EP1956599A1 - Formation of deep hollow zones and their use when manufacturing an optical recording medium - Google Patents

Formation of deep hollow zones and their use when manufacturing an optical recording medium Download PDF

Info

Publication number
EP1956599A1
EP1956599A1 EP08354009A EP08354009A EP1956599A1 EP 1956599 A1 EP1956599 A1 EP 1956599A1 EP 08354009 A EP08354009 A EP 08354009A EP 08354009 A EP08354009 A EP 08354009A EP 1956599 A1 EP1956599 A1 EP 1956599A1
Authority
EP
European Patent Office
Prior art keywords
layer
region
physical state
substrate
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08354009A
Other languages
German (de)
French (fr)
Inventor
Christophe Martinez
Alain Fargeix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1956599A1 publication Critical patent/EP1956599A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates

Definitions

  • the invention also relates to the use of such a method in the manufacture of an optical recording medium.
  • Optical recording media or discs generally comprise at least one polycarbonate substrate having raised and recessed areas, also known as Anglo-Saxon "lands” and “pits", and corresponding to data of information.
  • the substrates comprise a free face structured according to a predetermined pattern.
  • Such substrates are generally manufactured in large quantities, by injection molding, with the aid of a mold or a matrix support, also known under the name Anglo-Saxon "master disk” or “stamper".
  • One of the free faces of the matrix support is structured in a form complementary to the desired predetermined pattern for the substrates.
  • the matrix support is obtained from an original model.
  • the patent application US-2005/0045587 discloses a method for manufacturing the original model used in the manufacture of optical disks and the method of manufacturing said optical disks.
  • the original model is made from a stack comprising a substrate, for example glass or silicon, and a layer of heat-sensitive material.
  • the heat sensitive material is an antimony oxide, able to change state during a heating caused by a light exposure of said layer.
  • the free face of the heat sensitive material layer is structured, exposing certain areas of said free face to a laser beam and removing said exposed areas. Such an operation thus makes it possible to produce raised areas and recessed areas in the layer of sensitive material.
  • the original model obtained is then used to form a metal matrix disk, intended to serve as a mold during the injection molding of the optical disks.
  • the intermediate layer generally of photosensitive resin
  • the intermediate layer must undergo a high temperature curing heat treatment, so as to allow the deposition of the layer of heat-sensitive material.
  • a heat treatment causes a degradation of the photosensitivity properties of the resin, which can be harmful for its subsequent structuring.
  • insolation of the layer of heat-sensitive material can alter the properties of the intermediate layer disposed under said layer.
  • the problem of obtaining deep recessed areas arises in other areas than that of optical recording media. This is particularly the case in the field of lithography.
  • the layer of heat sensitive material is formed of a stack of two superposed sub-layers of different materials, for example copper and aluminum.
  • it is used as a mask to engrave in the substrate, small convex and concave marks.
  • the mask is then removed and the substrate thus etched is used as the original model.
  • Such a method therefore does not make it possible to obtain hollow zones deep enough to be used for the latest generations of optical recording media.
  • the aim of the invention is to easily and economically form deep recessed areas, in particular during the manufacture of optical recording media, while overcoming the drawbacks of the prior art.
  • the method comprises, before the localized treatment step, a step of forming a stack constituted by the first layer and a second layer constituted by said material in its second physical state, the selective etching step being continued until removal of the region of the second layer initially covered by the treated region of the first layer.
  • the material is a material capable of passing from a metastable thermodynamic state to a stable thermodynamic state, under the action of heat and, in particular, a phase transition material.
  • a region of the first layer is treated, from the free face of the first layer, to move said region from its initial physical state, i.e. that of the entire first layer, to another physical state. corresponding to that of the second layer.
  • a selective etching step is then performed from the free face of the first layer, to eliminate said previously treated region of the first layer.
  • the etching step is continued, through the first etched layer, until complete elimination of the region of the second layer initially covered by the treated region of the first layer.
  • the first layer then serves as a barrier layer or etching mask for the second layer.
  • the etched regions respectively of the first and second layers then form a recessed area whose depth corresponds to the sum of the thicknesses of the first and second layers.
  • Stack 2 is in the embodiment shown on the Figures 1 to 4 formed on a substrate 5, for example glass or silicon. As shown on the figure 1 the second layer 4 is disposed between the substrate 5 and the first layer 3.
  • the material constituting the first and second layers 3 and 4 is advantageously a phase transition material, for example an alloy of at least two elements selected from the group comprising germanium, antimony, tellurium, indium, selenium, bismuth, silver, gallium, tin, lead and arsenic.
  • the material will be obtained by sputtering a Ge 2 Sb 2 Te 5 target.
  • phase transition materials have the advantage of being able to pass from the amorphous phase to a crystallized phase under the action of heat.
  • This phase change is, for example, achieved by causing the heating of said material by applying to the surface of said material and in a controlled manner, a focused optical radiation such as a laser beam.
  • phase transition material is advantageously in amorphous form in the first layer 3 and in a crystallized form in the second layer 4.
  • a region 3a of the first layer 3 is exposed, in a controlled manner, to a focused optical radiation 6 from the free face 3b of said layer 3.
  • the radiation 6 causes a heating and a phase change in said region 3a.
  • the exposure of the region 3a to the focused optical radiation 6, as well as any cooling of said region 3a thus heated, are controlled in a conventional manner for those skilled in the art, to bring the region 3a to the desired phase transition.
  • the material in said region 3a is then in the same phase, a crystallized phase in the case of a phase transition material, as the second layer 4, whereas the part not exposed to the optical radiation 6 of the first layer 3 remains in the initial phase of the material, that is to say the amorphous phase in the case of a phase transition material.
  • the unexposed portion of the first layer 3 has an etchability lower than that of the exposed region 3a.
  • the physical state of the material constituting the unexposed part of the first layer 3 is insensitive to the etching used to eliminate the region 3a. So, as represented on the figure 3 the region 3a is selectively etched, for example by chemical etching, from the free face 3b of the first layer 3 while the unexposed portion of said layer 3 is retained.
  • region 3a releases the free face 4a of a region 4b of the second layer 4.
  • Said region 4b corresponds, in the second layer 4, to the portion initially covered by the region 3a of the first layer 3. It is represented on the figure 3 by the area of the second layer 4 disposed between the two dashed lines.
  • the selective etching step continues through the first layer 3 until the removal of the region 4b and the release of the portion of the free surface of the substrate 5 initially covered by the region 4b.
  • the first layer 3 serves, during the selective etching of the region 4b, barrier layer etching or etching mask. It therefore only allows the etching of the region 4b initially disposed under the region 3b, the remainder of the second layer 4, covered by the unexposed portion of the first layer 3 is preserved.
  • the elimination of the region 4b can be total or partial, depending on the desired depth for the zone in question. hollow to form.
  • the material in the crystalline phase generally has a columnar structure, making it possible to continue etching on the right side from the free face 4a.
  • the side walls which delimit the space released by the etching of the region 4b continuously extend the lateral walls delimiting the space released by the etching of the region 3a.
  • said two released spaces have an identical lateral section.
  • the depth of the hollow zone 1 corresponds to the sum of the thicknesses of the first and second layers 3 and 4 when the initial physical state of the first layer 3 is insensitive to etching.
  • Such a method advantageously makes it possible to increase the depth of the recessed areas compared with the methods according to the prior art while being easy to implement.
  • the depth of the hollow zones formed in a layer of heat-sensitive material, such as a phase transition material is limited by the reduced depth of penetration of the thermal wave caused by the optical radiation.
  • the intermediate layer according to the invention has the advantage of making the recessed area formation process easier to implement and more economical than that described in the patent application.
  • WO-2005/101398 the intermediate layer used, that is to say the second layer 4, overcomes the disadvantages of the photoresist layer described in the patent application.
  • WO-2005/101398 The fact of using an intermediate layer in the same material as that used for the initial layer, in fact facilitates the formation of the stack 2, without altering its properties.
  • the stack 2 as represented on the figure 1 is actually easy to achieve.
  • the stack 2 can be made by previously forming, on the substrate 5, the second layer 4 and then by depositing the first layer 3.
  • the second layer 4 is formed by depositing, on the substrate 5, a preliminary layer 7 having a predetermined thickness e corresponding to that desired for the second layer 4.
  • the preliminary layer 7 is formed by depositing the material intended to form the first and second layers 3 and 4, in the physical state corresponding to the desired physical state for the first layer 3.
  • the preliminary layer 7 is, for example, deposited in amorphous form.
  • the preliminary layer 7 is then processed to obtain a phase change.
  • the entire preliminary layer 7 may be subjected to heating, for example by controlled heat treatment, to obtain the phase change, for example crystallization in the case of a phase transition material.
  • a new deposit of said material in amorphous form is then produced to form the first layer 3.
  • the second layer 4 and the first layer 3 are not formed on the substrate 5 by successive deposition of two layers, but from a single deposit of a preliminary layer 7 '.
  • the preliminary layer 7 shown on the figure 5 in this case, the preliminary layer 7 'consists of the material intended to form the first and second layers 3 and 4.
  • the material forming said preliminary layer 7' is also deposited in the desired physical state for the first time.
  • Its thickness e ' is, however, greater than the thickness e of the preliminary layer 7 shown on FIG. figure 5 . This thickness e 'advantageously corresponds to the sum of the desired thicknesses for the first and second layers 3 and 4.
  • Controlled treatment is performed from the free face of the substrate 5 to pass part of the preliminary layer 7' in the second desired physical state for the second layer 4.
  • the treatment is applied to the entire surface of the preliminary layer 7 ', so that the treated portion of the preliminary layer 7' constitutes the second layer 4, the remainder of the the preliminary layer 7 'constituting the first layer 3.
  • the controlled treatment is, advantageously, a heat treatment allowing a portion of the preliminary layer 7 'to pass from an amorphous state to a crystalline state.
  • the heat treatment is, for example, carried out by applying to the preliminary layer 7 'a decreasing temperature gradient from the interface between the preliminary layer 7' and the substrate 5 to the free face of the preliminary layer 7 '.
  • Said heat treatment for example carried out by applying an optical radiation 8, makes it possible to crystallize the material over a given depth corresponding to the thickness of the second layer 4.
  • the thickness of the second layer 4 n is not limited by the application of the optical radiation 8. That being indeed applied to the entire free face of the substrate, there is no limitation in thermal penetration due to a reduced section requirement of the region to exhibit.
  • the substrate is, of course, transparent to said optical radiation 8.
  • a stack 2 comprising a first layer 3 with a thickness of 30 nm and a second layer 4 with a thickness of 50 nm has been produced according to this embodiment from a preliminary layer 7 ', for example in Ge 2 Sb 2 Te 5 amorphous and with a thickness of 80nm.
  • the crystallization of the second layer 4 is obtained by heating the preliminary layer 7 ', through the substrate 5, at 200 ° C under an inert atmosphere. The heating is carried out by insolation using a laser beam focused at the wavelength 405 nm, with a numerical aperture of 0.9 and a power of 2 mW.
  • the beam is moved on the substrate 5 with a linear velocity close to 1 m / s.
  • An etching step is then performed to form deep recessed areas in a NaOH bath at room temperature.
  • an intermediate layer 9 may be deposited before the deposition of the preliminary layer 7 ', to promote the change of state of the material constituting the preliminary layer 7'.
  • the intermediate layer 9 serves, for example, as a primer for germination of the crystals.
  • the intermediate layer 9 may, for example, be obtained by deposition of germanium nitride (GeN). It can also be used in the embodiment shown on the figure 5 before the deposition of the preliminary layer 7.
  • an upper layer 10 may be deposited on the preliminary layer 7 ', before carrying out the controlled treatment intended to form the second layer 4. Its role is to maintain the upper part of the preliminary layer 7' at a given temperature during the controlled treatment step and, for example, to promote the application of the thermal gradient between the two opposite faces of said layer 7 '.
  • the upper layer 10 is then formed of a material which is attached to the stack 2.
  • Such a method can be used more particularly during the manufacture of optical recording media, such as "Blu-Ray” discs and in particular for the production of original models.
  • MEMS electromechanical microstructures
  • microfluidics for applications in biology or chemistry.
  • the material applicable to the field of the invention is not necessarily a phase change material. It can be of any type since it is able to change physical state.
  • the material may be a sub stoichiometric oxide, such as MoO x molybdenum oxide.
  • MoO x molybdenum oxide Such a material does not change phase, but can be transformed, by heat treatment, into MoO 2 / Mo, that is to say aggregates of MoO 2 with molybdenum (Mo) residues.
  • recessed areas may be formed in a stack having a first layer MoO x and a second layer comprising MoO 2 / Mo. The second layer is, for example, obtained by heating a MoO x layer.
  • a localized heating of the first MoO x layer makes it possible to obtain at least one region in MoO 2 / Mo.
  • Selective etching is then performed, for example by HNO 3, to remove molybdenum and neighboring MoO 2 aggregates.
  • the MoO 2 / Mo region of the first layer as well as the region of the second layer disposed below said MoO 2 / Mo region of the first layer are removed to form a recessed area.
  • Other materials may also be envisaged such as Pt x , MnO x .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

The method involves processing localizing of a region of a layer (3) constituted of a material to change a state of the layer for passing the region from one physical state to another physical state. The region is selectively etched from free face of the layer, where the selective etching is performed until elimination of a region of a layer (4) initially covered by the processed region of the layer (3). Stacking (2) is formed before localizing the region of the layer (3), where the stacking is constituted by the layers.

Description

Domaine technique de l'inventionTechnical field of the invention

L'invention concerne un procédé de formation d'au moins une zone en creux comportant les étapes successives suivantes :

  • traitement localisé d'au moins une région d'une première couche constituée par un matériau apte à changer d'état physique, pour faire passer ladite région d'un premier état physique à un second état physique,
  • et gravure sélective de ladite région depuis une face libre de ladite première couche.
The invention relates to a method of forming at least one hollow zone comprising the following successive steps:
  • localized treatment of at least one region of a first layer constituted by a material able to change physical state, for passing said region from a first physical state to a second physical state,
  • and selectively etching said region from a free face of said first layer.

L'invention concerne également l'utilisation d'un tel procédé lors de la fabrication d'un support d'enregistrement optique.The invention also relates to the use of such a method in the manufacture of an optical recording medium.

État de la techniqueState of the art

Les supports ou disques d'enregistrement optique comportent généralement au moins un substrat en polycarbonate comportant des zones en relief et en creux, également connues sous les noms anglo-saxons de « lands » et de « pits », et correspondant à des données d'information. Ainsi, les substrats comportent une face libre structurée selon un motif prédéterminé.Optical recording media or discs generally comprise at least one polycarbonate substrate having raised and recessed areas, also known as Anglo-Saxon "lands" and "pits", and corresponding to data of information. Thus, the substrates comprise a free face structured according to a predetermined pattern.

De tels substrats sont généralement fabriqués en grande quantité, par moulage par injection, à l'aide d'un moule ou d'un support matrice, également connu sous le nom anglo-saxon de « master disk » ou de « stamper ». Une des faces libres du support matrice est structurée sous une forme complémentaire au motif prédéterminé désiré pour les substrats. Le support matrice est obtenu à partir d'un modèle original. À titre d'exemple, la demande de brevet US-A-2005/0045587 décrit un procédé permettant de fabriquer le modèle original utilisé lors de la fabrication de disques optiques ainsi que le procédé de fabrication desdits disques optiques. Le modèle original est réalisé à partir d'un empilement comportant un substrat, par exemple en verre ou en silicium, et une couche en matériau sensible à la chaleur. Le matériau sensible à la chaleur est un oxyde d'antimoine, apte à changer d'état lors d'un échauffement provoqué par une exposition lumineuse de ladite couche. La face libre de la couche en matériau sensible à la chaleur est structurée, en exposant certaines zones de ladite face libre à un faisceau laser et en éliminant lesdites zones exposées. Une telle opération permet, ainsi, de réaliser des zones en relief et des zones en creux dans la couche en matériau sensible. Le modèle original obtenu est, ensuite, utilisé pour former un disque matrice métallique, destiné à servir de moule lors de la fabrication par moulage par injection des disques optiques.Such substrates are generally manufactured in large quantities, by injection molding, with the aid of a mold or a matrix support, also known under the name Anglo-Saxon "master disk" or "stamper". One of the free faces of the matrix support is structured in a form complementary to the desired predetermined pattern for the substrates. The matrix support is obtained from an original model. For example, the patent application US-2005/0045587 discloses a method for manufacturing the original model used in the manufacture of optical disks and the method of manufacturing said optical disks. The original model is made from a stack comprising a substrate, for example glass or silicon, and a layer of heat-sensitive material. The heat sensitive material is an antimony oxide, able to change state during a heating caused by a light exposure of said layer. The free face of the heat sensitive material layer is structured, exposing certain areas of said free face to a laser beam and removing said exposed areas. Such an operation thus makes it possible to produce raised areas and recessed areas in the layer of sensitive material. The original model obtained is then used to form a metal matrix disk, intended to serve as a mold during the injection molding of the optical disks.

Depuis l'apparition du mode de stockage des données sur des supports d'enregistrement optique, notamment sur des supports de type disque compact (CD ou « Compact Disc »), les dimensions des motifs à inscrire ont été réduites à plusieurs reprises. Or, pour une des dernières générations de supports d'enregistrement optique comprenant les supports optiques utilisant un laser bleu, plus connu sous le nom de disques « Blu-Ray », les développements récents tendent vers la formation de zones en creux dans le substrat plus profondes que pour les supports habituels. La profondeur envisagée pour les zones en creux des disques « Blu-Ray » est d'environ 80nm pour les mémoires à lecture seule (également appelées ROM ou « Read Only Memory ») alors que, pour les disques enregistrables une fois (ou disques de type R) et les disques réinscriptibles (ou disques RW), elle est d'environ 40nm. Les méthodes classiques pour fabriquer les modèles pour supports d'enregistrement optique, telles que celle décrite, par exemple, dans la demande de brevet US-A-2005/0045587 , ne permettent pas d'obtenir des zones en relief présentant un tel niveau de profondeur. Le changement de phase provoqué par échauffement est effectivement limité au niveau de la surface de la couche en matériau sensible à la chaleur et ne permet pas une structuration profonde de ladite couche. L'épaisseur de la couche en matériau sensible à la chaleur est souvent calculée de manière à optimiser la réponse thermique du matériau. Or, comme les régions à insoler doivent généralement présenter une faible section, cette réponse est limitée en profondeur de pénétration. Une grande profondeur de pénétration thermique supposerait, en effet, un élargissement important de la largeur de la zone à insoler ainsi qu'un allongement de la durée d'insolation ce qui contribue également à un élargissement des zones insolées.Since the appearance of the data storage mode on optical recording media, in particular on compact disc (CD or "Compact Disc") type media, the dimensions of the reasons to register have been reduced several times. However, for one of the latest generation of optical recording media comprising optical media using a blue laser, better known as "Blu-Ray" discs, recent developments tend towards the formation of hollow areas in the substrate more deep than for the usual media. The depth envisaged for the recessed areas of "Blu-Ray" discs is about 80nm for read-only memories (also called ROMs or "Read Only Memory") whereas for recordable discs once (or discs of type R) and rewritable discs (or RW discs), it is about 40nm. Conventional methods for making models for optical recording media, such as that described, for example, in the patent application US-2005/0045587 , do not allow to obtain raised areas having such a depth level. The phase change caused by heating is effectively limited at the surface of the layer of heat sensitive material and does not allow deep structuring of said layer. The thickness of the heat-sensitive material layer is often calculated to optimize the thermal response of the material. However, as the regions to be insolated must generally have a small section, this response is limited in depth of penetration. A great depth of thermal penetration would suppose, indeed, a significant widening of the width of the zone to be insolated as well as an extension of the duration of insolation which also contributes to an enlargement of the insolated zones.

Dans la demande de brevet WO-A-2005/101398 , il a été proposé d'augmenter la profondeur des zones en creux en disposant, entre la couche en matériau sensible à la chaleur et le substrat, une couche intermédiaire destinée à être structurée pour prolonger les zones en creux formées dans la couche en matériau sensible à la chaleur. La couche en matériau sensible à la chaleur est alors utilisée comme masque pour l'insolation. Ainsi, la structuration de la couche intermédiaire est réalisée à travers la couche en matériau sensible à la chaleur, elle-même structurée. Les régions libres du substrat, c'est-à-dire les régions du substrat coïncidant avec les zones en creux formées dans la couche en matériau sensible à la chaleur et dans la couche intermédiaire, peuvent aussi être gravées, afin d'augmenter encore la profondeur des zones en creux. Dans ce cas, la couche en matériau sensible à la chaleur forme un masque de gravure pour le substrat.In the patent application WO-2005/101398 it has been proposed to increase the depth of the recessed areas by arranging, between the layer of heat-sensitive material and the substrate, an intermediate layer intended to be structured to extend the recessed areas formed in the layer of sensitive material. in the heat. The layer of heat-sensitive material is then used as a mask for insolation. Thus, the structuring of the intermediate layer is carried out through the layer of heat-sensitive material, itself structured. The free regions of the substrate, i.e. the regions of the substrate coinciding with the recessed areas formed in the layer of heat-sensitive material and in the intermediate layer, may also be etched to further increase the depth of recessed areas. In this case, the layer of heat-sensitive material forms an etching mask for the substrate.

Un tel procédé permet d'obtenir des zones en creux plus profondes que les procédés classiques. Cependant, il présente au moins deux inconvénients majeurs. Tout d'abord, la couche intermédiaire, généralement en résine photosensible, doit subir un traitement thermique de durcissement à haute température, de manière à permettre le dépôt de la couche en matériau sensible à la chaleur. Or, un tel traitement thermique provoque une dégradation des propriétés de photosensibilité de la résine, ce qui peut être nuisible pour sa structuration ultérieure. De même, l'insolation de la couche en matériau sensible à la chaleur peut altérer les propriétés de la couche intermédiaire disposée sous ladite couche.Such a method makes it possible to obtain deeper recessed areas than conventional methods. However, it has at least two major disadvantages. Firstly, the intermediate layer, generally of photosensitive resin, must undergo a high temperature curing heat treatment, so as to allow the deposition of the layer of heat-sensitive material. However, such a heat treatment causes a degradation of the photosensitivity properties of the resin, which can be harmful for its subsequent structuring. Similarly, insolation of the layer of heat-sensitive material can alter the properties of the intermediate layer disposed under said layer.

De manière plus générale, le problème lié à l'obtention de zones en creux profondes se pose dans d'autres domaines que celui des supports d'enregistrement optique. C'est notamment le cas dans le domaine de la lithographie.More generally, the problem of obtaining deep recessed areas arises in other areas than that of optical recording media. This is particularly the case in the field of lithography.

Dans la demande de brevet US-2004/0209199 , la couche en matériau sensible à la chaleur est formée d'un empilement de deux sous-couches superposées en matériaux distincts, par exemple en cuivre et en aluminium. Cependant, une fois structurée, elle est utilisée comme masque pour graver dans le substrat, des petites marques convexes et concaves. Le masque est, ensuite, retiré et le substrat ainsi gravé est utilisé comme modèle original. Une telle méthode ne permet pas donc pas d'obtenir des zones en creux suffisamment profondes pour être employée pour les dernières générations de supports d'enregistrement optique.In the patent application US-2004/0209199 the layer of heat sensitive material is formed of a stack of two superposed sub-layers of different materials, for example copper and aluminum. However, once structured, it is used as a mask to engrave in the substrate, small convex and concave marks. The mask is then removed and the substrate thus etched is used as the original model. Such a method therefore does not make it possible to obtain hollow zones deep enough to be used for the latest generations of optical recording media.

Objet de l'inventionObject of the invention

L'invention a pour but de former facilement et économiquement des zones en creux profondes en particulier lors de la fabrication de supports d'enregistrement optique, tout en remédiant aux inconvénients de l'art antérieur.The aim of the invention is to easily and economically form deep recessed areas, in particular during the manufacture of optical recording media, while overcoming the drawbacks of the prior art.

Selon l'invention, ce but est atteint par les revendications annexées.According to the invention, this object is achieved by the appended claims.

Plus particulièrement, ce but est atteint par le fait que le procédé comporte, avant l'étape de traitement localisé, une étape de formation d'un empilement constitué par la première couche et une seconde couche constituée par ledit matériau dans son second état physique, l'étape de gravure sélective étant poursuivie jusqu'à élimination de la région de la seconde couche initialement recouverte par la région traitée de la première couche.More particularly, this object is achieved by the fact that the method comprises, before the localized treatment step, a step of forming a stack constituted by the first layer and a second layer constituted by said material in its second physical state, the selective etching step being continued until removal of the region of the second layer initially covered by the treated region of the first layer.

Plus particulièrement, le matériau est un matériau apte à passer d'un état thermodynamique métastable à un état thermodynamique stable, sous l'action de la chaleur et, en particulier, un matériau à transition de phase.More particularly, the material is a material capable of passing from a metastable thermodynamic state to a stable thermodynamic state, under the action of heat and, in particular, a phase transition material.

Description sommaire des dessinsBrief description of the drawings

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :

  • les figures 1 à 4 représentent schématiquement, en coupe, différentes étapes d'un mode particulier de réalisation selon l'invention d'une zone en creux profonde dans un empilement.
  • les figures 5 à 7 représentent schématiquement, en coupe, différentes étape d'un mode de réalisation dudit empilement.
  • les figures 8 à 10 représentent schématiquement, en coupe, différentes étapes d'un autre mode de réalisation dudit empilement.
  • les figures 11 et 12 représentent schématiquement, en coupe, des variantes de réalisation de l'empilement utilisé lors de la formation de zones en creux profondes.
Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
  • the Figures 1 to 4 schematically represent, in section, different steps of a particular embodiment according to the invention of a deep hollow zone in a stack.
  • the Figures 5 to 7 schematically represent, in section, different steps of an embodiment of said stack.
  • the Figures 8 to 10 schematically represent, in section, different steps of another embodiment of said stack.
  • the Figures 11 and 12 schematically represent, in section, alternative embodiments of the stack used in the formation of deep recessed areas.

Description de modes particuliers de réalisationDescription of particular embodiments

Au moins une zone en creux est formée à partir d'un empilement constitué par :

  • une première couche constituée par un matériau apte à changer d'état physique,
  • une seconde couche constituée par le même matériau que celui constituant la première couche, mais dans un état physique différent de celui de la première couche et avantageusement plus sensible à la gravure que celui de la première couche.
At least one hollow zone is formed from a stack consisting of:
  • a first layer constituted by a material able to change its physical state,
  • a second layer constituted by the same material as that constituting the first layer, but in a physical state different from that of the first layer and advantageously more sensitive to etching than that of the first layer.

Une région de la première couche est traitée, depuis la face libre de la première couche, pour faire passer ladite région de son état physique initial, c'est-à-dire celui de la totalité de la première couche, à un autre état physique correspondant à celui de la seconde couche.A region of the first layer is treated, from the free face of the first layer, to move said region from its initial physical state, i.e. that of the entire first layer, to another physical state. corresponding to that of the second layer.

Une étape de gravure sélective est, ensuite, réalisée, depuis la face libre de la première couche, pour éliminer ladite région préalablement traitée de la première couche. L'étape de gravure est poursuivie, à travers la première couche gravée, jusqu'à l'élimination complète de la région de la seconde couche initialement recouverte par la région traitée de la première couche. La première couche sert, alors, de couche barrière ou de masque à la gravure pour la seconde couche.A selective etching step is then performed from the free face of the first layer, to eliminate said previously treated region of the first layer. The etching step is continued, through the first etched layer, until complete elimination of the region of the second layer initially covered by the treated region of the first layer. The first layer then serves as a barrier layer or etching mask for the second layer.

Les régions gravées respectivement des première et seconde couches forment alors une zone en creux dont la profondeur correspond à la somme des épaisseurs des première et seconde couches.The etched regions respectively of the first and second layers then form a recessed area whose depth corresponds to the sum of the thicknesses of the first and second layers.

Les figures 1 à 4 illustrent, à titre d'exemple, un mode particulier de formation d'au moins une zone en creux 1 dans un empilement 2 constitué par :

  • une première couche 3 constituée par un matériau présent dans un premier état physique, par exemple un état thermodynamique métastable, et apte à passer, avantageusement sous l'action de la chaleur, dans un second état physique, par exemple un état thermodynamique stable,
  • et une seconde couche 4 constituée par ledit matériau dans son second état physique.
The Figures 1 to 4 illustrate, by way of example, a particular mode of forming at least one hollow zone 1 in a stack 2 constituted by:
  • a first layer 3 constituted by a material present in a first physical state, for example a metastable thermodynamic state, and capable of passing, advantageously under the action of heat, in a second physical state, for example a stable thermodynamic state,
  • and a second layer 4 constituted by said material in its second physical state.

L'empilement 2 est dans le mode de réalisation représenté sur les figures 1 à 4 formé sur un substrat 5, par exemple en verre ou en silicium. Comme représenté sur la figure 1, la seconde couche 4 est disposée entre le substrat 5 et la première couche 3.Stack 2 is in the embodiment shown on the Figures 1 to 4 formed on a substrate 5, for example glass or silicon. As shown on the figure 1 the second layer 4 is disposed between the substrate 5 and the first layer 3.

Le matériau constituant les première et seconde couches 3 et 4 est, avantageusement un matériau à transition de phase, par exemple un alliage d'au moins deux éléments choisis parmi le groupe comportant le germanium, l'antimoine, le tellure, l'indium, le sélénium, le bismuth, l'argent, le gallium, l'étain, le plomb et l'arsenic. À titre d'exemple, le matériau sera obtenu par pulvérisation d'une cible de Ge2Sb2Te5.The material constituting the first and second layers 3 and 4 is advantageously a phase transition material, for example an alloy of at least two elements selected from the group comprising germanium, antimony, tellurium, indium, selenium, bismuth, silver, gallium, tin, lead and arsenic. For example, the material will be obtained by sputtering a Ge 2 Sb 2 Te 5 target.

Les matériaux à transition de phase présentent, en effet, l'avantage de pouvoir passer de la phase amorphe à une phase cristallisée sous l'action de la chaleur. Ce changement de phase est, par exemple, réalisé en provoquant l'échauffement dudit matériau par application, à la surface dudit matériau et de manière contrôlée, d'un rayonnement optique focalisé tel qu'un faisceau laser.Indeed, the phase transition materials have the advantage of being able to pass from the amorphous phase to a crystallized phase under the action of heat. This phase change is, for example, achieved by causing the heating of said material by applying to the surface of said material and in a controlled manner, a focused optical radiation such as a laser beam.

Ainsi, le matériau à transition de phase est avantageusement sous forme amorphe dans la première couche 3 et sous une forme cristallisée dans la seconde couche 4.Thus, the phase transition material is advantageously in amorphous form in the first layer 3 and in a crystallized form in the second layer 4.

Sur la figure 2, une région 3a de la première couche 3 est exposée, de manière contrôlée, à un rayonnement optique focalisé 6 depuis la face libre 3b de ladite couche 3. Le rayonnement 6 provoque un échauffement et un changement de phase dans ladite région 3a. L'exposition de la région 3a au rayonnement optique focalisé 6, ainsi qu'un éventuel refroidissement de ladite région 3a ainsi chauffée, sont contrôlés de manière classique pour l'homme du métier, pour amener la région 3a à la transition de phase souhaitée.On the figure 2 a region 3a of the first layer 3 is exposed, in a controlled manner, to a focused optical radiation 6 from the free face 3b of said layer 3. The radiation 6 causes a heating and a phase change in said region 3a. The exposure of the region 3a to the focused optical radiation 6, as well as any cooling of said region 3a thus heated, are controlled in a conventional manner for those skilled in the art, to bring the region 3a to the desired phase transition.

Le matériau dans ladite région 3a se retrouve alors dans la même phase, une phase cristallisée dans le cas d'un matériau à transition de phase, que la seconde couche 4 tandis que la partie non exposée au rayonnement optique 6 de la première couche 3 reste dans la phase initiale du matériau, c'est-à-dire la phase amorphe dans le cas d'un matériau à transition de phase.The material in said region 3a is then in the same phase, a crystallized phase in the case of a phase transition material, as the second layer 4, whereas the part not exposed to the optical radiation 6 of the first layer 3 remains in the initial phase of the material, that is to say the amorphous phase in the case of a phase transition material.

La partie non exposée de la première couche 3 présente une aptitude à la gravure inférieure à celle de la région 3a exposée. Préférentiellement, l'état physique du matériau constituant la partie non exposée de la première couche 3 est insensible à la gravure utilisée pour éliminer la région 3a. Ainsi, comme représentée sur la figure 3, la région 3a est gravée sélectivement, par exemple par gravure chimique, depuis la face libre 3b de la première couche 3 tandis que la partie non exposée de ladite couche 3 est conservée.The unexposed portion of the first layer 3 has an etchability lower than that of the exposed region 3a. Preferably, the physical state of the material constituting the unexposed part of the first layer 3 is insensitive to the etching used to eliminate the region 3a. So, as represented on the figure 3 the region 3a is selectively etched, for example by chemical etching, from the free face 3b of the first layer 3 while the unexposed portion of said layer 3 is retained.

L'élimination de la région 3a libère la face libre 4a d'une région 4b de la seconde couche 4. Ladite région 4b correspond, dans la seconde couche 4, à la partie initialement recouverte par la région 3a de la première couche 3. Elle est représentée, sur la figure 3, par la zone de la seconde couche 4 disposée entre les deux traits en pointillés.The elimination of the region 3a releases the free face 4a of a region 4b of the second layer 4. Said region 4b corresponds, in the second layer 4, to the portion initially covered by the region 3a of the first layer 3. It is represented on the figure 3 by the area of the second layer 4 disposed between the two dashed lines.

Comme représenté sur la figure 4, l'étape de gravure sélective se poursuit à travers la première couche 3 jusqu'à l'élimination de la région 4b et la libération de la partie de la surface libre du substrat 5 initialement recouverte par la région 4b. La première couche 3 sert, pendant la gravure sélective de la région 4b, de couche barrière à la gravure ou de masque de gravure. Elle n'autorise donc que la gravure de la région 4b initialement disposée sous la région 3b, le reste de la seconde couche 4, recouvert par la partie non exposée de la première couche 3 étant préservé. L'élimination de la région 4b peut être totale ou partielle, selon la profondeur désirée pour la zone en creux à former. De plus, dans le cas d'un matériau à transition de phase, le matériau en phase cristalline présente généralement une structure colonnaire, permettant de poursuivre la gravure à flanc droit à partir de la face libre 4a. De ce fait, les parois latérales qui délimitent l'espace libéré par la gravure de la région 4b prolongent de manière continue les parois latérales délimitant l'espace libéré par la gravure de la région 3a. Ainsi, lesdits deux espaces libérés ont une section latérale identique.As shown on the figure 4 , the selective etching step continues through the first layer 3 until the removal of the region 4b and the release of the portion of the free surface of the substrate 5 initially covered by the region 4b. The first layer 3 serves, during the selective etching of the region 4b, barrier layer etching or etching mask. It therefore only allows the etching of the region 4b initially disposed under the region 3b, the remainder of the second layer 4, covered by the unexposed portion of the first layer 3 is preserved. The elimination of the region 4b can be total or partial, depending on the desired depth for the zone in question. hollow to form. Moreover, in the case of a phase transition material, the material in the crystalline phase generally has a columnar structure, making it possible to continue etching on the right side from the free face 4a. As a result, the side walls which delimit the space released by the etching of the region 4b continuously extend the lateral walls delimiting the space released by the etching of the region 3a. Thus, said two released spaces have an identical lateral section.

L'espace libéré par les régions 3a et 4b forme alors une zone en creux 1. Avantageusement, la profondeur de la zone en creux 1 correspond à la somme des épaisseurs des première et seconde couches 3 et 4 lorsque l'état physique initial de la première couche 3 est insensible à la gravure. Un tel procédé permet avantageusement d'augmenter la profondeur des zones en creux par rapport aux procédés selon l'art antérieur tout en étant facile à mettre en oeuvre. En effet, comme précédemment décrit, la profondeur des zones en creux formées dans une couche en matériau sensible à la chaleur, tel qu'un matériau à transition de phase, est limitée par la profondeur réduite de pénétration de l'onde thermique provoquée par le rayonnement optique. Or, selon l'invention, il est possible d'augmenter la profondeur des zones en creux tout en conservant une faible section d'exposition, en ajoutant une couche intermédiaire entre le substrat et la couche initiale en matériau sensible à la chaleur, capable d'être gravée dans le prolongement de la couche initiale. Par ailleurs, la couche intermédiaire selon l'invention présente l'avantage de rendre le procédé de formation des zones en creux plus facile à mettre en oeuvre et plus économique que celui décrit dans la demande de brevet WO-A-2005/101398 . En effet, avec le procédé selon l'invention, la couche intermédiaire utilisée, c'est-à-dire la seconde couche 4, remédie aux inconvénients de la couche en résine photosensible décrite dans la demande de brevet WO-A-2005/101398 . Le fait d'utiliser une couche intermédiaire dans le même matériau que celui utilisé pour la couche initiale, facilite, en effet, la formation de l'empilement 2, sans en altérer les propriétés.The space released by the regions 3a and 4b then forms a hollow zone 1. Advantageously, the depth of the hollow zone 1 corresponds to the sum of the thicknesses of the first and second layers 3 and 4 when the initial physical state of the first layer 3 is insensitive to etching. Such a method advantageously makes it possible to increase the depth of the recessed areas compared with the methods according to the prior art while being easy to implement. Indeed, as previously described, the depth of the hollow zones formed in a layer of heat-sensitive material, such as a phase transition material, is limited by the reduced depth of penetration of the thermal wave caused by the optical radiation. However, according to the invention, it is possible to increase the depth of the recessed areas while maintaining a small exposure section, by adding an intermediate layer between the substrate and the initial layer of heat-sensitive material capable of be etched in the extension of the initial layer. Furthermore, the intermediate layer according to the invention has the advantage of making the recessed area formation process easier to implement and more economical than that described in the patent application. WO-2005/101398 . Indeed, with the method according to the invention, the intermediate layer used, that is to say the second layer 4, overcomes the disadvantages of the photoresist layer described in the patent application. WO-2005/101398 . The fact of using an intermediate layer in the same material as that used for the initial layer, in fact facilitates the formation of the stack 2, without altering its properties.

L'empilement 2 tel que représenté sur la figure 1 est effectivement facile à réaliser. À titre d'exemple, comme représenté sur les figures 5 à 7, l'empilement 2 peut être réalisé en formant préalablement, sur le substrat 5, la seconde couche 4 puis en déposant la première couche 3. La seconde couche 4 est formée par dépôt, sur le substrat 5, d'une couche préliminaire 7 ayant une épaisseur e prédéterminée, correspondant à celle souhaitée pour la seconde couche 4. La couche préliminaire 7 est formée en déposant le matériau destiné à former les première et seconde couches 3 et 4, dans l'état physique correspondant à l'état physique souhaité pour la première couche 3. Ainsi, pour un matériau à transition de phase, la couche préliminaire 7 est, par exemple, déposée sous forme amorphe. La couche préliminaire 7 est, ensuite traitée pour obtenir un changement de phase. Plus particulièrement, la totalité de la couche préliminaire 7 peut être soumise à un échauffement, par exemple par traitement thermique contrôlé, pour obtenir le changement de phase, par exemple la cristallisation dans le cas d'un matériau à transition de phase. Un nouveau dépôt dudit matériau sous forme amorphe est, alors, réalisé pour former la première couche 3.The stack 2 as represented on the figure 1 is actually easy to achieve. For example, as shown on the Figures 5 to 7 the stack 2 can be made by previously forming, on the substrate 5, the second layer 4 and then by depositing the first layer 3. The second layer 4 is formed by depositing, on the substrate 5, a preliminary layer 7 having a predetermined thickness e corresponding to that desired for the second layer 4. The preliminary layer 7 is formed by depositing the material intended to form the first and second layers 3 and 4, in the physical state corresponding to the desired physical state for the first layer 3. Thus, for a phase transition material, the preliminary layer 7 is, for example, deposited in amorphous form. The preliminary layer 7 is then processed to obtain a phase change. More particularly, the entire preliminary layer 7 may be subjected to heating, for example by controlled heat treatment, to obtain the phase change, for example crystallization in the case of a phase transition material. A new deposit of said material in amorphous form is then produced to form the first layer 3.

Dans une variante de réalisation représentée sur les figures 8 à 10, la seconde couche 4 et la première couche 3 ne sont pas formées sur le substrat 5 par dépôt successif de deux couches, mais à partir d'un dépôt unique d'une couche préliminaire 7'. Comme la couche préliminaire 7 représentée sur la figure 5, la couche préliminaire 7' est, dans ce cas, constituée par le matériau destiné à former les première et seconde couches 3 et 4. Le matériau formant ladite couche préliminaire 7' est, également, déposé dans l'état physique souhaité pour la première couche 3. Son épaisseur e' est, cependant, supérieure à l'épaisseur e de la couche préliminaire 7 représentée sur la figure 5. Cette épaisseur e' correspond avantageusement à la somme des épaisseurs souhaitées pour les première et seconde couches 3 et 4. Un traitement contrôlé est réalisé depuis la face libre du substrat 5 pour faire passer une partie de la couche préliminaire 7' dans le second état physique souhaité pour la seconde couche 4. Le traitement est appliqué à la totalité de la surface de la couche préliminaire 7', de sorte que la partie traitée de la couche préliminaire 7' constitue la seconde couche 4, le reste de la couche préliminaire 7' constituant la première couche 3.In an alternative embodiment shown on the Figures 8 to 10 the second layer 4 and the first layer 3 are not formed on the substrate 5 by successive deposition of two layers, but from a single deposit of a preliminary layer 7 '. As the preliminary layer 7 shown on the figure 5 in this case, the preliminary layer 7 'consists of the material intended to form the first and second layers 3 and 4. The material forming said preliminary layer 7' is also deposited in the desired physical state for the first time. layer 3. Its thickness e 'is, however, greater than the thickness e of the preliminary layer 7 shown on FIG. figure 5 . This thickness e 'advantageously corresponds to the sum of the desired thicknesses for the first and second layers 3 and 4. Controlled treatment is performed from the free face of the substrate 5 to pass part of the preliminary layer 7' in the second desired physical state for the second layer 4. The treatment is applied to the entire surface of the preliminary layer 7 ', so that the treated portion of the preliminary layer 7' constitutes the second layer 4, the remainder of the the preliminary layer 7 'constituting the first layer 3.

Pour un matériau à transition de phase, le traitement contrôlé est, avantageusement, un traitement thermique permettant à une partie de la couche préliminaire 7' de passer d'un état amorphe à un état cristallin. Le traitement thermique est, par exemple, réalisé en appliquant à la couche préliminaire 7' un gradient de température décroissant depuis l'interface entre la couche préliminaire 7' et le substrat 5 jusqu'à la face libre de la couche préliminaire 7'. Ledit traitement thermique, par exemple réalisé par application d'un rayonnement optique 8, permet de cristalliser le matériau sur une profondeur donnée correspondant à l'épaisseur de la seconde couche 4. Dans un tel cas, l'épaisseur de la seconde couche 4 n'est pas limitée par l'application du rayonnement optique 8. Celui étant, en effet, appliqué sur la totalité de la face libre du substrat, il n'y a pas de limitation en pénétration thermique due à une exigence de section réduite de la région à exposer. Dans ce cas, le substrat est, bien entendu, transparent audit rayonnement optique 8.For a phase transition material, the controlled treatment is, advantageously, a heat treatment allowing a portion of the preliminary layer 7 'to pass from an amorphous state to a crystalline state. The heat treatment is, for example, carried out by applying to the preliminary layer 7 'a decreasing temperature gradient from the interface between the preliminary layer 7' and the substrate 5 to the free face of the preliminary layer 7 '. Said heat treatment, for example carried out by applying an optical radiation 8, makes it possible to crystallize the material over a given depth corresponding to the thickness of the second layer 4. In such a case, the thickness of the second layer 4 n is not limited by the application of the optical radiation 8. That being indeed applied to the entire free face of the substrate, there is no limitation in thermal penetration due to a reduced section requirement of the region to exhibit. In this case, the substrate is, of course, transparent to said optical radiation 8.

A titre d'exemple, un empilement 2 comportant une première couche 3 d'une épaisseur de 30 nm et d'une seconde couche 4 d'une épaisseur de 50 nm a été réalisé selon ce mode de réalisation à partir d'une couche préliminaire 7', par exemple en Ge2Sb2Te5 amorphe et d'une épaisseur de 80nm. La cristallisation de la seconde couche 4 est obtenue en chauffant la couche préliminaire 7', à travers le substrat 5, à 200°C, sous atmosphère inerte. L'échauffement est réalisé par insolation à l'aide d'un faisceau laser focalisé à la longueur d'onde 405 nm, avec une ouverture numérique de 0,9 et une puissance de 2 mW. Le faisceau est déplacé sur le substrat 5 avec une vitesse linéaire proche de 1 m/s. Une étape de gravure est ensuite réalisée pour former des zones en creux profondes dans un bain de NaOH à température ambiante.By way of example, a stack 2 comprising a first layer 3 with a thickness of 30 nm and a second layer 4 with a thickness of 50 nm has been produced according to this embodiment from a preliminary layer 7 ', for example in Ge 2 Sb 2 Te 5 amorphous and with a thickness of 80nm. The crystallization of the second layer 4 is obtained by heating the preliminary layer 7 ', through the substrate 5, at 200 ° C under an inert atmosphere. The heating is carried out by insolation using a laser beam focused at the wavelength 405 nm, with a numerical aperture of 0.9 and a power of 2 mW. The beam is moved on the substrate 5 with a linear velocity close to 1 m / s. An etching step is then performed to form deep recessed areas in a NaOH bath at room temperature.

Comme représenté sur la figure 11, une couche intermédiaire 9 peut être déposée avant le dépôt de la couche préliminaire 7', pour favoriser le changement d'état du matériau constituant la couche préliminaire 7'. Dans le cas d'un matériau à transition de phase, la couche intermédiaire 9 sert, par exemple, d'amorce à la germination des cristaux. La couche intermédiaire 9 peut, par exemple, être obtenue par dépôt de nitrure de germanium (GeN). Elle peut également être employée dans le mode de réalisation représenté sur la figure 5, avant le dépôt de la couche préliminaire 7.As shown on the figure 11 an intermediate layer 9 may be deposited before the deposition of the preliminary layer 7 ', to promote the change of state of the material constituting the preliminary layer 7'. In the case of a phase transition material, the intermediate layer 9 serves, for example, as a primer for germination of the crystals. The intermediate layer 9 may, for example, be obtained by deposition of germanium nitride (GeN). It can also be used in the embodiment shown on the figure 5 before the deposition of the preliminary layer 7.

Enfin, une couche supérieure 10 peut être déposée sur la couche préliminaire 7', avant la réalisation du traitement contrôlé destiné à former la seconde couche 4. Son rôle est de maintenir la partie supérieure de la couche préliminaire 7' à une température donnée lors de l'étape de traitement contrôlé et, par exemple, de favoriser l'application du gradient thermique entre les deux faces opposées de ladite couche 7'. La couche supérieure 10 est, alors formée d'un matériau qui est rapporté sur l'empilement 2.Finally, an upper layer 10 may be deposited on the preliminary layer 7 ', before carrying out the controlled treatment intended to form the second layer 4. Its role is to maintain the upper part of the preliminary layer 7' at a given temperature during the controlled treatment step and, for example, to promote the application of the thermal gradient between the two opposite faces of said layer 7 '. The upper layer 10 is then formed of a material which is attached to the stack 2.

Un tel procédé peut être plus particulièrement utilisé lors de la fabrication de supports d'enregistrements optique, tels que les disques « Blu-Ray » et notamment pour la fabrication de modèles originaux.Such a method can be used more particularly during the manufacture of optical recording media, such as "Blu-Ray" discs and in particular for the production of original models.

Il peut également être utilisé dans d'autres domaines nécessitant la formation de zones profondes et plus particulièrement dans des procédés de lithographie. Par exemple, il peut être employé lors de la fabrication de microstructures électro-mécanique (MEMS) ou dans le domaine de la microfluidique pour les applications de biologie ou de chimie.It can also be used in other fields requiring the formation of deep zones and more particularly in lithography processes. For example, it can be used in the manufacture of electromechanical microstructures (MEMS) or in the field of microfluidics for applications in biology or chemistry.

L'invention n'est pas limitée aux modes de réalisation décrits ci-dessus. Plus particulièrement, le matériau applicable au domaine de l'invention n'est pas nécessairement un matériau à changement de phase. Il peut être de tout type dès lors qu'il est apte à changer d'état physique. À titre d'exemple, le matériau peut être un oxyde sous stoechiométrique, tel qu'un oxyde de molybdène MoOx. Un tel matériau ne change pas de phase, mais peut se transformer, par traitement thermique, en MoO2/Mo, c'est-à-dire des agrégats de MoO2 avec des résidus de molybdène (Mo). Ainsi, des zones en creux peuvent être formées dans un empilement comportant une première couche en MoOx et une seconde couche comprenant MoO2/Mo. La seconde couche est, par exemple, obtenue en chauffant une couche en MoOx. Puis, un chauffage localisé de la première couche en MoOx permet d'obtenir au moins une région en MoO2/Mo. Une gravure sélective est, ensuite réalisée, par exemple par HN03, pour éliminer le molybdène ainsi que les agrégats de MoO2 avoisinants. La région en MoO2/Mo de la première couche ainsi que la région de la seconde couche disposée en dessous de ladite région en MoO2/Mo de la première couche sont éliminées pour former une zone en creux. D'autres matériaux peuvent également être envisagés tels que Ptx, MnOx.The invention is not limited to the embodiments described above. More particularly, the material applicable to the field of the invention is not necessarily a phase change material. It can be of any type since it is able to change physical state. For example, the material may be a sub stoichiometric oxide, such as MoO x molybdenum oxide. Such a material does not change phase, but can be transformed, by heat treatment, into MoO 2 / Mo, that is to say aggregates of MoO 2 with molybdenum (Mo) residues. Thus, recessed areas may be formed in a stack having a first layer MoO x and a second layer comprising MoO 2 / Mo. The second layer is, for example, obtained by heating a MoO x layer. Then, a localized heating of the first MoO x layer makes it possible to obtain at least one region in MoO 2 / Mo. Selective etching is then performed, for example by HNO 3, to remove molybdenum and neighboring MoO 2 aggregates. The MoO 2 / Mo region of the first layer as well as the region of the second layer disposed below said MoO 2 / Mo region of the first layer are removed to form a recessed area. Other materials may also be envisaged such as Pt x , MnO x .

Claims (9)

Procédé de formation d'au moins une zone en creux (1) comportant les étapes successives suivantes : - traitement localisé d'au moins une région (3a) d'une première couche (3) constituée par un matériau apte à changer d'état physique, pour faire passer ladite région (3a) d'un premier état physique à un second état physique, - et gravure sélective de ladite région (3) depuis une face libre de ladite première couche (3), caractérisé en ce qu'il comporte, avant l'étape de traitement localisé, une étape de formation d'un empilement (2) constitué par la première couche et une seconde couche (4) constituée par ledit matériau dans son second état physique, l'étape de gravure sélective étant poursuivie jusqu'à élimination de la région (4b) de la seconde couche (4) initialement recouverte par la région traitée (3a) de la première couche (3).A method of forming at least one hollow zone (1) comprising the following successive steps: - localized treatment of at least one region (3a) of a first layer (3) constituted by a material adapted to change physical state, for passing said region (3a) from a first physical state to a second state physical, and selectively etching said region (3) from a free face of said first layer (3), characterized in that it comprises, before the localized treatment step, a step of forming a stack (2) constituted by the first layer and a second layer (4) constituted by said material in its second physical state, selective etching step being continued until elimination of the region (4b) of the second layer (4) initially covered by the treated region (3a) of the first layer (3). Procédé selon la revendication 1, caractérisé en ce que l'empilement (2) est réalisé en formant, sur un substrat (5), la seconde couche (4), puis en déposant la première couche (3).Method according to claim 1, characterized in that the stack (2) is formed by forming, on a substrate (5), the second layer (4), then depositing the first layer (3). Procédé selon la revendication 2, caractérisé en ce que la seconde couche (4) est formée par dépôt, sur le substrat (5), dudit matériau dans son premier état physique, puis par traitement dudit matériau pour le faire passer dans son second état physique.Method according to claim 2, characterized in that the second layer (4) is formed by depositing, on the substrate (5), said material in its first physical state, then by treating said material to pass it into its second physical state . Procédé selon la revendication 1, caractérisé en ce que l'empilement (2) est formé par dépôt, sur un substrat (5) d'une couche préliminaire (7') constituée par ledit matériau dans son premier état physique, puis par traitement contrôlé, depuis la face libre du substrat (5), pour faire passer une partie de la couche préliminaire (7') constituant la seconde couche (4), dans le second état physique.Method according to claim 1, characterized in that the stack (2) is formed by depositing on a substrate (5) a preliminary layer (7 ') constituted by said material in its first physical state, then by controlled treatment from the free face of the substrate (5), to pass a part of the preliminary layer (7 ') constituting the second layer (4), in the second physical state. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce qu'une couche intermédiaire (9) favorisant le changement d'état du matériau est déposée sur le substrat (5) avant la formation de l'empilement.Process according to any one of claims 2 to 4, characterized in that an intermediate layer (9) promoting the change of state of the material is deposited on the substrate (5) before the formation of the stack. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit matériau est un matériau apte à passer d'un état thermodynamique métastable à un état thermodynamique stable, sous l'action de la chaleur.Process according to any one of Claims 1 to 5, characterized in that the said material is a material able to pass from a metastable thermodynamic state to a stable thermodynamic state, under the action of heat. Procédé selon la revendication 6, caractérisé en ce que ledit matériau est un matériau à transition de phase.The method of claim 6, characterized in that said material is a phase transition material. Procédé selon la revendication 7, caractérisé en ce que le matériau à transition de phase est un alliage d'au moins deux éléments choisis parmi le groupe comportant le germanium, l'antimoine, le tellure, l'indium, le sélénium, le bismuth, l'argent, le gallium, l'étain, le plomb et l'arsenic.Process according to Claim 7, characterized in that the phase transition material is an alloy of at least two elements chosen from the group comprising germanium, antimony, tellurium, indium, selenium and bismuth, silver, gallium, tin, lead and arsenic. Utilisation d'un procédé selon l'une quelconque des revendications 1 à 8 lors de la fabrication d'un support d'enregistrement optique.Use of a method according to any one of claims 1 to 8 in the manufacture of an optical recording medium.
EP08354009A 2007-02-08 2008-01-25 Formation of deep hollow zones and their use when manufacturing an optical recording medium Withdrawn EP1956599A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0700901A FR2912538B1 (en) 2007-02-08 2007-02-08 FORMATION OF DEEP HOLLOW AREAS AND USE THEREOF IN THE MANUFACTURE OF AN OPTICAL RECORDING MEDIUM

Publications (1)

Publication Number Publication Date
EP1956599A1 true EP1956599A1 (en) 2008-08-13

Family

ID=38426513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08354009A Withdrawn EP1956599A1 (en) 2007-02-08 2008-01-25 Formation of deep hollow zones and their use when manufacturing an optical recording medium

Country Status (7)

Country Link
US (1) US8246845B2 (en)
EP (1) EP1956599A1 (en)
JP (1) JP2008198339A (en)
KR (1) KR20080074756A (en)
CN (1) CN101241724B (en)
FR (1) FR2912538B1 (en)
TW (1) TW200842847A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115190A (en) * 1995-10-13 1997-05-02 Victor Co Of Japan Ltd Production of stamper for optical disk
US6288998B1 (en) * 1998-03-13 2001-09-11 Kabushiki Kaisha Toshiba Optical disk and manufacturing method of original optical disk
US20040209199A1 (en) 2000-03-02 2004-10-21 Koichiro Kishima Method of manufacturing recording medium, method of manufacturing recording medium manufacturing master, apparatus for manufacturing recording medium and apparatus for manufacturing recording medium manufacturing master technical field
EP1482494A2 (en) * 2003-05-28 2004-12-01 Matsushita Electric Industrial Co., Ltd. Method for producing master for optical information recording media
US20050045587A1 (en) 2003-08-26 2005-03-03 Yuuko Kawaguchi Method for producing a master disk of a recording medium, method for producing a stamper, method for producing a recording medium, master disk of a recording medium, stamper of a recording medium, and recording medium
WO2005101398A1 (en) 2004-04-15 2005-10-27 Koninklijke Philips Electronics N.V. Optical master substrate with mask layer and method to manufacture high-density relief structure
WO2006027732A2 (en) * 2004-09-07 2006-03-16 Koninklijke Philips Electronics N.V. Replication of a high-density relief structure
US20060290018A1 (en) * 2004-03-12 2006-12-28 Matsushita Electric Industrial Co., Ltd. Process for produicng stamper for direct mastering, and stamper produced by such process and optical disc

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450041A (en) * 1982-06-21 1984-05-22 The United States Of America As Represented By The Secretary Of The Navy Chemical etching of transformed structures
US5051340A (en) * 1989-06-23 1991-09-24 Eastman Kodak Company Master for optical element replication
JPH03129349A (en) * 1989-10-16 1991-06-03 New Japan Radio Co Ltd Production of photomask
JPH1097738A (en) * 1996-09-20 1998-04-14 Matsushita Electric Ind Co Ltd Production of optical information recording medium and apparatus for production
JP4106847B2 (en) * 2000-02-28 2008-06-25 ソニー株式会社 Recording medium manufacturing method, recording medium manufacturing master manufacturing method, recording medium manufacturing apparatus, and recording medium manufacturing master manufacturing apparatus
US6804189B2 (en) * 2000-04-07 2004-10-12 Tosoh Corporation Near field optical recording medium
US7113474B2 (en) * 2001-09-01 2006-09-26 Energy Conversion Devices, Inc. Increased data storage in optical data storage and retrieval systems using blue lasers and/or plasmon lenses
JP3879726B2 (en) * 2002-10-10 2007-02-14 ソニー株式会社 Manufacturing method of optical disc master and manufacturing method of optical disc
DE60334825D1 (en) * 2002-10-10 2010-12-16 Sony Corp METHOD FOR PRODUCING AN ORIGINAL FOR OPTICAL DATA CARRIER USE AND METHOD FOR PRODUCING AN OPTICAL DATA SUPPORT
US6828081B2 (en) * 2002-12-10 2004-12-07 Macronix International Co., Ltd. Method and system for lithography using phase-change material
JP2005011489A (en) * 2003-05-28 2005-01-13 Matsushita Electric Ind Co Ltd Master disk manufacturing method of optical information recording medium
JP2005100526A (en) * 2003-09-25 2005-04-14 Hitachi Ltd Production method and observation method for device
JP2006185529A (en) * 2004-12-28 2006-07-13 Sony Corp Exposure device for optical master disk
KR100630766B1 (en) * 2005-09-05 2006-10-04 삼성전자주식회사 Method for forming patterns using phase change material and method for rework thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115190A (en) * 1995-10-13 1997-05-02 Victor Co Of Japan Ltd Production of stamper for optical disk
US6288998B1 (en) * 1998-03-13 2001-09-11 Kabushiki Kaisha Toshiba Optical disk and manufacturing method of original optical disk
US20040209199A1 (en) 2000-03-02 2004-10-21 Koichiro Kishima Method of manufacturing recording medium, method of manufacturing recording medium manufacturing master, apparatus for manufacturing recording medium and apparatus for manufacturing recording medium manufacturing master technical field
EP1482494A2 (en) * 2003-05-28 2004-12-01 Matsushita Electric Industrial Co., Ltd. Method for producing master for optical information recording media
US20050045587A1 (en) 2003-08-26 2005-03-03 Yuuko Kawaguchi Method for producing a master disk of a recording medium, method for producing a stamper, method for producing a recording medium, master disk of a recording medium, stamper of a recording medium, and recording medium
US20060290018A1 (en) * 2004-03-12 2006-12-28 Matsushita Electric Industrial Co., Ltd. Process for produicng stamper for direct mastering, and stamper produced by such process and optical disc
WO2005101398A1 (en) 2004-04-15 2005-10-27 Koninklijke Philips Electronics N.V. Optical master substrate with mask layer and method to manufacture high-density relief structure
WO2006027732A2 (en) * 2004-09-07 2006-03-16 Koninklijke Philips Electronics N.V. Replication of a high-density relief structure

Also Published As

Publication number Publication date
KR20080074756A (en) 2008-08-13
CN101241724A (en) 2008-08-13
FR2912538A1 (en) 2008-08-15
TW200842847A (en) 2008-11-01
CN101241724B (en) 2012-05-23
US20080292785A1 (en) 2008-11-27
US8246845B2 (en) 2012-08-21
FR2912538B1 (en) 2009-04-24
JP2008198339A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP2007533064A (en) Optical master substrate having mask layer and method for manufacturing high-density relief structure
MXPA06011773A (en) Optical master substrate and method to manufacture high-density relief structure.
JP2008512808A (en) High density uneven structure replication
EP2097899B1 (en) Formation of deep hollow areas and use thereof in the production of an optical recording medium
EP2193403A1 (en) Method for image lithography by continuous direct writing
EP1956599A1 (en) Formation of deep hollow zones and their use when manufacturing an optical recording medium
JP4101736B2 (en) Master, stamper, optical recording medium, and ROM disk manufacturing method
EP0668584B1 (en) Method of manufacture of a master disk or optical disk
WO2005056223A1 (en) Structure body and method of producing the structure body, medium for forming structure body, and optical recording medium and method of reproducing the optical recording medium
JP2003077191A (en) Manufacturing method for multi-layered optical recording medium
EP4022393A1 (en) Method for manufacturing dissymmetrical structures made of resin
JPH0845115A (en) Production of master disk for optical disk
EP1399921B1 (en) Method for the production of an optical disk matrix
Liu et al. Nanoscale fabrication using thermal lithography technique with blue laser
FR2983767A1 (en) NANOIMPRESSION LITHOGRAPHY MOLD
WO2008040887A2 (en) Process for producing a substrate for an optical recording medium with improved stability during the archiving thereof
EP4350443A1 (en) Mould for forming metal parts by metal growth and method for manufacturing such a mould
JP2002190137A (en) Laminated body and optical disc using it
JP2005203032A (en) Method for manufacturing multilayer structure optical recording medium, and light-transmitting stamper
WO2013144354A1 (en) Method for manufacturing an information storage medium
Kurihara et al. Read-out enhancement of super-resolution near-field structures using the pit shape
WO2006079716A1 (en) Irreversible optical recording medium comprising a track with low raised zones and method for using same
JP2008217950A (en) Optical information recording medium and method for manufacturing optical information recording medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20081031

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150421