EP1953537A1 - Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik - Google Patents

Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik Download PDF

Info

Publication number
EP1953537A1
EP1953537A1 EP07001978A EP07001978A EP1953537A1 EP 1953537 A1 EP1953537 A1 EP 1953537A1 EP 07001978 A EP07001978 A EP 07001978A EP 07001978 A EP07001978 A EP 07001978A EP 1953537 A1 EP1953537 A1 EP 1953537A1
Authority
EP
European Patent Office
Prior art keywords
ray
radiation
sample
optical elements
optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07001978A
Other languages
English (en)
French (fr)
Inventor
Josef Dr. Kemmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP07001978A priority Critical patent/EP1953537A1/de
Publication of EP1953537A1 publication Critical patent/EP1953537A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Definitions

  • the invention relates to a device for detecting and / or guiding X-ray radiation and uses thereof in e.g. analytical and medical applications. Furthermore, the invention relates to the use and the arrangement of X-ray optical systems in the field of analytical or spectroscopic and medical applications. Furthermore, the invention relates to radiation sources and the combination of one or more such radiation sources with one or more optical systems and sensors for measuring the radiation. As sensors, semiconductor detectors such as e.g. Silicon drift detectors (SDDs) or PIN diodes.
  • SDDs Silicon drift detectors
  • PIN diodes PIN diodes
  • X-ray optical systems in particular lens systems and waveguides, which are composed of a large number of glass capillaries (or special X-ray mirrors) are known and have been produced successfully for several years (eg IfG Institute for Scientific Instruments GmbH, Rudower Clice 29/3, D -12489 Berlin Germany). It uses the principle of total reflection of X-rays on the inner surfaces of treated glass capillaries or X-ray mirrors, which means that X-rays can be both focused and forwarded over long distances almost lossless. Since the refractive indices for X-radiation in glass are very close to 1, the rays must impinge on the surface at a very shallow angle in order to be reflected at all.
  • Such lens systems are outstandingly suitable for collimating the diverging X-ray light emanating from an X-ray tube or toward a tiny point focus and thus achieve local amplification of X-rays up to a factor of 500 and even higher at the sample.
  • the intensity and energy distribution of this fluorescence radiation is used to perform a non-destructive quantitative analysis of the irradiated sample. This is possible because each element of the periodic table has a so-called characteristic fluorescence radiation in the X-ray region, which is excited by the primary radiation and can be used for the quantitative analysis of the material composition of the sample.
  • the x-ray optical properties of the abovementioned capillary lens systems depend on the design and the type of capillaries.
  • Lens systems available that reflect the X-ray of a point source back to a point-like focus.
  • the dimensions, in particular the length of these lens systems can be varied within wide limits.
  • half-lenses which generate a parallel X-ray beam from a diverging beam or, in the inverse of the beam path, concentrate a parallel beam into a focus.
  • the X-ray lenses are used to focus the intensity of weak X-ray sources on a sample and thus to strengthen. This has mainly economic reasons, since weak X-ray sources have smaller dimensions, are simpler and safer to operate and are significantly less expensive to buy.
  • the object of the invention is to provide new applications for X-ray optical systems.
  • the invention provides an apparatus for detecting X-radiation, according to the subject-matter of claim 1.
  • Another aspect of the invention is directed to an apparatus for conducting x-radiation, according to the subject-matter of claim 19.
  • Further aspects of the invention relate to uses of said devices in the field of X-ray fluorescence analysis, X-ray analysis, medical technology, quality assurance and / or production monitoring.
  • Fig. 1 a first embodiment of a device for detecting X-ray radiation with a capillary lens system, which serves to detect the divergent X-radiation from a fluorescence excited sample in a larger solid angle and to focus on the X-ray detector.
  • Fig. 2 a second embodiment: a similar structure as Fig. 1 However, wherein the X-ray from the sample is converted by a so-called half-lens into a parallel beam.
  • a parallel x-ray beam can be generated and directed to a more distant x-ray detector and measured.
  • Fig. 3 a third embodiment: two of the half-lenses, one parallelizes the X-rays and the other focuses the parallelized radiation. In between there is a container that is evacuated or filled with a medium of low absorption.
  • FIG. 4 A fourth exemplary embodiment: a conductor for X-ray light with the aid of which the radiation can be guided over greater distances without great losses. This device can also be used for the application according to the invention.
  • Fig. 5 An embodiment of a possible structure of an X-ray source, an X-ray optics between the X-ray source and the sample, the sample, the X-ray optics between the sample and the X-ray detector and the X-ray detector, which is mounted on a housing.
  • Fig. 6 a photograph of an X-ray spectrometer KETEK GMBH, Kunststoff, which can be used in an embodiment of the invention.
  • Fig. 1 illustrates in detail a first embodiment with a capillary lens system which serves to detect the divergent X-ray radiation from a fluorescence excited sample in a larger solid angle and to focus on the X-ray detector, so as to achieve a gain effect up to 500 and higher.
  • a capillary lens system which serves to detect the divergent X-ray radiation from a fluorescence excited sample in a larger solid angle and to focus on the X-ray detector, so as to achieve a gain effect up to 500 and higher.
  • Like reference numerals in the figures indicate the same or similar parts in the embodiments.
  • the X-ray optical system is not used to amplify the intensity of the primary X-ray source, but is used to focus or amplify the emanating from the irradiated sample secondary or fluorescent radiation and thus lossless as possible to supply an X-ray detector in larger Distance from the sample can be located.
  • X-ray optics in X-ray spectroscopy have in common that the X-ray detector is in the immediate vicinity of the sample to be examined and the X-ray optical systems not according to the invention serve to those of the Probe incoming secondary radiation over a longer distance away from the sample to the X-ray detector.
  • the x-ray detector is as close as possible to the sample in order to record and register as much secondary radiation as possible over a large solid angle.
  • the X-ray detectors must be cooled to temperatures between 0 ° C and -50 ° C. So there are additional cooling devices on cold fingers or heatpipes required to reach the necessary temperatures at the X-ray detector.
  • X-ray detector and sample are often installed in special measuring chambers, which are evacuated during the measurement or filled with gas. This is especially true for use in electron microscopes.
  • Inventive embodiments are characterized in an extremely advantageous manner by the fact that the use of the X-ray optics between the sample and the X-ray detector, the X-ray detector no longer needs to be placed in the immediate vicinity of the sample, but can even be installed outside the measuring chamber. When used in electron microscopes can be eliminated by the backscattered and the detector striking the electrons caused background.
  • the X-ray detector with the entire cooling and amplifier technology can be accommodated in a separate housing outside the evacuated measuring chamber.
  • the measuring chambers can be downsized and the cooling technology can be greatly simplified since no more cold fingers are needed.
  • the standard cold fingers made of copper have the disadvantages that they are heavy and, depending on the diameter of the finger lead to a loss of heat of about 0.5 to 1 degree C per cm length of the finger. With finger lengths of several 10 cm, this loss must be compensated for by correspondingly greater (multi-stage) cooling, which requires additional technical effort and additional costs.
  • the cooling element Peltier cooler / Thermo Electrical Cooler: TEC
  • TEC Thermo Electrical Cooler
  • this advantage can be exploited in small, battery-powered handsets, as a reduction of the leakage current by a factor of two for silicon detectors, e.g. SDDs (Silicon Drift Detector) and PIN diodes allows a temperature increase of the X-ray detector by about 7 degrees, without deteriorating its properties. Due to the reduced cooling capacity, a longer operating time of the batteries can thus be achieved. Alternatively, an X-ray detector with a higher leakage current can be cooled lower, thus reducing the leakage current and improving the quality of the X-ray detector.
  • SDDs Silicon Drift Detector
  • PIN diodes allows a temperature increase of the X-ray detector by about 7 degrees, without deteriorating its properties. Due to the reduced cooling capacity, a longer operating time of the batteries can thus be achieved.
  • an X-ray detector with a higher leakage current can be cooled lower, thus reducing the leakage current and improving the quality of the X-ray detector.
  • An additional advantage of an arrangement of X-ray optics between the sample and the X-ray detector in embodiments according to the invention is furthermore that different X-ray optics can be mounted on the same X-ray detector as required by the application, thereby not only achieving high flexibility in the use of the customer, but also in the production of the detector systems, the mechanical structure can be simplified and less execution models are required.
  • devices having a plurality of identical or different lens systems can be realized which, depending on the problem, can also be advantageously used simultaneously.
  • combinations of X-ray optical systems are possible both for the known primary radiation and for the secondary radiation emanating from the sample, or in the case of absorption measurements, the transmission radiation. It may also be advantageous to simultaneously use a plurality of X-ray optical systems and a plurality of X-ray detectors. Such applications are conceivable in X-ray structure analysis.
  • X-ray optics When using the X-ray optics in the primary radiation to increase the intensity of weak X-ray sources, a possibly occurring change in the primary X-ray spectrum is irrelevant. Such a change of the secondary spectrum by the However, X-ray optics has the disadvantage that it can lead to distortions in the energy distribution of the secondary radiation and thus errors in the based on the evaluation of the spectrum quantitative analysis.
  • adjustable X-ray optics for the conduction of X-radiation, comprising a chain of X-ray optical elements, wherein the X-ray optical elements are arranged in a beam path one behind the other.
  • the mean propagation directions of two X-ray optical elements must be at an angle to each other, which is selected so that the condition of the total reflection of the X-radiation over the course of the X-ray optical elements is fulfilled.
  • the X-ray optical elements can be flexibly and / or flexibly coupled to one another in such a way that the angle between the central propagation directions can be varied to such an extent that the condition of the total reflection of the X-radiation remains fulfilled over the course of the X-ray optical elements.
  • adjustable X-ray optics is the use according to the invention of flexible X-ray mirrors or curved or flexible capillaries and capillary bundles made of suitable material, which are optionally provided in the interior with one or more layers of very thin metal layers on which the total reflection of the X-radiation takes place.
  • X-rays can not only be guided straight out and focused, but also be changed in their direction of propagation, in particular follow the directions of propagation of curved capillaries.
  • the inventive use of such curved capillaries has extraordinary constructive advantages, since obviously both the X-ray sources and the X-ray detectors no longer have to be arranged on a straight line connecting the sample. In particular, for use in electron microscopes and small measuring chambers or handheld devices, these advantages can come to full advantage.
  • curvilinear or bendable X-ray capillary optics is of exceptional importance for medical applications, as the X-ray light can be confined in a small space to the areas of the human body where it is needed.
  • An example of this is the treatment of skin tumors, which can also be performed by linear X-ray optics.
  • a curved or flexible capillary optics represents a great simplification.
  • bent or flexible X-ray optics for endoscopic treatments or in the local irradiation of internal organs.
  • it represents a huge step forward in the treatment of tumors in the intestinal area, even if small tumor colonies from the inside of the intestine can be specifically treated with X-ray therapy.
  • An advantage of the bent or flexible X-ray optics, which can not be overestimated, is that the entire X-ray source with the power supply, etc., are outside the body, are not affected by the intervention, and only the X-ray optics needs to be cleaned or replaced.
  • Such arrangements can be advantageously combined with existing endoscopes, so that a faster use in medical technology is to be expected. It is also possible to use the capillaries of the X-ray optics at least partially as light guides in order to illuminate the areas to be examined or to visualize and locate them via suitable optical systems.
  • X-ray examinations are playing an increasingly important role in measurement and testing technology as well as in the monitoring of current production processes. Examples include the error-free contacting of chips in microelectronics or the inspection of welds in piping systems.
  • X-rays are usually used as the primary radiation for exciting the X-ray fluorescence radiation of a sample, but the excitation of the fluorescence radiation is also possible with other sources such as electrons or ionizing radiation such as electrons, protons or alpha particles etc. or radioactive sources.
  • sources such as electrons or ionizing radiation such as electrons, protons or alpha particles etc. or radioactive sources.
  • fluorescent radiation which can be used in addition to the figure serving backscattered electrons for an element mapping.
  • the method of analysis in electron microscopes is often referred to as EDX analysis (energy dispersive x-ray analysis).
  • the analysis with the aid of protons is used in a method known as PIXE (proton induced x-ray emission).
  • Radioactive sources are widely used in handheld devices and planetary exploration because they are smaller in size and do not require electrical power.
  • Fig. 1 shows this an apparatus for detecting X-ray radiation with an X-ray optical lens 1, which is between a by a primary radiation source (not shown), such as X-ray source, electron beam source, ionizing radiation source, radioactive sources, etc., irradiated sample 2 and an X-ray detector 4.
  • a primary radiation source such as X-ray source, electron beam source, ionizing radiation source, radioactive sources, etc.
  • divergent radiation 3a is emitted. This is secondary or fluorescent radiation, to which the sample 2 is excited by the primary radiation.
  • the lens 1 collects the diverging radiation 3a via an opening with the diameter d1 and produces over a length L behind an opening with the diameter d2 focused radiation 3b at the X-ray detector 4.
  • the distance of the sample 2 to the lens 1 is denoted by f P , the Distance of the lens 1 to the X-ray detector 4 with f D.
  • Fig.2 shows an apparatus for detecting X-ray radiation with an X-ray optical half-lens 5, which is at the beginning of a by a primary radiation source (not shown) irradiated sample 2 beginning and bridging distance L, and one end of a container 7, the evacuated or with a medium of low attenuation is filled and that extends over part of the distance L to be bridged.
  • divergent radiation 3a is emitted.
  • the half-lens 5 collects the divergent radiation 3 a via an opening with the diameter d1 and generates a parallel beam 3c, which covers part of the distance L in the container 7.
  • Parallel radiation in the sense of the exemplary embodiments means that individual rays propagate in imaginary or concrete parallel, straight or curved channels of width ⁇ , where ⁇ is smaller by a multiple than the length of the channels. Focusing in the sense of the embodiments means that a beam of a certain width is bundled to a smaller width.
  • Fig. 3 shows a further variant with the half-lens 5 and the container 7 in the arrangement with sample 2, as in Fig. 2 and a further to the half-lens 5 exactly adjusted half-lens 6 in front of an X-ray detector 4.
  • the other terms and functions correspond to the descriptions Fig. 2 and Fig. 3 , If samples have different geometries, the container 7 can also be made variable in length along the distance L b .
  • the X-ray detector 4 can also be mounted without the half-lens 6 behind the container 7.
  • a straight capillary 8 as shown in FIG Fig. 4 is shown closer, for bridging a distance L between the sample 2 and X-ray detector 4 are attached. If the capillary 8 is preferably bent, then a propagation direction of X-radiation can be influenced as long as the condition of total reflection remains satisfied. It is also possible to use several capillaries in parallel as capillary bundles.
  • the capillary 8 can be made elastically deformable or permanently bent.
  • a plurality of capillaries may be arranged in a chain in the beam path one behind the other;
  • a single capillary can also be understood as a chain of shorter capillaries, which are arranged directly behind one another in the beam path.
  • capillary bundles can also be used indirectly and / or be arranged directly behind one another. If the X-ray radiation (3a, 3b, 3c) is to be both focused and guided, X-ray optical elements such as lenses 1, half lenses 5, 6, containers 7, which are evacuated or filled with a medium of low attenuation, and / or capillaries 8 can also be used be combined in the beam path one behind the other in a chain.
  • the individual x-ray optical elements (1; 5; 6; 7; 8) can be movable relative to one another.
  • Each of the X-ray optical elements (1; 5; 6; 7; 8) carries X-radiation (3a; 3b; 3c) along a mean propagation direction which is the mean propagation direction of the sum of the X-ray propagation direction vectors (3a; 3b; 3c) at the output of an X-ray optical system Elements (1; 5; 6; 7; 8) corresponds.
  • Fig. 5 shows the schematic structure of an embodiment of an X-ray spectrometer according to the invention for use in the RFA, wherein a first X-ray optical element 10 serves to focus the primary radiation of the X-ray source 9 to the sample 2.
  • a second X-ray optical element 11 detects the secondary fluorescence radiation emanating from the sample 2 and, according to the invention, images it onto an X-ray detector 4, with the aid of which the spectral analysis is carried out.
  • the distance of the X-ray detector 4 from the sample 2 can be varied within wide limits. Since the cold finger is eliminated, the X-ray detector 4 can be mounted directly on a housing 12 of the X-ray spectrometer, which contains an electronics and is used for heat dissipation.
  • Fig. 6 shows a photograph of an AXAS X - ray spectrometer KETEK GMBH, Kunststoff, which is for the embodiment of the Fig. 5 suitable is.
  • the thermoelectrically cooled X-ray detector is connected via a longer copper rod as a heat conductor to the housing, which serves for heat dissipation and in which the electronics is located.
  • the copper rod is replaced by a suitable X-ray optics, which makes it possible to integrate the cooled X-ray detector directly in the AXAS housing and thus to achieve, among other advantages, in particular an improvement or a reduction of the required cooling capacity.

Abstract

Die Erfindung betrifft eine Vorrichtung zur Erfassung von Röntgenstrahlung, umfassend: mindestens eine Röntgenoptik (11); und mindestens einen Röntgendetektor (4) zum Erfassen der Röntgenstrahlung (3a;3b;3c), die von einer durch eine Primärstrahlung (9) bestrahlten Probe (2) emittiert wird, wobei die Röntgenoptik (11) zwischen der Probe (2) und dem Röntgendetektor (4) angeordnet und derart ausgebildet ist, dass die emittierte Röntgenstrahlung (3a;3b;3c) parallel ausgerichtet und/oder fokussiert wird.

Description

    GEBIET DER ERFINDUNG
  • Die Erfindung betrifft eine Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung sowie Verwendungen davon in z.B. analytischen und medizinischen Anwendungen. Ferner betrifft die Erfindung den Einsatz und die Anordnung röntgenoptischer Systeme im Bereich von analytischen bzw. spektroskopischen und medizinischen Anwendungen. Desweiteren betrifft die Erfindung Strahlungsquellen und die Kombination einer oder mehrerer derartiger Strahlungsquellen mit einem oder mehreren optischen Systemen und Sensoren zur Vermessung der Strahlung. Als Sensoren eigenen sich in besonderer Weise Halbleiterdetektoren wie z.B. Silizium Drift Detektoren (SDDs) oder PIN-Dioden.
  • STAND DER TECHNIK
  • Röntgenoptische Systeme, insbesondere Linsensysteme und Wellenleiter, die aus einer großen Anzahl von Glaskapillaren (oder speziellen Röntgenspiegeln) zusammengesetzt sind, sind bekannt und werden seit einigen Jahren technisch erfolgreich hergestellt (z.B. IfG - Institute for Scientific Instruments GmbH, Rudower Chaussee 29/3, D-12489 Berlin Germany). Dabei nutzt man das Prinzip der Totalreflexion von Röntgenstrahlung an den Innenflächen von behandelten Glaskapillaren bzw. Röntgenspiegeln, die dazu führt, dass Röntgenstrahlung sowohl fokussiert als auch über längere Distanzen fast verlustfrei weitergeleitet werden kann. Da die Brechungsindizes für Röntgenstrahlung in Glas sehr nah bei 1 liegen, müssen die Strahlen in einem sehr flachen Winkel auf der Oberfläche auftreffen um überhaupt reflektiert zu werden.
  • Derartige Linsensysteme eignen sich in hervorragender weise, das aus einer Röntgenröhre austretende divergierende Röntgenlicht zu kollimieren bzw. auf einen winzigen Punkt zu fokussieren und damit lokale Verstärkungen der Röntgenstrahlung bis zu einem Faktor 500 und sogar noch höher an der Probe zu erreichen.
  • Damit ist es z.B. in der Röntgenfluoreszenzanalyse (RFA) bzw. Röntgenanalyse möglich, die zu vermessenden Proben mit relativ schwachen Miniaturröhren anzuregen und trotzdem lokal hohe Anregungsintensitäten auf der Probe und damit intensive Sekundärstrahlung (Fluoreszenzstrahlung) zu erhalten.
  • Bekanntermaßen wird die Intensität und Energieverteilung dieser Fluoreszenzstrahlung genutzt, um eine zerstörungsfreie quantitative Analyse der bestrahlten Probe durchzuführen. Dies ist deshalb möglich, weil jedes Element des Periodensystems eine sog. charakteristische Fluoreszenzstrahlung im Röntgenbereich aufweist, die durch die Primärstrahlung angeregt wird und zur quantitativen Analyse der Materialzusammensetzung der Probe genutzt werden kann.
  • Die röntgenoptischen Eigenschaften der vorgenannten kapillaren Linsensysteme hängen dabei vom Aufbau und der Art der Kapillaren ab. So sind z.B. Linsensysteme erhältlich, die das Röntgenlicht einer Punktquelle wieder auf einen punktförmigen Fokus abbilden. Dabei können die Dimensionen, insbesondere auch die Länge dieser Linsensysteme in weiten Grenzen variiert werden. Es gibt aber auch sog. Halblinsen, die aus einem divergierenden Strahl einen parallelen Röntgenstrahl erzeugen bzw. in Umkehrung des Strahlenganges einen parallelen Strahl in einen Fokus konzentrieren.
  • In allen bisherigen bekannten Anwendungen röntgenoptischer Systeme werden die Röntgenlinsen dazu benutzt, die Intensität schwacher Röntgenquellen auf eine Probe zu fokussieren und damit zu verstärken. Das hat hauptsächlich wirtschaftliche Gründe, da schwache Röntgenquellen geringere Dimensionen besitzen, einfacher und gefahrloser zu betreiben sind und in der Anschaffung bedeutend kostengünstiger sind.
  • KURZFASSUNG DER ERFINDUNG
  • Aufgabe der Erfindung ist es, neue Einsatzmöglichkeiten für röntgenoptische Systeme bereitzustellen.
  • Nach einem ersten Aspekt stellt die Erfindung eine Vorrichtung zur Erfassung von Röntgenstrahlung, nach dem Gegenstand von Anspruch 1 bereit. Ein weiterer Aspekt der Erfindung ist auf eine Vorrichtung zur Leitung von Röntgenstrahlung, nach dem Gegenstand von Anspruch 19 gerichtet. Weitere Aspekte der Erfindung betreffen Verwendungen der genannten Vorrichtungen, im Bereich der Röntgenfluoreszenzanalyse, der Röntgenanalytik, der Medizintechnik, in der Qualitätssicherung und/oder Produktionsüberwachung.
  • Weitere Aspekte der Erfindung ergeben sich aus den abhängigen Ansprüchen, der nachfolgenden Beschreibung von Ausführungsbeispielen und der beigefügten Zeichnung.
  • KURZBESCHREIBUNG DER ZEICHNUNG
  • Weitere Aspekte und Merkmale der Erfindung werden nachstehend ohne Beschränkung des Erfindungsgedankens anhand von Ausführungsbeispielen in Bezugnahme auf die Zeichnungen exemplarisch beschrieben, auf die übrigens hinsichtlich der Offenbarung aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich verwiesen wird. Dabei zeigt:
  • Fig. 1 ein erstes Ausführungsbeispiel einer Vorrichtung zur Erfassung von Röntgenstrahlung mit einem kapillaren Linsensystem, das dazu dient, die divergierende Röntgenstrahlung von einer zur Fluoreszenz angeregten Probe in einem größeren Raumwinkel zu erfassen und auf den Röntgendetektor zu fokussieren.
  • Fig. 2 ein zweites Ausführungsbeispiel: ein ähnlicher Aufbau wie Fig. 1, wobei jedoch der Röntgenstrahl von der Probe durch eine sog. Halblinse in einen parallelen Strahl umgewandelt wird. Hier kann erfindungsgemäß ein paralleler Röntgenstrahl erzeugt und auf einen weiter entfernten Röntgendetektor geleitet und vermessen werden.
  • Fig. 3 ein drittes Ausführungsbeispiel: zwei der Halblinsen, wobei die eine die Röntgenstrahlung parallelisiert und die andere die parallelisierte Strahlung fokussiert. Dazwischen befindet sich ein Behältnis, das evakuiert oder mit einem Medium geringer Absorption gefüllt ist.
  • Fig. 4 ein viertes Ausführungsbeispiel: ein Leiter für Röntgenlicht, mit dessen Hilfe die Strahlung ohne große Verluste über größere Distanzen geführt werden kann, Auch diese Vorrichtung kann für die erfindungsgemäße Anwendung eingesetzt werden.
  • Fig. 5 ein Ausführungsbeispiel eines möglichen Aufbaus einer Röntgenquelle, einer Röntgenoptik zwischen der Röntgenquelle und der Probe, der Probe, der Röntgenoptik zwischen der Probe und dem Röntgendetektor und dem Röntgendetektor, der auf einem Gehäuse montiert ist.
  • Fig. 6 eine Fotographie eines Röntgenspektrometers der Firma KETEK GMBH, München, das in einem Ausführungsbeispiel der Erfindung eingesetzt werden kann.
  • BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSBEISPIELE
  • Fig. 1 veranschaulicht im Detail ein erster Ausführungsbeispiel mit einem kapillaren Linsensystem, das dazu dient, die divergierende Röntgenstrahlung von einer zur Fluoreszenz angeregten Probe in einem größeren Raumwinkel zu erfassen und auf den Röntgendetektor zu fokussieren, um damit einen Verstärkungseffekt bis zu 500 und höher zu erzielen. Gleiche Bezugszeichen in den Figuren bezeichnen gleiche oder ähnliche Teile in den Ausführungsbeispielen.
  • Vor einer detaillierten Beschreibung der Fig. 1 folgen zunächst allgemeine Erläuterungen zu den Ausführungsbeispielen.
  • Bei erfindungsgemäßen Ausführungsbeispielen dient die Röntgenoptik nicht zur Verstärkung der Intensität der primären Röntgenquelle, sondern wird dazu genutzt, die von der bestrahlten Probe ausgehende Sekundär- bzw. Fluoreszenzstrahlung zu fokussieren bzw. zu verstärken und sie somit möglichst verlustfrei einem Röntgendetektor zuzuführen, der sich in größerer Entfernung von der Probe befinden kann.
  • Bekannte Anwendungen von Röntgenoptiken in der Röntgenspektroskopie haben gemeinsam, dass sich der Röntgendetektor in unmittelbarer Nachbarschaft der zu untersuchenden Probe befindet und die röntgenoptischen Systeme nicht erfindungsgemäß dazu dienen, die von der Probe kommende Sekundärstrahlung über eine längere Distanz von der Probe weg zum Röntgendetektor zu leiten.
  • In der Regel befindet sich der Röntgendetektor möglichst nahe an der Probe, um über einen großen Raumwinkel möglichst viel der Sekundärstrahlung aufzunehmen und zu registrieren. Weiterhin müssen im Allgemeinen zur Reduktion des Signal/Rausch-Verhältnisses die Röntgendetektoren auf Temperaturen zwischen 0 °C und -50° C gekühlt werden. Es sind also zusätzliche Kühlvorrichtungen über Kühlfinger bzw. Heatpipes erforderlich, um die nötigen Temperaturen am Röntgendetektor zu erreichen. Röntgendetektor und Probe sind oft in speziellen Messkammern eingebaut, die während der Messung evakuiert oder mit Gas gefüllt werden. Dies gilt insbesondere für den Einsatz in Elektronenmikroskopen.
  • Erfindungsgemäße Ausführungsbeispiele zeichnen sich in äußerst vorteilhafter Weise dadurch aus, dass durch den Einsatz der Röntgenoptik zwischen Probe und Röntgendetektor der Röntgendetektor nicht mehr in unmittelbarer Nachbarschaft der Probe platziert werden muss, sondern sogar außerhalb der Messkammer installiert werden kann. Beim Einsatz in Elektronenmikroskopen lässt sich dadurch der durch die rück gestreuten und den Detektor treffenden Elektronen verursachte Untergrund eliminieren.
  • Diese erfindungsgemäße Anordnung der Ausführungsbeispiele hat noch weitere wesentliche Vorteile. Der Röntgendetektor mit der gesamten Kühl- und Verstärkertechnik kann in einem separaten Gehäuse außerhalb der evakuierten Messkammer untergebracht werden. Dadurch können die Messkammern verkleinert und die Kühltechnik sehr vereinfacht werden, da keine Kühlfinger mehr benötigt werden. So haben z.B. die standardmäßigen Kühlfinger aus Kupfer die Nachteile, dass sie schwer sind und je nach Durchmesser des Fingers zu einem Wärmeverlust von ca. 0,5 bis 1 Grad C pro cm Länge des Fingers führen. Bei Fingerlängen von mehreren 10 cm muss durch entsprechend stärkere (mehrstufige) Kühlung dieser Verlust kompensiert werden, was einen zusätzlichen technischen Aufwand und Zusatzkosten erforderlich macht. Meist befindet sich das Kühlelement (Peltierkühler/Thermo Electrical Cooler: TEC) ) im Detektorgehäuse und die Wärme der heißen Seite des Kühlelements muss weggeleitet werden.
  • Ein weiterer nicht unbedeutender Vorteil der Anordnung bei erfindungsgemäßen Ausführungsbeispielen ist auch darin zu sehen, dass durch den Einsatz fokussierender Röntgenoptik die Fläche des Röntgendetektors klein gehalten werden kann. Dies bedeutet nicht nur eine Kostenreduktion, sondern eine Verbesserung der Detektorqualität, da der Leckstrom des Röntgendetektors mit seiner Fläche korreliert ist und deshalb aufgrund niedrigerer Leckströme kleine Röntgendetektoren weniger Kühlaufwand erfordern.
  • Bei erfindungsgemäßen Ausführungsbeispielen kann dieser Vorteil bei kleinen, Batterie betriebenen Handgeräten ausgenutzt werden, da eine Reduktion des Leckstroms um den Faktor zwei bei Detektoren aus Silizium, wie z.B. SDDs (Silicon Drift Detector) und PIN-Dioden eine Temperaturerhöhung des Röntgendetektors um ca. 7 Grad erlaubt, ohne dessen Eigenschaften zu verschlechtern. Durch die reduzierte Kühlleistung kann somit eine längere Betriebszeit der Batterien erreicht werden. Alternativ kann ein Röntgendetektor mit höherem Leckstrom tiefer gekühlt und damit der Leckstrom reduziert und der Röntgendetektor in seiner Qualität verbessert werden.
  • Ein zusätzlicher Vorteil einer Anordnung von Röntgenoptik zwischen Probe und Röntgendetektor bei erfindungsgemäßen Ausführungsbeispielen besteht weiterhin darin, dass unterschiedliche Röntgenoptiken je nach Erfordernis der Anwendung auf ein und demselben Röntgendetektor montiert werden können, so dass hierbei nicht nur eine hohe Flexibilität beim Einsatz des Kunden erreicht wird, sondern auch bei der Produktion der Detektorsysteme der mechanische Aufbau vereinfacht werden kann und weniger Ausführungsmodelle erforderlich sind.
  • Bei erfindungsgemäßen Ausfiihrungsbeispielen sind Vorrichtungen mit mehreren gleichen oder unterschiedlichen Linsensystemen realisierbar, die je nach Problemstellung auch gleichzeitig in vorteilhafter Weise eingesetzt werden können. Selbstverständlich sind auch Kombinationen röntgenoptischer Systeme sowohl für die bekannte Primärstrahlung als auch solche für die von der Probe ausgehende Sekundärstrahlung, oder im Falle von Absorptionsmessungen, der Transmissionsstrahlung möglich. Dabei kann es auch von Vorteil sein, gleichzeitig mehrere röntgenoptische Systeme und mehrere Röntgendetektoren zu benutzen. Derartige Anwendungen sind in der Röntgenstrukturanalyse denkbar.
  • Beim Einsatz der Röntgenoptiken in der Primärstrahlung zur Erhöhung der Intensität von schwachen Röntgenquellen spielt eine evtl. auftretende Veränderung des primären Röntgenspektrums keine Rolle. Eine derartige Veränderung des Sekundärspektrums durch die Röntgenoptik hat jedoch den Nachteil, dass es zu Verfälschungen in der Energieverteilung der Sekundärstrahlung und damit zu Fehlern in der auf der Auswertung des Spektrums beruhenden quantitativen Analyse führen kann.
  • Um solche Nachteile zu vermeiden, ist es erforderlich, die röntgenoptischen Systeme vor dem Einsatz in der RFA auf ihr spektrales Verhalten zu untersuchen und falls erforderlich über geeignete Software zu korrigieren.
  • Da Röntgenlicht sehr geringer Energie selbst in der Luft nur eine kurze Reichweite aufweist, ist es erforderlich in diesem Fall bei langen Kapillaren, diese entweder zu evakuieren, oder mit He zu füllen, das nur eine geringe Absorption aufweist. Da diese Verfahren an sich jedoch bekannt sind, werden sie als Stand der Technik vorausgesetzt und im Detail nicht näher beschrieben.
  • Eine vorteilhafte Anwendung von verstellbaren Röntgenoptiken stellt die erfindungsgemäße Vorrichtung zur Leitung von Röntgenstrahlung dar, umfassend eine Kette von röntgenoptischen Elementen, wobei die röntgenoptischen Elemente in einem Strahlengang hintereinander angeordnet sind. Bei Ausführungsbeispielen müssen die mittleren Ausbreitungsrichtungen zweier röntgenoptischer Elemente in einem Winkel zueinander liegen, der so gewählt ist, dass die Bedingung der Totalreflexion der Röntgenstrahlung über den Verlauf der röntgenoptischen Elemente erfüllt ist. Die röntgenoptischen Elemente können so miteinander flexibel und/oder gelenkig gekoppelt sein, dass der Winkel zwischen den mittleren Ausbreitungsrichtungen in einem Ausmaß veränderbar ist, dass die Bedingung der Totalreflexion der Röntgenstrahlung über den Verlauf der röntgenoptischen Elemente erfüllt bleibt.
  • Eine weitere vorteilhafte Anwendung von verstellbaren Röntgenoptiken stellt die erfindungsgemäße Anwendung flexibler Röntgenspiegel bzw. gebogener oder biegsamer Kapillaren und Kapilarbündel aus geeignetem Material dar, die gegebenenfalls im Innern mit einer oder mehreren Lagen sehr dünner Metallschichten versehen sind, an denen die Totalreflexion der Röntgenstrahlung erfolgt. Mit ihrer Hilfe können Röntgenstrahlen nicht nur gerade aus geleitet und fokussiert, sondern auch in ihrer Ausbreitungsrichtung verändert werden, insbesondere den Ausbreitungsrichtungen gekrümmter Kapillaren folgen. Der erfindungsgemäße Einsatz derartiger gebogener Kapillaren, hat außergewöhnliche konstruktive Vorteile, da ganz offensichtlich sowohl die Röntgenquellen als auch die Röntgendetektoren nicht mehr auf einer geraden Verbindungslinie zur Probe angeordnet werden müssen. Insbesondere bei Einsätzen in Elektronenmikroskopen und kleinen Messkammern bzw. bei Handgeräten können diese Vorteile voll zur Geltung kommen.
  • Der erfindungsgemäße Einsatz gebogener oder in der Strahlrichtung veränderbarer, z.B. krümm- oder biegbarer, Kapillaroptiken für den Röntgenbereich ist zum Beispiel von außergewöhnlicher Bedeutung für medizinische Anwendungen, da das Röntgenlicht damit auf engem Raum begrenzt, den Bereichen des menschlichen Körpers zugeführt werden kann, wo es benötigt wird. Ein Beispiel dafür ist die Behandlung von Hauttumoren, die auch durch lineare Röntgenoptiken ausgeführt werden kann. Jedoch eine gebogene bzw. biegsame Kapillaroptik stellt eine große Vereinfachung dar.
  • Von noch größerer Bedeutung ist der erfindungsgemäße Einsatz gebogener bzw. biegsamer Röntgenoptiken für endoskopische Behandlungen oder bei der lokalen Bestrahlung innerer Organe. So stellt es einen riesigen Fortschritt in der Tumorbehandlung des Darmbereiches dar, wenn bereits kleine Tumoransiedlungen von der Innenseite des Darms aus gezielt mit Röntgentherapie behandelt werden können. Ein nicht hoch genug einzuschätzender Vorteil der gebogenen bzw. biegsamen Röntgenoptik besteht darin, dass die gesamte Röntgenquelle mit der Stromversorgung usw. sich außerhalb des Körpers befinden, durch den Eingriff nicht in Mitleidenschaft gezogen werden und lediglich die Röntgenoptik gereinigt bzw. ersetzt werden muss.
  • Derartige Anordnungen lassen sich in vorteilhafter Weise mit vorhandenen Endoskopen kombinieren, so dass ein schneller Einsatz in der Medizintechnik zu erwarten ist. Es ist auch möglich die Kapillaren der Röntgenoptik wenigstens teilweise als Lichtleiter zu nutzen, um damit die zu untersuchenden Bereiche auszuleuchten bzw. über geeignete optische Systeme sichtbar zu machen und zu lokalisieren.
  • Neben diesen beiden beschriebenen Einsatzfeldern spielen Untersuchungen mit Röntgenstrahlung auch in der Mess- und Prüftechnik, sowie in der Überwachung laufender Produktionsverfahren eine immer wichtigere Rolle. Beispiele dafür sind die fehlerfreie Kontaktierung von Chips in der Mikroelektronik oder die Überprüfung von Schweißnähten in Rohrleitungssystemen.
  • Als Primärstrahlung zur Anregung der Röntgenfluoreszenzstrahlung einer Probe werden üblicherweise Röntgenstrahlen genutzt, jedoch ist die Anregung der Fluoreszenzstrahlung auch mit anderen Quellen wie Elektronen oder ionisierender Strahlung wie Elektronen, Protonen oder Alpha Teilchen usw. bzw. radioaktiven Quellen möglich. So wird z.B. auch mit dem in einem Elektronenmikroskop benutzten Elektronenstrahl am Ort des Auftreffens ebenfalls Fluoreszenzstrahlung erzeugt, die neben den der Abbildung dienenden rückgestreuten Elektronen für ein Elementmapping genutzt werden kann. Das Verfahren der Analytik in Elektronenmikroskopen wird häufig als EDX Analyse (Engery dispersive x-ray analysis) bezeichnet. Die Analytik mit Hilfe von Protonen wird in einem als PIXE (proton induced x-ray emission) bekannten Verfahren angewandt. Radioaktive Quellen werden häufig in Handgeräten und der Erforschung von Planeten eingesetzt, da sie kleinere Dimensionen aufweisen und keine elektrische Spannungsversorgung benötigen.
  • Ohne Beschränkung des allgemeinen Erfindungsgedankens können die erfindungsgemäßen Anordnungen in vielen dieser nur beispielhaft genannten Bereiche sowie in vielen weiteren nicht aufgeführten Anwendungen in verschiedenen Variationsmöglichkeiten eingesetzt werden.
  • Zurückkommend zu Fig. 1 zeigt diese eine Vorrichtung zur Erfassung von Röntgenstrahlung mit einer röntgenoptischen Linse 1, die zwischen einer durch eine Primärstrahlungsquelle (nicht dargestellt), wie Röntgenstrahlquelle, Elektronenstrahlquelle , Quelle ionisierender Strahlung, radioaktive Quellen, etc., bestrahlten Probe 2 und einem Röntgendetektor 4 liegt. Von der Probe 2 geht divergierende Strahlung 3a aus. Dabei handelt es sich um Sekundär- oder Fluoreszenzstrahlung, zu der die Probe 2 durch die Primärstrahlung angeregt wird. Die Linse 1 sammelt die divergierende Strahlung 3a über eine Öffnung mit dem Durchmesser d1 und erzeugt über eine Länge L hinter einer Öffnung mit dem Durchmesser d2 fokussierte Strahlung 3b am Röntgendetektor 4. Der Abstand der Probe 2 zur Linse 1 ist mit fP bezeichnet, der Abstand der Linse 1 zum Röntgendetektor 4 mit fD.
  • Fig.2 zeigt eine Vorrichtung zur Erfassung von Röntgenstrahlung mit einer röntgenoptischen Halblinse 5, die am Anfang einer durch eine Primärstrahlungsquelle (nicht dargestellt) bestrahlten Probe 2 beginnenden und zu überbrückenden Distanz L liegt, und ein Ende eines Behältnisses 7, das evakuiert oder mit einem Medium geringer Dämpfung gefüllt ist und das sich über einen Teil der zu überbrückenden Distanz L erstreckt. Von der Probe 2 geht divergierende Strahlung 3a aus. Wie in Fig. 1 handelt es sich um Sekundär- oder Fluoreszenzstrahlung, zu der die Probe 2 durch die Primärstrahlung von der (nicht dargestellten) Primärstrahlungsquelle angeregt wird. Die Halblinse 5 sammelt die divergierende Strahlung 3 a über eine Öffnung mit dem Durchmesser d1 und erzeugt ein paralleles Strahlenbündel 3c, das im Behältnis 7 einen Teil der Distanz L zurücklegt. Parallele Strahlung im Sinne der Ausführungsbeispiele bedeutet, dass sich einzelne Strahlen in gedachten oder konkreten parallelen, geraden oder gekrümmten Kanälen der Breite δ ausbreiten, wobei δ um ein Vielfaches kleiner ist als die Länge der Kanäle. Fokussieren im Sinne der Ausführungsbeispiele bedeutet, dass ein Strahlenbündel einer bestimmten Breite auf eine kleinere Breite gebündelt wird.
  • Fig. 3 zeigt eine weitere Variante mit der Halblinse 5 und das Behältnis 7 in der Anordnung mit Probe 2, wie in Fig. 2, und eine weitere zur Halblinse 5 genau justierte Halblinse 6 vor einem Röntgendetektor 4. Die von der Halblinse 5 über einer ersten Distanz La parallelisierte Strahlung 3c überbrückt im Behältnis 7 eine zweite Distanz Lb und wird von der Halblinse 6 über eine dritte Distanz Lc am Röntgendetektor 4 fokussiert. Die übrigen Bezeichnungen und Funktionsweisen entsprechen den Beschreibungen zu Fig. 2 und Fig. 3. Sofern Proben unterschiedliche Geometrien haben, kann das Behältnis 7 auch in der Länge entlang der Distanz Lb variabel ausgeführt sein. Der Röntgendetektor 4 kann aber auch ohne die Halblinse 6 hinter dem Behältnis 7 angebracht sein.
  • Sofern kein Fokussieren beabsichtigt ist, kann auch eine gerade Kapillare 8, wie sie in Fig. 4 näher gezeigt ist, zur Überbrückung einer Distanz L zwischen Probe 2 und Röntgendetektor 4 angebracht werden. Ist die Kapillare 8 bevorzugt gebogen, kann damit eine Ausbreitungsrichtung von Röntgenstrahlung beeinflusst werden, solang die Bedingung der Totalreflexion erfüllt bleibt. Es können auch mehrere Kapillare parallel als Kapillarbündel verwendet werden. Die Kapillare 8 kann elastisch verformbar oder dauerhaft gebogen ausgeführt sein.
  • In einem Ausführungsbeispiel können statt einer Kapillare 8 auch mehrere Kapillaren in einer Kette im Strahlengang hintereinander angeordnet sein; eine einzelne Kapillare kann aber auch als Kette kürzerer Kapillaren verstanden werden, die im Strahlengang unmittelbar hintereinander angeordnet sind. Genauso können auch Kapillarbündel mittelbar und/oder unmittelbar hintereinander angeordnet sein. Sofern die Röntgenstrahlung (3a;3b;3c) sowohl fokussiert als auch geleitet werden soll, können auch röntgenoptische Elemente wie Linsen 1, Halblinsen 5, 6, Behältnisse 7, die evakuiert oder mit einem Medium geringer Dämpfung gefüllt sind, und/oder Kapillaren 8 im Strahlengang hintereinander in einer Kette kombiniert werden. Dabei können in einem anderen Ausführungsbeispiel die einzelnen röntgenoptischen Elemente (1; 5; 6; 7; 8) beweglich zueinander sein. Jedes der röntgenoptischen Elemente (1; 5; 6; 7; 8) führt Röntgenstrahlung (3a; 3b; 3c) entlang einer mittleren Ausbreitungsrichtung, die der gemittelten Ausbreitungsrichtung der Summe der Ausbreitungsrichtungsvektoren der Röntgenstrahlung (3a; 3b; 3c) am Ausgang eines röntgenoptischen Elements (1; 5; 6; 7; 8) entspricht. Sind zwei röntgenoptische Elemente (1; 5; 6; 7; 8) hintereinander aber beweglich zueinander angeordnet, können ihre mittleren Ausbreitungsrichtungen nur soweit voneinander abweichen, dass die Bedingung der Totalreflexion zumindest für einen Teil der Röntgenstrahlung (3a; 3b; 3c) erfüllt bleibt.
  • Fig. 5 zeigt den schematischen Aufbau eines Ausführungsbeispiels eines erfindungsgemäßen Röntgenspektrometers für den Einsatz in der RFA, wobei ein erstes röntgenoptisches Element 10 dazu dient, die Primärstrahlung der Röntgenquelle 9 auf die Probe 2 zu fokussieren. Ein zweites röntgenoptisches Element 11 erfasst die von der Probe 2 ausgehende sekundäre Fluoreszenzstrahlung und bildet sie erfindungsgemäß auf einen Röntgendetektor 4 ab, mit dessen Hilfe die Spektralanalyse durchgeführt wird. Durch geeignete Wahl des röntgenoptischen Linsensystems 11 kann der Abstand des Röntgendetektors 4 von der Probe 2 in weiten Grenzen variiert werden. Da der Kühlfinger entfällt, kann der Röntgendetektor 4 direkt auf einem Gehäuse 12 des Röntgenspektrometers montiert werden, das eine Elektronik enthält und zur Wärmeabfuhr dient.
  • Fig. 6 zeigt eine Fotographie eines AXAS Röntgenspektrometers der Firma KETEK GMBH, München, das für das Ausführungsbeispiel der Fig. 5 geeignet ist. Dabei ist der thermoelektrisch gekühlte Röntgendetektor über einen längeren Kupferstab als Wärmeleiter mit dem Gehäuse verbunden, das zur Wärmeabfuhr dient und in dem sich die Elektronik befindet. Beim erfindungsgemäßen Einsatz wird der Kupferstab durch eine geeignete Röntgenoptik ersetzt, was ermöglicht, den gekühlten Röntgendetektor direkt im AXAS Gehäuse zu integrieren und damit neben anderen Vorteilen insbesondere eine Verbesserung bzw. eine Reduktion der erforderlichen Kühlleistung zu erreichen.

Claims (29)

  1. Vorrichtung zur Erfassung von Röntgenstrahlung, umfassend:
    mindestens eine Röntgenoptik (11); und
    mindestens einen Röntgendetektor (4) zum Erfassen der Röntgenstrahlung (3a;3b;3c), die von einer durch eine Quelle (9) bestrahlten Probe (2) emittiert und/oder transmittiert wird,
    wobei die Röntgenoptik (11) zwischen der Probe (2) und dem Röntgendetektor (4) angeordnet und derart ausgebildet ist, dass die emittierte bzw. transmittierte Röntgenstrahlung (3a;3b;3c) parallel ausgerichtet und/oder fokussiert wird.
  2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die von der Probe emittierte Röntgenstrahlung (3a;3b;3c) die Fluoreszenzstrahlung einer durch Primarstrahlung angeregten Probe ist.
  3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Röntgenstrahlung (3a;3b;3c) von der Probe (2) durch die Röntgenoptik (11) auf einen oder mehreren Röntgendetektor/en (4) abgebildet wird.
  4. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Röntgenstrahlung (3a;3b;3c) von einer Probe (2) durch mehrere verschiedene oder gleiche Röntgenoptiken (11) auf mehrere Röntgendetektoren (4) abgebildet wird.
  5. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Röntgenstrahlung (3a;3b;3c) von einer Probe (2) durch mehrere verschiedene oder gleiche Röntgenoptiken (11) auf einen Röntgendetektor (4) abgebildet wird.
  6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röntgenoptik (11) eine Distanz L überbrückt und die Röntgenstrahlung (3a;3b;3c) zum Röntgendetektor (4) leitet.
  7. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Röntgendetektor (4) außerhalb einer Messkammer angeordnet ist.
  8. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine weitere Röntgenoptik zwischen der Quelle und der Probe zum Leiten einer Primärstrahlung angeordnet ist.
  9. Vorrichtung nach einem der vorstehenden Ansprüche, die als tragbares Handgerät ausgebildet ist.
  10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Röntgenoptik wenigstens teilweise ein Röntgenspiegel und/oder gekrümmte Kapillare benutzt werden.
  11. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Röntgenoptik wenigstens teilweise flexible Kapillaren oder Kapillarbündel aus geeignetem Material benutzt werden, die innen mit mindestens einer dünnen Lage eines Metalls beschichtet sind, an der die Totalreflexion erfolgt.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass das Material mehrere Lagen unterschiedlicher Metalle für Reflexion verschiedener Wellenlängen umfasst.
  13. Vorrichtung nach einem der Ansprüche 10-12, dadurch gekennzeichnet, dass zusätzlich eine oder mehrere Halblinsen verwendet werden, die einen parallelen Röntgenstrahl erzeugen, der in einem evakuierten bzw. mit einem Medium geringer Dämpfung gefülltem Rohr verlustfrei über eine vorgegebene Entfernung geleitet wird.
  14. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röntgenoptik Glaskapillaren aufweist, die als Lichtleiter für die Beleuchtung der Probe oder Aufnahme eines optischen Bildes der Probe ausgebildet und angeordnet sind.
  15. Vorrichtung nach einem der vorstehenden Ansprüche, gekennzeichnet durch Montage des Detektors (4) auf ein Gehäuse (12), das Elektronik enthält und gleichzeitig zur Wärmeabfuhr dient.
  16. Verwendung einer Röntgenoptik (11) in einer Vorrichtung nach einem der vorstehenden Ansprüche.
  17. Verwendung einer Vorrichtung nach einem der Ansprüche 1-15, im Bereich der Röntgenanalytik, der Röntgenfluoreszenzanalyse, der Medizintechnik, in der Qualitätssicherung und/oder Produktionsüberwachung.
  18. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass die Vorrichtung auch zur lichtoptischen Beleuchtung und Erkennung und bildlichen Darstellung der zu überprüfenden Gebiete verwendet wird.
  19. Vorrichtung zur Leitung von Röntgenstrahlung, umfassend:
    eine Kette von röntgenoptischen Elementen (1; 5; 6; 7; 8), wobei die röntgenoptischen Elemente (1; 5; 6; 7; 8) in einem Strahlengang hintereinander angeordnet sind.
  20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass ein röntgenoptisches Element (1; 5; 6; 7; 8) der Kette die Röntgenstrahlung (3a;3b;3c) entlang einer mittleren Ausbreitungsrichtung der Röntgenstrahlung leitet.
  21. Vorrichtung nach einem der Ansprüche 19 oder 20, dadurch gekennzeichnet, dass die mittleren Ausbreitungsrichtungen zweier röntgenoptischer Elemente (1; 5; 6; 7; 8) in einem Winkel zueinander liegen, der so gewählt ist, dass die Bedingung der Totalreflexion der Röntgenstrahlung über den Verlauf der röntgenoptischen Elemente erfüllt ist.
  22. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass der Winkel zwischen den mittleren Ausbreitungsrichtungen fest ist.
  23. Vorrichtung nach einem Anspruch 21, dadurch gekennzeichnet, dass die röntgenoptischen Elemente (1; 5; 6; 7; 8) so miteinander flexibel und/oder gelenkig gekoppelt sind, dass der Winkel zwischen den mittleren Ausbreitungsrichtungen in einem Ausmaß veränderbar ist, dass die Bedingung der Totalreflexion der Röntgenstrahlung über den Verlauf der röntgenoptischen Elemente zumindest teilweise erfüllt bleibt.
  24. Vorrichtung nach einem der Ansprüche 19 bis 23, dadurch gekennzeichnet, dass die röntgenoptischen Elemente (1; 5; 6; 7; 8) beliebig kurz sein können und unmittelbar aneinander anschließen.
  25. Vorrichtung nach einem der Ansprüche 19 bis 24, dadurch gekennzeichnet, dass die röntgenoptischen Elemente (1; 5; 6; 7; 8) diskret zueinander angeordnet sind und zwischen den röntgenoptischen Elementen (1; 5; 6; 7; 8) ein Medium mit geringer Dämpfung oder Vakuum ist.
  26. Vorrichtung nach einem der Ansprüche 19 bis 25, dadurch gekennzeichnet, dass als röntgenoptischen Elemente (1; 5; 6; 7; 8) wenigstens teilweise flexible Kapillaren aus geeignetem Material verwendet werden, die innen mit mindestens einer dünnen Lage eines Metalls beschichtet sind, an der die Totalreflexion erfolgt.
  27. Vorrichtung nach einem der Ansprüche 19 bis 26, dadurch gekennzeichnet, dass das spektrale Verhalten der röntgenoptischen Elemente (1; 5; 6; 7; 8) durch Software korrigiert wird.
  28. Verwendung einer Vorrichtung nach einem der Ansprüche 19 bis 27, im Bereich der Röntgenanalytik, der Röntgenfluoreszenzanalyse, der Medizintechnik, in der Qualitätssicherung und/oder Produktionsüberwachung.
  29. Verwendung nach Anspruch 28, dadurch gekennzeichnet, dass die Vorrichtung auch zur lichtoptischen Beleuchtung und Erkennung und bildlichen Darstellung der zu überprüfenden Gebiete verwendet wird.
EP07001978A 2007-01-30 2007-01-30 Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik Withdrawn EP1953537A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07001978A EP1953537A1 (de) 2007-01-30 2007-01-30 Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07001978A EP1953537A1 (de) 2007-01-30 2007-01-30 Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik

Publications (1)

Publication Number Publication Date
EP1953537A1 true EP1953537A1 (de) 2008-08-06

Family

ID=38137380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07001978A Withdrawn EP1953537A1 (de) 2007-01-30 2007-01-30 Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik

Country Status (1)

Country Link
EP (1) EP1953537A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009602A1 (de) * 2008-10-27 2010-04-29 Ifg - Institute For Scientific Instruments Gmbh Spektralauflösende elektronische Röntgenkamera
DE102013209104A1 (de) * 2013-05-16 2014-11-20 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur spektroskopischen Analyse
CN113109374A (zh) * 2021-03-30 2021-07-13 中国科学院合肥物质科学研究院 一种长光路能量色散x-射线衍射装置
CN115389538A (zh) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X射线分析装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408057A1 (de) * 1994-03-07 1995-09-14 Ifg Inst Fuer Geraetebau Gmbh Verfahren und Vorrichtung zur Röntgenfluoreszenzspektroskopie
WO1995031815A1 (en) * 1994-05-11 1995-11-23 The Regents Of The University Of Colorado Spherical mirror grazing incidence x-ray optics
EP0723272A1 (de) * 1994-07-08 1996-07-24 Muradin Abubekirovich Kumakhov Verfahren zur führung von neutral- und ladungsträgerstrahlen und eine vorrichtung zur durchführung des verfahrens
EP1107293A1 (de) * 1999-05-28 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Röntgen belichter methode maske spiegel synchroton strahler bestrahlungsmethode und albleiteranordnung
EP1170755A1 (de) * 1999-10-18 2002-01-09 Muradin Abubekirovich Kumakhov Integrale linse für hochenergie-teilichenstrom, verfahren zur herstellung dieser linsen und ihre verwendung in untersuchungsvorrichtungen, sowie vorrichtungen für strahlentherapie und lithographie
WO2002103710A2 (en) * 2001-06-19 2002-12-27 X-Ray Optical Systems, Inc. Wavelength dispersive xrf system using focusing optic for excitation and a focusing monochromator for collection
WO2003081222A1 (en) * 2002-03-19 2003-10-02 X-Ray Optical Systems, Inc. Screening of combinatorial library using x-ray analysis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408057A1 (de) * 1994-03-07 1995-09-14 Ifg Inst Fuer Geraetebau Gmbh Verfahren und Vorrichtung zur Röntgenfluoreszenzspektroskopie
WO1995031815A1 (en) * 1994-05-11 1995-11-23 The Regents Of The University Of Colorado Spherical mirror grazing incidence x-ray optics
EP0723272A1 (de) * 1994-07-08 1996-07-24 Muradin Abubekirovich Kumakhov Verfahren zur führung von neutral- und ladungsträgerstrahlen und eine vorrichtung zur durchführung des verfahrens
EP1107293A1 (de) * 1999-05-28 2001-06-13 Mitsubishi Denki Kabushiki Kaisha Röntgen belichter methode maske spiegel synchroton strahler bestrahlungsmethode und albleiteranordnung
EP1170755A1 (de) * 1999-10-18 2002-01-09 Muradin Abubekirovich Kumakhov Integrale linse für hochenergie-teilichenstrom, verfahren zur herstellung dieser linsen und ihre verwendung in untersuchungsvorrichtungen, sowie vorrichtungen für strahlentherapie und lithographie
US20030209677A1 (en) * 1999-10-18 2003-11-13 Kumakhov Muradin Abubekirovich Integral lens for high energy particle flow, method for producing such lenses and use thereof in analysis devices and devices for radiation therapy and lithography
WO2002103710A2 (en) * 2001-06-19 2002-12-27 X-Ray Optical Systems, Inc. Wavelength dispersive xrf system using focusing optic for excitation and a focusing monochromator for collection
WO2003081222A1 (en) * 2002-03-19 2003-10-02 X-Ray Optical Systems, Inc. Screening of combinatorial library using x-ray analysis

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009602A1 (de) * 2008-10-27 2010-04-29 Ifg - Institute For Scientific Instruments Gmbh Spektralauflösende elektronische Röntgenkamera
WO2010049409A1 (de) 2008-10-27 2010-05-06 Ifg - Institute For Scientific Instruments Gmbh Spektralauflösende elektronische röntgenkamera
EP2934001A1 (de) 2008-10-27 2015-10-21 IFG - Institute For Scientific Instruments GmbH Spektralauflösende elektronische Röntgenkamera
US9407836B2 (en) 2008-10-27 2016-08-02 Pnsensor Gmbh Electronic x-ray camera with spectral resolution
DE102013209104A1 (de) * 2013-05-16 2014-11-20 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur spektroskopischen Analyse
US9927361B2 (en) 2013-05-16 2018-03-27 Carl Zeiss Microscopy Gmbh Devices and methods for spectroscopic analysis
US10436712B2 (en) 2013-05-16 2019-10-08 Carl Zeiss Microscopy Gmbh Devices and methods for spectroscopic analysis
CN113109374A (zh) * 2021-03-30 2021-07-13 中国科学院合肥物质科学研究院 一种长光路能量色散x-射线衍射装置
CN115389538A (zh) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X射线分析装置及方法
CN115389538B (zh) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X射线分析装置及方法

Similar Documents

Publication Publication Date Title
DE102006050600B4 (de) Spektrometer zur Oberflächenanalyse und Verfahren dafür
DE112015000433B4 (de) Probenhalter, Betrachtungssystem und Bilderzeugungsverfahren
DE102010063412A1 (de) Technik zur tomographischen Bilderfassung
DE2456452A1 (de) Vorrichtung zur zerstoerungsfreien untersuchung von stoffen, besonders von heterogenen oberflaechen, mittels bestrahlung
DE3037983A1 (de) Verfahren und vorrichtung zur lichtinduzierten rastermikroskopischen darstellung von probenparametern in ihrer raeumlichen verteilung
DE102015118641A1 (de) Vorrichtung zum optischen Untersuchen einer Probe, Verfahren zum Untersuchen einer Probe und Verfahren zum Versetzen einer Vorrichtung in einen betriebsbereiten Zustand
DE112011102492T5 (de) Röntgenbeugungsverfahren und tragbares Röntgenbeugungsgerät, das dieses verwendet
EP2377309A1 (de) Spektralauflösende elektronische röntgenkamera
Legall et al. A compact Laboratory Transmission X-ray Microscope for the water window
DE102016115826A1 (de) Röntgenanalysevorrichtung
DE102015001032A1 (de) Raman-Spektroskopie-Beleuchtungs- und Auslesesystem
EP1953537A1 (de) Vorrichtung zur Erfassung und/oder Leitung von Röntgenstrahlung unter Verwendung einer Röntgenoptik
DE3104468C2 (de) Röntgenfluoreszenzspektrometer
Bzhaumikhov et al. Polycapillary conic collimator for micro-XRF
Poletto et al. Spectrometer for X-ray emission experiments at FERMI free-electron-laser
EP0757790B1 (de) Vorrichtung zur röntgen-, stoff- und strukturanalyse
DE10230990A1 (de) Vorrichtung zur Durchführung einer Online-Elementanalyse
US20150377805A1 (en) Combined handheld xrf and oes systems and methods
EP3117448B1 (de) Vorrichtung für die korrelative raster-transmissionselektronenmikroskopie (stem) und lichtmikroskopie
DE102009041993B4 (de) Beobachtungs- und Analysegerät
DE1204350B (de) Elektronenmikroskop
DE102012106867B4 (de) Vorrichtung und Verfahren zur resonator-verstärkten optischen Absorptionsmessung an Proben mit kleinem Absorptionswirkungsquerschnitt
Matruglio et al. A novel approach in the free-electron laser diagnosis based on a pixelated phosphor detector
DE1058166B (de) Elektronenmikroskop
Haschke et al. Examination of the excitation performance of different capillary optics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090207

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566