EP1952875B1 - CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC) - Google Patents

CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC) Download PDF

Info

Publication number
EP1952875B1
EP1952875B1 EP07100262A EP07100262A EP1952875B1 EP 1952875 B1 EP1952875 B1 EP 1952875B1 EP 07100262 A EP07100262 A EP 07100262A EP 07100262 A EP07100262 A EP 07100262A EP 1952875 B1 EP1952875 B1 EP 1952875B1
Authority
EP
European Patent Office
Prior art keywords
membrane
separator
diffusion channels
frame
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07100262A
Other languages
English (en)
French (fr)
Other versions
EP1952875A1 (de
Inventor
Matthias Bronold
Thorsten Baumann
Marco Gruner
Immanuel Rosenfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to DE502007005183T priority Critical patent/DE502007005183D1/de
Priority to EP07100262A priority patent/EP1952875B1/de
Priority to KR1020070130979A priority patent/KR100970401B1/ko
Priority to JP2008000542A priority patent/JP4628431B2/ja
Priority to CN2008100017628A priority patent/CN101237052B/zh
Priority to US11/971,840 priority patent/US8871396B2/en
Publication of EP1952875A1 publication Critical patent/EP1952875A1/de
Application granted granted Critical
Publication of EP1952875B1 publication Critical patent/EP1952875B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a CO 2 separator and a direct methanol fuel cell (DMFC).
  • DMFC direct methanol fuel cell
  • a fuel cell is a galvanic cell that converts the chemical reaction energy of a continuously supplied fuel and an oxidant into electrical energy.
  • a fuel cell usually consists of two electrodes, which are separated by a membrane or an electrolyte.
  • the anode is flushed with the fuel, for example hydrogen, methane or methanol, and the fuel is oxidized there.
  • the cathode is flushed with the oxidizing agent, for example oxygen, hydrogen peroxide or potassium thiocyanate, which is reduced at the electrode.
  • the materials used to realize the individual components have to be chosen differently depending on the fuel cell type.
  • the direct methanol fuel cell is a low-temperature fuel cell operating at temperatures in the range of approximately 60-120 ° C.
  • this cell type uses a polymer membrane. Methanol (CH 3 OH) is fed without prior reforming together with water directly to the anode and oxidized there.
  • carbon dioxide (CO 2 ) is produced as exhaust gas.
  • the oxygen supplied to the cathode as the oxidizing agent reacts with H + ions and electrodes to form water.
  • the advantage of the DMFC lies in the use of a liquid, very easily storable and extremely cheap energy carrier, which can be disseminated for example in plastic cartridges.
  • DMFCs are particularly suitable for portable use in electronic devices as a replacement and supplement to conventional accumulators. Typical fields of application are the telecommunication and the power supply of notebooks.
  • the CO 2 separator is therefore primarily used for water management and the removal of CO 2 from the equilibrium. It is usually realized as a separate device, which is connected to the actual fuel cell via a common for the liquid / gas mixture supply line. This spatial distance also causes a temperature gradient and from the slowly cooling liquid / gas mixture condenses water. Conventional CO 2 separators separate the phase mixtures from liquid and gas or vapor components, whereby the gaseous or vaporous components are released into the environment. The present invention also starts here.
  • the gaseous components of the liquid / gas mixture continue to cool and, as a result, water condenses out. This leads to a blockage of the diffusion channels / pores, so that the throughput of CO 2 through the membrane is reduced or at worst completely prevented.
  • a sufficient permeability of the membrane over time is also given in liquid / gas phase mixtures with high water vapor content (such as given at temperatures in the range of 60 - 80 ° C).
  • the invention is based on the finding that the diffusion channels in the membrane must expand from the inside of the membrane towards the outside of the membrane. In this way it can be achieved that condensed water is pressed to the outside in the interior of the membrane.
  • a ratio of the diameters of the diffusion channels on the inside and outside is determined by said factor. Among other things, this depends on the operating pressures, temperatures and mixture compositions that prevail in a specific fuel cell system.
  • the diameter of the diffusion channels is detected at the outer or inner side of the membrane, wherein a depth of the membrane can be up to a few microns in the interior of the membrane to determine the value of near-surface region of the membrane depending on the roughness of the membrane.
  • the externally visible pores of the diffusion channels can be measured, for example, by means of optical methods. Since the pore openings are generally spherical, approximately a diameter of the individual pore openings can be determined. By statistical averaging (averaging) becomes an arithmetic mean of the pore diameter formed and used as a mean diameter of the diffusion channels on the inside or outside of the membrane for the determination of the factor.
  • the average diameter of the diffusion channels on the outside by a factor of 3 to 300 is greater than the average diameter of the diffusion channels on the inside of the membrane.
  • all areas of the membrane which are in contact with the liquid / gas mixture are designed to be hydrophobic, ie show a contact angle of an attached water drop of 90 ° or more.
  • the surface energy of the membrane is reduced so far that water interacts with itself more strongly than with the hydrophobic surface of the membrane, which allows only the construction of van der Waals bonds.
  • the hydrophobicity of the membrane is at a contact angle of the water of more than 130 °.
  • the angle of contact is the angle formed by a drop of liquid on the surface of a solid.
  • the size of the contact angle between the liquid and the solid depends on the interaction between the substances at the interface. The smaller this interaction, the larger the contact angle becomes.
  • the method of the lying drop under the aid of the Young's equation can be used.
  • the outside of the membrane is more hydrophobic than its inside. This minimizes the contact area of the droplets condensing on the outside of the membrane with the surface, so that the surface of the membrane blocked by the droplets is minimized.
  • the contact angle at the inner side of the membrane is at least 130 ° and the contact angle at the outer side of the membrane is at least 135 °.
  • the contact angle on the outside by 1 ° to 10 ° greater than the contact angle on the inside of the membrane.
  • the membrane consists of two layers each having a different average diameter of the diffusion channels.
  • the later defining the inside of the membrane layer is such that their diffusion channels have a smaller average diameter than the diffusion channels of the second layer.
  • this first layer lying on the inside of the membrane can have greater hydrophobicity than the second layer defining the outside.
  • Such a two-layered membrane is particularly easy to realize technically, for example by laminating membranes of different porosity and hydrophobicity. Conceivable, of course, membranes of more than two layers, but their production is more expensive.
  • a further preferred embodiment of the CO 2 separator which can also be combined with the aforementioned preferred embodiments, provides that the membrane is clamped in a frame whose surface is likewise hydrophobic.
  • the membrane can also be applied to reticulated or grid-like support structures.
  • the inclusion in a frame can be particularly simple to implement in terms of manufacturing technology and also has the advantage that there are no further support elements over the entire active surface of the membrane, which reduce the permeability. Since the frame is also in contact with the environment on the one hand, it should generally be cooler than the applied liquid / gas mixture, so that condensation of water occurs on the inside of the frame.
  • the frame is made of a fluorine-containing polymeric material, for example, polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the frame consists of a porous hydrophilic material which acts like a sponge.
  • a coating or an intermediate layer which consists of a hydrophobic material can be arranged between the membrane and the frame. Also by this measure wetting of the membrane in the edge regions is to be prevented from the frame.
  • FIG. 1 serves to illustrate the structure of a DMFC.
  • the reaction product on the anode side is a CO 2 and hydrous liquid / gas mixture.
  • air is supplied to the stack 10 with the aid of a pump 12.
  • the introduced air can escape again and is cooled by means of a heat exchanger 50 with associated aerator 55.
  • the cooled air or liquid condensed therefrom leave the heat exchanger 50 through an outlet opening 52 and are fed to a water separator 60.
  • This is connected via corresponding lines with an outlet valve 61 and via a connected to a pump 70 line 62 with a mixer 22 in connection.
  • the mixture located in the mixer 22 is supplied to the fuel cell stack 10 by means of a pump 23 via an inlet opening 15.
  • the mixer 22 is supplied.
  • the fuel cell stack 10 finally has an anode-side outlet opening 16, which opens into a CO 2 separator 20 via a line.
  • the CO 2 separator 20 has a membrane 100 which serves to separate the liquid / gas mixture and has been modified according to the invention.
  • FIG. 2 is an enlarged section through an area of the membrane 100 according to the invention according to a first variant.
  • the left side of the figure represents an inwardly directed surface (ie the side facing the liquid / gas mixture) of the membrane 100 and is referred to below as inner side 200.
  • the right side which is in contact with the environment, is referred to as outer side 300 of the membrane 100.
  • a multiplicity of pores 201 can be identified which communicate via diffusion channels 120 with corresponding pores 301 on the outer side 300 of the membrane 100.
  • the mean diameter of the pores 201 and thus the diffusion channels 120 on the inner side 200 are smaller by about a factor of 3 than the average diameter of the diffusion channels 120 in the region of the pores 301 of the outer side 300.
  • a surface of the membrane 100 on both the inside and outside 200, 300 and inside the diffusion channels 120 is hydrophobic.
  • the contact angle 204 on the inside 200 of the membrane 100 is greater than 130 ° to ensure sufficient retention of the liquid, and the contact angle 304 on the outside 300 of the membrane 100 is greater than 135 °. Due to the very large contact angle 304 on the outer side 300 it is achieved that condensing water droplets 305 on the outer side pull together almost to an ideal spherical shape and thereby the Contact surfaces with the outside 300 is minimized. This minimizes the number of diffusion channels (pores) blocked by the water droplets and maximizes the surface area of the water droplets for re-evaporation.
  • FIG. 3 is a second embodiment of the membrane 100 of the invention can be seen.
  • the membrane 100 is composed of a first layer 102 and a second layer 103, which are joined together.
  • the first layer 102 consists according to the prior art of a stretched PTFE layer with a pore diameter between 0.2 and 2 microns.
  • the second layer 103 may be made of a woven or felt of PTFE, polyethylene or polyester. Both layers are interconnected, for example, by a thermal process.
  • the effect described according to the present invention is ensured if the pore diameter of the second layer 103 is at least a factor of 3 greater than the pore diameter of the first layer.
  • the contact angle at both layers is at least 130 °.
  • the second layer is made so that the contact angle at the outer surface 300 is at least 135 °.
  • FIG. 4 shows a further embodiment of the invention, in which the membrane 100 is clamped by means of a frame 310 and is attached to the CO 2 separator 20.
  • the frame 310 is optionally made of polytetrafluoroethylene (PTFE).
  • the frame (310) is made of a porous hydrophilic material.
  • the effect of this embodiment is in Fig. 5 shown. Since the frame 310 is in contact with the environment or the interior of the fuel cell system, it will assume a lower temperature than the gas mixture of CO 2 and water vapor escaping through the membrane. As a result, in particular in the frame region, a cooling of the gas mixture takes place in conjunction with a condensation of water, ie in this region the pores of the membrane 100 are increasingly blocked by water drops 305.
  • these water droplets 305 are sucked from the outside 300 of the membrane 100 (indicated by the arrow) and can evaporate through the large surface of the frame 310.
  • a hydrophobic interlayer or coating 311, for example made of PTFE, between the frame 310 and the membrane 100 may be arranged.
  • the CO 2 separator 20 can be mounted in such a way that an air flow can be conducted via the membrane 100 or via the frame 310, which facilitates the removal of water and CO 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

  • Die Erfindung betrifft einen CO2-Separator und eine Direktmethanol-Brennstoffzelle (DMFC).
  • Technologischer Hintergrund und Stand der Technik
  • Eine Brennstoffzelle ist eine galvanische Zelle, die die chemische Reaktionsenergie eines kontinuierlich zugeführten Brennstoffes und eines Oxidationsmittels in elektrische Energie umwandelt. Eine Brennstoffzelle besteht in der Regel aus zwei Elektroden, die durch eine Membran oder einen Elektrolyten voneinander getrennt sind. Die Anode wird mit dem Brennstoff, zum Beispiel Wasserstoff, Methan oder Methanol, umspült und der Brennstoff wird dort oxidiert. Die Kathode wird mit dem Oxidationsmittel umspült, zum Beispiel Sauerstoff, Wasserstoffperoxid oder Kaliumthiocyanat, das an der Elektrode reduziert wird. Die zur Realisation der einzelnen Komponenten verwendeten Materialien sind je nach Brennstoffzellentyp unterschiedlich zu wählen.
  • Die Direktmethanol-Brennstoffzelle (DMFC; direct methanol fuell cell) ist eine Niedrigtemperatur-Brennstoffzelle, die schon bei Temperaturen im Bereich von ca. 60 - 120°C arbeitet. Als Elektrolyt verwendet dieser Zellentyp eine Polymermembran. Methanol (CH3OH) wird ohne vorherige Reformierung zusammen mit Wasser direkt der Anode zugeführt und dort oxidiert. An der Anode entsteht als Abgas Kohlendioxid (CO2). Der Kathode als Oxidationsmittel zugeführte Luftsauerstoff reagiert mit H+-Ionen und Elektroden zu Wasser. Der Vorteil der DMFC liegt in der Verwendung eines flüssigen, sehr leicht speicherbaren und überaus billigen Energieträgers, der zum Beispiel in Kunststoffpatronen verbreitet werden kann. Zudem existiert eine weit verzweigte Infrastruktur für Methanol bereits in vielen Bereichen, zum Beispiel durch die Verwendung als Frostschutzzusatz im Scheibenwischerwasser für Kraftfahrzeuge. Dieser Brennstoffzellentyp kann - je nach Auslegung - Leistungen im Bereich von einigen mW bis einigen 100 KW erbringen. DMFCs eignen sich insbesondere für den portablen Einsatz in elektronischen Geräten als Ersatz und Ergänzung zu herkömmlichen Akkumulatoren. Typische Einsatzgebiete liegen in der Telekommunikation und der Energieversorgung von Notebooks.
  • Die Oxidation des Methanols am Katalysator der Anode erfolgt stufenweise, wobei mehrere Reaktionswege mit unterschiedlichen Zwischenprodukten in der Diskussion stehen. Um die Effizienz der Brennstoffzelle hochzuhalten, ist es erforderlich die Reaktionsprodukte rasch aus der Umgebung der Elektrode zu entfernen. Aufgrund der herrschenden Temperaturen und des zu Grunde liegenden Chemismus entsteht ein Flüssig/Gas-Gemisch aus CO2, Wasser, Wasserdampf und nicht umgesetzten Methanol. Aus diesem Flüssig/Gas-Gemisch sollte das Wasser und das Methanol zurück gewonnen werden, um die Autarkie des Systems möglichst lange aufrecht zu erhalten. Ferner ist CO2 aus dem Gleichgewicht zu entfernen. Dies geschieht mit Hilfe eines CO2-Separators.
  • Der CO2-Separator dient demnach vornämlich dem Wassermanagement und der Entfernung von CO2 aus dem Gleichgewicht. Er wird zumeist als separate Einrichtung verwirklicht, die mit der eigentlichen Brennstoffzelle über eine für das Flüssig/Gas-Gemisch gängige Zuleitung verbunden ist. Dieser räumliche Abstand bedingt auch einen Temperaturgradienten und aus dem sich langsam abkühlenden Flüssig/Gas-Gemisch kondensiert Wasser aus. Herkömmliche CO2-Separatoren trennen das Phasengemisches aus flüssigen und gas- beziehungsweise dampfförmigen Komponenten, wobei die gas- beziehungsweise dampfförmigen Komponenten an die Umgebung abgegeben werden. Auch die vorliegende Erfindung setzt hier an.
  • Bekannt ist, den CO2-Separator zur Trennung des Flüssig/Gas-Gemisches mit einer porösen Membran auszustatten. Die poröse Membran ist mit ihrer Innenseite dem Flüssig/Gas-Gemisch zugewandt und ihre Außenseite steht mit der Umgebung in Kontakt. Weiterhin sind derartige Membranen in der Regel mit hydrophoben Materialien beschichtet oder bestehen aus diesen. Von der Innenseite der Membran erstrecken sich Diffusionskanäle zur Außenseite, die so dimensioniert sind, dass an der Innenseite befindliches (flüssiges) Wasser nicht austreten, jedoch CO2 nach Außen diffundieren kann. US 2007/0003809 A1 beschreibt einen solchen Separator.
  • Beim Stand der Technik tritt das Problem auf, dass die Temperaturen des Flüssig/Gas-Gemisches beim Eintritt in den CO2-Separator üblicherweise noch im Bereich von 60 - 80°C liegen und ein entsprechend hoher Wasserdampfanteil in der Gasphase des Flüssig/Gas-Gemisches gegeben ist. Während des Durchdringens der Membran kühlen die gasförmigen Komponenten des Flüssig/Gas-Gemisches jedoch weiter ab und in der Folge kondensiert Wasser aus. Dies führt zu einer Blockade der Diffusionskanäle/-poren, so dass der Durchsatz von CO2 durch die Membran vermindert ist oder schlimmsten Falls völlig verhindert wird.
  • Zusammenfassung der Erfindung
  • Der Erfindung liegt die Aufgabe zu Grunde, die geschilderten Nachteile des Standes der Technik zu überwinden. Dies wird mit Hilfe des erfindungsgemäßen CO2-Separators für eine Direktmethanol-Brennstoffzelle (DMFC) mit einer ein- oder mehrschichtigen Membran gelöst. Der erfindungsgemäße CO2-Separator zeichnet sich dadurch aus, dass
    1. (i) die Membran eine Vielzahl von Diffusionskanäle aufweist, die sich von einer Innenseite der Membran bis auf die gegenüberliegende Außenseite der Membran erstrecken, wobei ein mittlerer Durchmesser der Diffusionskanäle an der Außenseite mindestens um einen Faktor 3 größer ist als ein mittlerer Durchmesser der Diffusionskanäle an der Innenseite der Membran; und
    2. (ii) eine Oberfläche der Innen- und Außenseite der Membran sowie eine innere Oberfläche der Diffusionskanäle der Membran hydrophob ist.
  • Mit Hilfe des erfindungsgemäßen CO2-Separators ist auch bei Flüssig/Gas-Phasengemischen mit hohem Wasserdampfanteil (so etwa gegeben bei Temperaturen im Bereich von 60 - 80°C) noch eine hinreichende Permeabilität der Membran über die Zeit gegeben.
  • Der Erfindung liegt zunächst die Erkenntnis zu Grunde, dass sich die Diffusionskanäle in der Membran ausgehend von der Innenseite der Membran hin zur Außenseite der Membran aufweiten müssen. Hierdurch kann erreicht werden, dass im Inneren der Membran kondensiertes Wasser zur Außenseite gedrückt wird. Ein Verhältnis der Durchmesser der Diffusionskanäle an der Innen- bzw. Außenseite wird durch den genannten Faktor bestimmt. Dieser ist unter anderem abhängig von den Betriebsdrücken, Temperaturen und Gemischzusammensetzungen, die in einem spezifischen Brennstoffzellensystem herrschen.
  • Der Durchmesser der Diffusionskanäle wird an der Außen- bzw. Innenseite der Membran erfasst, wobei sich ein für die Bestimmung des Wertes oberflächennaher Bereich der Membran in Abhängigkeit der Rauhigkeit der Membran bis einige µm in das Innere der Membran erstrecken kann. Die von Außen sichtbaren Poren der Diffusionskanäle können zum Beispiel mit Hilfe optischer Verfahren vermessen werden. Da die Porenöffnungen in der Regel sphärisch sind, kann näherungsweise ein Durchmesser der einzelnen Porenöffnungen ermittelt werden. Durch statistische Mittelung (Mittelwertbildung) wird ein arithmetisches Mittel des Porendurchmessers gebildet und als mittlerer Durchmesser der Diffusionskanäle an der Innenseite bzw. Außenseite der Membran zur Bestimmung des Faktors herangezogen. Vorzugsweise ist der mittlere Durchmesser der Diffusionskanäle an der Außenseite um einen Faktor von 3 bis 300 größer als der mittlere Durchmesser der Diffusionskanäle an der Innenseite der Membran.
  • Weiterhin sind erfindungsgemäß alle mit dem Flüssig/Gas-Gemisch in Berührung stehenden Bereiche der Membran hydrophob ausgelegt, zeigen also einen Kontaktwinkel eines aufgesetzten Wassertropfens von 90° oder mehr. In der Folge ist die Oberflächenenergie der Membran soweit herabgesetzt, dass Wasser mit sich selbst stärkere Wechselwirkung eingeht als mit der hydrophoben Oberfläche der Membran, die nur den Aufbau von Van-der-Waals-Bindungen erlaubt. Vorzugsweise liegt die Hydrophobizität der Membran bei einem Kontaktwinkel des Wassers von mehr als 130°.
  • Als Kontaktwinkel wird der Winkel bezeichnet, den ein Flüssigkeitstropfen auf der Oberfläche eines Feststoffes bildet. Die Größe des Kontaktwinkels zwischen der Flüssigkeit und dem Feststoff hängt von der Wechselwirkung zwischen den Stoffen an der Berührungsfläche ab. Je geringer diese Wechselwirkung ist, desto größer wird der Kontaktwinkel. Zur Kontaktwinkelbestimmung kann insbesondere die Methode des liegenden Tropfens unter zur Hilfenahme der Youngschen Gleichung herangezogen werden.
  • Nach einer bevorzugten Ausführungsform der Erfindung ist die Außenseite der Membran hydrophober als ihre Innenseite. Hierdurch wird die Kontaktfläche der auf der Außenseite der Membran kondensierenden Tropfen mit der Oberfläche minimiert, sodass die durch die Tropfen blockierte Oberfläche der Membran minimiert wird. Besonders bevorzugt beträgt der Kontaktwinkel an der Innenseite der Membran mindestens 130° und der Kontaktwinkel an der Außenseite der Membran mindestens 135°. Vorzugsweise ist dabei der Kontaktwinkel an der Außenseite um 1° bis 10° größer als der Kontaktwinkel an der Innenseite der Membran.
  • Nach einer weiteren bevorzugten Ausführungsform, die auch im Zusammenhang mit der zuvor genannten bevorzugten Ausführungsform umsetzbar ist, besteht die Membran aus zwei Schichten mit jeweils einem unterschiedlichen mittleren Durchmesser der Diffusionskanäle. Sinnfälligerweise ist die später die Innenseite der Membran definierende Schicht derart beschaffen, dass ihre Diffusionskanäle einen geringeren mittleren Durchmesser als die Diffusionskanäle der zweiten Schicht aufweisen. Insbesondere kann diese erste, an der Innenseite der Membran liegende Schicht eine größere Hydrophobizität als die zweite, die Außenseite definierende Schicht aufweisen. Eine derartige zweischichtige Membran lässt sich besonders einfach technisch realisieren, zum Beispiel durch Laminieren von Membranen unterschiedlicher Porosität und Hydrophobizität. Denkbar sind natürlich auch Membranen aus mehr als zwei Schichten, deren Herstellung allerdings aufwendiger ist.
  • Eine weitere bevorzugte Ausführungsform des CO2-Separators, die sich auch mit den zuvor genannten bevorzugten Ausführungsformen kombinieren lässt, sieht vor, dass die Membran in einem Rahmen eingespannt ist, dessen Oberfläche ebenfalls hydrophob ist. Nach weniger bevorzugten Alternativen kann die Membran natürlich auch auf netzartige oder gitterartige Trägerstrukturen aufgezogen werden. Die Aufnahme in einem Rahmen lässt sich jedoch herstellungstechnisch besonders einfach umsetzen und hat zudem den Vorteil, dass keine weiteren Stützelemente über die gesamte aktive Fläche der Membran vorhanden sind, die die Permeabilität mindern. Da der Rahmen auf der einen Seite auch mit der Umgebung in Kontakt steht, dürfte er in der Regel kühler sein als das anliegende Flüssig/Gas-Gemisch, so dass es zur Kondensation von Wasser an den Innenseiten des Rahmens kommt. Mit der Wahl eines hydrophoben Materials für den Rahmen kann eine Benetzung der Randbereiche der Membran mit dem an den Rahmen kondensierenden Wasser minimiert werden, so dass die Permeabilität der Membran auch in diesen Randbereichen hoch bleibt. Vorzugsweise wird der Rahmen aus einem fluorhaltigen polymeren Werkstoff gefertigt, zum Beispiel Polytetrafluorethylen (PTFE).
  • Nach einer weiteren bevorzugten Variante besteht der Rahmen aus einem porösen hydrophilen Material, das ähnlich einem Schwamm wirkt. Hierdurch kann erreicht werden, dass gegebenenfalls kondensiertes Wasser auch durch den Rahmen nach Außen diffundieren kann, so dass die Gefahr der Benetzung der Membranen weiter gemindert ist und auch der Rahmen selbst die Separation des Flüssig/Gas-Gemisches unterstützt. Schließlich kann nach dieser Ausführungsform zwischen der Membran und dem Rahmen eine Beschichtung oder eine Zwischenschicht angeordnet sein, die aus einem hydrophoben Material besteht. Auch durch diese Maßnahme soll ein Benetzen der Membran in den Randbereichen zum Rahmen verhindert werden.
  • Kurzbeschreibung der Zeichnungen
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und den dazugehörigen Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    eine DMFC im schematischen Aufbau;
    Figur 2
    einen schematischen Querschnitt durch eine einschichtige Membran des CO2-Separators der DMFC;
    Figur 3
    einen schematischen Querschnitt durch eine zweischichtige Membran des CO2-Separators der DMFC;
    Figur 4
    eine schematische Schnittdarstellung durch einen CO2-Separator mit einer auf einen Rahmen aufgespannten Membran nach einer ersten Variante; und
    Figur 5
    eine schematische Schnittdarstellung durch einen CO2-Separator mit einer auf einen Rahmen aufgespannten Membran nach einer zweiten Variante.
    Detaillierte Beschreibung der Erfindung
  • Figur 1 dient zur Illustration des Aufbaus einer DMFC. Im Brennstoffzellenstapel 10 findet - der für die Zwecke der Erfindung nicht näher zu erläuternde - elektrochemische Vorgang statt, dessen Reaktionsprodukt anodenseitig ein CO2 und wasserhaltiges Flüssig/Gas-Gemisch ist.
  • Über eine kathodenseitige Einlassöffnung 11 wird mit Hilfe einer Pumpe 12 dem Stapel 10 Luft zugeführt. Aus der kathodenseitigen Ausgangsöffnung 13 des Stapels 10 kann die eingeleitete Luft wieder entweichen und wird mittels eines Wärmeaustauschers 50 mit zugeordnetem Belüfter 55 abgekühlt. Die abgekühlte Luft beziehungsweise aus dieser auskondensierte Flüssigkeit verlassen den Wärmeaustauscher 50 durch eine Ausgangsöffnung 52 und werden einem Wasserabscheider 60 zugeführt. Dieser steht über entsprechende Leitungen mit einem Auslassventil 61 und über eine mit einer Pumpe 70 verbundene Leitung 62 mit einem Mischer 22 in Verbindung.
  • Anodenseitig wird mittels einer Pumpe 23 über eine Einlassöffnung 15 das sich im Mischer 22 befindliche Gemisch dem Brennstoffzellenstapel 10 zugeführt.
  • Weiterhin wird über einen Brennstofftank 30 und ein entsprechendes Ventil 31 Brennstoff, also Methanol, dem Mischer 22 zugeführt.
  • Der Brennstoffzellenstapel 10 hat schließlich eine anodenseitige Auslassöffnung 16, die über eine Leitung in einen CO2-Separator 20 mündet. Der CO2-Separator 20 weist eine Membran 100 auf, die zur Trennung des Flüssig/Gas-Gemisches dient und erfindungsgemäß modifiziert wurde.
  • Der Figur 2 ist ein vergrößerter Ausschnitt durch einen Bereich der erfindungsgemäßen Membran 100 nach einer ersten Variante zu entnehmen. Die linke Seite der Abbildung stellt dabei eine nach Innen gerichtete Oberfläche (also dem Flüssig/Gas-Gemisch zugewandte Seite) der Membran 100 dar und wird im Weiteren als Innenseite 200 bezeichnet. Entsprechend wird die rechte Seite, die mit der Umgebung in Kontakt steht, als Außenseite 300 der Membrane 100 bezeichnet.
  • Auf der Innenseite 200 der Membran lassen sich eine Vielzahl von Poren 201 identifizieren, die über Diffusionskanäle 120 mit entsprechenden Poren 301 auf der Außenseite 300 der Membran 100 in Verbindung stehen. Die mittleren Durchmesser der Poren 201 und damit der Diffusionskanäle 120 an der Innenseite 200 sind etwa um den Faktor 3 kleiner als die mittleren Durchmesser der Diffusionskanäle 120 im Bereich der Poren 301 der Außenseite 300.
  • Eine Oberfläche der Membran 100 sowohl auf der Innen- und Außenseite 200, 300 als auch im Inneren der Diffusionskanäle 120 ist hydrophob.
  • Durch die Kombination der sich von Innen nach Außen aufweitenden Poren mit der hydrophoben Oberfläche der Diffusionskanäle (Poren) wird erreicht, dass es für in der Membran auf Grund eines negativen Temperaturgradienten kondensierende Wassertropfen eine Triebkraft für den Transport nach Außen gibt, da mit zunehmender Porengröße die abstoßende Wechselwirkung der Wassertropfen mit der hydrophoben Oberfläche der Diffusionskanäle (Poren) kleiner wird. Diese nach Außen wirkende Triebkraft unterstützt den nach Außen gerichteten Gasfluss durch die Diffusionskanäle. Dadurch wird verhindert, dass kondensierende Wassertropfen innerhalb der Membran verbleiben, die Diffusionskanäle verstopfen und so zu einer abnehmenden Gasseparationswirkung führen.
  • In einer Ausführungsform ist der Kontaktwinkel 204 an der Innenseite 200 der Membran 100 größer als 130°, um eine ausreichende Rückhaltung der Flüssigkeit zu gewährleisten, und der Kontaktwinkel 304 an der Außenseite 300 der Membran 100 größer als 135°. Durch den sehr großen Kontaktwinkel 304 an der Außenseite 300 wird erreicht, dass sich kondensierende Wassertropfen 305 an der Außenseite nahezu zu einer idealen Kugelform zusammen ziehen und dadurch die Kontaktflächen mit der Außenseite 300 minimiert wird. Dadurch wird die Anzahl der durch die Wassertropfen blockierten Diffusionskanäle (Poren) minimiert und die Oberfläche der Wassertropfen für eine Wiederverdunstung maximiert.
  • Figur 3 ist eine zweite Ausführungsform der erfindungsgemäßen Membran 100 zu entnehmen. Gemäß dieser zweiten Ausführungsform besteht die Membran 100 aus einer ersten Schicht 102 und einer zweiten Schicht 103, die miteinander verbunden sind.
  • Die erste Schicht 102 besteht gemäß dem Stand der Technik aus einer gereckten PTFE Schicht mit einem Porendurchmesser zwischen 0,2 und 2 µm. Die zweite Schicht 103 kann aus einem Gewebe oder einem Filz aus PTFE, Polyethylen oder Polyester bestehen. Beide Schichten werden beispielsweise durch einen thermischen Prozess miteinander verbunden.
  • Der gemäß der vorliegenden Erfindung beschriebene Effekt ist dann gewährleistet, wenn der Porendurchmesser der zweiten Schicht 103 um mindestens den Faktor 3 größer als der Porendurchmesser der ersten Schicht beträgt. Vorzugsweise beträgt dabei der Kontaktwinkel an beiden Schichten mindestens 130°. Bevorzugt ist die zweite Schicht so gefertigt, dass der Kontaktwinkel an der äußeren Oberfläche 300 mindestens 135° beträgt.
  • Figur 4 ist eine weitere Ausführungsform der Erfindung zu entnehmen, bei der die Membran 100 mit Hilfe eines Rahmens 310 aufgespannt wird und am CO2-Separator 20 befestigt wird. Der Rahmen 310 besteht optional aus Polytetrafluorethylen (PTFE).
  • In einer weiteren bevorzugten Ausführungsform ist der Rahmen (310) aus einem porösen hydrophilen Material ausgeführt. Die Wirkung dieser Ausführungsform ist in Fig. 5 dargestellt. Da der Rahmen 310 mit der Umgebung bzw. dem Inneren des Brennstoffzellensystems in Kontakt steht, wird er eine niedrigere Temperatur annehmen, als das durch die Membran entweichende Gasgemisch aus CO2 und Wasserdampf. Dadurch wird insbesondere im Rahmenbereich eine Abkühlung des Gasgemisches verbunden mit einer Kondensation von Wasser erfolgen, d.h. in diesem Bereich werden die Poren der Membran 100 verstärkt durch Wassertropfen 305 blockiert.
  • Durch eine schwammartige Wirkung des hydrophilen porösen Rahmens 310 werden diese Wassertropfen 305 von der Außenseite 300 der Membran 100 abgesaugt (durch den Pfeil angedeutet) und können durch die große Oberfläche des Rahmens 310 verdunsten.
  • Um eine Wiederbenetzung der Membran 100 an der Grenzschicht zum Rahmen 310 zu verhindern, kann eine hydrophobe Zwischenschicht oder Beschichtung 311, beispielsweise bestehend aus PTFE, zwischen dem Rahmen 310 und der Membran 100 angeordnet sein.
  • Der CO2-Separator 20 kann gegebenenfalls derart montiert werden, dass ein Luftstrom über die Membran 100 beziehungsweise über den Rahmen 310 führbar ist, der das Abführen von Wasser und CO2 erleichtert.

Claims (7)

  1. CO2-Separator (20) für eine Direktmethanol-Brennstoffzelle (DMFC) mit einer ein- oder mehrschichtigen Membran (100), wobei
    (i) die Membran (100) eine Vielzahl von Diffusionskanäle (120) aufweist, die sich von einer Innenseite (200) der Membran (100) bis auf die gegenüberliegende Außenseite (300) der Membran (100) erstrecken, wobei ein mittlerer Durchmesser der Diffusionskanäle (120) an der Außenseite (300) mindestens um einen Faktor 3 größer ist als ein mittlerer Durchmesser der Diffusionskanäle (120) an der Innenseite (200) der Membran (100); und
    (ii) die Oberflächen der Innen- und Außenseite (200, 300) der Membran (100) sowie eine innere Oberfläche der Diffusionskanäle (120) der Membran (100) hydrophob sind, so dass ein Kontaktwinkel eines aufgesetzten Wassertropfens 90° oder mehr beträgt.
  2. CO2-Separator nach Anspruch 1, bei dem der Kontaktwinkel an der Innenseite (200) der Membran (100) mindestens 130° und der Kontaktwinkel an der Außenseite (300) der Membran (100) mindestens 135° beträgt.
  3. CO2-Separator nach Anspruch 2, bei dem der Kontaktwinkel (304) an der Außenseite (300) um 1° bis 10° größer ist als der Kontaktwinkel (204) an der Innenseite (200) der Membran (100).
  4. CO2-Separator nach einem der Ansprüche 1 bis 3, bei dem die Membran (100) aus zwei Schichten mit einem unterschiedlichen mittleren Durchmesser der Diffusionskanäle (120) besteht.
  5. CO2-Separator nach einem der Ansprüche 1 bis 4, bei dem die Membran (100) in einen Rahmen (310) eingespannt ist, dessen Oberfläche hydrophob ist.
  6. CO2-Separator nach einem der Ansprüche 1 bis 4, bei dem der Rahmen (310) aus einem porösen hydrophilen Material besteht.
  7. CO2-Separator nach Anspruch 6, bei dem zwischen der Membran (100) und dem Rahmen (310) eine Beschichtung oder eine Zwischenschicht (311) angeordnet ist, die aus einem hydrophoben Material besteht.
EP07100262A 2007-01-09 2007-01-09 CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC) Expired - Fee Related EP1952875B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502007005183T DE502007005183D1 (de) 2007-01-09 2007-01-09 CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC)
EP07100262A EP1952875B1 (de) 2007-01-09 2007-01-09 CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC)
KR1020070130979A KR100970401B1 (ko) 2007-01-09 2007-12-14 직접 메탄올 연료 전지용 co2 세퍼레이터
JP2008000542A JP4628431B2 (ja) 2007-01-09 2008-01-07 直接メタノール燃料電池用co2セパレータ
CN2008100017628A CN101237052B (zh) 2007-01-09 2008-01-08 用于直接甲醇燃料电池系统的co2分离件
US11/971,840 US8871396B2 (en) 2007-01-09 2008-01-09 CO2 separator for direct methanol fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07100262A EP1952875B1 (de) 2007-01-09 2007-01-09 CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC)

Publications (2)

Publication Number Publication Date
EP1952875A1 EP1952875A1 (de) 2008-08-06
EP1952875B1 true EP1952875B1 (de) 2010-09-29

Family

ID=38048025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100262A Expired - Fee Related EP1952875B1 (de) 2007-01-09 2007-01-09 CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC)

Country Status (4)

Country Link
EP (1) EP1952875B1 (de)
KR (1) KR100970401B1 (de)
CN (1) CN101237052B (de)
DE (1) DE502007005183D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491728B (en) * 2007-09-26 2013-01-30 Intelligent Energy Ltd Fuel cell system
CN109821367B (zh) * 2019-02-26 2023-11-28 中国华电科工集团有限公司 一种基于固体氧化物燃料电池的co2捕集系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267486B (en) * 1992-06-02 1996-02-14 British Gas Plc Porous amorphous silica-alumina refractory oxides, their preparation and use as separation membranes
US5871646A (en) * 1992-06-02 1999-02-16 British Gas Plc Porous amorphous silica-alumina refractory oxides, their preparation and use as separation membranes
US5468430A (en) * 1994-05-19 1995-11-21 L'air Liquide S.A. Process of making multicomponent or asymmetric gas separation membranes
US6152986A (en) * 1999-07-07 2000-11-28 Ppg Industries Ohio, Inc. Method of enriching chlorine gas
JP3623409B2 (ja) * 1999-09-30 2005-02-23 株式会社東芝 燃料電池
JP3999423B2 (ja) 1999-10-27 2007-10-31 独立行政法人科学技術振興機構 液体膜による炭酸ガス分離・除湿方法およびその装置
US6793711B1 (en) 1999-12-07 2004-09-21 Eltron Research, Inc. Mixed conducting membrane for carbon dioxide separation and partial oxidation reactions
JP4027218B2 (ja) * 2002-12-13 2007-12-26 キヤノン株式会社 濾過膜の製造方法
US20050028670A1 (en) * 2003-06-09 2005-02-10 Regen Steven L. Ionically crosslinked molecular thin film
CA2573685A1 (en) * 2004-08-03 2006-02-16 The Regents Of The University Of Colorado, A Body Corporate Membranes for highly selective separations
CN101151760B (zh) 2005-03-24 2010-09-15 富士通株式会社 燃料电池
DE102005016397A1 (de) * 2005-04-08 2006-10-12 Forschungszentrum Jülich GmbH Membran für Gasphasenseparation sowie dafür geeignetes Herstellungsverfahren
KR100696526B1 (ko) * 2005-06-30 2007-03-19 삼성에스디아이 주식회사 직접액체연료전지의 기액 분리장치

Also Published As

Publication number Publication date
CN101237052A (zh) 2008-08-06
CN101237052B (zh) 2012-07-18
EP1952875A1 (de) 2008-08-06
KR20080065533A (ko) 2008-07-14
KR100970401B1 (ko) 2010-07-15
DE502007005183D1 (de) 2010-11-11

Similar Documents

Publication Publication Date Title
DE102007003825B4 (de) Superhydrophile, nanoporöse, elektrisch leitende Beschichtungen für PEM-Brennstoffzellen
DE102008003608B4 (de) Bipolarplatte für eine Brennstoffzelle mit einem Wasserentfernungskanal sowie Brennstoffzellenstapel
DE102008016093B4 (de) Brennstoffzellenanordnung mit einer Wassertransportvorrichtung sowie deren Verwendung in einem Fahrzeug
DE10145875B4 (de) Membran-Elektroden-Einheit für eine selbstbefeuchtende Brennstoffzelle
DE10085063B4 (de) Verfahren und Vorrichtung für die Entfernung von Kontaminanten aus dem Kühlmittelvorrat eines Brennstoffzellenkraftwerks
WO2017102538A1 (de) Befeuchter mit integriertem wasserabscheider für ein brennstoffzellensystem, brennstoffzellensystem sowie fahrzeug mit einem solchen
DE102010033525A1 (de) Kontinuierliche poröse Strömungsverteiler für eine Brennstoffzelle
DE102010009004A1 (de) Anodenwasserabscheider für ein Brennststoffzellensystem
DE112017005935T5 (de) Brennstoffzellensystem
DE102008009114A1 (de) Fluorbehandlung von Polyelektrolytmembranen
WO2020169486A1 (de) Verfahren zur herstellung einer kompositschicht, elektrochemische einheit und verwendung der kompositschicht
DE102008059349B4 (de) Brennstoffzellenstapel mit einer Einrichtung zum verbesserten Wassermanagement
DE102011014137A1 (de) Verfahren zur Beschichtung eines Substrats mit ein Metalloxid umfassenden Nanopartikeln
EP1962360B1 (de) Gasabscheider für eine Direktmethanol-Brennstoffzelle (DMFC)
DE10348212A1 (de) Brennstoffzellen-System
DE102013004799A1 (de) Befeuchtungseinrichtung zur Befeuchtung von Prozessgasen sowie Brennstoffzellenanordnung umfassend eine solche
EP1952875B1 (de) CO2-Separator für eine Direktmethanol-Brennstoffzelle (DMFC)
EP2583341A1 (de) Vorrichtung zur befeuchtung von anodengas
DE102020101292A1 (de) Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Kraftfahrzeug
WO2008000426A1 (de) Direktoxidationsbrennstoffzelle für den konvektionsfreien transport des brennstoffs und verfahren zum betreiben der brennstoffzelle
DE10340834B4 (de) Membran-Elektroden-Anordnung für eine Brennstoffzelle
DE102020111347A1 (de) Feuchteübertragungsschicht, Speicherbefeuchter, Brennstoffzellenvorrichtung und Kraftfahrzeug
DE102012011441A1 (de) Membran-Elektroden-Einheit für eine Brennstoffzelle
DE102019211589A1 (de) Befeuchter, Brennstoffzellenvorrichtung mit Befeuchter sowie Kraftfahrzeug
DE112012001206T5 (de) Brennstoffzellen-System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090213

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007005183

Country of ref document: DE

Date of ref document: 20101111

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005183

Country of ref document: DE

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141224

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005183

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160109

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201