WO2008104665A1 - Structure de filtration d'un gaz a paroi ondulee - Google Patents

Structure de filtration d'un gaz a paroi ondulee Download PDF

Info

Publication number
WO2008104665A1
WO2008104665A1 PCT/FR2008/050155 FR2008050155W WO2008104665A1 WO 2008104665 A1 WO2008104665 A1 WO 2008104665A1 FR 2008050155 W FR2008050155 W FR 2008050155W WO 2008104665 A1 WO2008104665 A1 WO 2008104665A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
structure according
walls
vertices
filter
Prior art date
Application number
PCT/FR2008/050155
Other languages
English (en)
Inventor
Francisco José CARRANZA
Alessandro Giassi
François VIANEY
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to EP08762015A priority Critical patent/EP2111281A1/fr
Priority to US12/525,674 priority patent/US20100101196A1/en
Priority to KR1020097016265A priority patent/KR20090108698A/ko
Priority to JP2009547738A priority patent/JP2010517743A/ja
Publication of WO2008104665A1 publication Critical patent/WO2008104665A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths

Definitions

  • the invention relates to the field of filter structures possibly comprising a catalytic component, for example used in an exhaust line of a diesel type internal combustion engine.
  • Filters for the treatment of gases and the removal of soot typically from a diesel engine are well known in the prior art.
  • These structures all most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • porous ceramic filters for example cordierite, alumina, mullite, silicon nitride, are used for the filtration of gases. in a silicon / silicon carbide or silicon carbide mixture.
  • the particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration phases.
  • soot particles emitted by the engine are retained and are deposited inside the filter.
  • soot particles are burned inside the filter, in order to restore its filtration properties.
  • the filter is subjected to intense thermomechanical stresses likely to cause over the duration of microcracking may alter the filtration efficiency and eventually require the filter change in an exhaust line.
  • a material having a very good thermomechanical resistance such as silicon carbide.
  • a decrease in the frequency of the regeneration phases would further increase the life of the filters.
  • a particulate filter as previously described in the exhaust line of the engine causes a pressure drop, that is to say a differential pressure between the incoming gas and the outgoing gas, which may affect the performance of the engine.
  • the filter must therefore be configured to avoid such alteration by minimizing said pressure drop, whether in a state not loaded with soot, for example at nine or after a regeneration phase, or in a state loaded with soot. It is particularly important, in an application such as the particle filter, to minimize the pressure drop during operation so as not to degrade the power of the device. engine and not to significantly increase fuel consumption, whether or not the filter is loaded with soot or residue.
  • the transformation of polluting emissions into the gaseous phase (that is to say mainly carbon monoxide (CO) and unburned hydrocarbons (HC) or even nitrogen oxides (NO x )) in less harmful gases requires additional catalytic treatment.
  • the most advanced current filters thus additionally have an additional catalytic component.
  • the catalytic function is obtained by impregnating the honeycomb structure with a solution comprising the catalyst or a precursor of the catalyst, generally based on a platinum group precious metal.
  • soot deposition time corresponds to the time required for the filter to reach its maximum level of filtration efficiency, during its first implementation or after a regeneration phase. It is assumed that this time is a function in particular of placing a sufficient amount of soot in the porosity of the filter to block the direct passage of fine particles through the walls of the filter.
  • One of the direct consequences of an unsuitable soot deposition time is the appearance of persistent and harmful black smoke, as well as the presence of traces of soot at the outlet of the exhaust line, on a new filter or after a regeneration phase. It is obvious that for environmental, image and user comfort issues, car manufacturers want the appearance of such phenomena is suppressed or at least minimized on vehicles equipped with such filters.
  • soot deposition is a poorly known phenomenon, probably because the deposit mass is not measurable in real time on a filter during the solicitation. Only the soot deposition time indirectly measured from the analysis of the rate of particles present in the exhaust gas at the outlet of the filter is indeed accessible.
  • the deposit of soot may be more or less homogeneous, that is to say that the thickness of this deposit may be more or less variable in the direction of the length of the filter or more or less well distributed along the section of the intake channels.
  • a deposit as homogeneous as possible within the structure therefore makes it possible to minimize the soot deposition time and therefore the emission of black fumes.
  • a solution that makes it possible to reduce the soot deposition time consists in reducing the porosity, that is to say typically the pore volume and / or the pore diameter of the material constituting the filtering walls of the filter, but this results in an increase notorious of the pressure loss of the filter.
  • the inlet and outlet channels have a cross sectional square section.
  • Such symmetrical structures have the advantage of having relatively short soot deposition times, but also certain disadvantages such as a reduced filtration area and a high pressure drop when the filter is loaded with soot.
  • these symmetrical structures are characterized by a low volume of storage residues. By residues, it is understood, within the meaning of this description, the residual fraction of incombustible particles under the regeneration conditions of the filter.
  • EP 1 125 704 B1 discloses a filter with channels delimited by portions of walls, a certain number of which are concave and the other straight and / or convex, as shown in FIGS. 1, 3 and 4 of this patent. . According to this teaching, such a configuration makes it possible to increase the overall surface of said walls to a constant volume, with respect to a section of the cells of the square type, and to increase the interactions between the gas and the walls. On the other hand, the storage volume of the residues of these structures is not improved compared to that of square section channels. The soot deposition time of these structures is also not improved over that of square section channels.
  • the present invention aims to provide a filter structure having the best compromise between: a low pressure loss caused by a filtering structure in operation, that is to say, typically when it is in an exhaust line of an internal combustion engine, both when it is free of soot particles and when it is loaded with particles,
  • the present invention relates to a filtration structure of particles-loaded gases of the honeycomb type and comprising a set of longitudinal adjacent channels of axes parallel to one another separated by porous walls, said structure characterized in that at least one, and preferably all, of the walls connecting two vertices of a channel and separating it from an adjacent channel has, in cross-section and with respect to the center of said channel, at least a concavity and at least a convexity.
  • said wall or walls have at least two changes of curvature.
  • the said wall or walls have at least two points of inflection.
  • the number of inflection points is included according to the invention between 2 and 4 inclusive, or even between 2 and 3 inclusive and very preferably is equal to 2.
  • the distance d z between two consecutive vertices of said channel may be between about 0.1 mm and about 10 mm, preferably between about
  • the number of walls delimiting a channel may be equal to 3, 4, 6 or 8 and preferably may be equal to 4 or 6.
  • a filtration structure comprising at least one channel delimited by three walls, the angle CC defined, in a cross section, by the straight line connecting two consecutive vertices and by the tangent to the wall at one of said peaks, is advantageously between about 13 ° and about 30 °.
  • a filtration structure according to the invention comprising at least one channel defined by four walls, the angle CC defined, in a cross section, by the line segment connecting two consecutive vertices of said channel and the tangent to the central core of the wall at one of said peaks is advantageously between about 20 ° and about 45 °.
  • the angle CC defined, in a cross section, by the line segment connecting two consecutive vertices of said channel and by the tangent to the central core of the wall at one of said peaks is advantageously between about 25 ° and about 60 °.
  • the ratio, in a cross-section, between the maximum distance di separating the central core from said wall of the line segment connecting said consecutive vertices of a channel, and the distance d - z separating these two peaks is between 0.01 and 0.3, preferably between 0.02 and 0.1.
  • the channel or channels having at least one concavity and at least one convexity have at least one longitudinal plane of symmetry and preferably at least two longitudinal symmetry planes.
  • the structure according to the invention further comprises a catalytic coating for the treatment of pollutant gases of CO or HC or NOx type.
  • the walls of the filtration structure have substantially constant thicknesses.
  • the thickness of the walls is between 200 and 500 microns.
  • the density of channels per cm 2 is between 1 and 280, preferably between 15 and 65.
  • the filtering structure according to the invention may be cordierite, alumina, mullite, silicon nitride, a silicon / silicon carbide mixture, alumina titanate or preferably silicon carbide.
  • the invention further relates to a filter element comprising a structure as previously described, wherein the channels are closed at one or the other of their ends to define inlet chambers opening on the intake side and outlet chambers opening along the discharge face.
  • Said structure comprises for example a plurality of honeycomb filter elements interconnected by a joint cement.
  • the invention relates to the use of the structure as particulate filter, catalysed or not, in an exhaust line of a diesel engine or gasoline, preferably diesel.
  • FIGS. 1, 2 and 3 illustrate a nonlimiting exemplary embodiment of a structure, for example filtering, having channels according to the invention.
  • Figure 1 is a cross-sectional view of a four-walled inlet channel, in which the characteristic elements of a wall according to the invention have been shown.
  • Figure 2 is an overall view, in cross section, illustrating the arrangement of several channels within a structure according to the invention.
  • FIG. 3 shows a front view of a monolithic element comprising input and output channels according to the invention.
  • FIG. 1 shows an inlet channel 10 for the gases, consisting of four walls referenced 1 to 4 having a profile according to the invention, that is to say two concavities 5 and 6 and a convexity 7 by relative to an observer placed in the center of said cavity.
  • Each wall for example the wall 1 extending between the vertices Si and S2, is characterized by: angles CC 1 and CC 2 defined on the one hand by the line segment 8 connecting the two consecutive vertices S 1 and S 2 of the channel and, on the other hand, by the tangent to the central core 9 of the wall respectively at the vertex Si for CCi and S2 for CC2.
  • a distance di defined as the maximum distance separating the central core 9 from said wall of the line segment 8 connecting the vertices Si and S2.
  • FIG. 1 illustrates a particular embodiment according to the invention in which the wall has a concavity and two convexities with respect to the center of the reference channel.
  • Fig. 2 shows the arrangement of a set of inlet and outlet channels 11 of the gases in cross-section of a honeycomb structure according to the invention.
  • Figure 3 schematically shows the arrangement of channels 10 and 11 in a monolithic filter block according to the invention.
  • the first population of monolithic elements or monoliths in the form bee and silicon carbide.
  • the median diameter refers to the diameter of the particles below which 50% by mass of the population is found.
  • the green monoliths obtained are dried by microwave for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • the channels of each face of the monolith are alternately blocked according to well-known techniques, for example described in application WO 2004/065088.
  • the monoliths are then fired to a temperature of 2200 ° C., which is maintained for 5 hours.
  • the porous material obtained comprising for the most part recrystallized CC-SiC, has an open porosity of 47% and a mean pore distribution diameter of about 15 ⁇ m.
  • the dimensional characteristics of the elements thus obtained are given in Table 1 below.
  • An assembled filter was then formed from the monoliths. Sixteen elements from the same mixture were assembled together according to conventional techniques by bonding with a cement of the following chemical composition: 72% by weight of SiC, 15% by weight of Al 2 O 3 , 11% by weight of SiO 2 , the remainder consisting of impurities predominantly Fe2O3 and alkali and alkaline earth metal oxides. The average thickness of the joint between two neighboring blocks is of the order of 2 mm. The assembly is then machined in order to form assembled filters of cylindrical shape 14.4 cm in diameter.
  • EXAMPLE 4 The technique for synthesizing the monoliths described above is also identical, but this time the die is adapted so as to produce monolithic blocks characterized by an arrangement of the channels identical to those of FIG. application EP 1 125 704, with an asymmetry rate of 7%, as defined above.
  • Example 5 (according to the invention):
  • the dies were configured in such a way that the monoliths obtained according to Examples 1 to 5 above have the same density of cells per unit area, in a transverse layer.
  • the channel density is 180 cpsi ("cells per square inch"), which is 27.9 channels per cm 2 , a cpsi being equal to 1 cell / 6.45 cm 2 .
  • the hydraulic diameter of the inlet channels is 4A / P.
  • A being the area of the section of the input channels and P their perimeter.
  • pressure drop the meaning of the present invention is understood to mean the differential pressure existing between the upstream and the downstream of the filter.
  • the pressure drop was measured according to the techniques of the art, for a gas flow rate of 600 Nm 3 / h and a temperature of 300 0 C, initially on the new filters.
  • the various filters are previously mounted on an exhaust line of a diesel engine 2.0 L run at full power (4000 rpm) for 30 minutes then dismantled and weighed to determine their initial mass.
  • the filters are then reassembled on the engine bench with a speed of 3000 rpm and a torque of 50 Nm to obtain soot loads in the filter of 8 g / 1.
  • the pressure drop measurement on the filter thus loaded with soot is carried out as on the new filter.
  • the filter to be tested was placed on an exhaust line of a motor on a test bench.
  • the engine used is of the 2.0 liter diesel type.
  • the filter is gradually loaded in soot by the operation of the engine at a speed of 3000 rpm to 50 N. m.
  • the bench is equipped with an Electrical Low Pressure Impactor (ELPI) system, which continuously measures the concentration of particles in a gas in real time from the moment the filter is charged.
  • ELPI Electrical Low Pressure Impactor
  • This gives a filtration efficiency curve as a function of time characterized by a quasi-plateau after a determined test duration.
  • the bearing corresponds to a filtration efficiency greater than or equal to 99%.
  • the time between the beginning of the loading of the filter and that from which an efficiency of at least 99% is obtained corresponds according to the present invention to the soot deposition time.
  • the OFA is the ratio of the area covered by the sum of the cross-sections of the inlet channels on the front face of a monolith and the cross-sectional area of the said monolith.
  • the structures according to the invention are characterized by a better compromise between the pressure loss generated. by the filter, whether or not it is loaded with soot and the soot deposition time.
  • the structures according to the invention thus have a particular interest in the case where they incorporate an additional catalytic component. More particularly, because of this better compromise, it is possible according to the invention to synthesize high porosity structures in which the catalyst load (and consequently the efficiency of the catalytic treatment) is substantially increased, without however to bring to an unacceptable value the soot deposition time of the catalytic filter thus obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

L'invention se rapporte à une structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses, ladite structure se caractérisant en ce qu'au moins une, et de préférence la totalité des parois reliant deux sommets (S1, S2) d'un canal et séparant celui-ci d'un canal contigu présente, en coupe transversale et par rapport au centre dudit canal, au moins une concavité (5, 6) et au moins une convexité (7).

Description

STRUCTURE DE FILTRATION D'UN GAZ A PAROI ONDULEE
L' invention se rapporte au domaine des structures filtrantes comprenant éventuellement une composante catalytique, par exemple utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel . Les filtres permettant le traitement des gaz et l'élimination des suies typiquement issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant. A l'heure actuelle, on utilise pour la filtration des gaz des filtres en matière céramique poreuse, par exemple en cordiérite, en alumine, en mullite, en nitrure de silicium, en un mélange silicium/carbure de silicium ou en carbure de silicium.
De façon connue, durant son utilisation, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération
(élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration. Lors de ces phases de régénération, le filtre est soumis à des contraintes thermomécaniques intenses susceptibles d'entraîner sur la durée des microfissurations pouvant altérer l'efficacité de filtration et au final nécessiter le changement du filtre dans une ligne d'échappement. Pour diminuer de tels risques, on peut choisir un matériau présentant une très bonne résistance thermomécanique comme le carbure de silicium. De même, une diminution de la fréquence des phases de régénération permettrait d'augmenter encore la durée de vie des filtres.
Il est connu par ailleurs que l'introduction d'un filtre à particules tel que précédemment décrit dans la ligne d'échappement du moteur entraîne une perte de charge, c'est- à-dire un différentiel de pression entre les gaz entrant et les gaz sortant, susceptible d'altérer les performances du moteur. Le filtre doit en conséquence être configuré de manière à éviter une telle altération en minimisant ladite perte de charge, qu'il soit dans un état non chargé en suies, par exemple à neuf ou après une phase de régénération, ou dans un état chargé en suies. Il est notamment important, dans une application comme le filtre à particules, de minimiser la perte de charge en fonctionnement de manière à ne pas dégrader la puissance du moteur et à ne pas augmenter sensiblement la consommation en carburant, que le filtre soit chargé ou non en suies ou en résidus .
En plus du problème de traitement des suies, la transformation des émissions polluantes en phase gazeuse (c'est à dire principalement et le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC) voire les oxydes d'azote (NOx) ) en des gaz moins nocifs nécessite un traitement catalytique supplémentaire. Les filtres actuels les plus évolués présentent ainsi de surcroît une composante additionnelle catalytique. Selon les procédés classiquement utilisés, la fonction catalytique est obtenue par imprégnation de la structure en nid d'abeille par une solution comprenant le catalyseur ou un précurseur du catalyseur, généralement à base d'un métal précieux du groupe du platine.
Un autre critère déterminant pour la sélection des structures filtrantes est leur temps de dépôt de suie. Ce temps correspond à la durée nécessaire au filtre pour qu' il atteigne son niveau maximal d'efficacité de filtration, lors de sa première mise en œuvre ou après une phase de régénération. Il est supposé que ce temps est fonction en particulier de la mise en place d'une quantité suffisante de suie dans la porosité du filtre pour bloquer la traversée directe des fines particules à travers les parois du filtre. L'une des conséquences directes d'un temps de dépôt de suies non adapté est l'apparition de fumées noires persistantes et nocives, ainsi que la présence de traces de suies à la sortie de la ligne d'échappement, sur un filtre neuf ou après une phase de régénération. Il est bien évident que pour des questions d'environnement, d'image et de confort d'utilisation, les constructeurs automobiles souhaitent que l'apparition de tels phénomènes soit supprimée ou au moins minimisée sur les véhicules équipés de tels filtres.
La mise en place du dépôt de suie est un phénomène mal connu, sans doute du fait que la masse de dépôt n'est pas mesurable en temps réel sur un filtre en cours de sollicitation. Seul est en effet accessible le temps de dépôt de suie mesuré indirectement à partir de l'analyse du taux de particules présentes dans les gaz d'échappement en sortie du filtre. Le dépôt de suies peut-être plus ou moins homogène, c'est-à-dire que l'épaisseur de ce dépôt peut être plus ou moins variable dans le sens de la longueur du filtre ou plus ou moins bien répartie le long de la section des canaux d'admission. Un dépôt le plus homogène possible au sein de la structure permet donc de minimiser le temps de dépôt de suie et donc l'émission de fumées noires.
Par exemple une solution permettant de réduire le temps de dépôt de suies consiste à réduire la porosité, c'est à dire typiquement le volume poreux et/ou le diamètre de pores du matériau constituant les parois filtrantes du filtre mais cela se traduit par une augmentation notoire de la perte de charge du filtre.
Dans la plupart des filtres en nid d'abeille actuellement commercialisés, les canaux d'entrée et de sortie présentent en coupe transversale une section carrée. De telles structures symétriques ont l'avantage de présenter des temps de dépôt en suie relativement courts, mais aussi certains inconvénients comme une surface de filtration réduite et une perte de charge élevée lorsque le filtre est chargé en suies. En outre, ces structures symétriques se caractérisent par un faible volume de stockage en résidus. Par résidus, il est entendu, au sens de la présente description, la fraction résiduelle de particules incombustible dans les conditions de régénération du filtre.
On connaît de la publication WO 2005/016491 un bloc filtrant se caractérisant par des parois présentant une ondulation périodique telle que la structure est asymétrique. Dans de telles structures, le volume global des canaux d'entrée est supérieur à celui des canaux de sortie. Une telle configuration permet, pour une perte de charge identique, d'augmenter la surface de filtration et le volume maximum de stockage des résidus. Cette augmentation contribue à réduire la fréquence des régénérations et ainsi à augmenter la durée de vie du filtre. Cependant, des essais effectués par la demanderesse ont montré qu'une telle configuration induisait à contrario une augmentation sensible du temps de dépôt de suie.
On connaît de EP 1 125 704 Bl un filtre avec des canaux délimités par des portions de parois dont un certain nombre sont concaves et les autres droites et/ou convexes, tel que cela est représenté dans les figures 1, 3 et 4 de ce brevet. Selon cet enseignement, une telle configuration permet d'augmenter à volume constant la surface globale desdites parois, par rapport à une section des cellules du type carré, et d'augmenter les interactions entre le gaz et les parois. En revanche, le volume de stockage des résidus de ces structures n'est pas amélioré par rapport à celui de canaux à section carrée. Le temps de dépôt de suies de ces structures n'est pas non plus amélioré par rapport à celui de canaux à section carrée. Dans la demande de brevet EP 1 495 791, une autre solution propose un filtre de structure asymétrique, c'est- à-dire dans lequel le volume occupé par les canaux d'entrée est supérieur au volume occupé par les canaux de sortie des gaz. Les canaux d'entrée présente une section, en coupe transversale, de forme typiquement octogonale et les canaux de sortie une section de forme carré. Selon cet enseignement, une telle configuration permet d'améliorer de façon sensible le volume de stockage des résidus tout en maintenant un niveau de perte de charge acceptable lorsque le filtre est chargé en suies. Cependant, du fait du volume restreint des canaux de sortie, la valeur élevée de la perte de charge inhérente au filtre, c'est à dire en l'absence de suies ou de particules, rend plus difficile l'utilisation d'un tel filtre dans une ligne d'échappement.
La présente invention a pour but de fournir une structure filtrante présentant le meilleur compromis entre : - une faible perte de charge occasionnée par une structure filtrante en fonctionnement, c'est-à-dire typiquement lorsque celle-ci est dans une ligne d'échappement d'un moteur à combustion interne, aussi bien lorsque que celui est exempt de particules de suies que lorsqu' il est chargé en particules,
- un volume de stockage de résidus important, de manière à réduire la fréquence de régénération,
- une efficacité de filtration optimale dès la mise en fonctionnement du filtre, c'est-à-dire un temps de dépôt des suies minimisé du fait d'un dépôt de suies le plus homogène possible au sein des canaux d'entrée dans le sens de leur longueur et/ou de leur section.
Dans sa forme la plus générale, la présente invention se rapporte à une structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses, ladite structure se caractérisant en ce qu'au moins une, et de préférence la totalité, des parois reliant deux sommets d'un canal et séparant celui-ci d'un canal contigu présente, en coupe transversale et par rapport au centre dudit canal, au moins une concavité et au moins une convexité.
Par exemple, la ou lesdites parois présentent au moins deux changements de courbure.
Selon un mode possible, la ou lesdites parois présentent au moins deux points d'inflexion. De préférence, le nombre de points d'inflexion est compris selon l'invention entre 2 et 4 inclus, voire entre 2 et 3 inclus et de manière très préférée est égal à 2.
Selon l'invention, la distance d-z entre les deux sommets consécutifs dudit canal peut être comprise entre environ 0,1 mm et environ 10 mm, de préférence comprise entre environ
0,2 mm et environ 5 mm et de manière très préférée entre environ 0,5 mm et environ 3 mm.
Dans une structure de filtration selon l'invention, le nombre de parois délimitant un canal peut être égal à 3, 4, 6 ou 8 et de préférence peut être égal à 4 ou 6.
Dans un mode de réalisation d'une structure de filtration selon l'invention, comprenant au moins un canal délimité par trois parois, l'angle CC défini, selon une coupe transversale, par la droite reliant deux sommets consécutifs et par la tangente à la paroi à un desdits sommets, est avantageusement compris entre environ 13° et environ 30°.
Dans un autre mode de réalisation d'une structure de filtration selon l'invention, comprenant au moins un canal délimité par quatre parois, l'angle CC défini, selon une coupe transversale, par le segment de droite reliant deux sommets consécutifs dudit canal et par la tangente à l'âme centrale de la paroi à un desdits sommets, est avantageusement compris entre environ 20° et environ 45°. Dans un autre mode de réalisation d'une structure de filtration selon l'invention, comprenant au moins un canal délimité par six parois, l'angle CC défini, selon une coupe transversale, par le segment de droite reliant deux sommets consécutifs dudit canal et par la tangente à l'âme centrale de la paroi à un desdits sommets, est avantageusement compris entre environ 25° et environ 60°.
Avantageusement, dans une structure de filtration selon l'invention, le rapport, selon une coupe transversale, entre la distance maximale di séparant l'âme centrale de ladite paroi du segment de droite reliant lesdits sommets consécutifs d'un canal, et la distance d-z séparant ces deux sommets, est compris entre 0,01 et 0,3, de préférence entre 0,02 et 0,1. En général, le ou les canaux présentant au moins une concavité et au moins une convexité présentent au moins un plan de symétrie longitudinal et de préférence au moins deux plans de symétrie longitudinaux.
Selon un mode possible, la structure selon l'invention comprend en outre un revêtement catalytique pour le traitement des gaz polluants du type CO ou HC ou NOx.
Selon l'invention, les parois de la structure de filtration présentent des épaisseurs sensiblement constantes. Avantageusement, dans la présente structure, l'épaisseur des parois est comprise entre 200 et 500 μm. La densité de canaux par cm2 est comprise entre 1 et 280, de préférence comprise entre 15 et 65.
La structure filtrante selon l'invention peut-être en cordiérite, en alumine, en mullite, en nitrure de silicium, en un mélange silicium/carbure de silicium, en titanate d'alumine ou de préférence en carbure de silicium.
L' invention se rapporte en outre à un élément filtrant comprenant une structure telle que précédemment décrite, dans laquelle les canaux sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Ladite structure comprend par exemple une pluralité d'éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint.
Enfin l'invention se rapporte à l'utilisation de la structure comme filtre à particules, catalysé ou non, dans une ligne d'échappement d'un moteur diesel ou essence, de préférence diesel.
Les figures 1, 2 et 3 illustrent un exemple de réalisation non limitatif d'une structure par exemple filtrante présentant des canaux selon l'invention.
La figure 1 est une vue en coupe transversale d'un canal d'entrée à quatre parois, dans lequel les éléments caractéristiques d'une paroi selon l'invention ont été représentés . La figure 2 est une vue d'ensemble, en coupe transversale, illustrant l'agencement de plusieurs canaux au sein d'une structure selon l'invention.
La figure 3 montre une vue de face d'un élément monolithique comprenant des canaux d'entrée et de sortie selon l'invention.
Sur la figure 1, on a représenté un canal d'entrée 10 des gaz, constitué par quatre parois référencées 1 à 4 présentant un profil selon l'invention, c'est-à-dire deux concavités 5 et 6 et une convexité 7 par rapport à un observateur placé au centre de ladite cavité.
Chaque paroi, par exemple la paroi 1 s' étendant entre les sommets Si et S2, est caractérisée par : - des angles CCi et CC2 définis d'une part par le segment de droite 8 reliant les deux sommets consécutifs Si et S2 du canal et d'autre part par la tangente à l'âme centrale 9 de la paroi respectivement au sommet Si pour CCi et S2 pour CC2.
- une distance d2 entre les deux sommets consécutifs Si et S2 du canal 10,
- une distance di, définie comme la distance maximale séparant l'âme centrale 9 de ladite paroi du segment de droite 8 reliant les sommets Si et S2.
La figure 1 illustre un mode particulier selon l'invention dans lequel la paroi présente une concavité et deux convexités par rapport au centre du canal de référence.
La figure 2 représente l'agencement d'un ensemble de canaux d'entrée 10 et de sortie 11 des gaz selon une coupe transversale d'une structure en nid d'abeille selon 1' invention .
La figure 3 représente schématiquement l'agencement des canaux 10 et 11 dans un bloc filtrant monolithique selon l'invention.
L' invention et ses avantages seront mieux compris à la lecture des exemples non limitatifs qui suivent.
Exemple 1 :
On a synthétisé selon les techniques de l'art, par exemple décrites dans les brevets EP 816065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294, une première population d'éléments monolithiques ou monolithes en forme de nid d'abeille et en carbure de silicium.
Pour ce faire, on mélange dans un malaxeur :
- 3000 g d'un mélange de particules de carbure de silicium de pureté supérieure à 98% et présentant une granulométrie telle que 70% en masse des particules présente un diamètre supérieur à 10 micromètres, le diamètre médian de cette fraction granulométrique étant inférieur à 300 micromètres. Au sens de la présente description, le diamètre médian désigne le diamètre des particules au dessous duquel se trouve 50% en masse de la population. - 150 g d'un liant organique du type cellulose. On ajoute de l'eau et on malaxe jusqu'à obtenir une pâte homogène dont la plasticité permet l'extrusion, la filière étant configurée pour l'obtention de blocs monolithes dont les canaux et les parois externes présentent une structure carrée .
Les monolithes crus obtenus sont séchés par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1% en masse.
Les canaux de chaque face du monolithe sont alternativement bouchés selon des techniques bien connues, par exemple décrites dans la demande WO 2004/065088. Les monolithes sont ensuite cuits jusqu'à une température de 22000C qui est maintenue pendant 5 heures. Le matériau poreux obtenu, comprenant très majoritairement du CC-SiC recristallisé, présente une porosité ouverte de 47% et un diamètre moyen de distribution de pores de l'ordre de 15μm. Les caractéristiques dimensionnelles des éléments ainsi obtenus sont données dans le tableau 1 ci-après.
On a ensuite formé un filtre assemblé à partir des monolithes. Seize éléments issus d'un même mélange ont été assemblés entre eux selon les techniques classiques par collage au moyen d'un ciment de composition chimique suivante : 72% poids de SiC, 15% poids d'Al2O3, 11% poids de SiO2, le reste étant constitué par des impuretés majoritairement de Fe2Û3 et d'oxydes de métaux alcalins et alcalino-terreux . L'épaisseur moyenne du joint entre deux blocs voisins est de l'ordre de 2 mm. L'ensemble est ensuite usiné, afin de constituer des filtres assemblés de forme cylindrique de 14,4 cm de diamètre.
Exemple 2 :
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition en vague des canaux internes. Des monolithes conformes à ceux décrits en relation avec la figure 3 de la demande WO 05/016491 sont obtenus. Selon une coupe transversale, l'ondulation des parois est caractérisée par un taux d'asymétrie, tel que défini dans WO 05/016491, égal à 7 %.
Exemple 3 :
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition octogonale des canaux internes d'entrée telle qu'illustrée par la figure 6b de la demande EP 1 495 791.
Exemple 4 : La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition des canaux identiques à ceux de figure la de la demande EP 1 125 704, avec un taux d'asymétrie de 7%, au sens précédemment défini. Exemple 5 (selon l' invention) :
La technique de synthèse des monolithes décrite précédemment est également reprise à l'identique, mais la filière est cette fois-ci adaptée de manière à réaliser des blocs monolithes se caractérisant par une disposition des canaux internes d'entrée selon l'invention c'est-à-dire selon la figure 1 décrite précédemment. La disposition des canaux est caractérisée par les valeurs suivantes :
Figure imgf000015_0001
- α2 =37°
Figure imgf000015_0002
- d2 = 1 , 8mm
Soit une valeur de di/cb égale à 0,055
Les principales caractéristiques structurelles des éléments obtenus selon les exemples 1 à 5 sont données dans le tableau 1. La technique d'assemblage et d'obtention des filtres est la même pour tous les exemples et telle que décrite dans l'exemple 1.
Les filières ont été configurées de telle manière que les monolithes obtenus selon les exemples 1 à 5 précédents présentent la même densité de cellules par unité de surface, en couche transversale. Dans les exemples, la densité de canaux est de 180 cpsi (« cells per square inch ») , soit 27,9 canaux par cm2, un cpsi étant égal à 1 cellule/6,45 cm2.
Figure imgf000016_0001
Tableau 1
* Le diamètre hydraulique des canaux d'entrée est égal à 4A/P. A étant l'aire de la section des canaux d'entrée et P leur périmètre.
Les échantillons obtenus ont été évalués et caractérisés selon les modes opératoires suivants:
A- Mesure de perte de charge à l'état chargé ou non : Par perte de charge, on entend au sens de la présente invention la pression différentielle existant entre l'amont et l'aval du filtre. La perte de charge a été mesurée selon les techniques de l'art, pour un débit de gaz de 600 Nm3/h et une température de 3000C, dans un premier temps sur les filtres neufs. Pour la mesure de perte sur filtre chargé, les différents filtres sont préalablement montés sur une ligne d'échappement d'un moteur diesel 2.0 L mis en marche à pleine puissance (4000 tr/minutes) pendant 30 minutes puis démontés et pesés afin de déterminer leur masse initiale.
Les filtres sont ensuite remontés sur banc moteur avec un régime à 3000 tr/min et un couple de 50 Nm afin d'obtenir des charges en suies dans le filtre de 8 g/1. La mesure de perte de charge sur le filtre ainsi chargé en suies est réalisée comme sur le filtre neuf.
B- Mesure du temps de dépôt de suies :
Pour ce faire, on a placé le filtre à tester sur une ligne d'échappement d'un moteur sur banc d'essai. Le moteur utilisé est du type Diesel de cylindrée 2.0 litres. Le filtre est progressivement chargé en suies par le fonctionnement du moteur à un régime de 3000 tr/min à 50 N. m. Le banc est équipé d'un système ELPI (Electrical Low Pressure Impactor) , qui permet de mesurer en continu la concentration de particules dans un gaz en temps réel à partir du moment où le filtre se charge. On obtient ainsi une courbe efficacité de filtration en fonction du temps caractérisée par un quasi-palier au bout d'une durée d'essai déterminée. Le palier correspond à une efficacité de filtration supérieure ou égale à 99%. La durée entre le début du chargement du filtre et celui à partir duquel une efficacité au moins égale à 99% est obtenue correspond selon la présente invention au temps de dépôt de suies.
Les résultats obtenus aux tests pour l'ensemble des exemples 1 à 5 sont regroupés dans le tableau 2 qui suit :
Figure imgf000018_0001
Tableau 2
*L'OFA est le rapport entre l'aire couverte par la somme des sections transversales des canaux d'entrée sur la face avant d'un monolithe et l'aire de section transversale dudit monolithe.
Analyse des résultats:
La comparaison des données reportées dans le tableau 1 montre que le filtre selon l'invention (exemple 5) présente le meilleur compromis des différentes propriétés recherchées, notamment la perte de charge à l'état chargé la plus faible, une surface filtration parmi les plus élevées tout en maintenant un temps de dépôt de suies parmi les plus faibles, ainsi qu'une perte de charge sur le filtre neuf et un volume de stockage de suies tout à fait satisfaisants pour l'application.
En outre, les structures selon l'invention se caractérisent par un meilleur compromis entre la perte de charge engendrée par le filtre, qu'il soit chargé ou non en suies et le temps de dépôt de suie. Les structures selon l'invention présentent ainsi un intérêt tout particulier dans le cas où elles incorporent une composante catalytique additionnelle. Plus particulièrement, du fait de ce meilleur compromis, il est possible selon l'invention de synthétiser des structures à forte porosité dans lesquelles on augmente de façon sensible la charge de catalyseur (et par suite l'efficacité du traitement catalytique) , sans pour autant porter à des valeurs jugées inacceptables le temps de dépôt de suies du filtre catalytique ainsi obtenu.

Claims

REVENDICATIONS
1. Structure de filtration de gaz chargés en particules, du type en nid d'abeilles et comprenant un ensemble de canaux
(10) adjacents longitudinaux d'axes parallèles entre eux séparés par des parois poreuses (1-4), ladite structure se caractérisant en ce qu'au moins une, et de préférence la totalité, des parois (1) reliant deux sommets (Si, S2) d'un canal (10) et séparant celui-ci d'un canal contigu présente, en coupe transversale et par rapport au centre dudit canal, au moins une concavité (5, 6) et au moins une convexité (7), la ou lesdites parois (1) présentant au moins deux points d'inflexion.
2. Structure de filtration selon la revendication 1, dans laquelle la ou lesdites parois (1) présentent au moins deux changements de courbure.
3. Structure de filtration selon la revendication 1 ou 2, dans laquelle la ou lesdites parois (1) présentent un nombre de points d' inflexion compris entre 2 et 4 et de préférence égal à 2.
4. Structure de filtration selon l'une des revendications précédentes, dans laquelle la distance entre les deux sommets (Sl, S2) est comprise entre environ 0,1 mm et environ 10 mm, de préférence comprise entre environ 0,2 mm et environ 5 mm et de manière très préférée entre environ 0,5 mm et environ 3 mm.
5. Structure de filtration selon l'une des revendications précédentes, dans laquelle le nombre de parois délimitant un canal est égal à 3, 4, 6 ou 8 et de préférence égal à 4 ou 6.
6. Structure de filtration selon l'une des revendications précédentes, comprenant au moins un canal délimité par trois parois et dans lequel l'angle CC défini, selon une coupe transversale, par la droite reliant deux sommets consécutifs et par la tangente à la paroi à un desdits sommets est compris entre environ 13° et environ 30°.
7. Structure de filtration selon l'une des revendications précédentes, comprenant au moins un canal délimité par quatre parois et dans lequel l'angle CC défini, selon une coupe transversale, par le segment de droite reliant deux sommets consécutifs dudit canal et par la tangente à l'âme centrale de la paroi à un desdits sommets est compris entre environ 20° et environ 45°.
8. Structure de filtration selon l'une des revendications précédentes, comprenant au moins un canal délimité par six parois et dans lequel l'angle CC défini, selon une coupe transversale, par le segment de droite reliant deux sommets consécutifs dudit canal et par la tangente à l'âme centrale de la paroi à un desdits sommets est compris entre environ 25° et environ 60°.
9. Structure de filtration selon l'une des revendications précédentes, dans laquelle le rapport, selon une coupe transversale, entre la distance maximale di séparant l'âme centrale (9) de ladite paroi du segment de droite (8) reliant lesdits sommets consécutifs (Si, S2) d'un canal, et la distance d2 séparant ces deux sommets, est compris entre 0,01 et 0,3, de préférence entre 0,02 et 0,1.
10. Structure de filtration selon l'une des revendications précédentes, dans laquelle le ou les canaux présentent au moins un plan de symétrie longitudinal et de préférence au moins deux plans de symétrie longitudinaux.
11. Structure selon l'une des revendications précédentes, comprenant en outre un revêtement catalytique pour le traitement des gaz polluants du type CO ou HC ou NOx.
12. Structure selon l'une des revendications précédentes, dans laquelle l'épaisseur des parois est comprise entre 200 et 500μm.
13. Structure selon l'une des revendications précédentes, dans laquelle la densité de canaux par cm2 est comprise entre 1 et 280, de préférence comprise entre 15 et 65.
14. Elément filtrant comprenant une structure selon l'une des revendications précédentes dans laquelle les canaux sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation.
15. Structure filtrante comprenant une pluralité d'éléments filtrants en nid d'abeille selon la revendication 14, reliés entre eux par un ciment de joint.
16. Utilisation d'un élément filtrant ou d'une structure selon l'une des revendications précédentes comme filtre à particules, catalysé ou non, dans une ligne d'échappement d'un moteur diesel ou essence, de préférence diesel.
PCT/FR2008/050155 2007-02-05 2008-01-31 Structure de filtration d'un gaz a paroi ondulee WO2008104665A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08762015A EP2111281A1 (fr) 2007-02-05 2008-01-31 Structure de filtration d'un gaz a paroi ondulee
US12/525,674 US20100101196A1 (en) 2007-02-05 2008-01-31 Gas filtration structure with undulated wall
KR1020097016265A KR20090108698A (ko) 2007-02-05 2008-01-31 파상 벽을 갖는 가스 여과 구조체
JP2009547738A JP2010517743A (ja) 2007-02-05 2008-01-31 波形の壁を備えたガス濾過構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0753062 2007-02-05
FR0753062A FR2912069B1 (fr) 2007-02-05 2007-02-05 Structure de filtration d'un gaz a paroi ondulee

Publications (1)

Publication Number Publication Date
WO2008104665A1 true WO2008104665A1 (fr) 2008-09-04

Family

ID=38370934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050155 WO2008104665A1 (fr) 2007-02-05 2008-01-31 Structure de filtration d'un gaz a paroi ondulee

Country Status (6)

Country Link
US (1) US20100101196A1 (fr)
EP (1) EP2111281A1 (fr)
JP (1) JP2010517743A (fr)
KR (1) KR20090108698A (fr)
FR (1) FR2912069B1 (fr)
WO (1) WO2008104665A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016095A1 (fr) * 2007-08-02 2009-02-05 Robert Bosch Gmbh Elément filtrant destiné à filtrer les gaz d'échappement d'un moteur à combustion interne

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959673A1 (fr) * 2010-05-04 2011-11-11 Saint Gobain Ct Recherches Structure de filtration de gaz a canaux tels qu'en nid d'abeilles
JP5700516B2 (ja) * 2010-11-30 2015-04-15 日本碍子株式会社 ハニカム構造体
JP5762138B2 (ja) * 2011-05-28 2015-08-12 京セラ株式会社 ハニカム構造体およびこれを用いたガス処理装置
MX2016001761A (es) 2013-08-14 2016-05-18 Sumitomo Chemical Co Filtro de particulas.
JP6559975B2 (ja) * 2015-02-26 2019-08-14 日本碍子株式会社 ハニカムフィルタ
FR3051836B1 (fr) 2016-05-31 2018-05-25 IFP Energies Nouvelles Filtre a particules a geometrie de canal variable et methodes de fabrication d'un tel filtre
JP7125823B2 (ja) * 2018-10-12 2022-08-25 イビデン株式会社 ハニカム構造体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364761A (en) * 1979-12-03 1982-12-21 General Motors Corporation Ceramic filters for diesel exhaust particulates and methods for making
EP0283220A1 (fr) * 1987-03-14 1988-09-21 Ngk Insulators, Ltd. Corps céramiques structuraux en forme de nid d'abeilles
JPH09313849A (ja) * 1996-05-29 1997-12-09 Ibiden Co Ltd セラミックフィルタ
EP1495791A1 (fr) * 2002-09-13 2005-01-12 Ibiden Co., Ltd. Filtre
JP2005118747A (ja) * 2003-10-20 2005-05-12 Ibiden Co Ltd ハニカム構造体
US20050163675A1 (en) * 2001-05-30 2005-07-28 Denso Corporation Exhaust gas purifying filter and method of manufacturing the same
FR2876922A1 (fr) * 2004-10-27 2006-04-28 Orelis Sa Support monolithe poreux d'un element de filtration
DE102005019464A1 (de) * 2005-04-27 2006-11-02 Robert Bosch Gmbh Filtereinrichtung, insbesondere Rußpartikelfilter, für ein Abgassystem einer Brennkraftmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903341A (en) * 1973-09-20 1975-09-02 Universal Oil Prod Co Ceramic honeycomb structure for accommodating compression and tension forces
US4323614A (en) * 1976-03-31 1982-04-06 Corning Glass Works Ceramic honeycomb structure
JPS5719039A (en) * 1980-07-11 1982-02-01 Ngk Insulators Ltd Ceramic honeycomb structural body
US5223318A (en) * 1990-08-06 1993-06-29 Corning Incorporated Titania substrates and fabrication
JPH1059784A (ja) * 1996-08-13 1998-03-03 Ishikawajima Harima Heavy Ind Co Ltd セラミックス製ハニカム構造体
CN1179830C (zh) * 1999-08-30 2004-12-15 日本碍子株式会社 波纹壁蜂窝构件及其制造方法
EP1508358B1 (fr) * 1999-09-29 2009-04-15 Ibiden Co., Ltd. Filtre en nid d' abeilles et ensemble de filtres céramiques
US7107763B2 (en) * 2002-03-29 2006-09-19 Hitachi Metals, Ltd. Ceramic honeycomb filter and exhaust gas-cleaning method
JP5161460B2 (ja) * 2004-10-08 2013-03-13 イビデン株式会社 ハニカム構造体及びその製法
JP4511396B2 (ja) * 2005-03-22 2010-07-28 日本碍子株式会社 ハニカム構造体及びその製造方法
JP2006329108A (ja) * 2005-05-27 2006-12-07 Hino Motors Ltd 排ガス浄化フィルタ
JP4238858B2 (ja) * 2005-09-20 2009-03-18 株式会社デンソー 六角ハニカム構造体及びその製造方法
JP4890903B2 (ja) * 2006-03-28 2012-03-07 日本碍子株式会社 ハニカム構造体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364761A (en) * 1979-12-03 1982-12-21 General Motors Corporation Ceramic filters for diesel exhaust particulates and methods for making
EP0283220A1 (fr) * 1987-03-14 1988-09-21 Ngk Insulators, Ltd. Corps céramiques structuraux en forme de nid d'abeilles
JPH09313849A (ja) * 1996-05-29 1997-12-09 Ibiden Co Ltd セラミックフィルタ
US20050163675A1 (en) * 2001-05-30 2005-07-28 Denso Corporation Exhaust gas purifying filter and method of manufacturing the same
EP1495791A1 (fr) * 2002-09-13 2005-01-12 Ibiden Co., Ltd. Filtre
JP2005118747A (ja) * 2003-10-20 2005-05-12 Ibiden Co Ltd ハニカム構造体
FR2876922A1 (fr) * 2004-10-27 2006-04-28 Orelis Sa Support monolithe poreux d'un element de filtration
DE102005019464A1 (de) * 2005-04-27 2006-11-02 Robert Bosch Gmbh Filtereinrichtung, insbesondere Rußpartikelfilter, für ein Abgassystem einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016095A1 (fr) * 2007-08-02 2009-02-05 Robert Bosch Gmbh Elément filtrant destiné à filtrer les gaz d'échappement d'un moteur à combustion interne

Also Published As

Publication number Publication date
JP2010517743A (ja) 2010-05-27
KR20090108698A (ko) 2009-10-16
EP2111281A1 (fr) 2009-10-28
FR2912069B1 (fr) 2011-04-01
US20100101196A1 (en) 2010-04-29
FR2912069A1 (fr) 2008-08-08

Similar Documents

Publication Publication Date Title
EP2234693B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP2244804B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP1979589A2 (fr) Filtre catalytique presentant un temps d'amorcage reduit
EP1954374B1 (fr) Structure a base de carbure de silicium de porosite de surface de paroi controlee pour filtration d'un gaz
WO2008104665A1 (fr) Structure de filtration d'un gaz a paroi ondulee
EP1917225B1 (fr) Support et filtre catalytique a base de carbure de silicium et a haute surface specifique
EP2254681A2 (fr) Structure de filtration de gaz
WO2009115753A2 (fr) Structure de filtration d'un gaz a epaisseur de paroi variable
FR2946892A1 (fr) Structure de filtration d'un gaz a canaux hexagonaux irreguliers.
EP2069617B1 (fr) Element monolithique a coins renforces pour la filtration de particules
FR2944052A1 (fr) Structure de filtration d'un gaz et de reduction des nox.
EP1871525A2 (fr) Filtre catalytique pour la filtration d'un gaz comprenant un revetement et/ou un joint de porosite controlee
EP2244805B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux concaves ou convexes
WO2007063250A1 (fr) Methode de selection d'une structure de filtration d'un gaz
EP2468382A1 (fr) Filtre a particules du type assemble
WO2011138552A1 (fr) Structure de filtration de gaz
FR2903919A1 (fr) Filtre comprenant une pluralite d'elements en nid d'abeille reunis dans un assemblage decentre
WO2011138555A1 (fr) Structure de filtration de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008762015

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009547738

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097016265

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE