WO2024052611A1 - Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine - Google Patents

Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine Download PDF

Info

Publication number
WO2024052611A1
WO2024052611A1 PCT/FR2023/051299 FR2023051299W WO2024052611A1 WO 2024052611 A1 WO2024052611 A1 WO 2024052611A1 FR 2023051299 W FR2023051299 W FR 2023051299W WO 2024052611 A1 WO2024052611 A1 WO 2024052611A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
annular channel
channel
combustion
injection
Prior art date
Application number
PCT/FR2023/051299
Other languages
English (en)
Inventor
Stéphan ZURBACH
Romain LE DORTZ
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2024052611A1 publication Critical patent/WO2024052611A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the present disclosure relates to the field of injection devices and processes for powering gas turbines such as aircraft turbomachines powered by dihydrogen and air.
  • gas turbines such as aircraft turbomachines powered by dihydrogen and air.
  • Burners made according to this principle do not guarantee the absence of flashback in the dihydrogen injection device and have a complex geometry. Such burners have a high production cost, a high pressure loss and are specific to a given combustion chamber architecture.
  • This geometry aims to spread the richness in the kerosene combustion chamber into several zones: a first zone close to the outlet of the injectors at a richness of approximately 1.8, followed by a second zone of mixture with very intense air whose aim is to minimize the formation of stoichiometric regions and the formation of NOx and to complete the rich upstream combustion.
  • a first zone close to the outlet of the injectors at a richness of approximately 1.8
  • a second zone of mixture with very intense air whose aim is to minimize the formation of stoichiometric regions and the formation of NOx and to complete the rich upstream combustion.
  • additional injections of air are planned in a third zone in order to produce a second lean combustion at 0.5 richness. Due to the specificity of hydrogen, the RQL type geometry optimized for kerosene combustion is no longer valid and must be rethought.
  • the present disclosure concerns a device for injecting a dihydrogen fuel-air mixture, for the combustion chamber of a turbomachine intended to stage combustion to limit the generation of NOx and limit the noise emitted by combustion.
  • the present disclosure further relates to an associated injection method.
  • the present disclosure proposes a combustible mixture injection device for the combustion chamber of an aircraft turbomachine turbine, which comprises, around a longitudinal axis, a central tubular channel, a first annular channel around said central channel and a second annular channel around the first annular channel, said channels being configured so as to open into said combustion chamber at the level of a first lip of said central channel, a second lip of said first annular channel and 'one end of the second annular channel, said first annular channel comprising, upstream of said second lip, means for injecting dihydrogen into said first annular channel in a flow of air moving along said longitudinal axis of said first annular channel in sort of producing a dihydrogen-air mixture flowing between said first lip and said second lip.
  • the first lip can be arranged upstream of the end of the second annular channel, the central channel opening into the combustion chamber at the level of the first lip upstream of the end of the second annular channel.
  • the second lip can be arranged upstream of the end of the second annular channel, the first annular channel opening into the combustion chamber at the level of the second lip upstream of said end of the second annular channel.
  • the central channel can be provided with a first spinner for rotating a gas passing through it.
  • the second annular channel can be provided with a second tendril for rotating a gas passing through it.
  • Said means for injecting dihydrogen advantageously comprise a plurality of first radial conduits between an external wall of said first annular channel and an annular tube for supplying said conduits, said annular tube being supplied by one or more second supply conduits dihydrogen.
  • the present disclosure further relates to a method of supplying hydrogen-air combustion in a combustion chamber of an aircraft turbomachine turbine by means of an injection device as described above which comprises an injection of air into said combustion chamber through said central tubular channel, an injection of dihydrogen and air into said combustion chamber through the first annular channel to form a dihydrogen-air premix and an injection of air into said chamber combustion through the second annular channel.
  • the dihydrogen-air premix advantageously has a richness greater than two in dihydrogen.
  • the injection of air into the central tubular channel and into the second annular channel is an injection of pure air so as to target an overall injection richness of between 0.3 and 0.5.
  • the air is rotated in the central channel by said first twist.
  • the air is rotated in the second annular channel.
  • the process is advantageously such that, after ignition, I” injection of the rich hydrogen-air premix creates a first flame front resulting from the rich combustion of the hydrogen-air premix which clings to the lips of the central tubular channel And of the first annular channel, this rich combustion with a richness greater than two taking place with a flame front temperature lower than 1800 K.
  • the injection of air from the central tubular channel and the second annular channel dilutes and confines the burnt gases resulting from the combustion of the rich hydrogen-oxygen premix to form a lean mixture creating a second combustion flame front. poor at a temperature below 1800K.
  • said second flame front is turbulent and is not attached to said lips.
  • FIG. 1 represents a schematic longitudinal section view of an injection device according to one embodiment
  • FIG. 2 represents a schematic cross-sectional view of means for supplying an annular channel according to a first embodiment
  • FIG. 3 represents the device of Figure 1 with flame fronts
  • FIG. 4A represents a cross section of a variant of means for supplying an annular channel according to a second embodiment
  • FIG. 4B represents a longitudinal section of the means of Figure 4A.
  • FIG.5 represents a schematic longitudinal section view of an injection device according to another embodiment.
  • Figure 1 represents a section of a combustible mixture injection device produced according to the principle of the present disclosure by a plane comprising a longitudinal axis X of the device.
  • the device comprises a central tubular channel 1 centered on the axis X, a first annular channel 2 around said central annular channel and a second annular channel 3 around the first annular channel 2.
  • the central tubular channel comprises a first circular lip 9 surrounded by the first annular channel at an outlet plane 4 of said central channel, the first channel annular has a second circular lip 10 always at the level of the outlet plane 4.
  • the second circular lip is surrounded by the second annular channel and the first lip and second lip are set back by a height h relative to the plane of the outlet 11 of the second annular channel.
  • the first annular channel comprises, upstream of said second lip 10, a device for injecting dihydrogen into an air flow 8 moving along the longitudinal axis so as to produce a flowing dihydrogen-air mixture. towards said combustion chamber.
  • the means comprise radial conduits 5 shown in section in Figure 2 which open into the external wall of the first annular channel 2.
  • the ratio of the distance relative to the outlet to the diameter of the first channel 2 can be between 1 and 10, more preferably between 1 and 5.
  • the injections of dihydrogen are of the "jet-in-cross-flow" type, that is to say in French radial injections of dihydrogen in an axial jet of air, in order to obtain a rapid premixing , over a minimized axial length, of the dihydrogen-air premix 15 leaving the first annular channel 2.
  • These radial conduits are supplied according to the example by an annular tube 6 itself supplied by one or more second conduits 7 for supplying dihydrogen from a pump or a pressure tank not shown.
  • the number of first conduits is for example 10 to 20 and for example around 16 for good distribution of the dihydrogen.
  • FIG. 4A and Figure 4B respectively cross section and longitudinal section on one side of the axis through sub-ducts 52 but the dihydrogen is mixed with the air in hollow sectors 21 supplying the first annular channel from below, opposite the outlet of said channel into the combustion chamber.
  • the conduits 51 each supply two sectors.
  • four hollow sectors each supplied by four first conduits 51 in which the dihydrogen-air mixture takes place are present under the first annular channel 2.
  • the injection process is improved by the addition of a device 8 for rotating the air (swirler in English), consisting of several hollow vanes, four vanes in the figure 4A, in which dihydrogen circulates.
  • the latter is injected by jet-in-cross-flow type injections 51 into the blades of the rotating device to optimize the mixing process.
  • the device of the present disclosure allows staged combustion of hydrogen in order to bypass the zone of formation of nitrogen oxides via the combustion of a rich hydrogen-air premix in a first zone, and the combustion of the gases residuals in a second poor area.
  • staged combustion allows a wider area of operability of the injector than a hydrogen injection strategy oriented towards lean combustion, where a lean premix is directly burned in the chamber and aims to reduce the formation of NOx.
  • the rich zone richness can in particular be set around 4 and the overall richness fixed between 0.17 and 0.31 depending on the operating points of the turboprop.
  • the size of such a device for a combustion chamber of an aircraft turboprop turbine is of the order of 30 mm to 40 mm.
  • Figure 5 represents a variant of the injection system applied to the entire bottom of the aeronautical combustion chamber with the shaft in the center where the central tubular channel 1a is made up of a third annular channel around the shaft 20, each of the channels being provided with a swirl 12, 13, 19, the flame fronts having an annular shape surrounding the shaft 20.
  • the present disclosure thus concerns a tri-coaxial hydrogen injection system pre-mixed with air for an aeronautical or terrestrial gas turbine, based on staged combustion: a. Combustion of the hydrogen-air premix at high richness takes place in a first region which generates a first annular flame front attached to the lips 9, 10 of the injector, first internal lip 9 and second external lip 10 of the annular injection channel dihydrogen-air mixture; b. The combustion products are then mixed rapidly via central and peripheral air injection to be burned in a second region generating a second stalled flame front.
  • This system allows in particular: a. To obtain aerodynamically stabilized flames over a wide operating range, b. To achieve combustion with very low nitrogen oxide emissions, c. To avoid the risk of flashback of the second flame front, d. To reduce noise pollution linked to the combustion of hydrogen, e. To obtain short flames with a distribution of thermal loads, f. To improve the integrity and lifespan of the injector.
  • the device of the invention is thus associated with a method of supplying hydrogen-air combustion in a combustion chamber of an aircraft turbomachine turbine which comprises an injection of air 14 into said chamber through said central tubular channel 1, an injection of dihydrogen 15a and air 8 into said chamber through the first annular channel 2 to form a dihydrogen-air premix 5 and an injection of air 16 into said chamber through the second annular channel 3 .
  • the dihydrogen-air premix 15 can then be richer than two in dihydrogen while the injection of air 14 in the central tubular channel 1 and in the second annular channel 3 is an injection of pure air calibrated by so as to target an overall injection richness of between 0.3 and 0.5.
  • the device comprising a first twist 12 in the central tubular channel 1, the air 14 is rotated in this central channel 1 by this first twist while the device comprising a second twist 13 in the second annular channel, the air 4 is rotated in the second annular channel.
  • the injection of the rich hydrogen-air premix 15 creates a first flame front 17, this flame coming from the rich combustion of the hydrogen-air premix which clings to the lips 9 and 10 of the channel central tubular 1 and the first annular channel 2.
  • This rich combustion with a richness greater than two is carried out with a flame front temperature of less than 1800 K, limiting NOx emissions.
  • the injection of air from the central tubular channel 1 and from the second annular channel 3 dilutes and confines the burnt gases resulting from the combustion of the rich hydrogen-oxygen premix to form a lean mixture creating a second flame front 18 of lean combustion at a temperature below 1800K, again limiting NOx emissions.
  • This second flame front 18 which is also turbulent is not attached to said lips 9, 10 of the central tubular channel 1 and the first annular channel 2.
  • the device and method of the present disclosure are efficient while limiting NOx emissions.
  • the shape of the lips and the outlet of the second annular channel can be of various shapes such as straight, flared, beveled, tightened and of varying thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Gas Burners (AREA)

Abstract

Dispositif d'injection de mélange combustible, pour chambre de combustion (100) d'une turbine de turbomachine d'aéronef, qui comporte autour d'un axe longitudinal (X) un canal central tubulaire (1), un premier canal annulaire (2) autour dudit canal central et un second canal annulaire (3) autour du premier canal annulaire (2), lesdits canaux (1, 2, 3) débouchant dans ladite chambre de combustion au niveau d'une première lèvre (9) dudit canal central, d'une deuxième lèvre (10) dudit premier canal annulaire et d'une extrémité (11) du deuxième canal annulaire, ledit premier canal annulaire comportant, en amont de ladite deuxième lèvre(10), un dispositif d'injection de dihydrogène (5, 6, 7) dans ledit premier canal annulaire (2) dans un écoulement d'air (8) se déplaçant selon ledit axe longitudinal dudit premier canal annulaire en sorte de réaliser un mélange dihydrogène-air s'coulant vers ladite chambre de combustion.

Description

Description
Titre : DISPOSITIF ET PROCEDE D’INJECTION DE MELANGE HYDROGENE- AIR POUR BRULEUR DE TURBOMACHINE
Domaine technique
[0001] La présente divulgation relève du domaine des dispositifs et procédés d’injection pour l’alimentation de turbines à gaz telles que des turbomachines d’aéronefs alimentées par du dihydrogène et de l’air. Cela inclut notamment les applications aéronautiques civiles et militaires : hélicoptères, VTOL, drones, APU, turbogénérateurs, les appareils à voilure fixe pour l’aviation de loisir, d’affaire ou commerciale, turboréacteurs ou turbopropulseurs.
Technique antérieure
[0002] Les secteurs de la propulsion et notamment le secteur aéronautique font face à de grands enjeux environnementaux. L’intérêt d’avoir recours à une combustion utilisant du dihydrogène plutôt qu’à l’emploi de kérosène est de plus en plus fort car cette combustion de dihydrogène permettrait d’éviter les émissions polluantes carbonées telles que du dioxyde de carbone, du monoxyde de carbone, des hydrocarbures imbrûlés ou encore des particules fines et fumées.
[0003] Un principe de brûleurs à micro-mélange d’air et de dihydrogène est connu. Les brûleurs réalisés selon ce principe ne garantissent pas l’absence de retour de flamme dans le dispositif d’injection de dihydrogène et possèdent une géométrie complexe. De tels brûleurs présentent un coût de réalisation élevé, une perte de charge élevée et sont spécifiques à une architecture de chambre de combustion donnée.
[0004] Au niveau de l’injection et de la combustion, deux principales configurations technologiques pour les systèmes d’injection hydrogène-air appliqués aux turbines à gaz existent, à savoir les systèmes d’injection pauvre, et les systèmes d’injection riche.
[0005] D’une manière plus générale, il est important d’avoir en tête que les procédés d’alimentation à combustion pauvre ont tendance à générer des instabilités thermo acoustiques importantes pouvant endommager ces systèmes alors qu’une combustion stable est nécessaire pour ne pas altérer les performances du moteur. Les procédés d’alimentation à combustion riche, quant à eux, ont tendance à émettre des polluants de manière plus importantes que les procédés à combustion pauvre s’ils ne sont pas dimensionnés correctement.
[0006] L’ utilisation de l’hydrogène implique plusieurs problématiques à prendre en considération au niveau de la chambre de combustion : [0007] A conditions thermodynamiques équivalentes en pression, température, richesse, la température adiabatique de la flamme d’une combustion hydrogène-air est plus élevée que la flamme issue d’une combustion kérosène-air. Les limites d’inflammabilité de l’hydrogène sont toutefois plus étendues que celles du kérosène et permettent d’enflammer le mélange à des richesses plus faibles ou plus élevées que pour le kérosène, ce qui pourrait permettre d’atteindre finalement des températures de flamme plus faibles qu’avec l’utilisation du kérosène.
[0008] De même, les vitesses de flammes issues d’une combustion hydrogène-air sont plus importantes que pour les flammes kérosène-air. Une vitesse de flamme importante peut entrainer des problématiques de retours de flamme dits flashback en anglais dans les systèmes d’injection, notamment au niveau des couches limites, et causer de sérieux dommages à ces systèmes.
[0009] Les limites d’inflammabilité de l’hydrogène sont toutefois plus étendues que celles du kérosène et permettent d’enflammer un mélange hydrogène-air à des richesses plus faibles ou plus élevées que pour le kérosène, ce qui peut permettre d’atteindre finalement des températures de flamme plus faibles qu’avec l’utilisation du kérosène.
[0010] Enfin, la combustion de l’hydrogène avec l’air a tendance à émettre beaucoup plus de bruit qu’une combustion au kérosène classique et peut donc générer une pollution sonore importante au niveau des aéroports Dans le cas d’un usage aéronautique.
[0011] D’une manière plus générale, il est important d’avoir en tête que les systèmes de combustion pauvre ont tendance à générer des instabilités thermoacoustiques importantes pouvant endommager ces systèmes. Une combustion stable est nécessaire pour ne pas altérer les performances du moteur.
[0012] Il est donc recherché de diminuer les températures de combustion, de réduire les ondes sonores issues de la combustion et de limiter la formation d’oxydes d’azote pour réduire tant la pollution sonore que la pollution de l’air lors du fonctionnement des turbines.
[0013] Au niveau des brûleurs, les documents GB2502298A et US62675851 décrivent des géométries de chambre basée sur le principe d’un brûleur à micro-mélange (connu aussi sous l’appellation micro-mix). Ce type de brûleur est conçu pour miniaturiser la zone de réaction en créant une multitude de micro-flammes de diffusion de longueur allant jusqu’à 4 cm. Le processus de combustion s’appuie sur une injection d’hydrogène de manière perpendiculaire à un écoulement d’air qui entraine l’hydrogène (connu sous l’appellation anglaise jet-in-crossflow). Une fois l’ajout rapide de l’hydrogène dans l’air réalisé, le mélange est injecté dans la chambre de combustion et est brûlé en aval d’une multitude de trous d’injection. Cette technologie permet de réduire les risques de retour de flamme (dit flashback en anglais) car il n’y a pas de réalisation de prémélange avant l’injection. L’opérabilité de ce type d’injecteur peut être limitée, tout comme la tenue thermique de la paroi comportant les trous d’injection qui est soumise à des conditions élevées de température.
[0014] Dans le cadre des brûleurs utilisant du kérosène, le document “Advanced Combustor Systems for Stationary Gas Turbine Engines, Phase I. Review and Preliminary Evaluation, Volume I”, S.A. Mosier, R.M. Pierce, Contract 68-02-2136, FR-11405, Final Report, U.S. Environmental Protection Agency, 1980 propose une géométrie de type RQL selon l’acronyme utilisé dans le domaine pour « Rich Burn-Quick Mix-Lean Burn en anglais » soit combustion riche-mélange rapide-combustion pauvre en français.
[0015] Cette géométrie a pour objectif d’étager la richesse dans la chambre de combustion au kérosène en plusieurs zones : une première zone proche de la sortie des injecteurs à une richesse d’environ 1 ,8, suivie d’une seconde zone de mélange avec de l’air très intense dont le but est de minimiser la formation des régions stoechiométriques et la formation des NOx et de compléter la combustion riche amont. Au final, afin de refroidir les gaz de combustion en amont du DHP « Distributeur Haute Pression », des injections supplémentaires d’air sont prévues dans une troisième zone afin de faire une seconde combustion pauvre à richesse 0,5. En raison de la spécificité de l’hydrogène, la géométrie type RQL optimisée pour la combustion du kérosène n’est plus valable et doit être repensée.
Résumé
[0016] La présente divulgation concerne pour ce faire un dispositif d’injection de mélange combustible dihydrogène- air, pour chambre de combustion d’une turbomachine destiné à étager la combustion pour limiter la génération de NOx et limiter le bruit émis par la combustion. La présente divulgation concerne en outre un procédé d’injection associé.
[0017] Plus précisément la présente divulgation propose un dispositif d’injection de mélange combustible pour chambre de combustion d’une turbine de turbomachine d’aéronef, qui comporte, autour d’un axe longitudinal, un canal central tubulaire, un premier canal annulaire autour dudit canal central et un second canal annulaire autour du premier canal annulaire, lesdits canaux étant configurés en sorte de déboucher dans ladite chambre de combustion au niveau d’une première lèvre dudit canal central, d’une deuxième lèvre dudit premier canal annulaire et d’une extrémité du deuxième canal annulaire, ledit premier canal annulaire comportant, en amont de ladite deuxième lèvre, des moyens d’injection de dihydrogène dans ledit premier canal annulaire dans un écoulement d’air se déplaçant selon ledit axe longitudinal dudit premier canal annulaire en sorte de réaliser un mélange dihydrogène-air s’écoulant entre ladite première lèvre et ladite deuxième lèvre. [0018] La première lèvre peut être disposée en amont de l’extrémité du second canal annulaire, le canal central débouchant dans la chambre de combustion au niveau de la première lèvre en amont de l’extrémité du second canal annulaire.
[0019] La deuxième lèvre peut être disposée en amont de l’extrémité du second canal annulaire, le premier canal annulaire débouchant dans la chambre de combustion au niveau de la deuxième lèvre en amont de ladite extrémité du second canal annulaire.
[0020] Le canal central peut être muni d’une première vrille de mise en rotation d’un gaz le traversant.
[0021] Le second canal annulaire peut être muni d’une deuxième vrille de mise en rotation d’un gaz le traversant.
[0022] Lesdits moyens d’injection de dihydrogène comportent avantageusement une pluralité de premiers conduits radiaux entre une paroi externe dudit premier canal annulaire et une tubulure annulaire d’alimentation desdits conduits, ladite tubulure annulaire étant alimentée par un ou plusieurs deuxièmes conduits d’amenée du dihydrogène.
[0023] La présente divulgation concerne en outre un procédé d’alimentation d’une combustion hydrogène-air dans une chambre de combustion d’une turbine de turbomachine d’aéronef au moyen d’un dispositif d’injection tel que décrit précédemment qui comporte une injection d’air dans ladite chambre de combustion par ledit canal central tubulaire, une injection de dihydrogène et d’air dans ladite chambre de combustion par le premier canal annulaire pour former un prémélange dihydrogène-air et une injection d’air dans ladite chambre de combustion par le second canal annulaire.
[0024] Le prémélange dihydrogène-air est avantageusement de richesse supérieure à deux en dihydrogène.
[0025] L’injection d’air dans le canal central tubulaire et dans le second canal annulaire est une injection d’air pur de manière à cibler une richesse globale d’injection comprise entre 0,3 et 0,5.
[0026] Dans le cas où le dispositif comporte une première vrille dans le canal central tubulaire, l’air est mis en rotation dans le canal central par ladite première vrille.
[0027] Dans le cas où le dispositif comporte une seconde vrille dans le second canal annulaire, l’air est mis en rotation dans le second canal annulaire.
[0028] Le procédé est avantageusement tel que, après allumage, I” injection du prémélange riche hydrogène-air crée un premier front de flamme issue de la combustion riche du prémélange hydrogène-air qui vient s’accrocher sur les lèvres du canal central tubulaire et du premier canal annulaire, cette combustion riche de richesse supérieure à deux s’effectuant avec une température de front de flamme inférieure à 1800 K.
[0029] De ce fait le bruit généré par le premier front de flamme est réduit et la formation d’oxydes d’azotes est réduite.
[0030] Avantageusement, l’injection d’air issue du canal central tubulaire et du second canal annulaire dilue et confine les gaz brûlés issus de la combustion du prémélange riche hydrogène-oxygène pour former un mélange pauvre créant un second front de flamme de combustion pauvre à une température inférieure à 1800K.
[0031] De ce fait le bruit généré par le second front de flamme est de même réduit et la formation d’oxydes d’azote est aussi réduite.
[0032] La création de ces deux fronts de flamme riche et pauvre permet de répartir la charge thermo-acoustique issue de la combustion sur une surface plus importante, et donc de réduire les nuisances sonores issues de la combustion.
[0033] Préférablement, ledit second front de flamme est turbulent et n’est pas attaché auxdites lèvres.
Brève description des dessins
[0034] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
[0035] [Fig. 1] représente une vue schématique coupe longitudinale d’un dispositif d’injection selon un mode de réalisation ;
[0036] [Fig. 2] représente une vue schématique coupe transversale de moyens d’alimentation d’un canal annulaire selon un premier mode de réalisation ;
[0037] [Fig. 3] représente le dispositif de la figure 1 avec fronts de flammes ;
[0038] [Fig. 4A] représente une coupe transversale d’une variante de moyens d’alimentation d’un canal annulaire selon un second mode de réalisation ;
[0039] [Fig. 4B] représente une section longitudinale des moyens de la figure 4A.
[0040] [Fig.5] représente une vue schématique coupe longitudinale d’un dispositif d’injection selon un autre mode de réalisation .
Description de modes de réalisation
[0041] Il est maintenant fait référence à la figure 1 qui représente une coupe d’un dispositif d’injection de mélange combustible réalisé selon le principe de la présente divulgation par un plan comprenant un axe longitudinal X du dispositif. [0042] Le dispositif comporte un canal central tubulaire 1 centré sur l’axe X, un premier canal annulaire 2 autour dudit canal central annulaire et un second canal annulaire 3 autour du premier canal annulaire 2.
[0043] Lesdits canaux 1 , 2, 3 débouchent dans une chambre de combustion 100. Le canal central tubulaire comporte une première lèvre circulaire 9 entourée par le premier canal annulaire au niveau d’un plan de sortie 4 dudit canal central, le premier canal annulaire comporte une deuxième lèvre circulaire 10 toujours au niveau du plan de sortie 4. La deuxième lèvre circulaire est entourée par le deuxième canal annulaire et les première lèvre et deuxième lèvre sont en retrait d’une hauteur h par rapport au plan de la sortie 11 du second canal annulaire. Ainsi les sorties du canal tubulaire central et du premier canal annulaire sont en amont de la sortie du second canal annulaire.
[0044] Le premier canal annulaire comporte, en amont de ladite deuxième lèvre 10, un dispositif d’injection de dihydrogène dans un écoulement d’air 8 se déplaçant selon l’axe longitudinal en sorte de réaliser un mélange dihydrogène-air s’coulant vers ladite chambre de combustion. Pour injecter le dihydrogène, les moyens comportent des conduits radiaux 5 représentés en coupe en figure 2 qui débouchent dans la paroi externe du premier canal annulaire 2. Pour fixer les idées, le rapport de la distance par rapport à la sortie sur le diamètre du premier canal 2 peut être compris entre 1 et 10, plus préférentiel entre 1 et 5.
[0045] En figure 2, les injections de dihydrogène sont de type « jet-in-cross-flow », c’est à dire en français injections radiales de dihydrogène dans un jet axial d’air, afin d’obtenir un prémélange rapide, sur une longueur axiale minimisée, du prémélange dihydrogène-air 15 sortant du premier canal annulaire 2.
[0046] Ces conduits radiaux sont alimentés selon l’exemple par une tubulure annulaire 6 elle-même alimentée par un ou plusieurs deuxièmes conduits 7 d’amenée du dihydrogène à partir d’une pompe ou d’un réservoir sous pression non représentés. Le nombre de premiers conduits est par exemple de 10 à 20 et par exemple de l’ordre de 16 pour une bonne répartition du dihydrogène.
[0047] En variante, selon la figure 4A et la figure 4B, respectivement coupe transversale et section longitudinale sur un côté de l’axe X du dispositif, les moyens d’injection de dihydrogène comportent des premiers conduits 51 alimentés par une tubulure annulaire 61 au travers de sous conduits 52 mais le dihydrogène est mélangé à l’air dans des secteurs creux 21 alimentant le premier canal annulaire par en dessous, à l’opposé de la sortie dudit canal dans la chambre de combustion. Dans cet exemple les conduits 51 alimentent chacun deux secteurs. [0048] Selon cet exemple quatre secteurs creux chacun alimenté par quatre premiers conduits 51 dans lesquels se fait le mélange dihydrogène-air sont présents sous le premier canal annulaire 2.
[0049] Selon ce mode de réalisation, le processus d’injection est amélioré par l’ajout d’un dispositif 8 de mise en rotation de l’air (swirler en anglais), constitué de plusieurs aubes creuses, quatre aubes sur la figure 4A, dans lesquelles circule le dihydrogène. Ce dernier est injecté par des injections 51 de type jet-in-cross-flow dans les aubes du dispositif de mise en rotation pour optimiser le processus de mélange.
[0050] Le dispositif de la présente divulgation permet une combustion étagée de l’hydrogène afin de contourner la zone de formation des oxydes d’azote via la combustion d’un prémélange hydrogène-air riche dans une première zone, et la combustion des gaz résiduels dans une seconde zone pauvre. Le concept de combustion étagée permet une plus large place d’opérabilité de l’injecteur qu’une stratégie d’injection d’hydrogène orientée combustion pauvre, où un prémélange pauvre est directement brûlé dans la chambre et a pour objectif de réduire la formation des NOx.
[0051] Le risque de flashback est limité avec une combustion riche car les instabilités thermo-diffusives ne sont pas présentes sur le premier front de flamme. La vitesse de flamme n’est ainsi pas accélérée par les instabilités. De plus, l’étagement des richesses évite la formation d’un front de flamme stoechiométrique car l’hydrogène est soit prémélangé riche soit vicié par des gaz de combustion. Ceci a pour effet de réduire la vitesse du front de flamme, fortement dépendant de la composition des gaz à brûler.
[0052] La stabilisation de deux fronts de flammes 17 et 18, front 17 accroché aux lèvres 9 et 10 de l’injecteur pour la flamme riche et front 18 décroché pour la flamme pauvre, permet de diviser les charges thermo acoustiques liés à la combustion : le bruit généré par la combustion est réparti sur deux fronts de flammes, c’est-à-dire sur une surface plus important que dans le cas où un unique front de flamme est généré.
[0053] L’intégrité du foyer est également assurée car en réalisant les combustions à des fortes et faibles richesses, les températures de flamme sont moins importantes qu’en réalisant la combustion dans des conditions stoechiométriques. Les potentiels fronts de flamme issus de zones stoechiométriques qui pourraient être présentes dans la réalité ne seront pas attachés aux lèvres de l’injecteur, limitant ainsi l’endommagement de l’injecteur.
[0054] En augmentant significativement la surface du front de flamme via l’injection du prémélange hydrogène-air riche dans le premier canal annulaire 2, la longueur de la flamme est réduite ce qui permet de réaliser des chambres de combustion avec un encombrement réduit par rapport à une injection dans un canal tubulaire central. [0055] En référence aux figures 3 et 4B, afin de favoriser l’interaction entre l’air du canal 16 et la flamme de prémélange 17, on prévoit un retrait de la lèvre 10 par rapport à l’extrémité du deuxième canal annulaire, retrait noté h sur la figure 1 pour améliorer l’interaction entre le jet 16 sortant du deuxième canal annulaire et le jet 15 sortant du premier canal annulaire.
[0056] Dans le cadre d’un fonctionnement dans des conditions types d’un turbopropulseur, la richesse de zone riche peut notamment être fixée autour de 4 et la richesse globale fixée entre 0,17 et 0,31 en fonction des points de fonctionnement du turbopropulseur.
[0057] L’ encombrement d’un tel dispositif pour une chambre de combustion d’une turbine de turbopropulseur d’aéronef est de l’ordre de 30 mm à 40 mm.
[0058] La figure 5 représente une variante du système d’injection appliquée à l’ensemble du fond de la chambre de combustion aéronautique avec l’arbre au centre où le canal central tubulaire 1 a est constitué d’un troisième canal annulaire autour de l’arbre 20, chacun des canaux étant pourvu d’une vrille 12, 13, 19, les fronts de flammes de forme annulaire entourant l’arbre 20.
[0059] La présente divulgation concerne ainsi un système d’injection d’hydrogène tri coaxial pré-mélangé avec de l’air pour turbine à gaz aéronautique ou terrestre, basé sur une combustion étagée : a. Une combustion du prémélange hydrogène-air à richesse élevée a lieu dans une première région qui génère un premier front de flamme annulaire accroché aux lèvres 9, 10 de l’injecteur, première lèvre 9 interne et deuxième lèvre 10 externe du canal annulaire d’injection du mélange dihydrogène-air; b. Les produits de combustion sont ensuite mélangés rapidement via l’injection d’air centrale et périphérique pour être brûlés dans une seconde région en générant un second front de flamme décroché.
[0060] Ce système permet notamment : a. D’obtenir des flammes stabilisées aérodynamiquement sur une large plage de fonctionnement, b. De réaliser une combustion à très faible émission d’oxydes d’azote, c. D’éviter le risque de flashback du second front de flamme, d. De diminuer les nuisances sonores liées à la combustion de l’hydrogène, e. D’obtenir des flammes courtes avec une répartition des charges thermiques, f. D’améliorer l’intégrité et la durée de vie de l’injecteur. [0061] Le dispositif de l’invention est ainsi associé à un procédé d’alimentation d’une combustion hydrogène-air dans une chambre de combustion d’une turbine de turbomachine d’aéronef qui comporte une injection d’air 14 dans ladite chambre par ledit canal central tubulaire 1 , une injection de dihydrogène 15a et d’air 8 dans ladite chambre par le premier canal annulaire 2 pour former un prémélange dihydrogène-air 5 et une injection d’air 16 dans ladite chambre par le second canal annulaire 3.
[0062] Le prémélange dihydrogène-air 15 peut alors être de richesse supérieure à deux en dihydrogène alors que l’injection d’air 14 dans le canal central tubulaire 1 et dans le second canal annulaire 3 est une injection d’air pur calibrée de manière à cibler une richesse globale d’injection comprise entre 0,3 et 0,5.
[0063] Selon l’exemple de la figure 3, le dispositif comportant une première vrille 12 dans le canal central tubulaire 1 , l’air 14 est mis en rotation dans ce canal central 1 par cette première vrille alors que le dispositif comportant une seconde vrille 13 dans le second canal annulaire, l’air 4 est mis en rotation dans le second canal annulaire.
[0064] Après allumage, l’injection du prémélange riche hydrogène-air 15 crée un premier front de flamme 17, cette flame étant issue de la combustion riche du prémélange hydrogène-air qui vient s’accrocher sur les lèvres 9 et 10 du canal central tubulaire 1 et du premier canal annulaire 2.
[0065] Cette combustion riche de richesse supérieure à deux s’effectue avec une température de front de flamme inférieure à 1800 K limitant les émissions de NOx. L’injection d’air issue du canal central tubulaire 1 et issue du second canal annulaire 3 dilue et confine les gaz brûlés issus de la combustion du prémélange riche hydrogène-oxygène pour former un mélange pauvre créant un second front de flamme 18 de combustion pauvre à une température inférieure à 1800K là aussi limitant les émissions de NOx. Ce second front de flamme 18 qui est en outre turbulent n’est pas attaché auxdites lèvres 9, 10 du canal central tubulaire 1 et du premier canal annulaire 2.
[0066] Le dispositif et le procédé de la présente divulgation sont performants tout en limitant les émissions de NOx.
[0067] L’ invention objet des revendications qui suivent n’est pas limitée à la description qui précède et notamment la forme des lèvres et de la sortie du deuxième canal annulaire peuvent être de diverses formes telles que droites, évasées, biseautées, resserrées et d’épaisseur diverses.

Claims

Revendications
[Revendication 1] Dispositif d’injection de mélange combustible air dihydrogène, pour chambre de combustion (100) d’une turbine de turbomachine d’aéronef, caractérisé en ce qu’il comporte autour d’un axe longitudinal (X) un canal central tubulaire (1 ), un premier canal annulaire (2) autour dudit canal central et un second canal annulaire (3) autour du premier canal annulaire (2), lesdits canaux (1 , 2, 3) étant configurés en sorte de déboucher dans ladite chambre de combustion au niveau d’une première lèvre (9) dudit canal central, d’une deuxième lèvre (10) dudit premier canal annulaire et d’une extrémité (11 ) du deuxième canal annulaire, ledit premier canal annulaire comportant, en amont de ladite deuxième lèvre (10), un dispositif d’injection de dihydrogène (5, 6, 7) dans ledit premier canal annulaire (2) dans un écoulement d’air (8) se déplaçant selon ledit axe longitudinal dudit premier canal annulaire en sorte de réaliser un mélange dihydrogène-air s’écoulant entre ladite première lèvre et ladite deuxième lèvre.
[Revendication 2] Dispositif d’injection selon la revendication 1 , pour lequel la première lèvre (9) est disposée en amont de l’extrémité du second canal annulaire, le canal central
(1 ) débouchant dans la chambre de combustion (100) au niveau de la première lèvre (9) en amont de l’extrémité (11 ) du second canal annulaire et/ou pour lequel la deuxième lèvre (10) est disposée en amont de l’extrémité du second canal annulaire, le premier canal annulaire débouchant dans la chambre de combustion au niveau de la deuxième lèvre (10) en amont de ladite extrémité (11 ) du second canal annulaire.
[Revendication 3] Dispositif d’injection selon la revendication 1 ou 2, pour lequel le canal central (1 ) est muni d’une première vrille (12) de mise en rotation d’un gaz le traversant.
[Revendication 4] Dispositif d’injection selon l’une quelconque des revendications précédentes, pour lequel le second canal annulaire (3) est muni d’une deuxième vrille (13) de mise en rotation du gaz le traversant.
[Revendication 5] Dispositif d’injection selon l’une quelconque des revendications précédentes pour lequel lesdits moyens d’injection de dihydrogène (5, 6, 7) comportent une pluralité de premiers conduits (5, 51 ) entre une paroi externe dudit premier canal annulaire
(2) et une tubulure annulaire (6, 61 ) d’alimentation desdits conduits, ladite tubulure annulaire étant alimentée par un ou plusieurs deuxièmes conduits (7) d’amenée du dihydrogène.
[Revendication 6] Procédé d’alimentation d’une combustion hydrogène-air dans une chambre de combustion d’une turbine de turbomachine d’aéronef au moyen d’un dispositif d’injection selon l’une quelconque des revendications précédentes caractérisé en ce qu’il comporte une injection d’air (14) dans ladite chambre de combustion par ledit canal central tubulaire (1 ), une injection de dihydrogène (15a) et d’air (8) dans ladite chambre de combustion par le premier canal annulaire (2) pour former un prémélange dihydrogène-air (15) et une injection d’air (16) dans ladite chambre de combustion par le second canal annulaire (3).
[Revendication 7] Procédé d’alimentation d’une combustion hydrogène-air selon la revendication 6 pour lequel le prémélange dihydrogène-air (15) est de richesse supérieure à deux en dihydrogène.
[Revendication 8] Procédé d’alimentation d’une combustion hydrogène-air selon la revendication 7 pour lequel l’injection d’air (14) dans le canal central tubulaire (1 ) et dans le second canal annulaire (3) est une injection d’air pur de manière à cibler une richesse globale d’injection comprise entre 0,3 et 0,5.
[Revendication 9] Procédé d’alimentation d’une combustion hydrogène-air selon l’une quelconque des revendications 6 à 8 pour lequel le dispositif comportant une première vrille (12) dans le canal central tubulaire, l’air (14) est mis en rotation dans le canal central (1 ) par ladite première vrille et/ou pour lequel le dispositif comportant une seconde vrille (13) dans le second canal annulaire, l’air (4) est mis en rotation dans le second canal annulaire.
[Revendication 10] Procédé d’alimentation d’une combustion hydrogène-air selon l’une quelconque des revendications 6 à 9 pour lequel après allumage, l’injection du prémélange riche hydrogène-air (15) crée un premier front de flamme (17) issue de la combustion riche du prémélange hydrogène-air qui vient s’accrocher sur les lèvres (9, 10) du canal central tubulaire (1 ) et du premier canal annulaire (2) cette combustion riche de richesse supérieure à deux s’effectuant avec une température de front de flamme inférieure à 1800 K et pour lequel l’injection d’air issue du canal central tubulaire (1 ) et du second canal annulaire (3) dilue et confine les gaz brûlés issus de la combustion du prémélange riche hydrogène- oxygène pour former un mélange pauvre créant un second front de flamme (18) de combustion pauvre à une température inférieure à 1800K, ledit second front de flamme (18) étant turbulent et n’étant pas attaché auxdites lèvres (9, 10).
PCT/FR2023/051299 2022-09-05 2023-08-25 Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine WO2024052611A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2208857 2022-09-05
FR2208857A FR3139378A1 (fr) 2022-09-05 2022-09-05 Dispositif et procede d’injection de melange hydrogene-air pour bruleur de turbomachine

Publications (1)

Publication Number Publication Date
WO2024052611A1 true WO2024052611A1 (fr) 2024-03-14

Family

ID=84569667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051299 WO2024052611A1 (fr) 2022-09-05 2023-08-25 Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine

Country Status (2)

Country Link
FR (1) FR3139378A1 (fr)
WO (1) WO2024052611A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937011A (en) * 1972-11-13 1976-02-10 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Fuel injector for atomizing and vaporizing fuel
US20060059914A1 (en) * 2004-09-23 2006-03-23 Snecma Effervescent aerodynamic system for injecting an air/fuel mixture into a turbomachine combustion chamber
US20070003897A1 (en) * 2005-06-24 2007-01-04 Hiromi Koizumi Burner, gas turbine combustor, burner cooling method, and burner modifying method
US20080083224A1 (en) * 2006-10-05 2008-04-10 Balachandar Varatharajan Method and apparatus for reducing gas turbine engine emissions
US20100212322A1 (en) * 2009-02-20 2010-08-26 General Electric Company Coaxial fuel and air premixer for a gas turbine combustor
US20120144832A1 (en) * 2010-12-10 2012-06-14 General Electric Company Passive air-fuel mixing prechamber
GB2502298A (en) 2012-05-22 2013-11-27 Bhupendra Khandelwal Burner and Combustor for Gaseous Hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937011A (en) * 1972-11-13 1976-02-10 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Fuel injector for atomizing and vaporizing fuel
US20060059914A1 (en) * 2004-09-23 2006-03-23 Snecma Effervescent aerodynamic system for injecting an air/fuel mixture into a turbomachine combustion chamber
US20070003897A1 (en) * 2005-06-24 2007-01-04 Hiromi Koizumi Burner, gas turbine combustor, burner cooling method, and burner modifying method
US20080083224A1 (en) * 2006-10-05 2008-04-10 Balachandar Varatharajan Method and apparatus for reducing gas turbine engine emissions
US20100212322A1 (en) * 2009-02-20 2010-08-26 General Electric Company Coaxial fuel and air premixer for a gas turbine combustor
US20120144832A1 (en) * 2010-12-10 2012-06-14 General Electric Company Passive air-fuel mixing prechamber
GB2502298A (en) 2012-05-22 2013-11-27 Bhupendra Khandelwal Burner and Combustor for Gaseous Hydrogen

Also Published As

Publication number Publication date
FR3139378A1 (fr) 2024-03-08

Similar Documents

Publication Publication Date Title
CA2478876C (fr) Systeme d'injection air/carburant ayant des moyens de generation de plasmas froids
EP1953455B1 (fr) Système d'injection de carburant à double injecteur
JP6033887B2 (ja) マルチ燃料対応のガスタービン燃焼器
EP1909031B1 (fr) Injecteur de carburant pour chambre de combustion de moteur à turbine à gaz
EP0776444B1 (fr) Chambre de combustion a faibles emissions destinee a des moteurs a turbine a gaz
CA2588952C (fr) Chambre de combustion d'une turbomachine
CA2198420C (fr) Dispositif d'injection de combustible pour statoreacteur d'aeronef
EP1923636B1 (fr) Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP0933594B1 (fr) Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide
FR2660736A1 (fr) Assemblage de combustion etagee pauvre.
FR2706020A1 (fr) Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées.
WO2024052611A1 (fr) Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine
WO2023214129A1 (fr) Procede d'injection de melange hydrogene-air pour bruleur de turbomachine
JP3511075B2 (ja) 低公害燃焼器およびその燃焼制御方法
FR3116592A1 (fr) Vrille pour dispositif d’injection étagé de turbomachine
FR3022986B1 (fr) Procede d'allumage d'une chambre de combustion de turbomachine
FR3105985A1 (fr) Circuit multipoint d’injecteur amélioré
FR3099546A1 (fr) Chambre de combustion comportant des systèmes d'injection secondaires injectant de l'air et du carburant directement dans des zones de recirculation de coin, turbomachine la comprenant, et procédé d'alimentation en carburant de celle-ci
WO2023057722A1 (fr) Dispositif d'injection de dihydrogène et d'air
RU2790501C1 (ru) Камера сгорания газотурбинного двигателя с фронтовым устройством
KR102522143B1 (ko) 연소기용 연료공급 시스템
JPS5847928A (ja) ガスタ−ビン燃焼器
FR3057648A1 (fr) Systeme d'injection pauvre de chambre de combustion de turbomachine
Hayashi et al. Development of Ultra-Low NOx Combustor Technology for Next Generation Supersonic Transport Engines in ESPR Project

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23783932

Country of ref document: EP

Kind code of ref document: A1