EP1955044A1 - Methode de selection d'une structure de filtration d'un gaz - Google Patents

Methode de selection d'une structure de filtration d'un gaz

Info

Publication number
EP1955044A1
EP1955044A1 EP06842066A EP06842066A EP1955044A1 EP 1955044 A1 EP1955044 A1 EP 1955044A1 EP 06842066 A EP06842066 A EP 06842066A EP 06842066 A EP06842066 A EP 06842066A EP 1955044 A1 EP1955044 A1 EP 1955044A1
Authority
EP
European Patent Office
Prior art keywords
wall
filter
zones
diameter
structuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06842066A
Other languages
German (de)
English (en)
Inventor
Céline WISS
Patrick Jacques Dominique Girot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP1955044A1 publication Critical patent/EP1955044A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/18Testing of filters, filter elements, sealings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter

Definitions

  • the invention relates to the field of filter structures possibly comprising a catalytic component, for example used in an exhaust line of a diesel type internal combustion engine.
  • Filters for the treatment of gases and the removal of soot typically from a diesel engine are well known in the prior art. These structures all most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • porous ceramic filters for example made of cordierite, alumina, mullite, silicon nitride, a silicon / silicon carbide mixture or silicon carbide, are used for the filtration of gases.
  • the particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration phases.
  • soot particles emitted by the engine are retained and are deposited inside the filter.
  • soot particles are burned inside the filter, in order to restore its filtration properties.
  • An important criterion involved in the implementation and the life of a filter for example in an exhaust line of an engine is its thermomechanical resistance.
  • soot deposition time corresponds to the time required for the filter to reach its maximum level of filtration efficiency, during its first implementation or after a regeneration phase. It is assumed that this time is a function in particular of placing a sufficient amount of soot in the porosity of the filter to block the direct passage of fine soot particles through the walls of the filter.
  • One of the direct consequences of an unsuitable soot deposition time is the appearance of persistent and harmful black smoke, as well as the presence of traces of soot at the outlet of the exhaust line, on a new filter or after a regeneration phase. It is obvious that for issues of environment, image and comfort of use, car manufacturers want the occurrence of such phenomena is removed or at least minimized on vehicles equipped with such filters.
  • soot deposition is a poorly known phenomenon, probably because the deposited soot mass is not measurable in real time on a filter being solicited. Only the soot deposition time indirectly measured from the analysis of the rate of particles present in the exhaust gas at the outlet of the filter is indeed accessible.
  • the method which is the subject of the present invention relates to the field of particulate filters made of porous ceramic material, for example included in the group consisting of cordierite, alumina, mullite, silicon nitride, silicon / silicon carbide mixtures. and preferably silicon carbide.
  • the invention finds particular application when the particle filters are silicon carbide filters, for example obtained by a sintering / recrystallization (R-SiC) process.
  • R-SiC sintering / recrystallization
  • Examples of such catalytic filters are for example described in the patent applications EP 816,065, EP 1 142 619, EP 1 455 923 and WO 2004/065088 which will be referred to for more details on their structure or their method of synthesis.
  • the structures according to the invention can be simple monolithic structures or preferably more complex assembled structures, obtained most often by the combination of several monolithic elements, linked by a so-called joint cement.
  • the object of the present invention is therefore to provide a method for selecting honeycomb structures suitable for prolonged use as a particle filter, that is to say, to answer all of the previously discussed problems. .
  • the present invention relates to a method for selecting a filtering structure of a particulate-laden gas, said structure comprising a filtering part constituted by a porous ceramic material and comprising at least one and preferably a plurality of walls. porous, said method being characterized in that, from a first image of the surface of the wall, a treatment of said first image comprising a morphological erosion by a structuring element, so as to obtain a second characteristic image is carried out the regularity and homogeneity of the microstructure of said wall.
  • the dimensions and possibly the morphology of the structuring element are chosen as a function of the median pore diameter, measured by mercury porosimetry.
  • median pore diameter it is understood in the sense of the present description the pore diameter for which 50% by volume of pores is less than or equal to this pore size.
  • the structuring element is a disc chosen such that the ratio of its diameter to the median pore diameter is between 1.5 and 5, preferably between 2.5 and 4.5.
  • the method according to the invention may for example comprise the following steps: - prepare a wall section, preferably polished,
  • the filter structures on the basis of at least one of the following criteria: a) the number of residual zones remaining after erosion, b) the cumulated area of said zones, c) the average area of said zones.
  • the present method is particularly applicable to porous materials selected from the group consisting of cordierite, alumina, mullite, silicon nitride, silicon / silicon carbide mixtures.
  • the present method is typically applicable when said walls have an open porosity of between 30 and 60%, preferably between 40 and 53%, more preferably between 44 and 50%, and a median pore diameter of between 8 and 30 ⁇ m. preferably between 9 and 25 ⁇ m, more preferably between 10 and 18 ⁇ m.
  • the invention thus relates to a filter structure made of recrystallized silicon carbide (R-SiC) that can be obtained by the method as previously described and combining, for maximum filtration efficiency and long-term use, the following properties:
  • the invention relates to a filtration structure based on SiC, of the honeycomb type, comprising a filtering part consisting of a porous ceramic material of open porosity between 30 and 53%, preferably between 44 and 50 %, and whose median pore diameter is between 8 and 20 ⁇ m, preferably between 10 and 18 ⁇ m, said structure being characterized by at least one and preferably all of the following criteria, determined by applying the method described above a) the number of residual zones remaining after erosion by a structuring element, constituted by a disc whose diameter is between 2.5 and 4.5 times the median pore diameter, is less than 100 per mm 2 of wall, preferably less than 80 per mm 2 of wall, or even less than 50 per mm 2 of wall.
  • the cumulative area of said zones is less than 10 000 ⁇ m 2 per mm 2 of wall, preferably less than 8000 ⁇ m 2 per mm 2 of wall, or even less than 5000 ⁇ m 2 per mm 2 of wall.
  • the average area of said zones is less than 400 ⁇ m 2 per mm 2 of wall, preferably less than 200 ⁇ m 2 per mm 2 of wall.
  • the porous material is preferably recrystallized silicon carbide at a temperature of between 2100 and 2400 ° C.
  • the thickness of the walls of the filter structure R-SiC according to the invention is typically between 200 and 500 microns.
  • the central portion of a filter according to the invention comprises a plurality of honeycomb filter elements interconnected by a joint cement.
  • the density of channels in the filter elements is between 7.75 to 62 per cm 2 and said channels having a section of 0.5 to 9 mm 2 .
  • the filtering structure according to the invention may comprise a catalytic coating for the treatment of CO or HC type polluting gases.
  • Such a structure finds particular application as a particulate filter in an exhaust line of a gasoline or diesel engine, preferably diesel.
  • component A a first powder consisting of SiC grains whose median diameter d 50 varies between 5 and 50 ⁇ m, at least 10% by weight of the grains having a diameter greater than 5 ⁇ m,
  • - component B a second SiC powder consisting of grains with a median diameter d 50 of between 0.1 and 10 microns,
  • constituent C a porogenic agent of the polyethylene type
  • component D an organic binder of the methylcellulose type.
  • a first particle filter was synthesized and tested.
  • a constituent A constituted by a powder of SiC grains having a median diameter dso of about 30 ⁇ m
  • Table 1 The green monoliths obtained by microwave are then dried for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • the channels of each face of the monolith are alternately plugged according to well-known techniques, for example described in application WO 2004/065088.
  • the monolith is then baked according to a rise in temperature of 20 ° C./hour until a temperature of the order of 2200 ° C. is reached which is maintained for 2 hours. Finally, a series of silicon carbide monoliths is obtained whose microstructural characteristics depend on the composition of the initial mixture and on the synthesis conditions.
  • component A has different constituent powders whose median grain diameter varies between 5 and 50 ⁇ m, at least 10% by weight of the grains making up these powders having a diameter greater than 5 ⁇ m, component B has been used, different powders with a median diameter of SiC grains varying between 0.1 and 10 ⁇ m, and the proportions of constituents A and B have been varied within the following limits: Component A: from 20 to 80%,
  • Constituent B 80 to 20%, to obtain a first mixture comprising exclusively (100%) constituents A and B.
  • each component A and B were added to the constituents C and D in proportions of between 3 and 12% and 1 to 20% by weight, respectively, relative to the total weight of the constituents A and B.
  • the soot deposition time is the time required to place a sufficient amount of soot, on the new filter or after regeneration, so that it reaches its maximum level of filtration efficiency.
  • the filter to be tested was placed on an exhaust line of a motor on a test bench.
  • the engine used is of the 2.0 liter diesel type.
  • the filter is progressively loaded in soot by the operation of the engine at a speed of 3000 rpm to 50 N.m.
  • the bench is equipped with an ELPI (Electrical Low Pressure Impactor) system, known per se, which continuously measures the particle concentration in a gas in real time from the moment the filter is charged.
  • ELPI Electro Mechanical Low Pressure Impactor
  • This gives a filtration efficiency curve as a function of time characterized by a quasi-plateau after a determined test duration.
  • the level corresponds to an efficiency of filtration greater than or equal to 99%.
  • the time between the beginning of the loading of the filter and the time from which an efficiency of at least 99% is obtained corresponds, according to the present invention, to the soot deposition time.
  • pressure loss is meant within the meaning of the present invention the differential pressure existing between the upstream and downstream of the filter.
  • the pressure drop was measured according to the techniques of the art, for an air flow rate of 300 m 3 / h in a current of ambient air.
  • thermomechanical resistance The filters are mounted on an exhaust line of a 2.0 L diesel engine operated at full power (4000 rpm) for 30 minutes then dismantled and weighed to determine their initial mass . The filters are then reassembled on the engine bench with a speed of 3000 rpm and a torque of 50 Nm for different times in order to obtain a soot load of Sg / l in the filter.
  • the filters thus loaded are reassembled on the line to undergo a severe regeneration thus defined: after stabilization at an engine speed of 1700 revolutions / minute for a torque of 95Nm for 2 minutes, a post-injection is performed with 70 ° of phasing for a post injection rate of 18mm 3 / stroke.
  • a post-injection is performed with 70 ° of phasing for a post injection rate of 18mm 3 / stroke.
  • the regenerated filters are inspected after cutting to reveal the possible presence of cracks visible to the eye bare.
  • the filter is considered valid (i.e. it has acceptable thermomechanical resistance for use as a particulate filter) if no crack is visible after this test.
  • the microstructural characteristics of the samples were then measured by different techniques:
  • D-Porosimetry of the material constituting the walls The porosity of the silicon carbide constituting the walls was determined according to the standard techniques of high-pressure porosimetry of mercury, with a porosimeter of micromeritics type 9500. The analyzes show for all the samples tested a distribution of unimodal pore sizes. The median pore diameter is determined from the cumulative pore volume distribution as a function of pore size, obtained by measuring porosimetry using the Mercury Porosimeter.
  • a wall section belonging to each of the samples was prepared by polishing.
  • Photographs of a 1 mm 2 wall surface were then taken at different locations on the polished wall of the samples by a BSE scanning electron microscope (backscattered electron).
  • the raw images thus obtained were processed by a known technique of thresholding of the porosity, such that the noise pixels, that is to say not corresponding to a true porosity of the material, are removed from the photograph.
  • the series of images thus obtained is then processed by the method of morphological erosion, the structuring element chosen being a disk of fixed radius and as reported in Table 2. This technique has the advantage of isolating areas of porosity and to highlight the regularity, continuity and homogeneity of the microstructure of the material constituting said wall.
  • the erosion technique is known in the field of image analysis as a tool of mathematical morphology.
  • Example 5 Different parts of the filter walls of Example 5 were treated by the erosion method by varying the dimensions of the structuring disc according to values of 30 ⁇ m (example 5a), 40 ⁇ m (example 5b) and 60 ⁇ m (example 5c).
  • Table 2 the reported values of the number of residual zones, the average area of the zones and the cumulative area of the zones correspond to an average of these values, calculated from a series of 10 SEM images in BSE mode. of the wall surface, taken in different positions.
  • Table 2 shows an astonishing correlation between the microstructural characteristics of the filters deduced from the technique of morphological erosion and the results obtained in the various qualification tests of said filters. More particularly, it is observed that the best results and compromises in terms of soot deposition time, pressure drop and thermomechanical resistance are obtained for the R-SiC-based filter structures according to the present invention, as defined in US Pat. following claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Méthode de sélection d'une structure filtrante d'un gaz chargé en particules, ladite structure comprenant une partie filtrante constituée par une matière céramique poreuse et comprenant au moins une et de préférence une pluralité de parois poreuses, ladite méthode se caractérisant en ce qu'on réalise, à partir d'une première image de la surface de la paroi, un traitement de ladite première image comprenant une érosion morphologique par un élément structurant, de manière à obtenir une seconde image caractéristique de la régularité et de l'homogénéité de la microstructure de ladite paroi. Structure filtrante en carbure de silicium obtenue par application de ladite méthode.

Description

METHODE DE SELECTION D'UNE STRUCTURE DE FILTRATION D'UN GAZ
L' invention se rapporte au domaine des structures filtrantes comprenant éventuellement une composante catalytique, par exemple utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel .
Les filtres permettant le traitement des gaz et l'élimination des suies typiquement issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
A l'heure actuelle, on utilise pour la filtration des gaz des filtres en matière céramique poreuse, par exemple en cordiérite, en alumine, en mullite, en nitrure de silicium, en un mélange silicium/carbure de silicium ou en carbure de silicium. De façon connue, durant son utilisation, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération
(élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration. Un critère important intervenant dans la mise en œuvre et la durée de vie d'un filtre par exemple dans une ligne d'échappement d'un moteur est donc sa résistance thermomécanique .
Il est connu par ailleurs que l'introduction d'un filtre à particules tel que précédemment décrit dans la ligne d'échappement du moteur entraîne une perte de charge susceptible d'altérer les performances de celui-ci. Le filtre doit en conséquence être configuré de manière à éviter une telle altération.
Un autre critère déterminant pour la sélection des structures filtrantes éventuellement catalytiques précédemment décrites est leur temps de dépôt de suie. Ce temps correspond à la durée nécessaire au filtre pour qu' il atteigne son niveau maximal d' efficacité de filtration, lors de sa première mise en œuvre ou après une phase de régénération. Il est supposé que ce temps est fonction en particulier de la mise en place d'une quantité suffisante de suie dans la porosité du filtre pour bloquer la traversée directe des fines particules de suies à travers les parois du filtre. L'une des conséquences directes d'un temps de dépôt de suies non adapté est l'apparition de fumées noires persistantes et nocives, ainsi que la présence de traces de suies à la sortie de la ligne d'échappement, sur un filtre neuf ou après une phase de régénération. Il est bien évident que pour des questions d'environnement, d'image et de confort d'utilisation, les constructeurs automobiles souhaitent que l'apparition de tels phénomènes soit supprimée ou au moins minimisée sur les véhicules équipés de tels filtres.
La mise en place du dépôt de suie est un phénomène mal connu, sans doute du fait que la masse de suie déposée n'est pas mesurable en temps réel sur un filtre en cours de sollicitation. Seul est en effet accessible le temps de dépôt de suie mesuré indirectement à partir de l'analyse du taux de particules présents dans les gaz d' échappement en sortie du filtre.
La méthode objet de la présente invention se rapporte au domaine des filtres à particules en matière céramique poreuse, par exemple compris dans le groupe constitué par la cordiérite, l'alumine, la mullite, le nitrure de silicium, les mélanges silicium/carbure de silicium et de préférence le carbure de silicium. L' invention trouve en particulier son application lorsque les filtres à particules sont des filtres en carbure de silicium, par exemple obtenus par un procédé de frittage/recristallisation (R-SiC) . Des exemples de tels filtres catalytiques sont par exemple décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923 et WO 2004/065088 auquel on se référera pour plus de précision sur leur structure ou leur mode de synthèse. Les structures selon l'invention peuvent être des structures simples monolithiques ou préférentiellement des structures assemblées plus complexes, obtenues le plus souvent par l'association de plusieurs éléments monolithiques, liés par un ciment dit de joint. Le but de la présente invention est ainsi de fournir une méthode permettant de sélectionner les structures en nid d' abeille aptes à une utilisation prolongée comme filtre à particules, c'est-à-dire permettant de répondre à l'ensemble des problèmes précédemment exposés.
Plus précisément, la présente invention se rapporte à une méthode de sélection d'une structure filtrante d'un gaz chargé en particules, ladite structure comprenant une partie filtrante constituée par une matière céramique poreuse et comprenant au moins une et de préférence une pluralité de parois poreuses, ladite méthode se caractérisant en ce qu'on réalise, à partir d'une première image de la surface de la paroi, un traitement de ladite première image comprenant une érosion morphologique par un élément structurant, de manière à obtenir une seconde image caractéristique de la régularité et de l'homogénéité de la microstructure de ladite paroi.
Selon un mode avantageux, les dimensions et éventuellement la morphologie de l'élément structurant sont choisies en fonction du diamètre médian de pores, mesuré par porosimétrie mercure. Par diamètre médian de pores, il est entendu au sens de la présente description le diamètre de pores pour lequel 50% en volume de pores est inférieur ou égal à cette taille de pores.
Par exemple, l'élément structurant est un disque choisi de telle façon que le rapport de son diamètre sur le diamètre médian de pores est compris entre 1,5 et 5, de préférence entre 2,5 et 4,5.
La méthode selon l'invention peut par exemple comprendre les étapes suivantes : - préparer une section de paroi, de préférence polie,
- faire une acquisition d'images, de préférence au moyen d'un microscope électronique à balayage MEB, de préférence en mode électrons rétrodiffuses BSE, - traiter les images brutes par une technique de seuillage pour obtenir des images binarisées,
- traiter les images binarisées par la technique de l'érosion morphologique à l'aide d'un élément structurant adapté à la taille au médian de pores du filtre, - caractériser les zones de porosité restantes,
- sélectionner les structures filtrantes sur la base d'au moins un des critères suivants : a) le nombre de zones résiduelles restantes après érosion, b) l'aire cumulée desdites zones, c) l'aire moyenne desdites zones.
La présente méthode s'applique tout particulièrement aux matériaux poreux choisis dans le groupe constitué par la cordiérite, l'alumine, la mullite, le nitrure de silicium, les mélanges silicium/carbure de silicium.
La présente méthode est typiquement applicable lorsque lesdites parois présentent une porosité ouverte comprise entre 30 et 60%, de préférence entre 40 et 53%, de préférence encore entre 44 et 50%, et un diamètre de pores médian compris entre 8 et 30 μm, de préférence entre 9 et 25μm, de préférence encore entre 10 et 18 μm.
L' invention concerne ainsi une structure filtrante en carbure de silicium recristallisé (R-SiC) susceptible d'être obtenue par la méthode telle que précédemment décrite et combinant, pour une efficacité maximale de filtration et une utilisation de longue durée, les propriétés suivantes :
- une perte de charge minimale en fonctionnement, typiquement sur une ligne d'échappement d'un moteur à combustion interne,
- une efficacité de filtration optimisée dès la mise en œuvre du filtre ou après une phase de régénération, se traduisant par un temps de dépôt des suies minimisé,
- des propriétés thermomécaniques suffisantes pour résister aux contraintes de fonctionnement du filtre.
Plus particulièrement, l'invention concerne une structure de filtration à base de SiC, du type en nid d'abeilles, comprenant une partie filtrante constituée par une matière céramique poreuse de porosité ouverte comprise entre 30 et 53%, de préférence entre 44 et 50%, et dont le diamètre médian de pores est compris entre 8 et 20 μm, de préférence entre 10 et 18 μm, ladite structure se caractérisant par au moins un et de préférence la totalité des critères suivants, déterminés par application de la méthode décrite précédemment : a) le nombre de zones résiduelles restantes après érosion par un élément structurant, constitué par un disque dont le diamètre est compris entre 2,5 et 4,5 fois le diamètre médian des pores, est inférieur à 100 par mm2 de paroi, de préférence inférieur à 80 par mm2 de paroi, voire inférieure à 50 par mm2 de paroi. b) l'aire cumulée desdites zones est inférieure à 10 000 μm2 par mm2 de paroi, de préférence inférieure à 8000 μm2 par mm2 de paroi, voire inférieure à 5000 μm2 par mm2 de paroi . c) l'aire moyenne desdites zones est inférieure à 400 μm2 par mm2 de paroi, de préférence inférieure à 200 μm2 par mm2 de paroi.
Le matériau poreux est de préférence du carbure de silicium recristallisé à une température comprise entre 2100 et 24000C.
L'épaisseur des parois de la structure filtrante en R-SiC selon l'invention est typiquement comprise entre 200 et 500 μm.
Avantageusement, la partie centrale d'un filtre selon l'invention comprend une pluralité d'éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint.
Par exemple, la densité de canaux dans les éléments filtrants est comprise entre 7,75 à 62 par cm2 et lesdits canaux ayant une section de 0,5 à 9 mm2.
Eventuellement, la structure filtrante selon l'invention peut comprendre un revêtement catalytique pour le traitement des gaz polluants du type CO ou HC.
Une telle structure trouve notamment son application comme filtre à particules dans une ligne d'échappement d'un moteur essence ou diesel, de préférence diesel.
L' invention et ses avantages seront mieux compris à la lecture des exemples non limitatifs qui suivent. Dans les exemples, tous les pourcentages sont donnés en poids.
Les filtres des exemples qui suivent ont été synthétisés à partir d'un mélange initial des quatre constituants suivants :
- constituant A : une première poudre constituée de grains de SiC dont le diamètre médian d50 varie entre 5 et 50 μm, au moins 10% en poids des grains présentant un diamètre supérieur à 5 μm,
- constituant B : une deuxième poudre constituée de grains de SiC de diamètre médian d50 compris entre 0,1 et 10 μm,
- constituant C : un agent porogène du type polyéthylène,
- constituant D : un liant organique du type méthylcellulose .
Exemple 1 :
Un premier filtre à particule a été synthétisé et testé. Dans un malaxeur, on a d'abord mélangé 50 parties en poids d'un constituant A constitué par une poudre de grains de SiC de diamètre médian dso d'environ 30 μm, et 50 parties en poids d'un constituant B, dont le diamètre médian des grains de SiC est d'environ 2,5 μm.
Dans un deuxième temps, on a ajouté à ce premier mélange 5% en poids du constituant C par rapport à la masse totale des constituants A et B et 5% en poids du constituant D par rapport à la masse totale des constituants A et B.
On ajoute de l'eau et on malaxe jusqu'à obtenir une pâte homogène et dont la plasticité permet l'extrusion à travers une filière de structures monolithiques en nid d'abeille dont les caractéristiques dimensionnelles sont données dans le tableau 1 :
Tableau 1 On sèche ensuite les monolithes crus obtenus par microonde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % en masse. On bouche alternativement les canaux de chaque face du monolithe selon des techniques bien connues, par exemple décrites dans la demande WO 2004/065088.
Le monolithe est ensuite cuit selon une montée en température de 20°C/heure jusqu'à atteindre une température de l'ordre de 22000C qui est maintenue pendant 2 heures. On obtient finalement une série de monolithes en carbure de silicium dont les caractéristiques microstructurales sont fonction de la composition du mélange initial et des conditions de synthèse.
Les éléments issus d'un même mélange sont ensuite assemblés entre eux par collage au moyen d'un ciment de nature céramique puis usiné, afin de constituer des filtres de diamètre 14,4cm conformément à l'enseignement de la demande de brevet EP 816 065. Les filtres obtenus selon cet exemple correspondent à l'échantillon 1 du tableau 2.
Exemples 2 à 5 :
Dans ces exemples, on a reproduit à l'identique le protocole de synthèse des filtres décrit dans l'exemple 1. Par différence et de façon à modifier les propriétés microstructurales des monolithes obtenus :
- on a utilisé comme constituant A différentes poudres dont le diamètre médian de grains varie entre 5 et 50 μm, au moins 10% en poids des grains composant ces poudres présentant un diamètre supérieur à 5 μm, - on a utilisé comme constituant B différentes poudres de diamètre médian de grains de SiC variant entre 0,1 et 10 μm, et - on a fait varier les proportions des constituants A et B dans les limites suivantes : Constituant A : de 20 à 80%,
Constituant B : de 80 à 20%, pour obtenir un premier mélange comprenant exclusivement (100%) les constituants A et B.
On a ensuite ajouté dans un deuxième temps à chaque mélange A et B les constituants C et D, dans des proportions comprises respectivement entre 3 et 12% et 1 à 20% en poids par rapport à la masse totale des constituants A et B.
Les caractéristiques dimensionnelles des monolithes obtenus et des filtres obtenus après assemblage sont identiques à celles données dans l'exemple 1.
Les échantillons ainsi obtenus ont été évalués selon trois tests différents :
A- Mesure du temps de dépôt de suie :
Le temps de dépôt de suie est le temps nécessaire à la mise en place d'une quantité suffisante de suie, sur le filtre neuf ou après une régénération, pour qu' il atteigne son niveau maximal d'efficacité de filtration.
Pour la mesure, on a placé le filtre à tester sur une ligne d'échappement d'un moteur sur banc d'essai. Le moteur utilisé est du type Diesel de cylindrée 2.0 litres. Le filtre est progressivement chargé en suies par le fonctionnement du moteur à un régime de 3000 tr/min à 50 N.m.
Le banc est équipé d'un système ELPI (Electrical Low Pressure Impactor) , connu en soi et qui permet de mesurer en continu la concentration particulaire dans un gaz en temps réel à partir du moment où le filtre se charge. On obtient ainsi une courbe efficacité de filtration en fonction du temps caractérisé par un quasi-palier au bout d'une durée d'essai déterminée. Le palier correspond à une efficacité de filtration supérieure ou égale à 99%. La durée entre le début du chargement du filtre et celui à partir duquel une efficacité au moins égale à 99% est obtenue correspond selon la présente invention au temps de dépôt de suie. B- Mesure de la perte de charge :
Par perte de charge, on entend au sens de la présente invention la pression différentielle existant entre l'amont et l'aval du filtre. La perte de charge a été mesurée selon les techniques de l'art, pour un débit d'air de 300 m3/h dans un courant d'air ambiant.
C- Mesure de la résistance thermomécanique : Les filtres sont montés sur une ligne d'échappement d'un moteur diesel 2.0 L mis en marche à pleine puissance (4000 tr/minutes) pendant 30 minutes puis démontés et pesés afin de déterminer leur masse initiale. Les filtres sont ensuite remontés sur banc moteur avec un régime à 3000 tr/min et un couple de 50 Nm pendant des durées différentes afin d'obtenir dans le filtre une charge en suie de Sg/1.
Les filtres ainsi chargés sont remontés sur la ligne pour subir une régénération sévère ainsi définie : après une stabilisation à un régime moteur de 1700 tours/minute pour un couple de 95Nm pendant 2 minutes, une post-injection est réalisée avec 70° de phasage pour un débit de post injection de 18mm3/coup. Une fois la combustion des suies initiée, plus précisément lorsque la perte de charge diminue pendant au moins 4 secondes, le régime du moteur est abaissé à 1050 tours/minute pour un couple de 40 Nm pendant 5 minutes afin d'accélérer la combustion des suies. Le filtre est ensuite soumis à un régime moteur de 4000 tours/minute pendant 30 minutes afin d'éliminer les suies restantes.
Les filtres régénérés sont inspectés après découpe pour révéler la présence éventuelle de fissures visibles à l'œil nu. Le filtre est jugé valide (c'est-à-dire qu'il présente une résistance thermomécanique acceptable pour une utilisation comme filtre à particules) si aucune fissure n'est visible après ce test. Les caractéristiques microstructurales des échantillons ont ensuite été mesurées par différentes techniques :
D- Porosimétrie du matériau constituant les parois : La porosité du carbure de silicium constituant les parois a été déterminée selon les techniques classiques de porosimétrie à haute pression de mercure, avec un porosimètre de type micromeritics 9500. Les analyses montrent pour tous les échantillons testés une distribution des tailles de pore du type unimodale. Le diamètre médian de pore est déterminé à partir de la distribution cumulée de volume de pores en fonction de la taille de pores, obtenue par mesure de la porosimétrie grâce au porosimètre Mercure.
E - Analyse par microscopie électronique à balayage MEB et traitement de l'image:
Dans un premier temps, on a préparé par polissage une section de paroi appartenant à chacun des échantillons.
Des photographies d'une surface de 1 mm2 de paroi ont ensuite été prises à différents endroits de la paroi polie des échantillons par un microscope à balayage en mode BSE (électrons rétrodiffuses) . Les images brutes ainsi obtenues ont été traitées par une technique connue de seuillage de la porosité, de telle façon que les pixels de bruit, c'est-à-dire ne correspondant pas à une porosité vraie du matériau, soient éliminés de la photographie . La série d' images ainsi obtenue est ensuite traitée par la méthode d'érosion morphologique, l'élément structurant choisi étant un disque de rayon fixé et tel que reporté dans le tableau 2. Cette technique a pour avantage d'isoler des zones de porosité et de mettre en évidence la régularité, la continuité et l'homogénéité de la microstructure du matériau constituant ladite paroi.
La technique d'érosion est connue dans le domaine relatif à l'analyse d'image comme outil de morphologie mathématique. A titre d'exemple, on peut citer la publication « Précis d'analyse d'images, M. Coster & JL. Chermant, CNRS Press, Paris (1989) - pages 72 à 74 », qui décrit le principe d'une telle méthode.
Sur une série définie d'images, obtenue par la méthode d'érosion, on détermine, par labellisation selon des techniques bien connues dans le métier et à l'aide du logiciel Visilog®, commercialisé par la société Noesis, le nombre, l'aire moyenne et l'aire cumulée des zones résiduelles, c'est-à-dire après érosion.
Les principales données d' analyse et d' évaluation obtenues pour les échantillons numérotés 2 à 5, représentatifs de l'ensemble des résultats obtenus sont reportées dans le tableau 2.
Différentes parties des parois du filtre de l'exemple 5 ont été traitées par la méthode d'érosion en faisant varier les dimensions du disque structurant selon des valeurs de 30 μm (exemple 5a) , 40 μm (exemple 5b) et 60 μm (exemple 5c) .
Dans le tableau 2, les valeurs reportées du nombre de zones résiduelles, de l'aire moyenne des zones et de l'aire cumulée des zones correspondent à une moyenne desdites valeurs, calculée à partir d'une série de 10 images MEB en mode BSE de la surface de paroi, prises en différentes positions .
Valeurs moyennes sur une série de 10 images différentes.
Tableau 2
L'analyse du tableau 2 montre une corrélation étonnante entre les caractéristiques microstructurales des filtres déduites de la technique de l'érosion morphologique et les résultats obtenus aux différents tests de qualification desdits filtres. Plus particulièrement, on observe que les meilleurs résultats et compromis en terme de temps de dépôt de suies, de perte de charge et de résistance thermomécanique sont obtenus pour les structures filtrantes à base de R-SiC selon la présente invention, telles que définies dans les revendications qui suivent.

Claims

REVENDICATIONS
1. Méthode de sélection d'une structure filtrante d'un gaz chargé en particules, ladite structure comprenant une partie filtrante constituée par une matière céramique poreuse et comprenant au moins une et de préférence une pluralité de parois poreuses, ladite méthode se caractérisant en ce qu'on réalise, à partir d'une première image de la surface de la paroi, un traitement de ladite première image comprenant une érosion morphologique par un élément structurant, de manière à obtenir une seconde image caractéristique de la régularité et de l'homogénéité de la microstructure de ladite paroi.
2. Méthode selon la revendication 1, dans laquelle les dimensions et éventuellement la morphologie de l'élément structurant sont choisies en fonction du diamètre médian de pores, mesuré par porosimétrie mercure.
3. Méthode selon la revendication 1 ou 2, dans laquelle l'élément structurant est un disque choisi de telle façon que le rapport de son diamètre sur le diamètre médian de pores est compris entre 1,5 et 5, de préférence entre 2,5 et 4,5.
4. Méthode selon l'une des revendications précédentes, comprenant les étapes suivantes :
- préparer une section de paroi, de préférence polie, - faire une acquisition d'images de préférence par exemple au moyen d'un microscope électronique à balayage MEB, de préférence en mode électrons rétrodiffuses BSE,
- traiter les images brutes par une technique de seuillage pour obtenir des images binarisées, - traiter les images binarisées par la technique de l'érosion morphologique à l'aide d'un élément structurant adapté au médian de pores du filtre,
- caractériser les zones de porosité restantes, - sélectionner les structures filtrantes sur la base des critères suivants : a) le nombre de zones résiduelles restantes après érosion, b) l'aire cumulée desdites zones, c) l'aire moyenne desdites zones.
5. Méthode selon l'une des revendications précédentes, dans laquelle le matériau poreux est choisi dans le groupe constitué par la cordiérite, l'alumine, la mullite, le nitrure de silicium, les mélanges silicium/carbure de silicium.
6. Méthode selon l'une des revendications précédentes, dans laquelle lesdites parois présentent une porosité ouverte comprise entre 30 et 60%, de préférence entre 40 et 53%, de préférence encore entre 44 et 50%, et un diamètre de pores médian compris entre 8 et 30 μm, de préférence entre 9 et 25 μm, de préférence encore entre 10 et 18 μm.
7. Structure de filtration à base de SiC, du type en nid d'abeilles, comprenant une partie filtrante constituée par une matière céramique poreuse de porosité ouverte comprise entre 30 et 53% de préférence entre 44 et 50%, et dont le diamètre médian de pores est compris entre 8 et 20 μm, de préférence entre 10 et 18 μm, ladite structure se caractérisant par au moins un et de préférence la totalité des critères suivants, déterminés par application de la méthode décrite dans l'une des revendications précédentes : a) le nombre de zones résiduelles restantes après érosion par un élément structurant, constitué par un disque dont le diamètre est compris entre 2,5 et 4,5 fois le diamètre médian des pores, est inférieur à 100/mm2de paroi, de préférence inférieur à 80/mm2de paroi, b) l'aire cumulée desdites zones est inférieure à 10 000 μm2/mm2de paroi, de préférence inférieure à 8000 μm2/mm2de paroi. c) l'aire moyenne desdites zones est inférieure à 400 μm2/mm2de paroi, de préférence inférieure à 200 μm2/mm2de paroi .
8. Structure selon la revendication 7 dans laquelle le matériau poreux est du carbure de silicium recristallisé à une température comprise entre 2100 et 24000C.
9. Structure selon l'une des revendications 7 ou 8, dans laquelle l'épaisseur des parois est comprise entre 200 et
500 μm.
10. Structure filtrante selon l'une des revendications 7 à 9 dont la partie centrale comprend une pluralité d'éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint.
11. Utilisation d'une structure selon l'une des revendications 7 à 10 comme filtre à particules dans une ligne d'échappement d'un moteur diesel ou essence, de préférence diesel.
EP06842066A 2005-11-30 2006-11-29 Methode de selection d'une structure de filtration d'un gaz Withdrawn EP1955044A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553666A FR2894028B1 (fr) 2005-11-30 2005-11-30 Methode de selection d'une structure de filtration d'un gaz
PCT/FR2006/051255 WO2007063250A1 (fr) 2005-11-30 2006-11-29 Methode de selection d'une structure de filtration d'un gaz

Publications (1)

Publication Number Publication Date
EP1955044A1 true EP1955044A1 (fr) 2008-08-13

Family

ID=36570768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06842066A Withdrawn EP1955044A1 (fr) 2005-11-30 2006-11-29 Methode de selection d'une structure de filtration d'un gaz

Country Status (11)

Country Link
US (1) US8066798B2 (fr)
EP (1) EP1955044A1 (fr)
JP (1) JP5091153B2 (fr)
KR (1) KR101298797B1 (fr)
CN (1) CN101322023B (fr)
CA (1) CA2631403A1 (fr)
EA (1) EA014564B1 (fr)
FR (1) FR2894028B1 (fr)
MA (1) MA29971B1 (fr)
WO (1) WO2007063250A1 (fr)
ZA (1) ZA200804583B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944350A1 (fr) * 2009-04-14 2010-10-15 Peugeot Citroen Automobiles Sa Procede de determination de la surface frontale ouverte d'un filtre a particules
CN102519855B (zh) * 2011-12-06 2014-07-02 长安大学 一种多孔沥青混合料抗堵塞性能的测定方法
CN105092622A (zh) * 2015-08-12 2015-11-25 湖南中烟工业有限责任公司 一种测试卷烟燃烧过程中卷烟纸孔结构与主流烟气中co释放量关系的方法
CN105740845A (zh) * 2016-03-02 2016-07-06 深圳竹信科技有限公司 一种基于单层形态学滤除基线漂移的方法和系统
CN111426618B (zh) * 2020-04-14 2023-09-12 重庆中烟工业有限责任公司 一种降温材料快速评价检验系统及方法
CN113420813B (zh) * 2021-06-23 2023-11-28 北京市机械工业局技术开发研究所 一种车辆尾气检测设备颗粒物过滤棉状态的诊断方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783751A (en) * 1983-08-17 1988-11-08 University Of South Carolina Analysis of pore complexes
JP3121497B2 (ja) 1994-07-14 2000-12-25 イビデン株式会社 セラミック構造体
US5787208A (en) * 1995-06-07 1998-07-28 Neopath, Inc. Image enhancement method and apparatus
JPH09157060A (ja) * 1995-12-06 1997-06-17 Sumitomo Chem Co Ltd 無機焼結多孔体およびフィルタ
DE60222225T2 (de) * 2001-12-03 2008-06-12 Hitachi Metals, Ltd. Keramischer Wabenfilter
US6736875B2 (en) 2001-12-13 2004-05-18 Corning Incorporated Composite cordierite filters
FR2833857B1 (fr) * 2001-12-20 2004-10-15 Saint Gobain Ct Recherches Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules
JP4303599B2 (ja) * 2002-03-25 2009-07-29 イビデン株式会社 排ガス浄化用フィルタ
US7244685B2 (en) 2002-11-20 2007-07-17 Ngk Insulators, Ltd. Silicon carbide porous body, process for producing the same and honeycomb structure
JP2004286703A (ja) * 2003-03-25 2004-10-14 Ngk Insulators Ltd ハニカム構造体の検査方法及び検査装置
JP4577752B2 (ja) 2003-06-06 2010-11-10 日立金属株式会社 セラミックハニカムフィルタ
EP1655274B1 (fr) * 2003-07-25 2013-11-27 NGK Insulators, Ltd. Corps poreux en ceramique et methode d'evaluation de sa permeabilite
JP4473693B2 (ja) * 2004-09-28 2010-06-02 日本碍子株式会社 ハニカムフィルタ
JP4673035B2 (ja) * 2004-10-25 2011-04-20 日本碍子株式会社 セラミックハニカム構造体
US7520911B2 (en) * 2005-11-30 2009-04-21 Corning Incorporated Porous cordierite ceramic honeycomb article with improved strength and method of manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Image-Pro Plus Version 6.0 for Windows (TM) Start-Up Guide", 12 June 1998 (1998-06-12), XP055190018, Retrieved from the Internet <URL:http://web.uvic.ca/ail/techniques/IPPStartUp.pdf> [retrieved on 20150519] *

Also Published As

Publication number Publication date
WO2007063250A1 (fr) 2007-06-07
KR20080071578A (ko) 2008-08-04
FR2894028B1 (fr) 2008-07-11
ZA200804583B (en) 2009-04-29
JP5091153B2 (ja) 2012-12-05
CA2631403A1 (fr) 2007-06-07
US20090301047A1 (en) 2009-12-10
EA200801473A1 (ru) 2009-02-27
US8066798B2 (en) 2011-11-29
CN101322023A (zh) 2008-12-10
KR101298797B1 (ko) 2013-08-27
MA29971B1 (fr) 2008-11-03
EA014564B1 (ru) 2010-12-30
CN101322023B (zh) 2013-07-24
JP2009517208A (ja) 2009-04-30
FR2894028A1 (fr) 2007-06-01

Similar Documents

Publication Publication Date Title
EP1954374B1 (fr) Structure a base de carbure de silicium de porosite de surface de paroi controlee pour filtration d&#39;un gaz
EP2234693B1 (fr) Structure de filtration d&#39;un gaz a canaux hexagonaux assymetriques
EP1979589A2 (fr) Filtre catalytique presentant un temps d&#39;amorcage reduit
EP2244804B1 (fr) Structure de filtration d&#39;un gaz a canaux hexagonaux assymetriques
EP1955044A1 (fr) Methode de selection d&#39;une structure de filtration d&#39;un gaz
FR2928562A1 (fr) Structure de filtration d&#39;un gaz a epaisseur de paroi variable
EP2254681A2 (fr) Structure de filtration de gaz
CA2624147A1 (fr) Methode d&#39;obtention d&#39;une structure de filtration homogene pour une application catalytique
WO2008104665A1 (fr) Structure de filtration d&#39;un gaz a paroi ondulee
EP2244805B1 (fr) Structure de filtration d&#39;un gaz a canaux hexagonaux concaves ou convexes
EP2091890A2 (fr) Procede d&#39;obtention d&#39;une structure poreuse a base de carbure de silicium
EP2468382A1 (fr) Filtre a particules du type assemble
FR2943928A1 (fr) Structure filtrante a base de sic a proprietes thermomecaniques ameliorees
MX2008006904A (en) Structure for the filtration of a gas based on silicium carbide with a controlled wall surface porosity
WO2011138555A1 (fr) Structure de filtration de gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080910

111L Licence recorded

Free format text: 0101 SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH

Effective date: 20091222

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20151130