur pneumatischen Förderung von Kunststoffgranulat
US10233952B1 (en) * 2017-09-18 2019-03-19 Ion Marta Method of profiling openings of elements of mechanical system for generating optimal pressure waves in elastic fluids
KR20200118002A (ko) * 2018-02-06 2020-10-14 바스프 에스이 고흡수성 입자의 공압 운송 방법
EP3736234A1 (de) * 2019-05-10 2020-11-11 Coperion GmbH Förderanlage und verfahren zur pneumatischen förderung von kunststoffgranulat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345804A (ja) 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384420A (en) * 1966-08-02 1968-05-21 Cargill Inc Transfer system
US3791579A (en) * 1968-12-31 1974-02-12 Electrogasdynamics Electrostatic paint spray system
US3709562A (en) * 1971-07-21 1973-01-09 Wedco Pneumatic conveyance system
US4165133A (en) * 1977-09-26 1979-08-21 Johnson Albert O Material handling system for wide range of materials and flow rates
IT1084547B (it) * 1977-09-30 1985-05-25 Snia Viscosa Procedimento ed apparecchiatura per la produzione di polimeri sintetici additivati.
DE3217406C2 (de) * 1982-05-08 1986-06-05 Pfister Gmbh, 8900 Augsburg Vorrichtung zum kontinuierlichen gravimetrischen Dosieren von schüttfähigem Gut
US4883390A (en) * 1982-08-16 1989-11-28 Petrocarb, Inc. Method and apparatus for effecting pneumatic conveyance of particulate solids
US4908175A (en) * 1986-05-28 1990-03-13 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
IL82511A (en) * 1986-05-28 1992-09-06 Procter & Gamble Apparatus for and methods of airlaying fibrous webs having discrete particles therein
US4927582A (en) 1986-08-22 1990-05-22 Kimberly-Clark Corporation Method and apparatus for creating a graduated distribution of granule materials in a fiber mat
US5102585A (en) * 1990-01-09 1992-04-07 Kimberly-Clark Corporation Method for intermittently depositing particulate material in a substrate
CN1075026C (zh) * 1996-10-22 2001-11-21 弗雷德里克·迪特里希 气动传送粉状物的设备及方法
JP4411667B2 (ja) * 1998-07-10 2010-02-10 チッソ株式会社 耐久親水性繊維及びそれを用いた繊維成形体
AUPP789898A0 (en) * 1998-12-23 1999-01-21 Birrus Engineering Pty Ltd Conveying
US6406745B1 (en) * 1999-06-07 2002-06-18 Nanosphere, Inc. Methods for coating particles and particles produced thereby
US6817557B2 (en) * 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
US6815512B2 (en) * 2000-02-28 2004-11-09 Union Carbide Chemicals & Plastics Technology Corporation Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection
CN1478107A (zh) * 2000-10-04 2004-02-25 �Ϻ���ͨ��ѧ 载体上的催化剂组合物
US20040213892A1 (en) * 2003-04-25 2004-10-28 Gerd Jonas Highly swellable absorption medium with reduced caking tendency
US6727345B2 (en) * 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
US6716894B2 (en) * 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
ITTO20020714A1 (it) * 2002-08-09 2004-02-10 Giuliano Cavaglia Procedimento per la polimerizzazione continua di
US7193006B2 (en) * 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
JP4667239B2 (ja) * 2002-12-11 2011-04-06 ファイバーウェブ コロビン ゲーエムベーハー 親水性ポリオレフィン材料およびその製造方法
DE10260738A1 (de) * 2002-12-23 2004-07-15 Outokumpu Oyj Verfahren und Anlage zur Förderung von feinkörnigen Feststoffen
DE10260737B4 (de) * 2002-12-23 2005-06-30 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von titanhaltigen Feststoffen
DE10260745A1 (de) * 2002-12-23 2004-07-01 Outokumpu Oyj Verfahren und Anlage zur thermischen Behandlung von körnigen Feststoffen
EP1732974A1 (en) * 2004-03-30 2006-12-20 Basf Aktiengesellschaft Improved method of manufacturing superabsorbent polymers
US7296457B2 (en) * 2004-06-25 2007-11-20 Wilson Tool International Inc. Thermally-actuated press brake tool holder technology
US7422904B2 (en) * 2005-02-04 2008-09-09 Exxonmobil Chemical Patents Inc. Method of operating a fixed bed reactor under predetermined hydraulic conditions
DE102005018949A1 (de) * 2005-04-18 2006-10-19 Ami-Agrolinz Melamine International Gmbh Harnstoffpartikel, Verfahren zu dessen Herstellung und dessen Verwendung
EP1996493A2 (de) * 2006-03-14 2008-12-03 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
CN101405207B (zh) * 2006-03-14 2013-07-17 巴斯夫欧洲公司 吸水性聚合物颗粒的气动输送方法
EP2069121B1 (de) * 2006-09-25 2011-07-27 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
JP5383647B2 (ja) * 2007-03-19 2014-01-08 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子を被覆する方法
AU2008325219A1 (en) * 2007-11-05 2009-05-14 Puretech Ventures Methods, kits, and compositions for administering pharmaceutical compounds
US9096732B2 (en) * 2008-03-28 2015-08-04 Nippon Shokubai Co., Ltd. Conveyance method for water-absorbing resin powder substance
US20110194904A1 (en) * 2009-06-26 2011-08-11 Accessible Technologies, Inc. Controlled Inlet of Compressor for Pneumatic Conveying System

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345804A (ja) 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007104676A1

Also Published As

Publication number Publication date
CN101400589A (zh) 2009-04-01
WO2007104676A1 (de) 2007-09-20
JP2009529600A (ja) 2009-08-20
US20090022603A1 (en) 2009-01-22
US8591152B2 (en) 2013-11-26
TW200744929A (en) 2007-12-16
CN101400589B (zh) 2011-07-13
JP5264512B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
EP1996494A1 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104657A2 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
EP1996493A2 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
EP2305718B1 (de) Verfahren zur Herstellung wasserabsorbierender Polymere
EP1926754B2 (de) Polymerisationsverfahren
EP1919609B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1926756B1 (de) Polymerisationsverfahren
EP2137262B1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
EP1926758B1 (de) Polymerisationsverfahren
EP2360138A1 (de) Vorrichtung zur Durchführung eines kontinuierlichen Neutralisationsverfahrens
EP2069121B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2238181B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2225284B2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1965905B1 (de) Verfahren zum kontinuierlichen mischen von polymerpartikeln
EP2274087A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2009077376A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2129706A1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
DE102005058631A1 (de) Verfahren zum kontinuierlichen Mischen
DE102006006539A1 (de) Verfahren zum kontinuierlichen Mischen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110606

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150424