EP1956197A1 - Soupape reglable, et moteur et vehicule l utilisant - Google Patents

Soupape reglable, et moteur et vehicule l utilisant Download PDF

Info

Publication number
EP1956197A1
EP1956197A1 EP06832653A EP06832653A EP1956197A1 EP 1956197 A1 EP1956197 A1 EP 1956197A1 EP 06832653 A EP06832653 A EP 06832653A EP 06832653 A EP06832653 A EP 06832653A EP 1956197 A1 EP1956197 A1 EP 1956197A1
Authority
EP
European Patent Office
Prior art keywords
state
cam
valve
rotation shaft
engaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06832653A
Other languages
German (de)
English (en)
Inventor
Minoru Yamamoto
Yoshitaka Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of EP1956197A1 publication Critical patent/EP1956197A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/022Chain drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction

Definitions

  • the present invention relates to a variable valve system that drives a valve in an engine, and an engine device and a vehicle including the system.
  • variable valve mechanisms that control intake/exhaust have been developed in order to improve fuel consumption, reduce toxic substances in exhaust gas, and achieve high power output in a particular revolution range.
  • the amount of intake is preferably adjusted to an optimum amount in a low speed range where the revolution speed of the engine is low and in a high speed range where the revolution speed of the engine is high in order to improve the intake/exhaust efficiency.
  • Patent Document 1 proposes a valve system for an engine that has a simple and compact structure to switch between a low speed cam and a high speed cam.
  • the low speed cam is fixed to the camshaft
  • the high speed cam is provided parallel to the low speed cam and in a relatively displaceable manner to the camshaft.
  • a control shaft is provided in the camshaft so that it can reciprocate in the axial direction. The axial movement of the control shaft causes the high speed cam to protrude in the direction orthogonal to the camshaft, so that the low speed cam and the high speed cam are switched.
  • Patent Document 1 switches from the low speed cam to the high speed cam using a hydraulic actuator. More specifically, a control lever is provided to operate in response to the operation of the control shaft, and the control lever energized by a spring is moved by the hydraulic actuator. In this way, the control shaft moves in the axial direction, and the low speed cam is switched to the high speed cam.
  • the motive power generated by the engine device is transmitted to the driving wheel by the transmission mechanism, and the driving wheel is driven.
  • the valve in the engine is driven by the variable valve system.
  • the state in which the first cam member acts upon the valve and the state in which the second cam member acts upon the valve are switched according to the revolution speed of the engine. Therefore, the first cam member and the second cam member may be formed into optimum shapes for the low revolution period and the high revolution period for the engine, so that oil consumption during normal driving can be improved, toxic substances in exhaust gas can be reduced, and high power output during high speed driving can be achieved.
  • the first cam member and the second cam member are switched using the centrifugal force generated by the rotation of the rotation shaft, and therefore a driving source by an oil pressure system is not necessary. Therefore, a compact and low cost variable valve system can be provided.
  • the state in which the first cam member acts upon the valve and the state in which the second cam member acts upon the valve are switched according to the revolution speed of the engine. Therefore, the first cam member and the second cam member may be formed into optimum shapes for the low revolution period and the high revolution period for the engine, so that oil consumption during normal driving can be improved, toxic substances in exhaust gas can be reduced, and high power output during high speed driving can be achieved.
  • the first cam member and the second cam member are switched using the centrifugal force generated by the rotation of the rotation shaft, and therefore a driving source by an oil pressure system is not necessary. Therefore, a compact and low cost variable valve system can be provided.
  • variable valve system and an engine device and a vehicle including the same according to an embodiment of the present invention will be described.
  • a small size motorcycle will be described as the vehicle.
  • Fig. 1 is a schematic view of a motorcycle according to the embodiment of the invention.
  • a head pipe 3 is provided at the front end of a main body frame 6.
  • a front fork 2 provided at the head pipe 3 can swing from side to side.
  • the front wheel 1 is rotatably supported.
  • a handle 4 is attached to the upper end of the head pipe 3.
  • An engine 7 is held in the center of the main body frame 6.
  • a fuel tank 8 is provided above the engine 7, and a seat 9 is provided behind the fuel tank 8.
  • a rear arm 10 is connected to the main body frame 6 to extend behind the engine 7.
  • the rear arm 10 holds the rear wheel 11 and a rear wheel driven sprocket 12 in a rotatable manner.
  • An exhaust pipe 13 is connected to the engine 7.
  • a muffler 14 is attached to the rear end of the exhaust pipe 13.
  • a rear wheel drive sprocket 15 is attached to the drive shaft 26 of the engine 7.
  • the rear wheel drive sprocket 15 is coupled to the rear wheel driven sprocket 12 of the rear wheel 11 through a chain 16.
  • the engine 7 includes a variable valve system. Now, the variable valve system according to the embodiment will be described.
  • Fig. 2 is a view for use in illustrating the general structure of the variable valve system according to the embodiment of the invention.
  • Fig. 2 (a) is a schematic top view of the variable valve system provided in the engine 7.
  • Fig. 2 (b) is a schematic side view of the variable valve system provided in the engine 7.
  • variable valve system 200 is provided at a cylinder head 7S in the engine 7.
  • the variable valve system 200 includes a cam driven sprocket 220, an intake high cam 237, an intake low cam 241, and an exhaust cam 242.
  • crankshaft 23 rotates and a cam drive sprocket 24 provided at the crankshaft 23 rotates.
  • the turning force of the cam drive sprocket 24 is transmitted to the cam driven sprocket 220 of the variable valve system 200 through a chain 25. This rotates the variable valve system 200.
  • variable valve system 200 the intake high cam 237 and the intake low cam 2 41 are switched in response to the revolution speed of the engine 7 and changes in the revolution speed (rise and fall in the revolution speed) . This changes the lift amount of the intake valve that will be described, and the intake amount into the cylinder 20 changes accordingly.
  • Figs. 3 to 5 are perspective views for use in illustrating how the variable valve system 200 is assembled.
  • the three directions orthogonal to one another as indicated by the arrows X, Y, and Z are defined as the X-, Y-, and Z- directions, respectively.
  • the variable valve system 200 mainly includes a lock pin holding mechanism 210 (see Fig. 3 ), a cam driven sprocket 220 (see Fig. 4 ), a lock pin engaging mechanism 230 (see Fig. 4 ), a floating cam portion 235 (see Fig. 5 ), and a camshaft 240 (see Fig. 5 ).
  • Fig. 3 is a perspective view showing how the lock pin holding mechanism 210 is assembled. As shown in Fig. 3 , the lock pin holding mechanism 210 has a supporter 211 parallel to the X-Z plane. A through hole 211G is formed in the center of the supporter 211.
  • Projections 211a and 211b are formed to extend in the Y-direction from the upper and lower ends of one side of the supporter 211.
  • a spring holding piece 212a bent in a U shape on one side of the supporter 211 and a projection 211c extending in the X-direction are formed between the projections 211a and 211b.
  • Projections 211d and 211e are bent and extend in the Y-direction from the upper and lower ends of the other side of the supporter 211.
  • Aproj ection 211f extending in the X-direction and a spring holding piece 212b bent in a U shape on one side of the supporter 211 are formed between the projections 211d and 211e.
  • the projections 211a to 211f have through holes 211A to 211F, respectively and the spring holding pieces 212a and 212b have through holes 212A and 212B, respectively.
  • Recessed notches 211H and 211I are formed in the centers of the upper and lower ends of the supporter 211, respectively.
  • a weight 213 has a weight main body 213a, a plate shaped extension 213d, two tubular portions 213e, and two hook portions 213f.
  • the weight main body 213a has a substantially rectangular shape extending in the X-direction.
  • the extension 213d extends in the Y-direction from the upper surface of the weight main body 213a.
  • the two tubular portions 213e are formed in the X-direction on both ends of the extension 213d.
  • the two hook portions 213f extend to be inclined from the center of the extension 213d in the X-direction to the lower side of the extension 213d.
  • the two hook portions 213f each have their tip ends bent partially cylindrical.
  • a lock pin 214 that extends in the Y-direction is attached to the two hook portions 213f. In the vicinity of one end of the lock pin 214, a support pin 214t extending in the X-direction is formed. Since the support pin 214t is provided at the hook portion 213f, the lock pin 214 is pivotably held by the weight 213. Part of the lock pin 214 can abut against the weight main body 213a.
  • Circular grooves 214a and 214b are formed parallel to each other at the outer circumferential surface in the vicinity of the other end of the lock pin 214.
  • a rotation shaft 215 is inserted into the tubular portions 213e of the weight 213. In this way, the rotation shaft 215 can hold the weight 213 in a pivotable manner. In this state, both ends of the rotation shaft 215 are inserted into the through holes 211A and 211D of the supporter 211. In this way, the weight 213 is pivotably held on the supporter 211.
  • the lock pin 214 is provided to pass through the notch 211H of the supporter 211.
  • a weight 216 has the same structure as the weight 213. During assembly of the lock pin holding mechanism 210, the weight 216 is provided to oppose the weight 213.
  • the weight main body 216a, the extension 216d, the two tubular portions 216e and the two hook portions 216f of the weight 216 correspond to the weight main body 213a, the extension 213d, the two tubular portions 213e and the two hook portions 213f of the weight 213, respectively.
  • the lock pin 217 has the same structure as that of the lock pin 214.
  • the grooves 217a and 217b of the lock pin 217 correspond to the grooves 214a and 214b.
  • the support pin 217t corresponds to the support pin 214t.
  • a rotation shaft 218 is inserted to the tubular portions 216e of the weight 216. In this way, the rotation shaft 218 can hold the weight 216 in a pivotable manner. In this state, both ends of the rotation shaft 218 are inserted into the through holes 211B and 211E of the supporter 211. In this way, the weight 216 is held pivotably on the supporter 211.
  • the lock pin 217 is provided through the notch 211I of the supporter 211.
  • the lock pins 214 and 217 are provided orthogonally to the supporter 211. Note that the distance between the through holes 211G of the supporter 211 and the lock pin 214 is smaller than the distance between the through hole 211G and the lock pin 217.
  • Screws 219 are inserted into the two through holes 211C and 211F of the two projections 211c and 211f of the supporter 211.
  • Fig. 4 is a perspective view showing how the lock pin holding mechanism 210, the cam driven sprocket 220, and the lock pin engaging mechanism 230 are assembled.
  • the cam driven sprocket 220 is provided parallel to the X-Z plane and the lock pin engaging mechanism 230 has its axial center J arranged parallel to the Y-direction.
  • a spring S1 has one end engaged through the through hole provided at the projection (not shown) of the weight 213 and its other end engaged through the through hole 212B of the spring holding piece 212b.
  • a spring S2 has one end engaged through the through hole of the projection (not shown) of the weight 216 and its other end engaged through the through hole 212A of the spring holding piece 212a.
  • the cam driven sprocket 220 has through holes 220a to 220e.
  • the through hole 220a formed in the center of the camdriven sprocket 220 has a diameter larger than those of the other through holes 220b to 220e.
  • the through holes 220a, 220b, and 220c are formed on the same straight line parallel to the Z-direction, and the through holes 220b and 220c have equal diameters. Note that the distance between the through holes 220a and 220b is smaller than the distance between the through holes 220a and 220c.
  • the through holes 220d and 220e are formed in symmetrical positions to each other around the through hole 220a and have equal diameters.
  • the lock pin engaging mechanism 230 includes a cylindrical pivot shaft 231 and a disk-shaped lock plate storing member 232.
  • the lock pin engaging mechanism 230 has through holes 230H, 230b, and 230c formed therethrough.
  • the through hole 230H is formed in the axial center J of the lock pin engaging mechanism 230. More specifically, the through hole 230H is formed from the center of an end of the pivot shaft 231 to the center of an end of the lock plate storing member 232.
  • the through holes 230H, 230b, and 230c are provided on the same straight line parallel to the Z-direction and the through holes 230b and 230c have equal diameters. Note that the distance between the through holes 230H and 230b is smaller than the distance between the through holes 230H and 230c.
  • Screw holes 230d and 230e are formed at an end of the pivot shaft 231 of the lock pin engaging mechanism 230.
  • the screw holes 230d and 230e are formed in symmetrical positions around the through hole 230H and have equal diameters.
  • the screw holes 230d and 230e are threaded.
  • a stepped portion 231a is formed at the outer circumferential surface of the pivot shaft 231.
  • a slit type lock plate inlet 232A and a substantially circular spring inlet 232B are formed at the outer circumferential surface of the lockplate storingmember 232 of the lockpin engaging mechanism 230.
  • the lock plate inlet 232A is in communication with a lock plate storing space 232b (that will be described in conjunction with Fig. 6 ) formed in the lock storing member 232
  • the spring inlet 232B is in communication with a spring storing space 232c (that will be described in conjunction with Fig. 6 ) formed in the lock plate storing member 232.
  • the plate-shaped lock plate 233 is inserted into the lock plate storing space 232b ( Fig. 6 ) in the lock plate storing member 232 through the lock plate inlet 232A.
  • the spring 234 is inserted into the spring storing space 232c ( Fig. 6 ) in the lock plate storing member 232 through the spring inlet 232B.
  • the lock plate 233 includes a substantially rectangular support plate 233a, an elongated lock pin engaging portion 233b, and an elongated lock pin engaging portion 233c.
  • the lock pin engaging portion 233b extends in one direction along one side of the support plate 233a, and the lock pin engaging portion 233c extends obliquely outwardly from one corner of the support plate 233a and bents so as to be parallel to the lock pin engaging portion 233b.
  • a through hole 233A is formed in the center of the support plate 233a.
  • a columnar member 234a is attached to one end of the spring 234 so that the spring can readily be attached/detached to/from the lock pin engaging mechanism 230.
  • Fig. 6 is a sectional view of a lock plate storing member 232 having a lock plate 233 and a spring 234 inserted therein taken along an X-Z plane.
  • a pin 233d is inserted through the through hole 233A of the lock plate 233.
  • the lock plate 233 is held in the lock storing space 232b of the lock plate storing member 232 in a swingable manner.
  • the spring 234 is inserted into the spring storing space 232c in the Z-direction, and the lower end of the spring 234 abuts against the upper end of the lock pin engaging portion 233b of the lock plate 233. In this way, the lock plate 233 is energized downwardly.
  • the lower end of the lock pin engaging portion 233c of the lock plate 233 is fitted into the groove 214a ( Fig. 3 ) or the groove 214b ( Fig. 3 ) of the lock pin 214 inserted into the lock plate storing member 232 in the Y-direction.
  • the lower end of the lock pin engaging portion 233b of the lock plate 233 is fitted into the groove 217a ( Fig. 3 ) or the groove 217b ( Fig. 3 ) of the lock pin 217 inserted into the lock plate storing member 232 in the Y-direction.
  • the relative position of the through holes 220d and 220e with respect to the through hole 220a of the cam driven sprocket 220 is the same as the relative position of the screw holes 230d and 230e with respect to the through hole 230H of the lock pin engaging mechanism 230.
  • the diameter of the through holes 230d and 230e is the same as the diameter of the screw holes 220d and 220e.
  • the lock pin holding mechanism 210 is fixed to one surface of the cam driven sprocket 220, and the lock pin engaging mechanism 230 is fixed to the other surface of the cam driven sprocket 220.
  • the lock pin 214 is inserted into the through hole 220b of the cam driven sprocket 220 and the through hole 230b of the lock pin engaging mechanism 230
  • the lock pin 217 is inserted into the through hole 220c of the camdriven sprocket 220 and the through hole 230c of the lock pin engaging mechanism 230.
  • the pivotal movement of the weights 213 and 216 switches between the state in which the lock pins 214 and 217 protrude from the end of the lock pin engaging mechanism 230 on the side of the lock plate storing member 232 of the lock pin engaging mechanism 230 and the state in which the lock pins 214 and 217 are stored in the lock pin engaging mechanism 230, details of which will be described later in the following.
  • Fig. 5 is a perspective view of the assembly of the structure assembled as shown in Fig. 4 (hereinafter referred to as "assembled structure"), the floating cam portion 235 and the camshaft 240. Note that the floating cam portion 235 and the camshaft 240 have their axial center J arranged parallel to the Y-direction.
  • the floating cam portion 235 includes a lock pin fitting portion 236 and an intake high cam 237 having a cam nose 237A.
  • a through hole 235H is formed at the part of the floating cam portion 235 corresponding to the axial center J. More specifically, the through hole 235H is formed from the center of the end of the lock pin fitting portion 236 to the center of the end of the intake high cam 237.
  • Lock pin fitting holes 236b and 236c are formed at the lock pin fitting portion 236 of the floating cam portion 235.
  • the lock pin fitting holes 236b and 236c and the through hole 235H are provided on the same straight line parallel to the Z-direction, and the lock pin fitting holes 236b and 236c have equal diameters. Note that the distance between the through hole 235H and the lock pin fitting hole 236b is smaller than the distance between the through hole 235H and the lock pin fitting hole 236c.
  • the camshaft 240 includes an intake low cam 241 having a cam nose 241A, an exhaust cam 242 having a cam nose 242A, a stepped portion 243, a cam fixing shaft 244, and a projection shaft 245.
  • the camshaft 240 has the cam fixing shaft 244 extending in the Y-direction on one end side, the stepped portion 243, the intake low cam 241, and the exhaust cam 242 at the center, and the projection shaft 245 extending in the Y-direction on the other end side.
  • a threaded hole 240H is formed at the end of the cam fixing shaft 244.
  • the length of the cam nose 237A of the intake high cam 237 of the floating cam portion 235 is larger than the length of the cam nose 241A of the intake low cam 241.
  • the floating cam portion 235, and the camshaft 240 are assembled, the floating cam portion 235 and the camshaft 240 are attached to the lock plate storing member 232 of the assembled structure.
  • the cam fixing shaft 244 of the camshaft 240 is inserted into the through hole 235H of the floating cam portion 235 and the through hole 230H ( Fig. 4 ) of the lock pin engaging mechanism 230.
  • the floating cam portion 235 is rotatably held by the camshaft 240.
  • the threaded hole 240H of the cam fixing shaft 244 opposes the through hole 220a ( Fig. 4 ) of the cam driven sprocket 220 in the through hole 235H ( Fig. 5 ) of the lock pin engaging mechanism 230.
  • the through hole 220a ( Fig. 4 ) of the cam driven sprocket 220 and the through hole 211G of the lock pin holding mechanism 210 oppose to each other.
  • variable valve system 200 In this state, a screw 250 is screwed in the threaded hole 240H of the cam fixing shaft 244 from the through hole 211G of the lock pin holding mechanism 210. In this way, the camshaft 240 is fixed to the cam driven sprocket 220. This completes the variable valve system 200.
  • pivot shaft 231 and the lock plate storing member 232 of the lock pin engaging mechanism 230 may be formed either integrally or discretely.
  • the intake low cam 241, the exhaust cam 242, the stepped portion 243, the cam fixing shaft 244, and the projecting shaft 245 of the camshaft 240 may be formed either integrally or discretely.
  • a fixing mechanism that restricts the rotation of the camshaft 240 relative to the cam driven sprocket 220 may be provided at the connecting part of the cam fixing shaft 244 and the through hole 220a ( Fig. 4 ).
  • the fixing mechanism may be implemented for example by providing a projection portion at a tip end of the cam fixing shaft 244 of the camshaft 240 and providing a groove that can be fitted with the projection portion of the cam fixing shaft 244 at the through hole 220a ( Fig. 4 ) of the cam driven sprocket 220.
  • the state of the variable valve system 200 having the structure as shown in Figs. 3 to 6 is switched in response to the revolution speed of the engine. Now, how the state of the variable valve system 200 is switched will be described. Note that in the following description, the state in which the revolution speed of the engine 7 (see Figs. 1 and 2 ) is higher than a prescribed value will be referred to as "high revolution period” and the state in which the speed is lower than the prescribed value will be referred to as "low revolution period.”
  • the revolution speed of the cam fixing shaft 244 is half the revolution speed of the engine 7. The revolution speed of the cam fixing shaft 244 at the time of switching between the high revolution period and the low revolution period will be referred to as "threshold.”
  • the engine 7 starts to operate, which causes the variable valve system 200 ( Figs. 3 to 6 ) to rotate.
  • This allows centrifugal force to be acted on the weights 213 and 216 of the variable valve system 200 in addition to energizing force from the springs S1 and S2.
  • the magnitude of the centrifugal force acting on the weights 213 and 216 changes depending on the revolution speed of the variable valve system 200.
  • the change in the centrifugal force is used to switch the state of the variable valve system 200.
  • Fig. 7 is a sectional view of the state of the variable valve system 200 during the low revolution period
  • Fig. 8 is a sectional view of the state of a variable valve system 200 during the high revolution period.
  • Y and Z the two directions orthogonal to each other denoted by the arrows Y and Z are defined as the Y- and Z- directions. Note that a direction directed by an arrow is defined as "+" direction, while its opposite direction is defined as "-" direction.
  • the energizing force in the - Z-direction by the spring S1 as well as the centrifugal force in the + Z-direction caused by the rotation of the variable valve system 200 is applied to the weight 213.
  • the centrifugal force applied to the weight 213 is so small that the rotation of the weight 213 around the rotation shaft 215 is restricted by the energizing force of the spring S1.
  • the lock pin engaging portion 233c of the lock plate 233 is fitted to the groove 214a of the lock pin 214.
  • the lock plate 233 is energized in the - Z-direction by the spring 234 ( Figs. 4 and 6 ). Therefore, the movement of the lock pin 214 in the + Y-direction is restricted.
  • energizing force in the + Z-direction is applied to the weight 216 by the spring S2 ( Figs. 3 and 5 ) while centrifugal force in the - Z-direction caused by the rotation of the variable valve system 200 is applied to the weight 216.
  • the centrifugal force applied to the weight 216 is so small that the rotation of the weight 216 around the rotation shaft 218 is restricted by the energizing force by the spring S2.
  • the lock pin engaging portion 233b of the lock plate 233 is fitted to the groove 217a of the lock pin 217 and the lock plate 233 is energized in the - Z-direction by the spring 234, so that the movement of the lock pin 217 in the + Y-direction is restricted.
  • the lock pin 217 is fixed as its tip end stored in the lock pin engaging mechanism 230.
  • the lock pins 214 and 217 are not fitted into the lock pin fitting holes 236b and 236c of the floating cam portion 235, and the floating cam portion 235 idles around the cam fixing shaft 244.
  • the centrifugal force applied to the weight 213 in the + Z-direction is greater than the energizing force in the - Z-direction caused by the spring S1, so that the force that causes the weight 213 to rotate in the direction denoted by the arrow M1 around the rotation shaft 215 is generated.
  • the centrifugal force in the - Z-direction applied to the weight 216 is greater than the energizing force in the + Z-direction caused by the spring S2 ( Figs. 3 to 5 ), so that force that causes the weight 216 to rotate in the direction denoted by the arrow M2 around the rotation shaft 218 is generated.
  • the floating cam portion 235 is fixed in the rotation direction of the variable valve system 200 by the function of the lock pins 214 and 217.
  • the lock pins 214 and 217 and the lock pin fitting holes 236b and 236c are apart from the cam fixingshaft244bydifferentdistances. Inthisway, the floating cam portion 235 is fixed to the rotation shaft always in the same phase, not in the inverted state.
  • the centrifugal force applied to the weights 213 and 216 and the energizing force by the springs S1 and S2 are balanced with one another in a certain revolution speed range of the engine 7. If the balanced state continues, the movement of the lock pins 214 and 217 becomes unstable.
  • the movement of the lock pins 214 and 217 is restricted by the lock plate 233. In this way, the movement of the lock pins 214 and 217 is carried out in a stable manner. Now, the operation will be described in detail.
  • Fig. 9 is a view for use in illustrating in detail the operation of the lock plate 233 and the lock pins 214 and 217 in Figs. 7 and 8 .
  • Fig. 9(a) shows the state of the lock plate 233 and the lock pins 214 and 217 during the low revolution period (as shown in Fig. 7 )
  • Fig. 9(c) shows the state of the lock plate 233 and the lock pins 214 and 217 during the high revolution period (as shown in Fig. 8 )
  • Fig. 9(b) shows the state of the lock plate 233 and the lock pins 214 and 217 during the transition period from the state in Fig. 9(a) to the state in Fig. 9(c) .
  • Fig. 9 shows only the lock pin 214 among the lock pins 214 and 217 and only the lock pin engaging portion 233c among the lock pin engaging portions 233c and 233b of the lock plate 233.
  • the relation between the lock pin 217 and the lock pin engaging portion 233b is the same as the relation between the lock pin 214 and the lock pin engaging portion 233c.
  • the grooves 214a and 214b of the lock pin 214 have a V-shaped cross section.
  • the section of the lower end of the lock pin engaging portion 233c has a tapered shape complementary to the sectional shape of the grooves 214a and 214b.
  • the pin engaging portion 233c has its lower end raised in the + Z-direction along the inclined surface of the groove 214a of the lock pin 214 and disengaged from the groove 214a. In this way, the lock pin 214 moves in the + Y direction.
  • the movement of the lock pin 214 is restricted by the lock plate 233, so that during the transition from the low engine speed state to the high engine speed state, the lock pin 214 does not move unless the moving force upon the lock pin 214 in the + Y-direction is large enough to move the lock pin 214. More specifically, when the centrifugal force in the + Z-direction applied to the weight 213 is larger than by a prescribed value ormore the energizing force in the - Z-direction caused by the spring S1 (when the revolution speed of the cam fixing shaft 244 is equal to or higher than the threshold by a prescribed value), the lock pin 214 moves.
  • the lock pin 214 does not move unless the moving force upon the lock pin 214 in the + Y-direction is large enough to move the lock pin 214. More specifically, when the centrifugal force in the + Z-direction applied to the weight 213 is smaller than by a prescribed value or more the energizing force in the - Z-direction caused by the spring S1 (when the revolution speed of the cam fixing shaft 244 is equal to or lower than the threshold by a prescribed value), the lock pin 214 moves.
  • Fig. 10 is a sectional view showing how the variable valve system 200 is attached to the engine 7.
  • the three directions orthogonal to one another as indicated by the arrows X, Y, and Z are defined as the X-, Y-, and Z- directions, respectively.
  • Bearings B1 and B2 are attached at the outer circumference of the pivot shaft 231 of the variable valve system 200 and the outer circumference of the projection shaft 245.
  • variable valve system 200 is fixed rotatably in the cylinder head 7S.
  • An intake high cam rocker arm 330, an intake low cam rocker arm 340, and an exhaust cam rocker arm 350 are provided above the variable valve system 200.
  • the intake high cam rocker arm 330 abuts against the intake high cam 237 in the variable valve system 200
  • the intake low cam rocker arm 340 abuts against the intake low cam 241 in the variable valve system 200
  • the exhaust cam rocker arm 350 abuts against the exhaust cam 242 in the variable valve system 200.
  • a side cover SC is provided to the cylinder head 7S to cover the side of the lock pin holding mechanism 210 of the variable valve system 200.
  • a chain 25 is engaged with the cam driven sprocket 220.
  • Fig. 11 is a top view showing the positional arrangement of the variable valve system 200, the intake high cam rocker arm 330, the intake low cam rocker arm 340, and the exhaust cam rocker arm 350 in Fig. 10 .
  • Fig. 12 shows a sectional view of the cylinder head 7S taken along line R-R in Fig. 10 . Note that in Figs. 11 and 12 , the definition of the X-, Y-, and Z- directions is the same as that in Fig. 10 .
  • variable valve system 200 is attached in the cylinder head 7S by the bearings B1 and B2.
  • the intake high cam rocker arm 330 and the intake low cam rocker arm 340 are arranged in parallel on one side of the variable valve system 200 and rotatably held in their central parts by a shaft 341.
  • the intake high cam rocker arm 330 has its one end extended as it is bent above (in the Z-direction of) the intake high cam 237, and the intake low cam rocker arm 340 has its one end extended as it is bent above (in the Z-direction of) the intake low cam 241.
  • the exhaust cam rocker arm 350 is provided on the other side of the variable valve system 200 and rotatably held by a shaft 351 in its central part. One end of the exhaust cam rocker arm 350 is extended above (in the Z-direction of) the exhaust cam 242.
  • the intake low cam rocker arm 340 includes a cam receiving portion 340T, an arm 340R, an adjuster 342, and a nut 343.
  • the cam receiving portion 340T abutted against the intake low cam241 is provided at one end of the arm 340R in the X-direction, and the adjuster 342 is attached at the other end by the nut 343.
  • a pin 345 extending in the Y-direction is attached at a part of the arm 340R in the vicinity of the adjuster 342 and protrudes below the intake high cam rocker arm 330.
  • the intake high cam rocker arm 330 includes a cam receiving portion (not shown), an arm 330R, an adjuster 332, and a nut 333.
  • the cam receiving portion abutted against the intake high cam 237 is provided at one end of the arm 330R in the X-direction, and the adjuster 332 is provided at the other end by the nut 333.
  • the adjuster 332 of the intake high cam rocker arm 330 abuts against the top of the pin 345 of the intake low cam rocker arm 340.
  • the cam receiving portion 340T moves up and down.
  • the arm 340R pivots around the shaft 341, which causes the adjuster 342 to move up and down.
  • the cam receiving portion moves up and down.
  • the arm 330R pivots around the shaft 341 and the adjuster 332 moves up and down.
  • An intake valve 344 is positioned under the adjuster 342 of the intake low cam rocker arm 340.
  • the stem end 344a of the upper end of the intake valve 344 abuts against the adjuster 342.
  • the intake valve 344 is provided with a valve spring 347.
  • the valve spring 347 energizes the intake valve 344 in the upward direction.
  • the length of the cam nose 237A of the intake high cam 237 is larger than the length of the cam nose 241A of the intake low cam 241. Therefore, the moving distance of the adjuster 332 in the downward direction caused by the rotation of the intake high cam 237 is larger than the moving distance of the adjuster 342 in the downward direction caused by the rotation of the intake low cam 241.
  • the intake high cam 237 rotates, the downward moving force of the adjuster 332 of the intake high cam rocker arm 330 is transmitted to the intake low cam rocker arm 340 through the pin 345.
  • the intake high cam 237 during the low revolution period is rotatable with respect to the cam fixing shaft 244 of the camshaft 240. Therefore, the rotation force of the cam fixing shaft 244 is not transmitted to the intake high cam 237.
  • the intake high cam 237 is fixed to the cam fixing shaft 244 by the lock pins 214 and 217 during the high revolution period. Therefore, the rotation force of the cam fixing shaft 244 is transmitted to the intake high cam 237.
  • the intake high cam rocker arm 330 is not driven by the intake high cam 237. Therefore, the adjuster 342 of the intake low cam rocker arm 340 is moved up and down by the rotation of the intake low cam 241, and the intake valve 344 moves up and down (carries out lifting operation) accordingly. In this way, the intake valve 344 is opened/closed.
  • the intake high cam rocker arm 330 is driven by the intake high cam 237.
  • the intake low cam rocker arm 340 is driven by the intake high cam rocker arm 330. Therefore, the adjuster 342 of the intake low cam rocker arm 340 is moved up and down by the rotation of the intake high cam 237, so that the intake valve 344 moves up and down (carries out lifting operation). In this way, the intake valve 344 is opened/closed.
  • the rotation force of the intake low cam 241 is transmitted to the intake valve 344 through the intake low cam rocker arm 340
  • the rotation force of the intake high cam 237 is transmitted to the intake valve 344 through the intake high cam rocker arm 330 and the intake low cam rocker arm 340.
  • the displacement amount (hereinafter referred to as "lift amount") of the intake valve 344 during the low revolution period depends on the length of the cam nose 241A of the intake low cam 241 and the lift amount of the intake valve 344 during the high revolution period depends on the length of the cam nose 237A of the intake high cam 237.
  • the area of the upper surface of the stem end 344a of the intake valve 344 must be large so that the adjuster 332 of the intake high cam rocker arm 330 and the adjuster 342 of the intake low cam rocker arm 340 are both abutted against the stem end 344a.
  • the upward and downward movement of the intake high cam rocker arm 330 is transmitted to the intake valve 344 through the intake low cam rocker arm 340, so that the area of the upper surface of the stem end 344a of the intake valve 344 can be reduced and an unbalanced load can be prevented from being applied to the intake valve 344.
  • the exhaust cam rocker arm 350 includes a cam receiving portion 350T, an arm 350R, an adjuster 352, and a nut 353 similarly to the intake high cam rocker arm 330 and the intake low cam rocker arm 340.
  • An exhaust valve 354 is positioned under the adjuster 352 of the exhaust cam rocker arm 350.
  • the exhaust valve 354 is provided with a valve spring 357.
  • the valve spring 357 energizes the intake valve 344 in the upward direction.
  • the exhaust cam rocker arm 350 is driven by the exhaust cam 242. Therefore, the adjuster 352 of the exhaust cam rocker arm 350 is moved up and down by the rotation of the exhaust cam 242, so that the exhaust valve 354 moves up and down (carries out lifting operation) . In this way, the exhaust valve 354 is opened/closed.
  • Fig. 13 shows the lift amounts of the intake valve 344 and the exhaust valve 354 shown in Fig. 12 .
  • the abscissa represents the crank angle (the rotation angle of the crank shaft 23), and the ordinate represents the lift amounts of the exhaust valve 354 and the intake valve 344 (the displacement amounts of the exhaust valve 354 and the intake valve 344 in the upward and downward directions).
  • the exhaust valve 354 and the intake valve 344 are open when the lift amounts are greater than zero and closed when the lift amounts are zero.
  • crank angle ranges from -360° to +360°.
  • the piston 21 ( Fig. 2 ) is positioned at the top dead center TDC in the cylinder 20, and when the crank angle is 180° and -180°, the piston 21 ( Fig. 2 ) is positioned at the bottom dead center BDC in the cylinder 20.
  • the valve lift curve 242L denoted by the solid line shows changes in the lift amount of the exhaust valve 354 caused by the rotation of the exhaust cam 242 ( Fig. 9 ).
  • the maximum lift amount of the exhaust valve 354 is the maximum value L1.
  • the valve lift curve 241L denoted by the chain-dotted line shows changes in the lift amount of the intake valve 344 during the low revolution period.
  • the maximum lift amount of the intake valve 344 is the maximum value L2.
  • the lift amount of the intake valve 344 depends on the length of the cam nose 241A of the intake low cam 241 as described above.
  • valve lift curve 237L denoted by the dotted line shows changes in the lift amount of the intake valve 344 during the high revolution period.
  • the maximum lift amount of the intake valve 344 is the maximum value L1 that is larger than the maximum value L2 and equal to the maximum lift amount of the exhaust valve 354.
  • the lift amount of the intake valve 344 depends on the length of the cam nose 237A of the intake high cam 237.
  • the lift amount of the intake valve 344 during the high revolution period is larger than the lift amount of the intake valve 344 during the low revolution period. Therefore, during the high revolution period, an intake amount into the cylinder 20 in Fig. 2 that is greater than the amount during the low revolution period can be secured. Consequently, fuel consumption can be improved during normal driving, toxic substances in exhaust gas can be reduced, and high power output during high speed driving can be achieved.
  • the maximum lift amount of the exhaust valve 354 is set to be equal to the maximum lift amount of the intake valve 344 during the high revolution period, while the maximum lift amount of the exhaust valve 354 and the maximum lift amount of the intake valve 344 during the high revolution period may be different.
  • variable valve system 200 uses centrifugal force generated by rotation in order to switch between the intake high cam 237 and the intake low cam 241.
  • the intake high cam 237 and the intake low cam 241 can be switched with a smaller size and less costly since the embodiment is removed of a hydraulic actuator and a hydraulic pump. Therefore, fuel consumption can be improved during normal driving, toxic substances in exhaust gas can be reduced, and high power output during high speed driving can be achieved.
  • the switching operation between the intake high cam 237 and the intake low cam 241 can be carried out by inserting and withdrawing the lock pins 214 and 217 to the lock pin fitting holes 236b and 236c without the aid of frictional force between the components. Therefore, the components are hardly degraded by abrasion. Consequently, the variable valve system 200 can have a prolonged useful life without using anti-abrasion materials and can still, and the cost can be reduced.
  • lock pins 214 and 217 can be inserted/withdrawn to/from the lock pin fitting holes 236b and 236c simply by a mechanical arrangement, so that high working precision is not requested and therefore the system can be more readily manufactured.
  • the intake valve 344 and the exhaust valve 354 are examples of a valve
  • the cam fixing shaft 244 is an example of a rotation shaft
  • the intake low cam 241 is an example of a first cam member
  • the floating cam portion 235 is an example of a second cam member
  • the lock pins 214 and 217 are examples of an engaging member
  • the springs S1 and S2 are examples of an energizing member
  • the weights 213 and 216 are examples of a driving member.
  • the tip ends of the lock pins 214 and 217 are examples of an engaging portion
  • the lock pin fitting holes 236b and 236c are examples of an engagement portion
  • the lock plate 233 is an example of a movement stopping member
  • the grooves 214a, 214b, 217a, and 217b are examples of a groove
  • the lock pin engaging portions 233b and 233c are examples of a fitting portion
  • the intake low cam rocker arm 340 is an example of a first transmission member
  • the intake high cam rocker arm 330 is an example of a second transmission member.
  • the state of the lock pins 214 and 217 during the low revolution period in Fig. 7 is an example of a first state
  • the positions of the weights 213 and 216 during the low revolution period are examples of a first position
  • the state of the lock pins 214 and 217 during the high revolution period in Fig. 8 is an example of a second state
  • the positions of the weights 213 and 216 during the high revolution period are examples of a second position
  • the lift amount of the intake valve 344 during the low revolution period denoted by the chain-dotted line in Fig. 13 is an example of a first lift amount
  • the lift amount of the intake valve 344 during the high revolution period denoted by the dotted line is an example of a second lift amount.
  • the engine 7 and the variable valve system 200 are an example of an engine device, and the motor cycle 100 is an example of a vehicle, and the rear wheel 11 is an example of a driving wheel, the rear wheel driven sprocket 12, the drive shaft 26, the rear wheel drive sprocket 15 and the chain 16 are an example of a transmission mechanism.
  • the two weights 213 and 216 and the two lock pins 214 and 217 are provided in the variable valve system 200 according to the embodiment described above, while only one of the weights 213 and 216 and one of the lock pins 214 and 217 may be provided.
  • An example of the variable valve system 200 in this arrangement is shown in Fig. 14 .
  • variable valve system 200 shown in Fig. 14 does not have the weight 213 and the lock pin 214 in the variable valve system 200 as shown in Figs. 3 to 13 .
  • Fig. 14 (a) is a sectional view of the variable valve system 200 during the low revolution period
  • Fig. 14 (b) is a sectional view taken along line P-P in Fig. 14(a) .
  • variable valve system 200 includes a lock pin holding mechanism 210, a cam driven sprocket 220, a lock pin engaging mechanism 230, a floating cam portion 235, and a camshaft 240.
  • the lock pin holding mechanism 210 includes the weight 216 and the lock pin 217. As shown in Figs. 7 and 8 , the weight 216 and the lock pin 217 switch the state of the floating cam portion 235 between a rotatable state and a fixed state with respect to the cam fixing shaft 244 based on the revolution speed of the engine 7.
  • the movement of the lock pin 217 is restricted by the lock pin engaging portion 233b of the lock plate 233.
  • the lock plate 233 has an elongated lock pin engaging portion 233b extending along one side of an approximately rectangular support plate 233a.
  • variable valve system 200 If a pair of a weight 216 and a lock pin 217 is provided to the variable valve system 200 as in this embodiment, fuel consumption during normal driving can be improved, toxic substances in exhaust gas can be reduced, and high power output during high speed driving can be achieved. In addition, the variable valve system 200 may be even more compact.
  • variable valve system 200 the intake high cam 237 and the intake low cam 241 may be switched, so that the lift amount of the intake valve 344 is changed, but the operation angle of the intake valve 344 may be changed instead.
  • the operation angle of the intake valve 344 refers to the range of the crank angle while the intake valve 344 is lifted. In Fig. 13 , for example, the operation angle of the intake valve 344 is 260° (from -30° to 230°).
  • the width of the cam nose 237A of the intake high cam 237 is formed to be larger than the width of the cam nose 241A of the intake low cam 241, so that the operation angle of the intake valve 344 during the high revolution period is larger than the operation angle of the intake valve 344 during the low revolution period.
  • the operation angle of the intake valve 344 may be switched. If the length of the cam nose 237A of the intake high cam 237 is larger than the length of the cam nose 241A of the intake low cam 241 similarly to the embodiment described above, both the lift amount of the intake valve 344 and the operation angle of the intake valve 344 can be switched.
  • variable valve system 200 may be applied to the exhaust valve 354.
  • a floating cam portion, a lock pin engaging mechanism, and a cam driven sprocket having the same structures as those of the floating cam portion 235, the lock pin engaging mechanism 230, and the cam driven sprocket 220 are provided in the vicinity of the exhaust valve 354, and an exhaust high cam rocker arm having the same structure as the intake high cam rocker arm 330 is provided.
  • the lock pins 214 and 217 are provided with the two grooves 214a and 217a and the two grooves 214b and 217b, respectively but only one groove may be provided for each pin.
  • the lock pin 214 may be provided with only the groove 214a, and the lock pin 217 may be provided with only the groove 217a.
  • the lock pin engaging portions 233b and 233c of the lock plate 233 are fitted to the grooves 214a and 217a in the lock pins 214 and 217, so that the movement of the lock pins 214 and 217 is restricted.
  • the lock pin 214 may be provided with only the groove 214b and the lock pin 217 may be provided with only the groove 217b.
  • the lock pin engaging portions 233b and 233c of the lock plate 233 are fitted to the grooves 214b and 217b of the lock pins 214 and 217 and the movement of the lock pins 214 and 217 is restricted.
  • the plate shaped lock plate 233 is used as a moving stopping member to restrict the movement of the lock pins 214 and 217, but a moving stopping member in a different shape such as a pin may be used.
  • the shape of the grooves 214a, 214b, 217a, and 217b formed at the lock pins 214 and 217 may be determined accordingly based on the shape of the moving stopping member.
  • variable valve system 200 is provided in the SOHC (single overhead camshaft) type engine 7, but the engine 7 including the variable valve system 200 may be of any type as long as the engine can be provided with a camshaft.
  • the engine 7 may be an SV (side valve) type engine, an OHV (overhead valve) type engine, or a DOHC (double overhead camshaft) type engine.
  • SV side valve
  • OHV overhead valve
  • DOHC double overhead camshaft
  • variable valve system 200 is provided in the engine 7 including the intake high cam rocker arm 330, the intake low cam rocker arm 340, and the exhaust cam rocker arm 350, while the variable valve system 200 may be provided in the type of engine in which a cam directly pushes a valve.
  • variable valve system 200 includes the springs S1 and S2 used to energize the weights 213 and 216 in a prescribed direction.
  • a resilient material such as rubber may be employed instead of the springs S1 and S2 as long as it energizes the weights 213 and 216 in the prescribed direction.
  • variable valve system 200 may be provided not only to the motorcycle but also to an engine in a small vehicle with a small displacement such as a tractor and a cart and to an engine in a small ship.
  • the present invention is applicable to various vehicles including an engine such as a motorcycle and a four-wheeled automobile and crafts including an engine.
EP06832653A 2005-11-28 2006-11-15 Soupape reglable, et moteur et vehicule l utilisant Withdrawn EP1956197A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005341591A JP2007146740A (ja) 2005-11-28 2005-11-28 可変動弁装置ならびにそれを備えるエンジン装置および車両
PCT/JP2006/322722 WO2007060865A1 (fr) 2005-11-28 2006-11-15 Soupape reglable, et moteur et vehicule l’utilisant

Publications (1)

Publication Number Publication Date
EP1956197A1 true EP1956197A1 (fr) 2008-08-13

Family

ID=38067095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06832653A Withdrawn EP1956197A1 (fr) 2005-11-28 2006-11-15 Soupape reglable, et moteur et vehicule l utilisant

Country Status (6)

Country Link
US (1) US20090114175A1 (fr)
EP (1) EP1956197A1 (fr)
JP (1) JP2007146740A (fr)
CN (1) CN101316986A (fr)
BR (1) BRPI0618802A2 (fr)
WO (1) WO2007060865A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479388A1 (fr) * 2009-09-14 2012-07-25 Honda Motor Co., Ltd. Commande variable des soupapes pour moteur à combustion interne
CN101713311B (zh) * 2008-09-30 2012-12-26 本田技研工业株式会社 发动机的可变动阀装置
EP2484874A3 (fr) * 2011-02-03 2013-01-23 Schaeffler Technologies AG & Co. KG Mécanisme d'arbre à came ou de réglage d'arbre à came doté de ressorts enroulés

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948831B2 (ja) * 2005-12-13 2012-06-06 ヤマハ発動機株式会社 可変動弁装置ならびにそれを備えるエンジンシステムおよび乗り物
JP5199766B2 (ja) * 2008-07-22 2013-05-15 ヤマハ発動機株式会社 可変動弁装置とこれを備えたエンジン装置および車両
JP4999832B2 (ja) * 2008-12-26 2012-08-15 本田技研工業株式会社 内燃機関の可変動弁装置
JP5204080B2 (ja) * 2009-11-27 2013-06-05 本田技研工業株式会社 エンジンの可変動弁装置
TW201144574A (en) * 2010-06-15 2011-12-16 Kwang Yang Motor Co Structure of driving member of engine valve
JP5771494B2 (ja) * 2011-09-28 2015-09-02 本田技研工業株式会社 内燃機関の可変動弁装置
CN102400729A (zh) * 2011-11-15 2012-04-04 中国嘉陵工业股份有限公司(集团) 一种发动机气门升程可变机构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562004U (fr) * 1979-06-20 1981-01-09
JPS608402U (ja) * 1983-06-28 1985-01-21 三菱自動車工業株式会社 プロフイ−ル可変型カム
JPS62261610A (ja) * 1986-05-09 1987-11-13 Honda Motor Co Ltd エンジンのオ−トデコンプ装置
JPH01157208U (fr) * 1988-04-19 1989-10-30
US5813377A (en) * 1995-11-07 1998-09-29 Yamaha Hatsudoki Kabushiki Kaisha Engine valve operating system
US5855190A (en) * 1996-09-24 1999-01-05 Yamaha Hatsudoki Kabushiki Kaisha Valve-actuating variable cam for engine
JPH11229831A (ja) * 1998-02-13 1999-08-24 Honda Motor Co Ltd エンジンのカム位相可変装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007060865A1 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713311B (zh) * 2008-09-30 2012-12-26 本田技研工业株式会社 发动机的可变动阀装置
EP2479388A1 (fr) * 2009-09-14 2012-07-25 Honda Motor Co., Ltd. Commande variable des soupapes pour moteur à combustion interne
EP2479388A4 (fr) * 2009-09-14 2013-04-17 Honda Motor Co Ltd Commande variable des soupapes pour moteur à combustion interne
US8807102B2 (en) 2009-09-14 2014-08-19 Honda Motor Co., Ltd Variable valve operating device for internal combustion engine
EP2484874A3 (fr) * 2011-02-03 2013-01-23 Schaeffler Technologies AG & Co. KG Mécanisme d'arbre à came ou de réglage d'arbre à came doté de ressorts enroulés

Also Published As

Publication number Publication date
JP2007146740A (ja) 2007-06-14
CN101316986A (zh) 2008-12-03
WO2007060865A1 (fr) 2007-05-31
BRPI0618802A2 (pt) 2011-09-13
US20090114175A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
EP1956197A1 (fr) Soupape reglable, et moteur et vehicule l utilisant
US7469669B2 (en) Variable valve train mechanism of internal combustion engine
CN101526016B (zh) 摇臂组件
EP1835133A1 (fr) Régulateur automatique du réglage de distribution, dispositif de moteur ayant celui-ci et véhicule
US7404385B2 (en) Lift-variable valve-operating system for internal combustion engine
EP1574679A3 (fr) Dispositif et procédé d'altération de la levée de soupape de moteur à combustion interne
CN105422205A (zh) 引擎的气门机构
JP4553854B2 (ja) 内燃機関の動弁装置
US7412950B2 (en) Valve operation device of internal combustion engine
JP4589286B2 (ja) 開弁特性可変型内燃機関
JP4195463B2 (ja) 内燃機関の可変動弁装置
JP2006029246A (ja) 内燃機関の動弁装置
JP2007170322A (ja) 内燃機関の可変動弁装置
US7673603B2 (en) Valve timing control device and engine device and vehicle including the same
JP5447211B2 (ja) 内燃機関の可変動弁装置
JP2007162597A (ja) 内燃機関の可変動弁装置
CN105484821A (zh) 引擎的气门机构
JP4285340B2 (ja) 動弁装置およびこれを備えた内燃機関
JP2002227624A (ja) 内燃機関のsohc型動弁装置
JP2005098305A (ja) 内燃機関の動弁装置
WO2014025264A2 (fr) Système de levée de soupape variable pour moteurs à combustion interne
JPH04353204A (ja) 4サイクルエンジンの動弁装置
JPH11247636A (ja) 内燃機関の可変動弁装置
JP2013002357A (ja) 内燃機関の可変動弁装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100615