EP1953455A1 - Brennstoffeinspritzsystem mit doppelter Einspritzung - Google Patents

Brennstoffeinspritzsystem mit doppelter Einspritzung Download PDF

Info

Publication number
EP1953455A1
EP1953455A1 EP08150474A EP08150474A EP1953455A1 EP 1953455 A1 EP1953455 A1 EP 1953455A1 EP 08150474 A EP08150474 A EP 08150474A EP 08150474 A EP08150474 A EP 08150474A EP 1953455 A1 EP1953455 A1 EP 1953455A1
Authority
EP
European Patent Office
Prior art keywords
injector
fuel
injection system
air intake
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08150474A
Other languages
English (en)
French (fr)
Other versions
EP1953455B1 (de
Inventor
Denis Sandelis
Michel Desaulty
Christophe Baudoin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1953455A1 publication Critical patent/EP1953455A1/de
Application granted granted Critical
Publication of EP1953455B1 publication Critical patent/EP1953455B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion

Definitions

  • the invention relates to a fuel injection system in a turbomachine combustion chamber, and a turbomachine combustion chamber equipped with such a system.
  • the invention is intended for any type of turbomachine, terrestrial or aeronautical, and more particularly to aircraft turbojets.
  • a turbojet combustion chamber is generally annular in shape, centered on an axis X corresponding to the axis of rotation of the turbojet engine. It comprises two coaxial annular walls (or ferrules) of X axis, and a chamber bottom disposed between said walls, in the upstream region of said chamber, the upstream and the downstream being defined with respect to the normal direction of circulation of the gas inside the room. Said walls and the chamber bottom define the combustion chamber of the chamber.
  • a plurality of fuel injection systems in the chamber are attached to the chamber bottom and evenly distributed about the X axis.
  • the most common injection systems include a single fuel injector.
  • the design (i.e. shape, structure, choice of materials %) of combustion chambers equipped with single injector systems is now perfectly mastered and hereinafter referred to as conventional design chambers.
  • each injection system is fixed and positioned within a single hole provided for this purpose in the chamber bottom, so that the assembly of the injection system is relatively simple.
  • the temperature profile at the chamber outlet remains centered on a circle of determined diameter around the X axis, regardless of the operating speed of the turbojet engine. Such a temperature profile simplifies the design of the turbojet parts located downstream of the chamber.
  • double injector fuel injection systems In order to limit the emission of gaseous pollutants, double injector fuel injection systems have been developed.
  • the two injectors make it possible to create two combustion zones, one optimized for the idle speed of the turbojet and the other for the full throttle.
  • the document FR 2 706 021 describes an annular turbojet combustion chamber, equipped with several injection systems with double injector.
  • the chamber is centered on an X axis and the injection systems are distributed around the X axis, each system comprising two injectors arranged one after the other in a radial direction with respect to the X axis.
  • a first row of N injectors is arranged in a circle of diameter d, about the axis X
  • a second row of N injectors is arranged in a circle of diameter D, upper at d, around the X axis.
  • the injection system with double injector FR 2 706 021 has the disadvantage of being difficult to mount since it is necessary to position and fix each injector on the chamber bottom.
  • the design of the combustion chamber is more complex and much less controlled than the aforementioned conventional design (which results in particular in difficulties to ensure the thermal resistance and the life of some elements of the chamber).
  • the temperature profile at the chamber outlet varies significantly as a function of the turbojet engine operating speed and, in particular, this profile does not remain centered on a circle of determined diameter around the X axis. complicates the design of the turbojet parts located downstream of the combustion chamber.
  • the object of the invention is to propose a fuel injection system which is not very polluting and which can be used with a combustion chamber of conventional design, that is to say a chamber of the type that is equipped with combustion systems. injection to a single injector.
  • the injection system of the invention therefore comprises two injectors, which makes it possible to adapt the richness of the air / fuel mixture to the operating speed of the turbojet engine and to limit the emission of pollutant gases.
  • this type of system can be adapted to a conventional design chamber with, in particular, a single orifice in the chamber bottom for each injection system.
  • the second injector has a circular injection slot surrounding the first injector and, according to a second embodiment, it has a plurality of injection orifices arranged in a circle around the first injector.
  • the first injector, the first air intake passage and the second injector belong to a first assembly intended to be mounted on a second assembly comprising the second air intake passage, the second assembly being intended to be mounted on the combustion chamber.
  • the second set then serves as a guide for mounting the first.
  • the relative position of the first and second injectors is generally imposed by the conformation of the first set and therefore does not have to be adjusted during assembly.
  • the second assembly is mounted on the chamber bottom while maintaining a possibility of radial displacement around the injection axis I of the first injector, and can move along this axis relative to the first set, while remaining centered vis-à-vis the latter.
  • combustion chamber 10 of the figure 1 is represented in its environment, inside a turbojet engine.
  • This chamber 10 is annular, centered on the axis X which is also the axis of rotation of the turbojet engine.
  • This combustion chamber is called axial because it is oriented substantially along the X axis.
  • the invention could be applied to other types of turbomachines and other types of chambers, in particular so-called radial return combustion chambers, that is to say combustion chambers bent a portion of which is oriented substantially radially relative to the axis of rotation of the turbojet engine.
  • the combustion chamber 10 comprises two internal and external 12 annular walls (or ferrules). These walls 12, 14 are spaced apart and positioned coaxially around the axis X. These walls 12, 14 are interconnected by a bottom of chamber 16 disposed between them, in the upstream region of the chamber 10. The walls 12, 14 and the bottom 16 delimit between them, the combustion chamber of the chamber 10.
  • the chamber bottom 16 has a plurality of openings 18 evenly distributed around the axis of rotation X.
  • the chamber 10 also comprises baffles 19 mounted on the chamber bottom 16, at the periphery of the openings 18, so as to protect the bottom 16 of the high temperatures reached during the combustion.
  • a fuel injection system 20 Inside each opening 18 is mounted a fuel injection system 20 according to the invention. This system 20 is shown in detail on the figures 2 and 3 .
  • combustion chamber 10 is of conventional design, that is to say that its general shape, its structure, etc. are comparable to those of a combustion chamber equipped with injection systems with a single injector.
  • the combustion chamber 10 has been designed taking into account the particularities of the injection systems 20 and, in particular, the orifices 18 are of a size adapted to that of the injection systems 20 (larger in diameter than the systems conventional injection systems 20).
  • Each injection system 20 comprises, in its center, a first fuel injector 22 (also called pilot injector) for injecting fuel along an injection axis I.
  • the injection system 20 comprises, around the first injector 22 and in this order: a first air intake passage 24, an air intake duct 26, a second fuel injector 28, and a second air intake passage 30.
  • the injection system 20 has a substantial symmetry of revolution about the axis I, the elements constituting it being of generally annular shape, and distributed coaxially around this axis I.
  • the first and second air intake passages 24, 30 are air auger, that is to say, annular passages for printing a rotational movement (around the axis I) to the air that passes through them.
  • the compressed air passing through the intake passages 24 and 30 comes from the diffuser 17 of the turbojet engine (see FIG. Fig. 1 ).
  • the first and second injectors 22 and 28 are respectively fueled by supply lines (or ramps) 32 and 38.
  • the second injector 28 is fed by a single line 38.
  • the second Injector 28 can be fed by several pipes connected at different points of the circumference of the injector 28.
  • the first and second injectors 22 and 28 may be powered with the same or different fuels.
  • a specific arrangement for the use of hydrogen can be made for the second injector 28.
  • the first injector 22 makes it possible to inject a first cloud of fuel 42 (see figure 3 ) at the center of the injection system 20, via an injection port 23 centered on the axis I.
  • the fuel cloud 42 is generally conical, centered on the axis I.
  • the second injector 28 is of annular shape and makes it possible to inject, via a circular injection slot 29 centered on the axis I, a second cloud of fuel 48 (see FIG. figure 3 ).
  • This second fuel cloud 48 is of generally annular shape, substantially centered on the axis I, and surrounds the first cloud 42.
  • the fuel emitted by the injectors 22 and 28 is mixed with air, this air coming from the air intake passages 24 and 30.
  • These passages 24 and 30 are respectively located around the injectors 22 and 28, upstream of the injection port 23 and the injection slot 29.
  • the second injector 28 is also configured to print a rotational movement (about the axis I) to the fuel cloud 48.
  • the rotational movement of the air from the passage intake 30 can be in the same direction (co-rotating) or opposite direction (counter-rotating) to that of the fuel cloud 48.
  • the first air intake passage 24 is delimited between inner and outer 43 and generally annular walls, centered on the axis I.
  • the inner wall 43 envelops the first injector 22.
  • the outer wall 44 extends downstream by a diverging wall 45, that is to say a wall defining a generally frustoconical duct, or bowl 61, whose section increases in the direction of flow of the first mixture air / fuel (ie from upstream to downstream).
  • the air intake duct 26 is defined between the walls 44 and 45, on the one hand, and a wall 46, on the other hand, the wall 46 surrounding the ducts. walls 44 and 45. Radial structural arms 47 connect the walls 44 and 46 and keep them apart.
  • the injection system 20 has a recess 49 upstream of the duct 26 and the passage 24.
  • this recess is cylindrical, of external diameter substantially corresponding to that of the conduit 26. Only the supply duct 32 of the first injector 22 passes through this recess 49.
  • the air intake duct 26 comprises a first series of outlet orifices 62 passing through the divergent wall 45, at the downstream end of this wall, these orifices 62 being arranged in a circle around the first injector 22 (in downstream of it). It further comprises a second series of outlet orifices 63 passing through the diverging wall 45 upstream of said first series of orifices 62, these orifices 63 being arranged in a circle around the first injector (downstream thereof) .
  • the orifices 62 and 63 are regularly distributed around the first injector 22.
  • the second injector 28 is arranged around the wall 46.
  • the first injector 22, the air intake passage 24, the bowl 61, the conduit 26 and the second injector 28 are all joined within a first assembly 51 defined by an outer wall 50.
  • This wall 50 is connected at the downstream ends of the walls 45 and 46, so that it contributes to delimiting a housing for the second injector 28 with the wall 46, and to delimit the duct 26 with the walls 44, 45 and 46.
  • the first assembly 51 is surrounded by a second assembly 52.
  • These assemblies 51 and 52 are mounted one after the other on the bottom wall 16 of the combustion chamber 10: first, the assembly 52 is mounted on this bottom wall, inside the orifice 18, then the assembly 51 is mounted inside the assembly 52.
  • the second assembly 52 comprises two inner annular walls 53 and outer 54, mutually spaced and delimiting between them the second air intake passage 30.
  • the outer wall 54 and the inner wall 53 are flared upstream so as not to hinder the assembly of the assembly 51 on the assembly 52, this assembly being performed by the rear of the assembly 52 (ie from upstream to downstream).
  • the outer wall 54 extending downstream by a cylindrical wall 55, then by a diverging wall 56.
  • the cylindrical wall 55 forms with the outer wall 50 an annular channel 57 inside which is injected the cloud of fuel 48.
  • This channel 57 is located in the extension of the second air intake passage 30, downstream of that -this.
  • the diverging wall 56 (in the manner of the wall 45) forms a frustoconical duct flared downstream, or bowl 71.
  • This diverging wall 56 is traversed, at its downstream end, by a series of orifices 72 arranged in circle around the second injector 28, downstream thereof.
  • the term “idle” module denotes the assembly comprising the first fuel injector 22 and the first air intake passage 24, and by "full gas” module the assembly comprising the second fuel injector 28 and the second air intake passage 30. Note that these modules do not correspond with the sets 51 and 52 described above. It will also be noted that these modules are arranged coaxially around the injection axis I.
  • an "idle” circuit comprising the supply duct 32 and the first injector 22, this circuit opening at the center of the injection system via the injection orifice 23; and a “full-gas” circuit comprising the supply duct 38 and the second injector 28, this circuit opening at the periphery of the injection system, via the injection slot 29.
  • the regulation of the operation of the idle and full throttle modules and, in particular, the evolution of the distribution of the fuel between the two modules as a function of the operating speed of the turbojet, are defined so as to limit the emissions of toxic gases on the whole. engine operation.
  • both modules may be used.
  • the idle module operates alone. Beyond a scheme corresponding to a thrust 10 to 30% thrust full throttle, both modules operate with adequate fuel distribution to limit emissions of toxic gases.
  • the first injector 22 injects the first cloud of fuel 42.
  • the first air intake passage 26 generates a swirling air flow which takes up the injected fuel and helps to ensure the spraying and mixing.
  • An air film f2 with a gyratory component is generated by the second set of orifices 63 of the air intake duct 26.
  • This f2 air film serves to: protect the diverging wall 45 against the risks of coking; to control the vortex precession movements generated by the first air intake passage 24, this movement being the source of instability of combustion; to control the axial position of the recirculation zone of the idle module so as to eliminate the risk of "flashback", to control the heat transfer at the end of the injector 22 and thus reduce the risk of coking of the circuit of fuel to the nose of the injector 22, and improve the propagation of the flame of the idle module to the full throttle module, during the transition between idle and full throttle.
  • An air film f1 is generated by the first series of orifices 62 of the air intake duct 26.
  • This function of the air film f1 is: to control the radial expansion of the fuel cloud 42 from the first injector 22, and to isolate it from the air coming from the second air intake passage 30, which makes it possible to maintain a level of richness sufficient to limit the formation of CO / CHx at idle; and to dampen the instabilities of combustion between the two modules.
  • the orifices 62 of the first series may all be of identical size, or of variable size (by sector) in order to improve the compromise between the performances in idle speed which require to isolate the combustion zone of the first air mixture. fuel, and the operability that is favored by an intercommunication between the idle zone and the full gas zone to ensure the propagation of the flame.
  • the injection of the second fuel cloud 48 can be done via a circular slot 29, as in the example of the figures, or via a plurality of holes distributed in a circle around the first injector 22.
  • the cloud fuel 48 can be injected in a co- or contra-rotational manner with respect to the gyratory flow from the second air intake passage 30.
  • the axial-radial inclination of the second air intake passage 30 allows to deliver an air flow whose speed field promotes penetration and a homogeneous mixture of the fuel, which allows for the second air / fuel mixture in the channel 57.
  • the bowl 71 is attached to the chamber bottom 16 and is crossed, upstream of the series of orifices 72, by one or more other series of orifices (not shown) which make it possible to take back the trickling fuel in wall 54 and thus to improve the qualities of the mixture produced in the channel 57.
  • the air film f3, resulting from the series of orifices 72, makes it possible to control the radial expansion of the second air / fuel mixture, which makes it possible to limit the interactions with the walls of the combustion chamber, detrimental to its behavior. thermal.
  • the orifices 72 may all be of identical size or of variable size (by sector) to ensure both a control of the expansion of the second air / fuel mixture towards the walls of the chamber and to promote the propagation of the flame between adjacent full-gas modules, especially during an ignition phase.
  • the scheme of the figure 4 represents the different flow zones generated by the injection system of the Figures 1 to 3 .
  • the idle module generates a recirculation zone A located around the injection axis I.
  • the characteristics of this recirculation zone are determined by the size of the bowl. 61 and the air flow of the idle module. They will determine the performance of the chamber in terms of re-ignition, stability and idling.
  • the second air intake passage 30 which belongs to the full-gas module, generates a direct swirling flow in the flow zone B, isolated from the recirculation zone A by the air film f1 from the first series of outlet orifices 62 of the air supply duct 26, this film of air f1 limiting the shear and therefore the mixing between the zones A and B.
  • the presence of the series of orifices 72 of the bowl 71 of the full-gas module avoids the interaction of the gases of the flow zone B with the walls of the combustion chamber 10.
  • the full-gas module generates a recirculation zone C located on either side of each injection system 20, and between the injection systems, at the bottom of the chamber.
  • the full-gas module has a wide range of stability allowing a significant adjustment latitude with respect to the transition from idling to full throttle. It should be noted that the slow-moving and full-throttle flows mix in the downstream part of the combustion chamber, in the zone marked D.
  • the idle module and the full-throttle module are carbureted, the fuel distribution being chosen so as to achieve a lean combustion, thus low NOx and smoke production on both modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
EP08150474.8A 2007-01-23 2008-01-22 Brennstoffeinspritzsystem mit doppelter Einspritzung Active EP1953455B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0752820A FR2911667B1 (fr) 2007-01-23 2007-01-23 Systeme d'injection de carburant a double injecteur.

Publications (2)

Publication Number Publication Date
EP1953455A1 true EP1953455A1 (de) 2008-08-06
EP1953455B1 EP1953455B1 (de) 2015-01-21

Family

ID=38474204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08150474.8A Active EP1953455B1 (de) 2007-01-23 2008-01-22 Brennstoffeinspritzsystem mit doppelter Einspritzung

Country Status (6)

Country Link
US (1) US7942003B2 (de)
EP (1) EP1953455B1 (de)
JP (1) JP5142202B2 (de)
CA (1) CA2619421C (de)
FR (1) FR2911667B1 (de)
RU (1) RU2468297C2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040112A3 (en) * 2007-09-25 2009-06-25 Eads Deutschland Gmbh Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
EP1959196A3 (de) * 2007-02-15 2010-06-30 Kawasaki Jukogyo Kabushiki Kaisha Brennkammer für eine Gasturbine
FR2971039A1 (fr) * 2011-02-02 2012-08-03 Turbomeca Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d'au moins un tel injecteur
FR2996287A1 (fr) * 2012-09-28 2014-04-04 Snecma Dispositif d'injection pour une chambre de combustion de turbomachine
EP3757462A1 (de) * 2019-06-26 2020-12-30 Rolls-Royce plc Kraftstoffeinspritzer

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878000B2 (en) * 2005-12-20 2011-02-01 General Electric Company Pilot fuel injector for mixer assembly of a high pressure gas turbine engine
JP5023526B2 (ja) * 2006-03-23 2012-09-12 株式会社Ihi 燃焼器用バーナ及び燃焼方法
GB0625016D0 (en) * 2006-12-15 2007-01-24 Rolls Royce Plc Fuel injector
GB2456147B (en) * 2008-01-03 2010-07-14 Rolls Royce Plc Fuel Injector Assembly for Gas Turbine Engines
AU2009228283B2 (en) 2008-03-28 2015-02-05 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
EP2344738B1 (de) 2008-10-14 2019-04-03 Exxonmobil Upstream Research Company Verfahren und system zur kontrolle von verbrennungsprodukten
US8281597B2 (en) * 2008-12-31 2012-10-09 General Electric Company Cooled flameholder swirl cup
US20100170253A1 (en) * 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
FR2943119B1 (fr) * 2009-03-12 2011-03-25 Snecma Systemes d'injection de carburant dans une chambre de combustion de turbomachine
US20100300102A1 (en) * 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
US20100307160A1 (en) * 2009-06-03 2010-12-09 Vinayak Barve Convex Pilot Cone
JP5896443B2 (ja) * 2009-06-05 2016-03-30 国立研究開発法人宇宙航空研究開発機構 燃料ノズル
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
FR2956897B1 (fr) * 2010-02-26 2012-07-20 Snecma Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection d'air ameliorant le melange air-carburant
AU2011271634B2 (en) 2010-07-02 2016-01-28 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
MX354587B (es) 2010-07-02 2018-03-12 Exxonmobil Upstream Res Company Star Combustión estequiométrica de aire enriquecido con recirculación de gas de escape.
BR112012031153A2 (pt) 2010-07-02 2016-11-08 Exxonmobil Upstream Res Co sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
US20120023951A1 (en) * 2010-07-29 2012-02-02 Nishant Govindbhai Parsania Fuel nozzle with air admission shroud
US8662408B2 (en) 2010-08-11 2014-03-04 General Electric Company Annular injector assembly and methods of assembling the same
US8899048B2 (en) * 2010-11-24 2014-12-02 Delavan Inc. Low calorific value fuel combustion systems for gas turbine engines
US9003804B2 (en) * 2010-11-24 2015-04-14 Delavan Inc Multipoint injectors with auxiliary stage
JP5546432B2 (ja) * 2010-11-30 2014-07-09 株式会社日立製作所 ガスタービン燃焼器及び燃料供給方法
US20120151928A1 (en) * 2010-12-17 2012-06-21 Nayan Vinodbhai Patel Cooling flowpath dirt deflector in fuel nozzle
US8312724B2 (en) * 2011-01-26 2012-11-20 United Technologies Corporation Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone
US9920932B2 (en) 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
US8925325B2 (en) 2011-03-18 2015-01-06 Delavan Inc. Recirculating product injection nozzle
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
US8893500B2 (en) * 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
US8919132B2 (en) * 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
JP5772245B2 (ja) * 2011-06-03 2015-09-02 川崎重工業株式会社 燃料噴射装置
US9188063B2 (en) * 2011-11-03 2015-11-17 Delavan Inc. Injectors for multipoint injection
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9423137B2 (en) * 2011-12-29 2016-08-23 Rolls-Royce Corporation Fuel injector with first and second converging fuel-air passages
DE102012002664A1 (de) 2012-02-10 2013-08-14 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenvormischbrenner
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9212822B2 (en) * 2012-05-30 2015-12-15 General Electric Company Fuel injection assembly for use in turbine engines and method of assembling same
JP5924618B2 (ja) * 2012-06-07 2016-05-25 川崎重工業株式会社 燃料噴射装置
DE102012017065A1 (de) * 2012-08-28 2014-03-27 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zum Betrieb eines Magervormischbrenners einer Fluggasturbine sowie Vorrichtung zur Durchführung des Verfahrens
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
CA2902479C (en) 2013-03-08 2017-11-07 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10907833B2 (en) 2014-01-24 2021-02-02 Raytheon Technologies Corporation Axial staged combustor with restricted main fuel injector
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10385809B2 (en) 2015-03-31 2019-08-20 Delavan Inc. Fuel nozzles
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
FR3042023B1 (fr) * 2015-10-06 2020-06-05 Safran Helicopter Engines Chambre de combustion annulaire pour turbomachine
EP3184898A1 (de) * 2015-12-23 2017-06-28 Siemens Aktiengesellschaft Brennkammer für eine gasturbine
US10047959B2 (en) * 2015-12-29 2018-08-14 Pratt & Whitney Canada Corp. Fuel injector for fuel spray nozzle
CN108474558B (zh) * 2015-12-30 2020-08-04 通用电气公司 用于双燃料燃烧器的液体燃料喷嘴
CA3010044C (en) * 2016-01-15 2021-06-15 Siemens Aktiengesellschaft Combustor for a gas turbine
US10502425B2 (en) * 2016-06-03 2019-12-10 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US11149952B2 (en) 2016-12-07 2021-10-19 Raytheon Technologies Corporation Main mixer in an axial staged combustor for a gas turbine engine
US10801728B2 (en) * 2016-12-07 2020-10-13 Raytheon Technologies Corporation Gas turbine engine combustor main mixer with vane supported centerbody
RU173301U1 (ru) * 2017-03-06 2017-08-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" Фронтовое устройство камеры сгорания газотурбинного двигателя
US11149948B2 (en) * 2017-08-21 2021-10-19 General Electric Company Fuel nozzle with angled main injection ports and radial main injection ports
US11561008B2 (en) * 2017-08-23 2023-01-24 General Electric Company Fuel nozzle assembly for high fuel/air ratio and reduced combustion dynamics
US11480338B2 (en) * 2017-08-23 2022-10-25 General Electric Company Combustor system for high fuel/air ratio and reduced combustion dynamics
EP3677839B1 (de) * 2017-08-28 2023-05-03 Kawasaki Jukogyo Kabushiki Kaisha Kraftstoffeinspritzdüse
GB201820206D0 (en) 2018-12-12 2019-01-23 Rolls Royce Plc A fuel spray nozzle
US11156360B2 (en) * 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
EP3910238A1 (de) * 2020-05-15 2021-11-17 Siemens Aktiengesellschaft Pilotkonus
KR102322596B1 (ko) * 2020-07-17 2021-11-05 두산중공업 주식회사 연소기용 노즐 어셈블리 및 이를 포함하는 가스터빈 연소기
RU208130U1 (ru) * 2021-04-26 2021-12-06 Публичное Акционерное Общество "Одк-Сатурн" Стенка фронта жаровой трубы камеры сгорания
DE102022207492A1 (de) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Düsenvorrichtung zur Zugabe zumindest eines gasförmigen Kraftstoffes und eines flüssigen Kraftstoffes, Set, Zuleitungssystem und Gasturbinenanordnung
US12111056B2 (en) * 2023-02-02 2024-10-08 Pratt & Whitney Canada Corp. Combustor with central fuel injection and downstream air mixing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706021A1 (fr) 1993-06-03 1994-12-09 Snecma Chambre de combustion comprenant un ensemble séparateur de gaz.
EP1193450A1 (de) * 2000-09-29 2002-04-03 General Electric Company Mischvorrichtung mit mehreren Verwirbelungsvorrichtungen
EP1193449A2 (de) * 2000-09-29 2002-04-03 General Electric Company Ringverwirbelungsanordnung
EP1314933A1 (de) * 2001-11-21 2003-05-28 Hispano Suiza Mehrstufiges Einspritzsystem eines Luft/Brennstoff-Gemisches in einer Gasturbinenbrennkammer
EP1413830A2 (de) * 2002-10-24 2004-04-28 ROLLS-ROYCE plc Druckluftinjektor für Kraftstoff mit verbessertem Luftverteiler und Pilot

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751731B1 (fr) * 1996-07-25 1998-09-04 Snecma Ensemble bol-deflecteur pour chambre de combustion de turbomachine
FR2753779B1 (fr) * 1996-09-26 1998-10-16 Systeme d'injection aerodynamique d'un melange air carburant
US5865024A (en) * 1997-01-14 1999-02-02 General Electric Company Dual fuel mixer for gas turbine combustor
EP1001224B1 (de) * 1998-11-12 2006-03-22 Mitsubishi Heavy Industries, Ltd. Gasturbinenbrennkammer
US6389815B1 (en) * 2000-09-08 2002-05-21 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
US6381964B1 (en) * 2000-09-29 2002-05-07 General Electric Company Multiple annular combustion chamber swirler having atomizing pilot
US20020162333A1 (en) * 2001-05-02 2002-11-07 Honeywell International, Inc., Law Dept. Ab2 Partial premix dual circuit fuel injector
US6418726B1 (en) * 2001-05-31 2002-07-16 General Electric Company Method and apparatus for controlling combustor emissions
RU2226652C2 (ru) * 2002-05-28 2004-04-10 Открытое акционерное общество "Авиадвигатель" Камера сгорания газотурбинного двигателя
JP4065947B2 (ja) * 2003-08-05 2008-03-26 独立行政法人 宇宙航空研究開発機構 ガスタービン燃焼器用燃料・空気プレミキサー
FR2859272B1 (fr) * 2003-09-02 2005-10-14 Snecma Moteurs Systeme d'injection air/carburant, dans une chambre de combustion de turbomachine, ayant des moyens de generation de plasmas froids
RU38218U1 (ru) * 2003-12-23 2004-05-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Устройство для подготовки и подачи топливовоздушной смеси в камеру сгорания
US8511097B2 (en) * 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
US7779636B2 (en) * 2005-05-04 2010-08-24 Delavan Inc Lean direct injection atomizer for gas turbine engines
US7878000B2 (en) * 2005-12-20 2011-02-01 General Electric Company Pilot fuel injector for mixer assembly of a high pressure gas turbine engine
FR2896030B1 (fr) * 2006-01-09 2008-04-18 Snecma Sa Refroidissement d'un dispositif d'injection multimode pour chambre de combustion, notamment d'un turboreacteur
US7762073B2 (en) * 2006-03-01 2010-07-27 General Electric Company Pilot mixer for mixer assembly of a gas turbine engine combustor having a primary fuel injector and a plurality of secondary fuel injection ports
JP4364911B2 (ja) * 2007-02-15 2009-11-18 川崎重工業株式会社 ガスタービンエンジンの燃焼器
JP4733195B2 (ja) * 2009-04-27 2011-07-27 川崎重工業株式会社 ガスタービンエンジンの燃料噴霧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706021A1 (fr) 1993-06-03 1994-12-09 Snecma Chambre de combustion comprenant un ensemble séparateur de gaz.
EP1193450A1 (de) * 2000-09-29 2002-04-03 General Electric Company Mischvorrichtung mit mehreren Verwirbelungsvorrichtungen
EP1193449A2 (de) * 2000-09-29 2002-04-03 General Electric Company Ringverwirbelungsanordnung
EP1314933A1 (de) * 2001-11-21 2003-05-28 Hispano Suiza Mehrstufiges Einspritzsystem eines Luft/Brennstoff-Gemisches in einer Gasturbinenbrennkammer
EP1413830A2 (de) * 2002-10-24 2004-04-28 ROLLS-ROYCE plc Druckluftinjektor für Kraftstoff mit verbessertem Luftverteiler und Pilot

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959196A3 (de) * 2007-02-15 2010-06-30 Kawasaki Jukogyo Kabushiki Kaisha Brennkammer für eine Gasturbine
US8001786B2 (en) 2007-02-15 2011-08-23 Kawasaki Jukogyo Kabushiki Kaisha Combustor of a gas turbine engine
WO2009040112A3 (en) * 2007-09-25 2009-06-25 Eads Deutschland Gmbh Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
US9464573B2 (en) 2007-09-25 2016-10-11 Airbus Sas Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
FR2971039A1 (fr) * 2011-02-02 2012-08-03 Turbomeca Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d'au moins un tel injecteur
WO2012104525A1 (fr) * 2011-02-02 2012-08-09 Turbomeca Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d'au moins un tel injecteur
RU2584741C2 (ru) * 2011-02-02 2016-05-20 Турбомека Инжектор камеры сгорания газовой турбины с двойной топливной системой и камера сгорания, снабженная, по меньшей мере, одним таким инжектором
US9347667B2 (en) 2011-02-02 2016-05-24 Turbomeca Injector for the combustion chamber of a gas turbine having a dual fuel circuit, and combustion chamber provided with at least one such injector
FR2996287A1 (fr) * 2012-09-28 2014-04-04 Snecma Dispositif d'injection pour une chambre de combustion de turbomachine
EP3757462A1 (de) * 2019-06-26 2020-12-30 Rolls-Royce plc Kraftstoffeinspritzer
US11300293B2 (en) 2019-06-26 2022-04-12 Rolls-Royce Plc Gas turbine fuel injector comprising a splitter having a cavity

Also Published As

Publication number Publication date
CA2619421C (fr) 2015-12-01
FR2911667B1 (fr) 2009-10-02
RU2468297C2 (ru) 2012-11-27
RU2008102394A (ru) 2009-07-27
EP1953455B1 (de) 2015-01-21
JP5142202B2 (ja) 2013-02-13
US7942003B2 (en) 2011-05-17
US20080236165A1 (en) 2008-10-02
FR2911667A1 (fr) 2008-07-25
JP2008180495A (ja) 2008-08-07
CA2619421A1 (fr) 2008-07-23

Similar Documents

Publication Publication Date Title
EP1953455B1 (de) Brennstoffeinspritzsystem mit doppelter Einspritzung
CA2638223C (fr) Injecteur de carburant dans une chambre de combustion de turbomachine
CA2588952C (fr) Chambre de combustion d'une turbomachine
CA2646959C (fr) Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
CA2420313C (fr) Systeme d'injection multi-modes d'un melange air/carburant dans une chambre de combustion
EP0214003B1 (de) Kraftstoffdüse mit vergrössertem Luftleitblech für die Brennkammer einer Gasturbine
FR2970553A1 (fr) Systeme de regulation de debit dans un injecteur multitubulaire de combustible
CA2398669C (fr) Chambre de combustion annulaire a double tete etagee
FR2906868A1 (fr) Injecteur de carburant pour chambre de combustion de moteur a turbine a gaz
FR2748088A1 (fr) Optimisation du melange de gaz brules dans une chambre de combustion annulaire
WO2014118457A1 (fr) Ensemble de combustion de turbomachine comprenant un circuit d'alimentation de carburant améliore
FR3003632A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine comportant une paroi annulaire a profil interne convergent
EP3784958B1 (de) Einspritzsystem für eine annulare verbrennungskammer einer gasturbine
FR3022986B1 (fr) Procede d'allumage d'une chambre de combustion de turbomachine
EP3771862A1 (de) Kraftstoffeinspritzernase für turbomaschine, die eine innen durch einen zapfen begrenzte kammer zur inbetriebsetzung der drehbewegung umfasst
EP4327023A1 (de) Diffusionskegel für das heckteil eines strahltriebwerks mit einem flammenhalterring an der hinterkante
WO2024052611A1 (fr) Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine
FR3105985A1 (fr) Circuit multipoint d’injecteur amélioré
WO2024134072A1 (fr) Dispositif de combustion à hydrogène
FR3135114A1 (fr) Procede d’injection de melange hydrogene-air pour bruleur de turbomachine
FR3122695A1 (fr) Cône de diffusion à double paroi définissant un plenum de refroidissement pour partie arrière de turboréacteur
FR3122720A1 (fr) Cône de diffusion pour partie arrière de turboréacteur intégrant un système d'injection d'air et de carburant
FR3122719A1 (fr) Accroche-flammes pour postcombustion de turboréacteur comprenant des bras à bords de fuite dentelés
FR3057648A1 (fr) Systeme d'injection pauvre de chambre de combustion de turbomachine
FR3028011A1 (fr) Architecture de combustion de carburant adaptee pour le ralenti et le demarrage rapide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140820

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008036424

Country of ref document: DE

Effective date: 20150305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008036424

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151022

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 17