EP1960979B1 - Energiegenerator als alarmsensor - Google Patents

Energiegenerator als alarmsensor Download PDF

Info

Publication number
EP1960979B1
EP1960979B1 EP06830155A EP06830155A EP1960979B1 EP 1960979 B1 EP1960979 B1 EP 1960979B1 EP 06830155 A EP06830155 A EP 06830155A EP 06830155 A EP06830155 A EP 06830155A EP 1960979 B1 EP1960979 B1 EP 1960979B1
Authority
EP
European Patent Office
Prior art keywords
sensor
energy
sensor according
measured variable
energy generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP06830155A
Other languages
English (en)
French (fr)
Other versions
EP1960979A1 (de
Inventor
Jens Makuth
Dirk Scheibner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37872422&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1960979(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1960979A1 publication Critical patent/EP1960979A1/de
Application granted granted Critical
Publication of EP1960979B1 publication Critical patent/EP1960979B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold

Definitions

  • the invention relates to a sensor for monitoring a measured variable with an output unit for a sensor signal, wherein the sensor signal is provided from exceeding a threshold value by the measured variable for output.
  • the invention further relates to a method for monitoring a measured variable by means of a sensor with an output unit for a sensor signal, wherein the sensor signal is provided from exceeding a threshold value by the measured variable for output.
  • Such a sensor or such a method is used in particular in the field of automation and drive technology - for example in production machines, machine tools, process systems, transport systems and logistics and building automation.
  • Exemplary here is the rolling bearing monitoring of simple machines, brightness and temperature monitoring in production processes of the food industry or called an air quality assessment.
  • an air quality assessment As a framework for use increasingly occur a large number of measuring points and the use of hard to reach places.
  • a broad use of sensory monitoring networks only makes sense at a low cost for the individual sensor.
  • ABB also presents the Wireless Interface to Sensors and Actuators (WISA) concept for wireless proximity switches (see ABB, "Create New Freedoms - The New Installation Concept with Wireless Proximity Switches", company publication).
  • WISA Wireless Interface to Sensors and Actuators
  • US 33378801 discloses a voltage detector.
  • the invention has for its object to enable the monitoring of a measured variable in the most cost-effective manner possible.
  • the senor is an energy generator which is provided for generating energy by means of the measured variable for the energy supply of the sensor.
  • This object is further achieved in a method of the type mentioned above in that a sensor according to the invention is used as the sensor.
  • the energy generator simultaneously represents the transducer, eliminating a transducer in the actual sense.
  • the properties of the energy generator determine the type of measured variable (or vice versa).
  • the measure of the measured variable is the energy generated in the energy generator. The sensor works only if the measurand is present at all. If the measured variable and thus the generated energy exceed a defined threshold value, a signal is output. The required minimum energy was generated by the energy generator by conversion from the measurand.
  • the invention can be used for all parameters that also allow power generation. Since the actual transducer is eliminated, the sensor of the invention is simpler in construction than a conventional sensor. This leads to lower costs and better miniaturization.
  • the power supply is self-sufficient according to the invention, no wiring is necessary. Compared to battery-powered wireless systems, the battery replacement is eliminated. Despite autonomous energy generation from the environment, a high level of reliability is guaranteed because the size to be measured also provides the energy for the sensor. When the measurand is present, the sensor generates energy and can work.
  • Such sensors according to the invention are therefore suitable under cost and reliability aspects for widespread use or in inaccessible places.
  • Target applications include, for example, MP & F (Maintenance Products & Functions) alarm sensors for monitoring fault conditions, such as a motor running too hot or a system that is too strong.
  • the output unit is provided for wireless communication of the sensor signal. This can be done, for example, via radio or via optical free-space communication.
  • the output unit is provided for the optical display of the sensor signal. This can e.g. by switching an electrochromic display.
  • the sensor signal is an alarm signal.
  • an optical display may consist only of an optical A-mark.
  • the sensor signal has the current value of the measured variable. Not only can this indicate that the threshold to be monitored has been exceeded by the measured variable, but also its current value.
  • the threshold value is set by properties of the energy generator. This can e.g. be achieved in that the energy generator only from reaching the threshold by the measured quantity generates enough energy to output the sensor signal, or even begins to generate energy only from reaching the threshold by the measured variable.
  • An illustrative example of the latter case is e.g. by adaptation of band edge distances in solar cells feasible.
  • the senor has a control unit, which is provided for monitoring the exceeding of the threshold value by the measured variable.
  • an averaging of the measured variable over time intervals by means of the energy generator feasible, wherein the time intervals are set by properties of the power generator.
  • the dynamics of the energy generator determines the averaging.
  • a weakly damped energy generator can directly follow the measured variable and provides the instantaneous value of the measured variable. At lower dynamics, the energy generator acts as a low pass and an average value is measured.
  • the senor has an energy store, which is provided for supplying energy to the output unit.
  • the energy store is either charged by the energy generator during operation of the sensor, or the energy storage is already at startup of the sensor in a preloaded state.
  • the threshold value is given by a specific content of the energy store.
  • the threshold effectively corresponds to a temporal integral of the measurand, i. the sensor signal is output only when the energy cumulatively generated by the measurand has reached the threshold value. This may be particularly advantageous if, for example, in the food industry, it depends more on the amount of light than on the radiation intensity, or as in nuclear hazard areas on the amount of radiation.
  • the invention can be used for all parameters that also allow energy generation - eg alternating variables or gradients.
  • the energy generator can be realized eg by solar cells.
  • temperature sensors for example, generators using the Seebeck effect can be used.
  • Sensors for mechanical vibrations often use the electrodynamic, piezoelectric or capacitive transducer principle. Radioactivity can be converted by directly knocking out electrons from, for example, the Si lattice or by conversion into thermal energy and then into electrical energy.
  • Chemical sensors can use fuel cells that use, for example, methanol from the environment and detect it with it, or dry chemical batteries with which moisture can be detected.
  • FIG. 1 shows the basic structure of an advantageous embodiment of the sensor 1 according to the invention with energy generator 2, control unit 3, output unit 4 and energy storage 5.
  • the measure M eg the temperature, mechanical vibrations, light, radioactive radiation, chemical energy, moisture - acts on the matching Energy generator 2 and there is converted proportionally into electrical energy and cached in the energy storage 5.
  • the energy generator 2 thus also serves as a transducer.
  • the energy stored in the energy store 5 is monitored by the control unit 3. If the energy generated and thus the cumulative measured quantity M exceeds a threshold value, the energy present in the energy store 5 is used, to wirelessly emit an alarm signal by means of the output unit 4 or optically display, for example, by switching an electrochromic display.
  • FIG. 2 shows a practical realization of the principle according to the invention by means of a vibration monitoring.
  • the power generator 2 is designed to convert mechanical vibration energy into electrical energy.
  • Known such energy generators 2 use the electrodynamic, piezoelectric or capacitive transducer principle.
  • the energy generator 2 is to be designed so that the energy generated is proportional to the measured variable M, so in this case the vibration.
  • the occurring amplitudes of the mechanical vibration generate correspondingly an electrical output signal.
  • the concrete conversion principle determines the type of measured variable M.
  • a capacitive energy generator 2 for example, generates charge transfer currents from the oscillation. These are proportional to the change in the deflection, ie the vibration velocity. This is therefore also the monitored measured variable M.
  • Such a vibration sensor 1 can be used as a bearing monitoring for simple machines such as electric motors 6.
  • FIG. 3 shows the dependence of the output signal of the energy generator 2 on the properties of the energy generator 2.
  • the time course of the measured variable M is seen, from which, depending on the set dynamics of the energy generator 2 different output signals.
  • An energy generator 2 with high dynamics (weak attenuation) can directly follow the measured variable M (bottom left), while an energy generator 2 with low dynamics (high attenuation) acts as a low-pass filter and smoothes the measured variable M (bottom right).
  • the dynamics of the energy generator 2 thus determines the temporal averaging of the measured variable M.
  • the invention relates to a sensor for monitoring a measured variable with an output unit for a sensor signal, wherein the sensor signal is provided from exceeding a threshold value by the measured variable for output.
  • the invention has for its object to provide a simple and inexpensive threshold sensor that works completely wireless and yet reliable in terms of communication and energy. This object is achieved in that the sensor has an energy generator, which is provided for generating energy by means of the measured variable for the energy supply of the sensor. Due to the simultaneous use of the measured variable according to the invention for energy generation, the energy generator simultaneously represents the transducer, eliminating a transducer in the actual sense. The measure of the measured variable is the energy generated in the energy generator.
  • the sensor works only if the measurand is present at all.
  • the invention can be used for all parameters that also allow power generation.
  • the power supply is self-sufficient according to the invention, no wiring is necessary. Despite autonomous energy generation from the environment, a high level of reliability is guaranteed because the size to be measured also provides the energy for the sensor.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

  • Die Erfindung betrifft einen Sensor zur Überwachung einer Messgröße mit einer Ausgabeeinheit für ein Sensorsignal, wobei das Sensorsignal ab Überschreitung eines Schwellwertes durch die Messgröße zur Ausgabe vorgesehen ist.
  • Die Erfindung betrifft ferner ein Verfahren zur Überwachung einer Messgröße mittels eines Sensors mit einer Ausgabeeinheit für ein Sensorsignal, wobei das Sensorsignal ab Überschreitung eines Schwellwertes durch die Messgröße zur Ausgabe vorgesehen ist.
  • Ein derartiger Sensor bzw. ein derartiges Verfahren kommt insbesondere auf dem Gebiet der Automatisierungs- und Antriebstechnik - beispielsweise bei Produktionsmaschinen, Werkzeugmaschinen, verfahrenstechnischen Anlagen, Transportsystemen und Logistik sowie Gebäudeautomation - zum Einsatz. Hier gibt es eine Vielzahl einfacher sensorischer Überwachungsaufgaben, die durch Detektion einer Schwellwertüberschreitung charakterisiert sind. Beispielhaft sei hier die Wälzlagerüberwachung einfacher Maschinen, Helligkeits- und Temperaturüberwachung in Produktionsprozessen der Lebensmittelindustrie oder eine Luftqualitätsbewertung genannt. Als Rahmenbedingungen für den Einsatz treten zunehmend eine große Anzahl von Messstellen und der Einsatz an schwer zugänglichen Stellen auf. Weiterhin ist ein breiter Einsatz sensorischer Überwachungsnetze nur bei niedrigen Kosten für den Einzelsensor sinnvoll.
  • Konventionelle Sensoren sind dafür nur bedingt geeignet. Insbesondere der immense Verdrahtungsaufwand bei großen Sensornetzen ist problematisch. Der Einsatz komplett drahtloser Sensoren wird durch den Aspekt der Energieversorgung behindert. Heute verfügbare Batterietechnologien liefern in Kombination mit im industriellen Umfeld einsetzbaren drahtlosen Datenübertragungstechniken nur eine sehr begrenzte Lebensdauer. Ein regelmäßiger Austausch ist jedoch gerade bei komplexen Sensornetzen und schwer zugänglichen Einbauorten nicht praktikabel. Diese Faktoren behindern die massenhafte Verbreitung einfacher sensorischer Schwellwertüberwachungen im industriellen Umfeld.
  • Gegenwärtig eingesetzte Sensorsysteme bestehen in der Regel aus dem eigentlichen Messwandler, der Signalverstärkung und -verarbeitung, einer Kommunikationseinheit sowie einer Energieversorgung. Heute üblich sind drahtgebundene Sensoren. Es zeichnet sich jedoch zur Reduktion des Verdrahtungsaufwandes ein deutlicher Trend zu drahtloser Sensorik ab. Derartige Sensoren arbeiten heute in der Regel mit batteriegestützter Energieversorgung, mit dem Nachteil einer begrenzten Lebensdauer. Zur Umgehung dieses Nachteils werden gegenwärtig verschiedene Ansätze zur Energieversorgung aus der Umgebung untersucht. Dabei favorisiert man folgende Quellen: Licht, Wärme, mechanische Schwingungen und chemische Energie (vgl. Woias, P., "Micro energy harvesting - a novel supply concept for distributed and embedded microsystems", Mikrosystemtechnik Kongress 2005, 10.-12.10.05, Freiburg). ABB stellt alternativ das WISA-Konzept (Wireless Interface to Sensors and Actuators) für drahtfreie Näherungsschalter vor (vgl. ABB, "Schaffen Sie sich neue Freiheiten - Das neue Installationskonzept mit drahtfreien Näherungsschaltern", Firmenschrift). Dabei werden die drahtlosen Sensoren elektromagnetisch durch Primärspulen versorgt. Die Notwendigkeit, durch derartige Primärspulen um den Sensor ein Feld bereitzustellen, stellt jedoch einen hohen Aufwand dar und begrenzt den Einsatz auf fixe Fertigungszellen.
  • US 33378801 offenbart einen Spannungsdetektor.
  • Der Erfindung liegt die Aufgabe zugrunde, die Überwachung einer Messgröße auf möglichst kostengünstige Weise zu ermöglichen.
  • Diese Aufgabe wird bei einem Sensor der eingangs genannten Art dadurch gelöst, dass der Sensor einen Energiegenerator aufweist, der zur Energieerzeugung mittels der Messgröße für die Energieversorgung des Sensors vorgesehen ist.
  • Diese Aufgabe wird ferner bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass als Sensor ein erfindungsgemäßer Sensor verwendet wird.
  • Durch die erfindungsgemäße gleichzeitige Nutzung der Messgröße zur Energiegewinnung stellt der Energiegenerator dabei gleichzeitig den Messwandler dar, ein Messwandler im eigentlichen Sinne entfällt. Die Eigenschaften des Energiegenerators bestimmen die Art der Messgröße (bzw. umgekehrt). Das Maß für die Messgröße ist die im Energiegenerator erzeugte Energie. Der Sensor arbeitet nur, wenn die Messgröße überhaupt vorhanden ist. Übersteigen die Messgröße und damit die erzeugte Energie einen festgelegten Schwellwert, so wird ein Signal ausgegeben. Die dazu nötige Mindestenergie wurde vom Energiegenerator durch Wandlung aus der Messgröße erzeugt.
  • Die Erfindung kann für alle Messgrößen eingesetzt werden, die auch eine Energieerzeugung erlauben. Da der eigentliche Messwandler entfällt, ist der erfindungsgemäße Sensor einfacher aufgebaut als ein konventioneller Sensor. Dies führt zu niedrigeren Kosten und einer besseren Miniaturisierbarkeit. Die Energieversorgung ist erfindungsgemäß autark, es ist keine Verdrahtung nötig. Gegenüber batteriebetriebenen drahtlosen Systemen entfällt der Batteriewechsel. Trotz autarker Energiegewinnung aus der Umgebung ist eine hohe Zuverlässigkeit garantiert, da die zu messende Größe auch die Energie für den Sensor bereitstellt. Wenn die Messgröße vorhanden ist, erzeugt der Sensor Energie und kann arbeiten.
  • Derartige erfindungsgemäße Sensoren sind damit unter Kosten- und Zuverlässigkeitsaspekten zum breiten Einsatz oder an unzugänglichen Stellen geeignet. Zielapplikationen sind beispielsweise MP&F- (Maintenance Products & Functions-) Alarm-Sensoren zur Überwachung von Fehlzuständen wie z.B. ein zu heiß laufender Motor oder eine zu stark schwingende Anlage. In einer vorteilhaften Form der Ausführung ist die Ausgabeeinheit zur drahtlosen Kommunikation des Sensorsignals vorgesehen. Diese kann z.B. über Funk oder mittels optischer Freiraumkommunikation erfolgen.
  • In einer weiteren vorteilhaften Form der Ausführung ist die Ausgabeeinheit zur optischen Anzeige des Sensorsignals vorgesehen. Dies kann z.B. durch Umschalten eines elektrochromen Displays erfolgen.
  • In einer weiteren vorteilhaften Form der Ausführung ist das Sensorsignal ein Alarmsignal. In diesem Fall kann eine optische Anzeige beispielsweise lediglich aus einem optischen A-larmzeichen bestehen.
  • In einer weiteren vorteilhaften Form der Ausführung weist das Sensorsignal den aktuellen Wert der Messgröße auf. Hierdurch kann nicht nur angezeigt werden, dass der zu überwachende Schwellwert von der Messgröße überschritten wurde, sondern auch ihr derzeitiger Wert.
  • In einer weiteren vorteilhaften Form der Ausführung ist der Schwellwert durch Eigenschaften des Energiegenerators eingestellt. Dies kann z.B. dadurch erreicht werden, dass der Energiegenerator erst ab Erreichen des Schwellwertes durch die Messgröße genug Energie zur Ausgabe des Sensorsignals erzeugt oder überhaupt erst ab Erreichen des Schwellwertes durch die Messgröße beginnt, Energie zu erzeugen. Ein anschauliches Beispiel für den letztgenannten Fall ist z.B. durch Anpassung von Bandkantenabständen in Solarzellen realisierbar.
  • In einer weiteren vorteilhaften Form der Ausführung weist der Sensor eine Kontrolleinheit auf, die zur Überwachung der Überschreitung des Schwellwertes durch die Messgröße vorgesehen ist.
  • In einer weiteren vorteilhaften Form der Ausführung ist eine Mittelung der Messgröße über Zeitintervalle mittels des Energiegenerators durchführbar, wobei die Zeitintervalle durch Eigenschaften des Energiegenerators eingestellt sind. D.h. die Dynamik des Energiegenerators legt die Mittelung fest. Ein schwach gedämpfter Energiegenerator kann der Messgröße direkt folgen und liefert den Momentanwert der Messgröße. Bei geringerer Dynamik wirkt der Energiegenerator als Tiefpass, und es wird ein gemittelter Wert gemessen.
  • In einer weiteren vorteilhaften Form der Ausführung weist der Sensor einen Energiespeicher auf, der zur Energieversorgung der Ausgabeeinheit vorgesehen ist. Hierdurch kann das Sensorsignal auch dann ausgegeben werden, wenn die vom Energiegenerator erzeugte Energie andernfalls nicht ausreichen würde, die Ausgabeeinheit zu betreiben. Dabei wird der Energiespeicher entweder vom Energiegenerator während des Betriebes des Sensors geladen, oder der Energiespeicher befindet sich bereits bei Inbetriebnahme des Sensors in einem vorgeladenen Zustand.
  • In einer weiteren vorteilhaften Form der Ausführung ist der Schwellwert durch einen bestimmten Inhalt des Energiespeichers gegeben. In dieser Ausführungsform entspricht der Schwellwert gewissermaßen einem zeitlichen Integral der Messgröße, d.h. es wird erst dann das Sensorsignal ausgegeben, wenn die durch die Messgröße kumulativ erzeugte Energie den Schwellwert erreicht hat. Dies kann insbesondere dann von Vorteil sein, wenn es, wie beispielsweise in der Lebensmittelindustrie, eher auf die Lichtmenge als auf die Strahlungsintensität ankommt, oder wie in nuklearen Gefahrenbereichen auf die Strahlungsmenge.
  • Weitere vorteilhafte Ausführungsformen sind je nach Art der zu überwachenden Messgröße zu nennen. Die Erfindung kann für alle Messgrößen eingesetzt werden, die auch eine Energieerzeugung - z.B. Wechselgrößen oder Gradienten - erlauben. Dies umfasst z.B. Helligkeitssensoren, Temperatursensoren, Sensoren für mechanische Schwingungen oder Auslenkungen, Sensoren für Radioaktivität oder chemische Sensoren. Bei Helligkeitssensoren ist der Energiegenerator z.B. durch Solarzellen realisierbar. Bei Temperatursensoren sind z.B. Generatoren unter Nutzung des Seebeck-Effektes einsetzbar. Sensoren für mechanische Schwingungen nutzen häufig das elektrodynamische, piezoelektrische oder kapazitive Wandlerprinzip. Radioaktivität lasst sich durch direktes Herausschlagen von Elektronen aus z.B. dem Si-Gitter wandeln oder durch Wandlung in thermische und dann in elektrische Energie. Chemische Sensoren können Brennstoffzellen nutzen, die beispielsweise mit Methanol aus der Umwelt arbeiten und dieses damit detektieren, oder chemische Trockenbatterien, mit denen Feuchtigkeit detektiert werden kann.
  • Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:
  • FIG 1
    den grundsätzlichen Aufbau einer vorteilhaften Ausführungsform des erfindungsgemäßen Sensors,
    FIG 2
    eine praktische Realisierung des erfindungsgemäßen Prinzips anhand einer Schwingungsüberwachung,
    FIG 3
    die Abhängigkeit des Ausgangssignals des Energiegenerators von den Eigenschaften des Energiegenerators.
  • FIG 1 zeigt den grundsätzlichen Aufbau einer vorteilhaften Ausführungsform des erfindungsgemäßen Sensors 1 mit Energiegenerator 2, Kontrolleinheit 3, Ausgabeeinheit 4 und Energiespeicher 5. Die Messgröße M - z.B. die Temperatur, mechanische Schwingungen, Licht, radioaktive Strahlung, chemische Energie, Feuchtigkeit - wirkt auf den dazu passenden Energiegenerator 2 und wird dort proportional in elektrische Energie gewandelt und im Energiespeicher 5 zwischengespeichert. Der Energiegenerator 2 dient also gleichzeitig als Messwandler. Die im Energiespeicher 5 gespeicherte Energie wird von der Kontrolleinheit 3 überwacht. Überschreitet die erzeugte Energie und damit die kumulative Messgröße M einen Schwellwert, so wird die im Energiespeicher 5 befindliche Energie benutzt, um mittels der Ausgabeeinheit 4 drahtlos ein Alarmsignal abzusetzen oder z.B. durch Umschalten eines elektrochromen Displays optisch anzuzeigen.
  • FIG 2 zeigt eine praktische Realisierung des erfindungsgemäßen Prinzips anhand einer Schwingungsüberwachung. Der Energiegenerator 2 ist so gestaltet, dass er mechanische Schwingungsenergie in elektrische Energie wandelt. Bekannte derartige Energiegeneratoren 2 nutzen das elektrodynamische, piezoelektrische oder kapazitive Wandlerprinzip. Der Energiegenerator 2 ist dabei so zu gestalten, dass die erzeugte Energie proportional zur Messgröße M, also in diesem Fall der Schwingung, ist. Die auftretenden Amplituden der mechanischen Schwingung erzeugen entsprechend ein elektrisches Ausgangssignal. Dabei bestimmt das konkrete Wandlungsprinzip die Art der Messgröße M. Ein kapazitiver Energiegenerator 2 beispielsweise generiert aus der Schwingung Umladeströme. Diese sind proportional zur Änderung der Auslenkung, also der Schwinggeschwindigkeit. Dies ist damit auch die überwachte Messgröße M. Überschreitet das von der Kontrolleinheit 3 überwachte Ausgangssignal einen Schwellwert, so wird mit der im Energiespeicher 5 befindlichen Energie ein Alarmsignal mittels der Ausgabeeinheit 4 drahtlos abgesetzt. Ein derartiger Schwingungssensor 1 ist als Lagerüberwachung für einfache Maschinen wie z.B. Elektromotoren 6 einsetzbar.
  • FIG 3 zeigt die Abhängigkeit des Ausgangssignals des Energiegenerators 2 von den Eigenschaften des Energiegenerators 2. Oben in der Figur ist der zeitliche Verlauf der Messgröße M zu sehen, aus der sich, je nach der eingestellten Dynamik des Energiegenerators 2 unterschiedliche Ausgangssignale ergeben. Ein Energiegenerator 2 mit hoher Dynamik (schwacher Dämpfung) kann der Messgröße M zeitlich direkt folgen (unten links), ein Energiegenerator 2 mit niedriger Dynamik (hoher Dämpfung) wirkt hingegen als Tiefpass und glättet die Messgröße M (unten rechts). Die Dynamik des Energiegenerators 2 legt also die zeitliche Mittelung der Messgröße M fest.
  • Zusammenfassend betrifft die Erfindung einen Sensor zur Überwachung einer Messgröße mit einer Ausgabeeinheit für ein Sensorsignal, wobei das Sensorsignal ab Überschreitung eines Schwellwertes durch die Messgröße zur Ausgabe vorgesehen ist. Der Erfindung liegt die Aufgabe zugrunde, einen einfachen und kostengünstigen Schwellwertsensor anzugeben, der vollständig drahtlos und trotzdem zuverlässig in Bezug auf Kommunikation und Energiegewinnung arbeitet. Diese Aufgabe wird dadurch gelöst, dass der Sensor einen Energiegenerator aufweist, der zur Energieerzeugung mittels der Messgröße für die Energieversorgung des Sensors vorgesehen ist. Durch die erfindungsgemäße gleichzeitige Nutzung der Messgröße zur Energiegewinnung stellt der Energiegenerator dabei gleichzeitig den Messwandler dar, ein Messwandler im eigentlichen Sinne entfällt. Das Maß für die Messgröße ist die im Energiegenerator erzeugte Energie. Der Sensor arbeitet nur, wenn die Messgröße überhaupt vorhanden ist. Die Erfindung kann für alle Messgrößen eingesetzt werden, die auch eine Energieerzeugung erlauben. Die Energieversorgung ist erfindungsgemäß autark, es ist keine Verdrahtung nötig. Trotz autarker Energiegewinnung aus der Umgebung ist eine hohe Zuverlässigkeit garantiert, da die zu messende Größe auch die Energie für den Sensor bereitstellt.

Claims (22)

  1. Sensor (1) zur Überwachung einer Messgröße (M) mit einer Ausgabeeinheit (4) für ein Sensorsignal, wobei das Sensorsignal ab Überschreitung eines Schwellwertes durch die Messgröße (M) zur Ausgabe vorgesehen ist, dadurch gekennzeichnet, dass der Sensor einen Energiegenerator (2) aufweist, der zur Energieerzeugung mittels der Messgröße (M) für die Energieversorgung des Sensors (1) vorgesehen ist.
  2. Sensor nach Anspruch 1, wobei die Ausgabeeinheit (4) zur drahtlosen Kommunikation des Sensorsignals vorgesehen ist.
  3. Sensor nach Anspruch 1 oder 2, wobei die Ausgabeeinheit (4) zur optischen Anzeige des Sensorsignals vorgesehen ist.
  4. Sensor nach einem der vorhergehenden Ansprüche, wobei das Sensorsignal ein Alarmsignal ist.
  5. Sensor nach einem der vorhergehenden Ansprüche, wobei das Sensorsignal den aktuellen Wert der Messgröße (M) aufweist.
  6. Sensor nach einem der vorhergehenden Ansprüche, wobei der Schwellwert durch Eigenschaften des Energiegenerators (2) eingestellt ist.
  7. Sensor nach einem der vorhergehenden Ansprüche, wobei der Sensor (1) eine Kontrolleinheit (3) aufweist, die zur Überwachung der Überschreitung des Schwellwertes durch die Messgröße (M) vorgesehen ist.
  8. Sensor nach einem der vorhergehenden Ansprüche, wobei eine Mittelung der Messgröße (M) über Zeitintervalle mittels des Energiegenerators (2) durchführbar ist, wobei die Zeitintervalle durch Eigenschaften des Energiegenerators (2) eingestellt sind.
  9. Sensor nach einem der vorhergehenden Ansprüche, wobei der Sensor (1) einen Energiespeicher (5) aufweist, der zur Energieversorgung der Ausgabeeinheit (4) vorgesehen ist.
  10. Sensor nach Anspruch 9, wobei der Schwellwert durch einen bestimmten Inhalt des Energiespeichers (5) gegeben ist.
  11. Sensor nach einem der vorhergehenden Ansprüche, wobei der Energiegenerator (2) als Solarzelle ausgeführt ist.
  12. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) als elektrodynamischer Generator ausgeführt ist.
  13. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) als piezoelektrischer Generator ausgeführt ist.
  14. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) als kapazitiver Generator ausgeführt ist.
  15. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) als thermoelektrischer Generator ausgeführt ist.
  16. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) als Brennstoffzelle ausgeführt ist.
  17. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) als chemische Trockenbatterie ausgeführt ist.
  18. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) zur Nutzung von durch radioaktive Strahlung aus einem Halbleitergitter herausgeschlagenen Elektronen vorgesehen ist.
  19. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) zur Nutzung von durch radioaktive Strahlung erzeugte Wärme zur Wandlung in elektrische Energie vorgesehen ist.
  20. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) zur Nutzung von elektrischen und/oder magnetischen Wechselfeldern zur Energieerzeugung vorgesehen ist.
  21. Sensor nach einem der Ansprüche 1 bis 10, wobei der Energiegenerator (2) zur Nutzung von Gradientenfeldern zur Energieerzeugung vorgesehen ist.
  22. Verfahren zur Überwachung einer Messgröße (M) mittels eines Sensors (1) mit einer Ausgabeeinheit (4) für ein Sensorsignal, wobei das Sensorsignal ab Überschreitung eines Schwellwertes durch die Messgröße (M) zur Ausgabe vorgesehen ist, dadurch gekennzeichnet, dass als Sensor (1) ein Sensor (1) nach einem der Ansprüche 1 bis 21 verwendet wird.
EP06830155A 2005-12-14 2006-11-28 Energiegenerator als alarmsensor Revoked EP1960979B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005059759A DE102005059759A1 (de) 2005-12-14 2005-12-14 Energiegenerator als Alarmsensor
PCT/EP2006/069005 WO2007068585A1 (de) 2005-12-14 2006-11-28 Energiegenerator als alarmsensor

Publications (2)

Publication Number Publication Date
EP1960979A1 EP1960979A1 (de) 2008-08-27
EP1960979B1 true EP1960979B1 (de) 2012-01-11

Family

ID=37872422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06830155A Revoked EP1960979B1 (de) 2005-12-14 2006-11-28 Energiegenerator als alarmsensor

Country Status (4)

Country Link
EP (1) EP1960979B1 (de)
AT (1) ATE541278T1 (de)
DE (1) DE102005059759A1 (de)
WO (1) WO2007068585A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008038875B3 (de) 2008-08-13 2010-01-28 Abb Technology Ag Temperaturfühler für eine prozesstechnische industrielle Anlage
DE202009018134U1 (de) 2009-09-01 2011-02-17 Abb Technology Ag Thermometer (II)
DE202009018135U1 (de) 2009-09-01 2011-02-17 Abb Technology Ag Thermometer (I)
DE102009055401A1 (de) * 2009-12-30 2011-07-07 Deutsche Post AG, 53113 Sensormodul zur Sollwertüberwachung einer Messgröße und zugehöriges Verfahren
DE102011011824A1 (de) * 2011-02-19 2012-08-23 Volkswagen Ag Hubzahlsensor
CN102998050B (zh) * 2011-09-19 2014-12-31 珠海三德艺电子有限公司 多功能工业压力表及其控制方法
WO2021052585A1 (de) * 2019-09-19 2021-03-25 Fraba B.V. Sensornetzwerkanordnung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2476115A (en) * 1945-01-10 1949-07-12 Runbaken Julian Henry Electrical testing instrument
US3337801A (en) * 1964-03-06 1967-08-22 Alton L Rinier Hot line indicator useable with a plurality of hand tools
US3868855A (en) * 1974-01-03 1975-03-04 Frank W Murphy Manufacturer In Tachometer instrument
US6100679A (en) * 1996-09-17 2000-08-08 Tasco, Inc. Voltage indicating instrument
DE29923046U1 (de) * 1999-12-31 2000-03-23 Rademacher, Wilhelm, 46414 Rhede Sensor für eine Verdunkelungsvorrichtung und Verdunkelungsanlage
DE20107112U1 (de) * 2001-04-25 2001-07-05 Abb Patent Gmbh, 68309 Mannheim Einrichtung zur Energieversorgung von Feldgeräten
DE20107113U1 (de) * 2001-04-25 2001-07-05 Abb Patent Gmbh, 68309 Mannheim Einrichtung zur Energieversorgung von Feldgeräten
DE20107111U1 (de) * 2001-04-25 2001-07-05 Abb Patent Gmbh, 68309 Mannheim Einrichtung zur Energieversorgung von Feldgeräten
DE20107116U1 (de) * 2001-04-25 2001-07-05 Abb Patent Gmbh, 68309 Mannheim Einrichtung zur Energieversorgung von Feldgeräten
DE20107114U1 (de) * 2001-04-25 2001-07-05 Abb Patent Gmbh, 68309 Mannheim Einrichtung zur Energieversorgung von Feldgeräten
DE10326064A1 (de) * 2003-06-10 2005-01-05 Beha Innovation Gmbh Spannungsdetektor
DE202004001246U1 (de) * 2004-01-27 2004-04-08 Institut für Solare Energieversorgungstechnik Verein an der Universität Kassel e.V. Bestrahlungsstärkemessvorrichtung
DE102004049724B4 (de) * 2004-10-11 2008-02-21 Sew-Eurodrive Gmbh & Co. Kg Sensor, Antriebskomponente und Antrieb

Also Published As

Publication number Publication date
WO2007068585A1 (de) 2007-06-21
EP1960979A1 (de) 2008-08-27
ATE541278T1 (de) 2012-01-15
DE102005059759A1 (de) 2007-06-28

Similar Documents

Publication Publication Date Title
EP1960979B1 (de) Energiegenerator als alarmsensor
DE102008062815B4 (de) Feldgerät für eine prozesstechnische Anlage und Verfahren zum Versorgen des Feldgeräts
DE10309886B4 (de) Anfügesystem und anfügefähige Geräte zur Datengewinnung, Analyse und Steuerung
DE112012002663B4 (de) Endgerät, Datenübertragungssystem und Verfahren zum Aktivieren eines Endgeräts
DE112012001446B4 (de) Energiemanagementsystem und Energiemanagementverfahren
DE69005672T2 (de) Überwachung einer Batterie.
DE102014116861B4 (de) Werkzeug umfassend eine Vorrichtung zum Erfassen von Indikatoren für eine vorbeugende Instandhaltung und ein System umfassend das Werkzeug
DE102007054923A1 (de) Verfahren zum Betreiben eines Feldgerätes
DE102018204182A1 (de) Verfahren zur Überwachung eines Versorgungssystems eines Kraftfahrzeugs
DE102004049724B4 (de) Sensor, Antriebskomponente und Antrieb
DE102007017632A1 (de) Sensoranordnung
CH702344B1 (de) Steuerungssystem für Messungen bei Anlagen.
DE102014105536A1 (de) Abschirmteil
DE102019107730B4 (de) Messanordnung und Verfahren zum Betreiben einer Messanordnung
DE102006007074A1 (de) Näherungssensor
DE102010037995A1 (de) Stromversorgungsgerät und Stromversorgungssystem mit ebensolchem
DE10037911A1 (de) Vorrichtung zum Messen/Bestimmen einer physikalischen Grösse eines Mediums
DE10304396B4 (de) Elektrische Anzeige- und Prüfschaltung
EP2530809A2 (de) Elektrische Versorgungsschaltung und Verfahren zum Bereitstellen einer Versorgungsspannung
EP4031840A1 (de) Sensornetzwerkanordnung
DE102013202100B4 (de) Ansteuerungsmodul für einen Sensor
DE202015000517U1 (de) Feldgeräte für die Prozessautomatisierung
EP3565085B1 (de) Autonomes drahtloses sensorgerät mit reduziertem energieverbrauch
JP3224750U (ja) 電流監視システム及び電流出力監視装置
WO2022223350A1 (de) Überwachte feder-baugruppe sowie verfahren zu ihrer herstellung und ihrem betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAKUTH, JENS

Inventor name: SCHEIBNER, DIRK

17Q First examination report despatched

Effective date: 20081205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 541278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006010859

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: FESTO AG & CO. KG

Effective date: 20121011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502006010859

Country of ref document: DE

Effective date: 20121011

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120422

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20121130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 541278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061128

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150119

Year of fee payment: 9

R26 Opposition filed (corrected)

Opponent name: FESTO AG & CO. KG

Effective date: 20121011

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151126

Year of fee payment: 10

Ref country code: GB

Payment date: 20151109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151110

Year of fee payment: 10

Ref country code: SE

Payment date: 20151105

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502006010859

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502006010859

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006010859

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20160308

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20160308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 541278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160308

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC