EP1947322A2 - Injektor zum Einspritzen von Kraftstoff - Google Patents

Injektor zum Einspritzen von Kraftstoff Download PDF

Info

Publication number
EP1947322A2
EP1947322A2 EP07122721A EP07122721A EP1947322A2 EP 1947322 A2 EP1947322 A2 EP 1947322A2 EP 07122721 A EP07122721 A EP 07122721A EP 07122721 A EP07122721 A EP 07122721A EP 1947322 A2 EP1947322 A2 EP 1947322A2
Authority
EP
European Patent Office
Prior art keywords
piston
valve
actuator
force
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07122721A
Other languages
English (en)
French (fr)
Other versions
EP1947322A3 (de
EP1947322B1 (de
Inventor
Holger Rapp
Wolfgang Stoecklein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1947322A2 publication Critical patent/EP1947322A2/de
Publication of EP1947322A3 publication Critical patent/EP1947322A3/de
Application granted granted Critical
Publication of EP1947322B1 publication Critical patent/EP1947322B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic

Definitions

  • the invention relates to an injector for injecting fuel into a combustion chamber of an internal combustion engine according to the preamble of claim 1.
  • the opening and closing of a fuel injector is controlled by a control valve integrated in the injector.
  • the control valve is usually operated by means of an actuator. Suitable actuators are, for example, piezoactuators.
  • a hydraulic coupler is used for transmitting the force and the stroke of the actuator to the control valve.
  • This is an assembly comprising a housing having two concentric bores, a piston having a first diameter in one of these bores and a valve piston having a second diameter in the second of the concentric bores. The volume bounded by these two pistons is filled with fuel.
  • the actuator moves the first piston. Due to the force exerted by the actuator on this piston pressure is built up in the fuel volume between the two pistons, which in turn causes a force on the second piston. This force results from the force exerted by the actuator according to the ratio of the areas of the two pistons.
  • the deflection of the valve piston also causes a deflection of the piston and thus of the actuator.
  • the deflection of the actuator results from the deflection of the valve piston according to the ratio of the areas of the two pistons.
  • An inventively designed injector for injecting fuel into a combustion chamber of an internal combustion engine comprises a hydraulic coupler, which transmits the stroke and force of an actuator to a control valve.
  • the force acting on the control valve is at least as great as the force delivered by the actuator.
  • the hydraulic coupler comprises a first piston, which is guided in a first guide in a coupler housing and defines a coupler space with an end face.
  • the coupler space is bounded on a second side by a valve piston of the control valve.
  • In a first region of the valve piston is formed in a first diameter and in a second region in a second diameter.
  • the second diameter is smaller than the first diameter.
  • the valve piston in the second region with the smaller diameter is enclosed by a ring element, which is movable relative to the valve piston.
  • the coupler is carried out with a variable transmission ratio.
  • a small stroke initially acts a small gear ratio with a large valve-side force.
  • a medium stroke it automatically switches to a higher gear ratio.
  • the valve-side lifting capacity relative to a coupler thus remains unchanged.
  • the ring element is usually performed with its outer diameter in the guide in the coupler housing.
  • One of a different gear ratio is achieved in that the outer diameter of the ring is different from the diameter of the first region of the valve piston.
  • the outer diameter of the ring element is greater than the diameter of the first region of the valve piston. This ensures that the stroke of the valve piston is greater than the actuator-side stroke.
  • a shoulder is advantageously formed between the first region and the second region, which acts as a stroke limiter for the ring element.
  • This paragraph may be formed, for example, as a flat surface, conical or conical. Furthermore, the paragraph can also have any other geometry known in the art.
  • a spring element acts on the ring element such that the ring element is pressed by the spring force of the spring element against the shoulder.
  • control piston From the ring member, the control piston and the coupler housing a control chamber is enclosed, in which a volume of fuel is enclosed.
  • the outer diameter of the ring member and the outer diameter of the first piston may be the same or different.
  • the advantage with the same diameters is that a guide with a constant diameter is formed in the coupler housing, in which the first piston and the ring element are guided. As a result, the production of the coupler housing is simplified. If the outer diameter of the ring member and the first piston are different, the guide in the coupler housing is also carried out in different diameters. For this purpose, a paragraph is usually provided in the guide. At different diameters of the ring member and the first piston, the gear ratios differ, with which on the one hand the blocking force of the actuator to the valve side and on the other hand, the idle stroke are translated to the valve side.
  • the outer diameter of the first piston is greater than the outer diameter of the annular element.
  • the blocking force of the actuator is reduced to the valve side with a smaller gear ratio and the idle stroke is translated to the valve side with a larger gear ratio.
  • the actuator with which the control valve is actuated is preferably a piezoelectric actuator.
  • the piezoelectric actuator it is also possible to use any other actuator known to the person skilled in the art which has a comparable function.
  • FIG. 1 an inventively designed fuel injector is shown.
  • a fuel injector 1 comprises an injection valve member 3 with which at least one injection opening 5 can be released or closed.
  • fuel is injected into a combustion chamber, not shown here, an internal combustion engine.
  • the injection valve member 3 is received in a lower housing part 7.
  • the injection valve member 3 On its side facing away from the at least one injection opening 5, the injection valve member 3 is surrounded by a spring element 9 and a ring element 11.
  • the ring element 11 has a biting edge with which it is placed against a throttle plate 13.
  • the spring element 9, which is preferably designed as a coil spring compression spring acts with one side against a shoulder 15 on the injection valve member 3 and the other side against an end face 17 on the ring member 11. In this way, the ring member 11 by means of the spring element. 9 pressed against the throttle plate 13.
  • the ring element 11, the throttle plate 13 and an upper end face 19 of the injection valve member 3 enclose a control chamber 21 which is filled with fuel under high pressure.
  • a control valve 23 connects. With the control valve 23 is an outlet throttle 25, which connects the control chamber 21 with a fuel return 27, closed or released. To close the connection, a closing element 29 is placed in its seat 31. For this purpose acts on the closing element 29, a valve piston 33. Die Actuation of the valve piston 33 is effected by means of an actuator 35, which is designed in the embodiment shown here as a piezoelectric actuator. Actuator 35 first acts on a booster piston 37 of a hydraulic coupler 39. Via the hydraulic coupler 39, the stroke and the force of the actuator 35 are translated to the valve piston 33. The stroke of the valve piston 33 is increased relative to the stroke of the booster piston 37th
  • the fuel injector 1 is connected, for example, to a high-pressure accumulator of a high-pressure accumulator injection system.
  • the high pressure fuel provided by the high pressure accumulator flows via the high pressure port 41 and a high pressure passage 43 into a nozzle space 45 enclosing the injection valve member 3.
  • the actuator 35 is connected to a voltage source, which is not shown here.
  • a second spring element 47 acts on the closing element 29 and places the closing element 29 in its seat 31.
  • the fuel under system pressure acts via the high-pressure passage 43, an inlet throttle 49 branching from the high-pressure passage 43 into the control chamber 21, the control chamber 21 and the outlet throttle 25 onto the closing element 29.
  • the system pressure prevailing in the control chamber 21 exerts a pressure force on the injection valve member 3 whereby it is placed in its seat 51 and thus closes the at least one injection opening 5.
  • the actuator 35 is energized. As a result, the actuator 35 expands.
  • the actuator force acts on the booster piston 37.
  • the booster piston 37 is moved in the direction of the valve piston 33.
  • a coupler space 53 is formed, which is filled with fuel.
  • the volume of the coupler space 53 decreases and the pressure increases.
  • the thus increased pressure force acts on the valve piston 33, which is moved in the direction of the closing element 29.
  • the valve piston 33 presses the closing element 29 out of its seat 31.
  • the connection from the control chamber 21 via the outlet throttle 25 into the fuel return 27 is released.
  • the pressure in the control room 21 drops.
  • the injection valve member 3 rises from its seat 51 and releases the at least one injection opening 5.
  • the required Force required to lift the injection valve member 3 out of its seat 51 is provided by the pressurizing force of the fuel in the nozzle space 45.
  • the fuel contained in the nozzle chamber 45 which has system pressure acts on a pressure surface 55 on the injection valve member 3.
  • the pressure surface 55 is oriented so that the force acting on the pressure surface 55 force of the compressive force acting on the upper end face 19 of the injection valve member 3 is opposite ,
  • the energization of the actuator 35 is terminated.
  • the actuator 35 contracts again.
  • the booster piston 37 is moved in the direction of the actuator 35.
  • the volume in the coupler space 53 increases, whereby the pressure in the coupler space 53 decreases.
  • the valve piston 33 also moves in the direction of the actuator 35 and the closing element 29 is returned to its seat 31.
  • the connection from the control chamber 21 via the outlet throttle 25 in the fuel return 27 is closed.
  • fuel that is under system pressure again flows into the control chamber 21, as a result of which system pressure builds up in the control chamber 21. Due to the increasing pressure force on the upper end face 19 of the injection valve member 3, this is again placed in its seat 51 and the at least one injection port 5 is closed.
  • the injection process is finished.
  • FIG. 2 shows an inventively designed hydraulic coupler in an enlarged view.
  • the hydraulic coupler is designed with a variable gear ratio that acts at a small stroke of the actuator 35, first, a small gear ratio and the valve-side force assumes large values. At a medium lift, a higher gear ratio is then automatically switched so that the valve-side lift capacity remains unchanged from a prior art hydraulic coupler.
  • the valve piston 33 is enclosed by a ring element 61.
  • the valve piston 33 comprises a first region 63, which faces the control valve 23 and has a diameter d 1 .
  • the valve piston 33 is designed in a second diameter d 2 .
  • the second diameter d 2 is smaller than the first diameter d 1 .
  • a shoulder 67 is formed at the transition from the first diameter d 1 to the second diameter d 2 .
  • the shoulder 67 serves as a stroke limiter for the ring element 61.
  • the ring element 61 is guided with its inner surface 69 on the second region 65 of the valve piston 33. With its outer surface 71, the ring member 61 is guided in a coupler housing 73. In the coupler housing 73, the booster piston 37 is also guided.
  • a spring element 75 acts, which is supported with one side against the ring member 61 and with the other side against the booster piston 37.
  • the spring element 75 is preferably designed as a compression spring coil spring. But it is also any other, known in the art compression spring used.
  • the ring element 61, the valve piston 33 and the coupler housing 73 enclose a control chamber 77.
  • the control chamber 77 is filled with fuel.
  • the booster piston 37 is moved in the direction of the coupler space 53.
  • the volume in the coupler space 53 decreases and the pressure thereby increases.
  • a compressive force on the valve piston 33 acts on the annular element 61.
  • the annular element 61 and the valve piston 33 are moved in the direction of the control valve 23. Due to the same outer diameter of the booster piston 37 and the ring member 61 in the in FIG. 2
  • the transmission ratio is thus initially at 1: 1.
  • the movement of the ring element 61 in the direction of the control valve 23 reduces the volume in the control chamber 77.
  • a pressure builds up in the control chamber 77.
  • the pressure in the coupler space 53 decreases due to the actuator force due to the longitudinal extent of the actuator 35.
  • x 0 is the stroke of the actuator 35.
  • ü is the ratio of the booster piston 37 to valve piston 33rd
  • Advantage of the present invention designed hydraulic coupler 39 is that initially the full force of the actuator 35 is transmitted, but at the same time the increased idle stroke of a coupler with a transmission ratio> 1 can be used without for this purpose increases the actuator voltage or a larger actuator must be used ,
  • the booster piston 37 is moved out of the coupler space 53. Also, the valve piston 33 and the ring member 61 move back to their original position.
  • the stroke of the valve piston is plotted on the x-axis, and the force exerted by the valve piston 33 on the closing element 29 is plotted on the y-axis.
  • the force of the valve piston 33 decreases to the closing element 29 corresponding to the line 81.
  • the full force of the actuator 35 acts on the valve piston 33.
  • F 0 denotes the blocking force of the actuator, that is to say the force which the actuator 35 would exert on its surroundings in the event of double-sided firm tension.
  • the force decreases with increasing deflection x due to the non-zero actuator stiffness.
  • the force zero is reached when the deflection of the valve piston 33 reaches the multiplied by the gear ratio idle stroke of the actuator. With a transmission ratio of 1: 1, the deflection of the valve piston 33 is equal to the idling stroke of the actuator.
  • Reference numeral 83 designates the force / stroke curve resulting in a gear ratio of 1: 1.4. How out FIG. 3 it can be seen acts in such a ratio with one-piece booster piston 37 and one-piece valve piston 33 is not the full blocking force of the actuator on the valve piston 33. The maximum force that can act on the valve piston 33, compared to the force at a gear ratio of 1 : 1 can act on the valve piston 33, reduced.
  • the ring element 61 which on the second portion 65 of Valve piston 33 is guided, depending on the volume of the control chamber 77, the designated by the reference numerals 85, 87 and 89 force / stroke curves.
  • the volume of the control chamber 77 is the smallest in the force / stroke curve 89 and the largest in the force / stroke curve 85.
  • the force initially decreases with increasing stroke on the basis of the blocking force of the actuator F 0 .
  • the valve piston 33 continues to move without the ring member 61 in the direction of the control valve 23.
  • the force / stroke curve takes a flatter course and ends at a maximum stroke corresponding to the stroke, with a corresponding Gear ratio, here at a transmission ratio of 1: 1.4, is achieved.
  • the switching point 91 is reached in each case when the force which the valve piston 33 exerts on the closing element 29 is the gear ratio below the force / stroke curve of a single-stage hydraulic coupler with the ratio 1. This is shown with the dashed auxiliary line 93.
  • the outer diameter of the ring member 61 and the booster piston 37 it is also possible to make the outer diameter of the ring member 61 and the booster piston 37 different.
  • a shoulder is formed in the coupler housing 73, so that both the booster piston 37 and the ring element 61 can be guided with its outer diameter in the coupler housing 73.
  • the ring element then has an outer diameter d ' 0 , while the diameter of the booster piston 37 is still d 0 .
  • the spring element 75 which holds down the ring member 61 in the resting state on the shoulder 67 of the valve piston, also ensures that the small amount of fuel that penetrates via guide gaps of the ring member 61 with active coupler in the control chamber 77 in the operating pauses again pressed out of the control chamber 77 becomes.
  • the spring element 75 can continue to take over the task of the known from the prior art valve piston spring and ensure the refilling of the coupler chamber 53. The known from the prior art valve piston spring can then be omitted.
  • the shoulder 67 is designed as a flat surface
  • the piston 33 and the ring member 61 touch on arbitrarily shaped surfaces.
  • the paragraph 67 may be designed cone-shaped and the corresponding surface on the ring member 61 level, conical or as a double cone.
  • the contact line or the contact surface between the ring element 61 and the second region 65 of the valve piston 33 is continuous or interrupted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine, wobei der Injektor einen hydraulischen Koppler (39) umfasst, der Hub und Kraft eines Aktors (35) auf ein Steuerventil (23) überträgt, wobei die auf das Steuerventil (23) wirkende Kraft mindestens genauso groß ist wie die vom Aktor (35) abgegebene Kraft. Der hydraulische Koppler (39) umfasst einen Übersetzerkolben (37), der in einer ersten Führung in einem Kopplergehäuse (73) geführt ist und mit einer Stirnfläche einen Kopplerraum (53) begrenzt. Der Kopplerraum (53) ist auf einer zweiten Seite von einem Ventilkolben (33), der auf das Steuerventil (23) wirkt, begrenzt. Der Ventilkolben (33) ist in einem ersten Bereich (63) mit einem ersten Durchmesser (d 1 ) und in einem zweiten Bereich (65) in einem zweiten Durchmesser (d 2 ) ausgebildet, wobei der zweite Durchmesser (d 2 ) kleiner ist als der erste Durchmesser (d 1 ) und der Ventilkolben (33) im zweiten Bereich (65) von einem Ringelement (61) umschlossen ist, welches relativ zum Ventilkolben (33) bewegbar ist.

Description

    Stand der Technik
  • Die Erfindung betrifft einen Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine gemäß dem Oberbegriff des Anspruchs 1.
  • Das Öffnen und Schließen eines Kraftstoffinjektors wird durch ein in den Injektor integriertes Steuerventil gesteuert. Das Steuerventil wird üblicherweise mit Hilfe eines Aktors betätigt. Als Aktor eignen sich zum Beispiel Piezoaktoren. Zur Übertragung der Kraft und des Hubes des Aktors auf das Steuerventil wird zum Beispiel ein hydraulischer Koppler eingesetzt. Hierbei handelt es sich um eine Baugruppe, die ein Gehäuse umfasst, welches zwei konzentrische Bohrungen aufweist, wobei ein Kolben mit einem ersten Durchmesser in einer dieser Bohrungen geführt ist und ein Ventilkolben mit einem zweiten Durchmesser in der zweiten der konzentrischen Bohrungen. Das Volumen, das von diesen beiden Kolben begrenzt wird, ist mit Kraftstoff gefüllt. Durch den Aktor wird der erste Kolben bewegt. Aufgrund der durch den Aktor auf diesen Kolben ausgeübten Kraft wird im Kraftstoffvolumen zwischen den beiden Kolben ein Druck aufgebaut, der wiederum eine Kraft auf den zweiten Kolben bewirkt. Diese Kraft ergibt sich aus der vom Aktor ausgeübten Kraft entsprechend dem Verhältnis der Flächen der beiden Kolben.
  • Da das zwischen den Kolben eingeschlossene Kraftstoffvolumen im Wesentlichen konstant ist, bewirkt die Auslenkung des Ventilkolbens auch eine Auslenkung des Kolbens und damit des Aktors. Die Auslenkung des Aktors ergibt sich aus der Auslenkung des Ventilkolbens entsprechend dem Verhältnis der Flächen der beiden Kolben.
  • Da zukünftig Injektoren bei höheren Drücken als bisher betrieben werden sollen, wird auch die Kraft, die zum Öffnen des Steuerventils benötigt wird, zunehmen. Zudem ist es möglich, dass aus Gründen der Verschleißfestigkeit die Notwendigkeit besteht, bei diesen höheren Drücken auch den Sitzdurchmesser des Steuerventils zu erhöhen. Hierdurch wird der ventilseitige Kraftbedarf weiter erhöht. Bei Piezoaktoren kann dem entsprochen werden, indem entweder die Spannung, mit der der Aktor betrieben wird, erhöht wird oder es wird ein größerer Aktor mit erhöhter Blockierkraft oder erhöhtem Leerlaufhub verwendet. Dies hat jedoch den Nachteil, dass mit zunehmender Spannung die Belastung des Aktors wächst und somit seine Lebensdauer sinkt. Zudem würde ein größerer Aktor auch eine deutliche Kostensteigerung bedeuten.
  • Alternativ wäre es auch möglich, zur Steigerung der ventilseitigen Blockierkraft das Übersetzungsverhältnis zwischen den beiden Kolben zu verkleinern. Dies würde jedoch auch dazu führen, dass das ventilseitige Hubvermögen im gleichen Maße sinkt, wie das Kraftangebot steigt. Da jedoch im Allgemeinen einer Reduzierung des Schaltventilhubes enge Grenzen gesetzt sind, ist dies auch kein gangbarer Weg.
  • Offenbarung der Erfindung Vorteile der Erfindung
  • Ein erfindungsgemäß ausgebildeter Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine umfasst einen hydraulischen Koppler, der Hub und Kraft eines Aktors auf ein Steuerventil überträgt. Die auf das Steuerventil wirkende Kraft ist mindestens genauso groß wie die vom Aktor abgegebene Kraft. Der hydraulische Koppler umfasst einen ersten Kolben, der in einer ersten Führung in einem Kopplergehäuse geführt ist und mit einer Stirnfläche einen Kopplerraum begrenzt. Der Kopplerraum ist auf einer zweiten Seite von einem Ventilkolben des Steuerventils begrenzt. In einem ersten Bereich ist der Ventilkolben in einem ersten Durchmesser ausgebildet und in einem zweiten Bereich in einem zweiten Durchmesser. Der zweite Durchmesser ist dabei kleiner als der erste Durchmesser. Erfindungsgemäß ist der Ventilkolben im zweiten Bereich mit dem kleineren Durchmesser von einem Ringelement umschlossen, welches relativ zum Ventilkolben bewegbar ist.
  • Durch das Ringelement, welches den zweiten Bereich des Ventilkolbens umschließt und relativ zum Ventilkolben bewegbar ist, wird der Koppler mit einem variablen Übersetzungsverhältnis ausgeführt. Bei einem kleinen Hub wirkt zunächst ein kleines Übersetzungsverhältnis mit einer großen ventilseitigen Kraft. Bei einem mittleren Hub wird automatisch auf ein höheres Übersetzungsverhältnis umgeschaltet. Das ventilseitige Hubvermögen gegenüber einem Koppler, wie er aus dem Stand der Technik bekannt ist, bleibt somit unverändert.
  • Um das variable Übersetzungsverhältnis zu erzielen, ist das Ringelement üblicherweise mit seinem Außendurchmesser in der Führung im Kopplergehäuse geführt. Ein von eins unterschiedliches Übersetzungsverhältnis wird dadurch erzielt, dass sich der Außendurchmesser des Ringes vom Durchmesser des ersten Bereiches des Ventilkolbens unterscheidet. Vorzugsweise ist der Außendurchmesser des Ringelementes größer als der Durchmesser des ersten Bereiches des Ventilkolbens. Hierdurch wird erreicht, dass der Hub des Ventilkolbens größer ist als der aktorseitige Hub.
  • Am Ventilkolben ist vorteilhafterweise zwischen dem ersten Bereich und dem zweiten Bereich ein Absatz ausgebildet, welcher als Hubbegrenzung für das Ringelement wirkt. Dieser Absatz kann zum Beispiel als ebene Fläche, kegelförmig oder konisch ausgebildet sein. Weiterhin kann der Absatz auch jede weitere, dem Fachmann bekannte Geometrie aufweisen. Vorzugsweise wirkt auf das Ringelement ein Federelement derart, dass das Ringelement durch die Federkraft des Federelementes gegen den Absatz gedrückt wird.
  • Von dem Ringelement, dem Steuerkolben und dem Kopplergehäuse wird ein Steuerraum umschlossen, in dem ein Kraftstoffvolumen eingeschlossen ist.
  • Der Außendurchmesser des Ringelementes und der Außendurchmesser des ersten Kolbens können gleich sein oder sich unterscheiden. Vorteil bei gleichen Durchmessern ist es, das im Kopplergehäuse eine Führung mit einem konstanten Durchmesser ausgebildet ist, in welcher der erste Kolben und das Ringelement geführt sind. Hierdurch wird die Fertigung des Kopplergehäuses vereinfacht. Wenn der Außendurchmesser des Ringelementes und des ersten Kolbens unterschiedlich sind, ist die Führung im Kopplergehäuse ebenfalls in unterschiedlichen Durchmessern auszuführen. Hierzu wird üblicherweise ein Absatz in der Führung vorgesehen. Bei unterschiedlichen Durchmessern des Ringelementes und des ersten Kolbens unterscheiden sich die Übersetzungsverhältnisse, mit denen zum einen die Blockierkraft des Aktors auf die Ventilseite und zum anderen der Leerlaufhub auf die Ventilseite übersetzt werden. Bevorzugt ist bei unterschiedlichen Außendurchmessern des Ringelementes und des ersten Kolbens der Außendurchmesser des ersten Kolbens größer als der Außendurchmesser des Ringelementes. In diesem Fall wird die Blockierkraft des Aktors mit einem kleineren Übersetzungsverhältnis auf die Ventilseite untersetzt und der Leerlaufhub mit einem größeren Übersetzungsverhältnis auf die Ventilseite übersetzt.
  • Der Aktor, mit welchem das Steuerventil betätigt wird ist vorzugsweise ein Piezoaktor. Alternativ zum Piezoaktor lässt sich jedoch auch jeder weitere dem Fachmann bekannte Aktor einsetzen, der eine vergleichbare Funktion aufweist.
  • Kurze Beschreibung der Zeichnungen
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen
  • Figur 1
    einen erfindungsgemäß ausgebildeten Kraftstoffinjektor,
    Figur 2
    einen erfindungsgemäß ausgebildeten hydraulischen Koppler und
    Figur 3
    Kraft/Hub-Kurven bei unterschiedlichen Volumina des Steuerraumes.
    Ausführungsformen der Erfindung
  • In Figur 1 ist ein erfindungsgemäß ausgebildeter Kraftstoffinjektor dargestellt.
  • Ein Kraftstoffinjektor 1 umfasst ein Einspritzventilglied 3, mit welchem mindestens eine Einspritzöffnung 5 freigegeben oder verschlossen werden kann. Über die Einspritzöffnung 5 wird Kraftstoff in einen hier nicht dargestellten Brennraum einer Verbrennungskraftmaschine eingespritzt. Das Einspritzventilglied 3 ist in einem unteren Gehäuseteil 7 aufgenommen. An seiner der mindestens einen Einspritzöffnung 5 abgewandten Seite ist das Einspritzventilglied 3 von einem Federelement 9 und einem Ringelement 11 umschlossen. Das Ringelement 11 weist eine Beißkante auf, mit der dieses gegen eine Drosselplatte 13 gestellt ist. Hierzu wirkt das Federelement 9, welches vorzugsweise eine als Spiralfeder ausgebildete Druckfeder ist, mit einer Seite gegen einen Absatz 15 am Einspritzventilglied 3 und mit der anderen Seite gegen eine Stirnfläche 17 am Ringelement 11. Auf diese Weise wird das Ringelement 11 mit Hilfe des Federelementes 9 gegen die Drosselplatte 13 gedrückt. Das Ringelement 11, die Drosselplatte 13 und eine obere Stirnfläche 19 des Einspritzventilgliedes 3 umschließen einen Steuerraum 21, der mit unter hohem Druck stehenden Kraftstoff befüllt ist.
  • An die Drosselplatte 13 schließt sich ein Steuerventil 23 an. Mit dem Steuerventil 23 ist eine Ablaufdrossel 25, die den Steuerraum 21 mit einem Kraftstoffrücklauf 27 verbindet, verschließbar oder freigebbar. Zum Verschließen der Verbindung wird ein Schließelement 29 in seinen Sitz 31 gestellt. Hierzu wirkt auf das Schließelement 29 ein Ventilkolben 33. Die Betätigung des Ventilkolbens 33 erfolgt mit Hilfe eines Aktors 35, der in der hier dargestellten Ausführungsform als Piezoaktor ausgeführt ist. Der Aktor 35 wirkt zunächst auf einen Übersetzerkolben 37 eines hydraulischen Kopplers 39. Über den hydraulischen Koppler 39 werden der Hub und die Kraft des Aktors 35 auf den Ventilkolben 33 übersetzt. Der Hub des Ventilkolbens 33 wird so vergrößert gegenüber dem Hub des Übersetzerkolbens 37.
  • Über einen Hochdruckanschluss 41 ist der Kraftstoffinjektor 1 zum Beispiel mit einem Hochdruckspeicher eines Hochdruckspeichereinspritzsystems verbunden. Der vom Hochdruckspeicher bereitgestellte unter hohem Druck stehende Kraftstoff strömt über den Hochdruckanschluss 41 und einen Hochdruckkanal 43 in einen Düsenraum 45, der das Einspritzventilglied 3 umschließt.
  • Um den Kraftstoffinjektor 1 zu betätigen und Kraftstoff in den Brennraum der Verbrennungskraftmaschine einspritzen zu können, ist der Aktor 35 mit einer Spannungsquelle, die hier nicht dargestellt ist, verbunden.
  • Solange keine Spannung am Aktor 35 anliegt ist der Aktor in seiner Ausgangsposition und das Steuerventil 23 ist geschlossen. Zusätzlich zu der Druckkraft des unter Systemdruck stehenden Kraftstoffes wirkt auf das Schließelement 29 ein zweites Federelement 47, welches das Schließelement 29 in seinen Sitz 31 stellt. Der unter Systemdruck stehende Kraftstoff wirkt über den Hochdruckkanal 43, eine aus dem Hochdruckkanal 43 abzweigende Zulaufdrossel 49 in den Steuerraum 21, den Steuerraum 21 und die Ablaufdrossel 25 auf das Schließelement 29. Durch den im Steuerraum 21 herrschenden Systemdruck wirkt eine Druckkraft auf das Einspritzventilglied 3, wodurch dieses in seinen Sitz 51 gestellt wird und so die mindestens eine Einspritzöffnung 5 verschließt.
  • Um den Einspritzvorgang zu starten wird der Aktor 35 bestromt. Hierdurch dehnt sich der Aktor 35 aus. Die Aktorkraft wirkt auf den Übersetzerkolben 37. Der Übersetzerkolben 37 wird in Richtung des Ventilkolbens 33 bewegt. Zwischen den Übersetzerkolben 37 und dem Ventilkolben 33 ist ein Kopplerraum 53 ausgebildet, der mit Kraftstoff befüllt ist. Durch Bewegung des Übersetzerkolbens 37 verringert sich das Volumen des Kopplerraums 53 und der Druck nimmt zu. Die hierdurch vergrößerte Druckkraft wirkt auf den Ventilkolben 33, welcher in Richtung des Schließelementes 29 bewegt wird. Hierdurch drückt der Ventilkolben 33 das Schließelement 29 aus seinem Sitz 31. Die Verbindung aus dem Steuerraum 21 über die Ablaufdrossel 25 in den Kraftstoffrücklauf 27 ist freigegeben. Der Druck im Steuerraum 21 sinkt. Aufgrund des abnehmenden Druckes im Steuerraum 21 und die damit abnehmende Kraft, die auf das Einspritzventilglied 3 wirkt, hebt sich das Einspritzventilglied 3 aus seinem Sitz 51 und gibt die mindestens eine Einspritzöffnung 5 frei. Die erforderliche Kraft, die benötigt wird, um das Einspritzventilglied 3 aus seinem Sitz 51 zu heben wird durch die Druckkraft des Kraftstoffes im Düsenraum 45 bereitgestellt. Der im Düsenraum 45 enthaltene Kraftstoff, der Systemdruck aufweist, wirkt auf eine Druckfläche 55 am Einspritzventilglied 3. Die Druckfläche 55 ist so ausgerichtet, dass die auf die Druckfläche 55 wirkende Kraft der Druckkraft, die auf die obere Stirnfläche 19 des Einspritzventilgliedes 3 wirkt entgegengerichtet ist.
  • Um den Einspritzvorgang wieder zu beenden wird die Bestromung des Aktors 35 beendet. Der Aktor 35 zieht sich wieder zusammen. Durch die Bewegung des Aktors 35 wird der Übersetzerkolben 37 in Richtung des Aktors 35 bewegt. Das Volumen im Kopplerraum 53 nimmt zu, wodurch der Druck im Kopplerraum 53 sinkt. Der Ventilkolben 33 bewegt sich ebenfalls in Richtung des Aktors 35 und das Schließelement 29 wird wieder in seinen Sitz 31 gestellt. Die Verbindung aus dem Steuerraum 21 über die Ablaufdrossel 25 in den Kraftstoffrücklauf 27 ist verschlossen. Über die Zulaufdrossel 49 strömt wieder unter Systemdruck stehender Kraftstoff in den Steuerraum 21, wodurch sich im Steuerraum 21 Systemdruck aufbaut. Durch die zunehmende Druckkraft auf die obere Stirnfläche 19 des Einspritzventilgliedes 3 wird dieses wieder in seinen Sitz 51 gestellt und die mindestens eine Einspritzöffnung 5 verschlossen. Der Einspritzvorgang ist beendet.
  • Figur 2 zeigt einen erfindungsgemäß ausgebildeten hydraulischen Koppler in vergrößerter Darstellung.
  • Der hydraulische Koppler ist so mit einem variablen Übersetzungsverhältnis ausgeführt, dass bei einem kleinen Hub des Aktors 35 zunächst ein kleines Übersetzungsverhältnis wirkt und die ventilseitige Kraft große Werte annimmt. Bei einem mittleren Hub wird dann automatisch auf ein höheres Übersetzungsverhältnis umgeschaltet, so dass das ventilseitige Hubvermögen gegenüber einem hydraulischen Koppler gemäß dem Stand der Technik unverändert bleibt.
  • Hierzu ist der Ventilkolben 33 von einem Ringelement 61 umschlossen. Der Ventilkolben 33 umfasst einen ersten Bereich 63, der dem Steuerventil 23 zugewandt ist und einen Durchmesser d1 aufweist. In einem zweiten Bereich 65 ist der Ventilkolben 33 in einem zweiten Durchmesser d2 ausgeführt. Der zweite Durchmesser d2 ist kleiner als der erste Durchmesser d1. Am Übergang vom ersten Durchmesser d1 zum zweiten Durchmesser d2 ist ein Absatz 67 ausgebildet. Der Absatz 67 dient als Hubbegrenzung für das Ringelement 61. Das Ringelement 61 ist mit seiner Innenfläche 69 auf den zweiten Bereich 65 des Ventilkolbens 33 geführt. Mit seiner Außenfläche 71 ist das Ringelement 61 in einem Kopplergehäuse 73 geführt. Im Kopplergehäuse 73 ist ebenfalls der Übersetzerkolben 37 geführt.
  • Auf das Ringelement 61 wirkt ein Federelement 75, welches sich mit einer Seite gegen das Ringelement 61 und mit der anderen Seite gegen den Übersetzerkolben 37 abstützt. Das Federelement 75 ist vorzugsweise eine als Druckfeder ausgebildete Spiralfeder. Es ist aber auch jede andere, dem Fachmann bekannte Druckfeder einsetzbar. Auf der dem Übersetzerkolben 37 abgewandten Seite umschließen das Ringelement 61, der Ventilkolben 33 und das Kopplergehäuse 73 einen Steuerraum 77. Der Steuerraum 77 ist mit Kraftstoff befüllt.
  • Bei geschlossenem Steuerventil 23 wird das Ringelement 61 mit Hilfe des Federelementes 75 gegen den Absatz 67 gestellt. Hierbei übt das Federelement 75 eine definierte Vorspannkraft auf das Ringelement 61 aus.
  • Wenn nun der Einspritzvorgang gestartet wird und die Aktorkraft auf den Übersetzerkolben 37 wirkt, wird der Übersetzerkolben 37 in Richtung des Kopplerraumes 53 bewegt. Das Volumen im Kopplerraum 53 nimmt ab und der Druck nimmt hierdurch zu. Aufgrund des zunehmenden Druckes wirkt eine Druckkraft auf den Ventilkolben 33 auf das Ringelement 61. Das Ringelement 61 und der Ventilkolben 33 werden in Richtung des Steuerventiles 23 bewegt. Aufgrund des gleichen Außendurchmesser des Übersetzerkolbens 37 und des Ringelementes 61 bei der in Figur 2 dargestellten Ausführungsform liegt das Übersetzungsverhältnis somit zunächst bei 1 : 1. Durch die Bewegung des Ringelementes 61 in Richtung des Steuerventils 23 wird jedoch das Volumen im Steuerraum 77 verringert. Hierdurch baut sich ein Druck im Steuerraum 77 auf. Diese Druckkraft wirkt auf das Ringelement 61. Gleichzeitig nimmt aufgrund der durch die Längenausdehnung des Aktors 35 zurückgehenden Aktorkraft der Druck im Kopplerraum 53 ab.
  • Durch die Druckkraft, die im Steuerraum 77 auf das Ringelement 61 wirkt, wird jedoch die vom Ventilkolben 33 ausgeübte Kraft gegenüber der Kraft eines Kopplers, wie er aus dem Stand der Technik bekannt ist, mit einem Übersetzungsverhältnis von 1 : 1 reduziert. Die Steigung der ventilkolbenseitigen Kraft/Hub-Kurve ergibt sich nun nicht allein aus der Aktorsteifigkeit sondern als Summe aus der Aktorsteifigkeit und der Steifigkeit des Steuervolumens im Steuerraum 77. Der Betrag der Steigung ist somit in jedem Falle größer als dies bei einem einteiligen Koppler mit der Übersetzung 1 : 1, wie er aus dem Stand der Technik bekannt ist, der Fall wäre. Sobald der Druck im Steuerraum 77 den Druck des Kopplerraumes 53 erreicht hat, hebt das Ringelement 61 vom Absatz 67 ab. Der Ventilkolben 33 bewegt sich jedoch weiter in Richtung des Steuerventils 23. Aufgrund dieser Bewegung nimmt nun sowohl im Kopplerraum 53 als auch im Steuerraum 77 der Druck ab. Der Kraftstoff im Steuerraum 77 dehnt sich aufgrund seiner Elastizität wieder aus und das Ringelement 61 bewegt sich in Richtung des Übersetzerkolbens 37. Die Kraft, die vom Ventilkolben 33 an das Schließelement 29 des Steuerventils 23 übertragen wird, geht zurück, bis sie bei einem Hub x = ü · x0 den Wert Null erreicht. Hierbei ist x0 der Hub des Aktors 35. ü ist das Übersetzungsverhältnis von Übersetzerkolben 37 zu Ventilkolben 33.
  • Vorteil des erfindungsgemäß ausgebildeten hydraulischen Kopplers 39 ist, dass zunächst die volle Kraft des Aktors 35 übertragen wird, gleichzeitig aber auch der erhöhte Leerlaufhub eines Kopplers mit einem Übersetzungsverhältnis > 1 genutzt werden kann, ohne dass hierzu die Aktorspannung erhöht oder ein größerer Aktor eingesetzt werden muss.
  • Sobald die Bestromung des Aktors 35 beendet wird und sich der Aktor 35 wieder auf seine Ausgangslänge zusammenzieht wird der Übersetzerkolben 37 aus dem Kopplerraum 53 bewegt. Auch der Ventilkolben 33 und das Ringelement 61 bewegen sich wieder in ihre Ursprungsposition.
  • In Figur 3 sind ventilkolbenseitige Kraft/Hub-Kurven für unterschiedliche Volumina des Steuerraumes 77 dargestellt.
  • Auf der x-Achse ist der Hub des Ventilkolbens aufgetragen und auf der y-Achse die Kraft, die der Ventilkolben 33 auf das Schließelement 29 ausübt. Bei einem Übersetzungsverhältnis von 1 : 1 nimmt die Kraft des Ventilkolbens 33 auf das Schließelement 29 entsprechend der Linie 81 ab. In seiner Ausgangsposition wirkt die volle Kraft des Aktors 35 auf den Ventilkolben 33. Mit zunehmendem Hub x nimmt die Kraft, die vom Ventilkolben 33 auf das Schließelement 29 wirkt ab, bis bei einem Hub, der dem Leerlaufhub des Aktors x0 entspricht, die vom Ventilkolben 33 auf das Schließelement 29 wirkende Kraft gleich Null ist. F0 bezeichnet die Blockierkraft des Aktors, das heißt jene Kraft, die der Aktor 35 bei beidseitig fester Anspannung auf seine Umgebung ausüben würde. Die Kraft nimmt mit zunehmender Auslenkung x infolge der von Null verschiedenen Aktorsteifigkeit ab. Die Kraft Null wird erreicht, wenn die Auslenkung des Ventilkolbens 33 den mit dem Übersetzungsverhältnis multiplizierten Leerlaufhub des Aktors erreicht. Bei einem Übersetzungsverhältnis von 1 : 1 ist die Auslenkung des Ventilkolbens 33 gleich dem Leerlaufhub des Aktors.
  • Mit Bezugszeichen 83 ist die Kraft/Hub-Kurve bezeichnet, die sich bei einem Übersetzungsverhältnis von 1 : 1,4 ergibt. Wie aus Figur 3 ersichtlich ist, wirkt bei einem derartigen Übersetzungsverhältnis mit einteiligem Übersetzerkolben 37 und einteiligem Ventilkolben 33 nicht die volle Blockierkraft des Aktors auf den Ventilkolben 33. Die Kraft, die maximal auf den Ventilkolben 33 wirken kann, ist gegenüber der Kraft, die bei einem Übersetzungsverhältnis von 1 : 1 auf den Ventilkolben 33 wirken kann, verringert. Bei der erfindungsgemäßen Lösung, mit dem Ringelement 61, welches auf den zweiten Bereich 65 des Ventilkolbens 33 geführt ist ergeben sich in Abhängigkeit vom Volumen des Steuerraumes 77 die mit den Bezugszeichen 85, 87 und 89 bezeichneten Kraft/Hub-Kurven. Dabei ist das Volumen des Steuerraumes 77 bei der Kraft/Hub-Kurve 89 am kleinsten und bei der Kraft/Hub-Kurve 85 am größten.
  • Bei dem erfindungsgemäß ausgebildeten hydraulischen Koppler 39 nimmt die zunächst die Kraft mit zunehmendem Hub ausgehend von der Blockierkraft des Aktors F0 ab. Sobald der Umschaltpunkt 91 erreicht ist, bewegt sich der Ventilkolben 33 ohne das Ringelement 61 weiter in Richtung des Steuerventils 23. Die Kraft/Hub-Kurve nimmt einen flacheren Verlauf ein und endet bei einem maximalen Hub, der dem Hub entspricht, der bei einem entsprechenden Übersetzungsverhältnis, hier bei einem Übersetzungsverhältnis von 1 : 1,4, erreicht wird. Es ist selbstverständlich auch jedes andere Übesetzungsverhältnis möglich. Das Übersetzungsverhältnis ist dabei abhängig von den Querschnittsflächen des Übersetzerkolbens 37 und des Ventilkolbens 33, die den Kopplerraum 53 begrenzen. Es gilt für das Übersetzungsverhältnis ü = d0 2/d1 2. Der Umschaltpunkt 91 wird jeweils dann erreicht, wenn die Kraft, die der Ventilkolben 33 auf das Schließelement 29 ausübt, um das Übersetzungsverhältnis unterhalb der Kraft/Hub-Kurve eines einstufigen hydraulischen Kopplers mit der Übersetzung 1 liegt. Dies ist mit der gestrichelten Hilfslinie 93 dargestellt.
  • Alternativ zu der in Figur 2 dargestellten Ausführungsform ist es auch möglich, den Außendurchmesser des Ringelementes 61 und den des Übersetzerkolbens 37 unterschiedlich auszuführen. In diesem Fall wird im Kopplergehäuse 73 ein Absatz ausgebildet, so dass sowohl der Übersetzerkolben 37 als auch das Ringelement 61 mit seinem Außendurchmesser im Kopplergehäuse 73 geführt werden können. Das Ringelement weist dann einen Außendurchmesser d'0 auf, während der Durchmesser des Übersetzerkolbens 37 weiterhin d0 ist. In diesem Fall wird die Blockierkraft des Aktors 35 mit einem Übersetzerverhältnis ü1 = d'0 2 : d0 2 auf die Ventilseite untersetzt und der Leerlaufhub wird mit dem Übersetzungsverhältnis ü2 = d0 2 : d1 2 auf die Ventilseite übersetzt.
  • Das Federelement 75, welches das Ringelement 61 im Ruhezustand auf dem Absatz 67 des Ventilkolbens niederhält, sorgt auch dafür, dass die geringe Kraftstoffmenge, die über Führungsspalte des Ringelementes 61 bei aktivem Koppler in den Steuerraum 77 eindringt in den Betätigungspausen wieder aus dem Steuerraum 77 herausgepresst wird. Das Federelement 75 kann weiterhin die Aufgabe der aus dem Stand der Technik bekannten Ventilkolbenfeder übernehmen und für die Wiederbefüllung des Kopplerraumes 53 sorgen. Die aus dem Stand der Technik bekannte Ventilkolbenfeder kann dann entfallen.
  • Neben der in Figur 2 dargestellten Ausführungsform, bei der der Absatz 67 als Planfläche ausgeführt ist, ist es zum Beispiel auch möglich, dass sich der Kolben 33 und das Ringelement 61 an beliebig gestalteten Flächen berühren. So kann zum Beispiel der Absatz 67 kegelförmig ausgeführt sein und die entsprechende Fläche am Ringelement 61 eben, kegelförmig oder als Doppelkegel. Auch ist es möglich, dass die Berührlinie oder die Berührfläche zwischen dem Ringelement 61 und dem zweiten Bereich 65 des Ventilkolbens 33 durchgängig oder unterbrochen ist.

Claims (10)

  1. Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine, wobei der Injektor einen hydraulischen Koppler (39) umfasst, der Hub und Kraft eines Aktors (35) auf ein Steuerventil (23) überträgt, wobei die auf das Steuerventil (23) wirkende Kraft mindestens genauso groß ist wie die vom Aktor (35) abgegebene Kraft, wobei der hydraulische Koppler (39) einen Übersetzerkolben (37) umfasst, der in einer ersten Führung in einem Kopplergehäuse (73) geführt ist und mit einer Stirnfläche einen Kopplerraum (53) begrenzt und der Kopplerraum (53) auf einer zweiten Seite von einem Ventilkolben (33), der auf das Steuerventil (23) wirkt, begrenzt ist, dadurch gekennzeichnet, dass der Ventilkolben (33) in einem ersten Bereich (63) mit einem ersten Durchmesser (d1) und in einem zweiten Bereich (65) in einem zweiten Durchmesser (d2) ausgebildet ist, wobei der zweite Durchmesser (d2) kleiner ist als der erste Durchmesser (d1) und der Ventilkolben (33) im zweiten Bereich (65) von einem Ringelement (61) umschlossen ist, welches relativ zum Ventilkolben (33) bewegbar ist.
  2. Injektor nach Anspruch 1, dadurch gekennzeichnet, dass das Ringelement (61) mit seinem Außendurchmesser in der Führung im Kopplergehäuse (73) geführt ist.
  3. Injektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Außendurchmesser des Ringelementes (61) größer ist als der erste Durchmesser (d1) des ersten Bereiches (63) des Ventilkolbens (33).
  4. Injektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Ventilkolben (33) zwischen dem ersten Bereich (63) und dem zweiten Bereich (65) ein Absatz (67) ausgebildet ist, welcher als Hubbegrenzung für das Ringelement (61) wirkt.
  5. Injektor nach Anspruch 4, dadurch gekennzeichnet, dass auf das Ringelement (61) ein Federelement (75) derart wirkt, dass das Ringelement (61) bei geschlossenem Steuerventil (23) durch die Federkraft des Federelementes (75) gegen den Absatz (67) gedrückt wird.
  6. Injektor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in einem Steuerraum (77), der von dem Ringelement (61), dem Ventilkolben (33) und dem Kopplergehäuse (73) umschlossen ist, ein Kraftstoffvolumen eingeschlossen ist.
  7. Injektor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Außendurchmesser des Ringelements (61) und der Außendurchmesser (d0) des Übersetzerkolbens (37) gleich sind.
  8. Injektor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Außendurchmesser des Ringelements (61) und der Außendurchmesser (d0) des Übersetzerkolbens (37) unterschiedlich sind.
  9. Injektor nach Anspruch 8, dadurch gekennzeichnet, dass der Außendurchmesser (d0) des Übersetzerkolbens (37) größer ist als der Außendurchmesser des Ringelementes (61).
  10. Injektor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Aktor (35) ein Piezoaktor ist.
EP07122721A 2007-01-16 2007-12-10 Injektor zum Einspritzen von Kraftstoff Not-in-force EP1947322B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007002278A DE102007002278A1 (de) 2007-01-16 2007-01-16 Injektor zum Einspritzen von Kraftstoff

Publications (3)

Publication Number Publication Date
EP1947322A2 true EP1947322A2 (de) 2008-07-23
EP1947322A3 EP1947322A3 (de) 2009-08-05
EP1947322B1 EP1947322B1 (de) 2011-02-23

Family

ID=39232743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07122721A Not-in-force EP1947322B1 (de) 2007-01-16 2007-12-10 Injektor zum Einspritzen von Kraftstoff

Country Status (3)

Country Link
EP (1) EP1947322B1 (de)
AT (1) ATE499522T1 (de)
DE (2) DE102007002278A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013225379A1 (de) 2013-12-10 2015-06-11 Robert Bosch Gmbh Hydraulischer Koppler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322672A1 (de) * 2003-05-20 2004-12-09 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE102004035280A1 (de) * 2004-07-21 2006-03-16 Robert Bosch Gmbh Kraftstoffinjektor mit direkter mehrstufiger Einspritzventilgliedansteuerung
DE102005007543A1 (de) * 2005-02-18 2006-08-24 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322672A1 (de) * 2003-05-20 2004-12-09 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE102004035280A1 (de) * 2004-07-21 2006-03-16 Robert Bosch Gmbh Kraftstoffinjektor mit direkter mehrstufiger Einspritzventilgliedansteuerung
DE102005007543A1 (de) * 2005-02-18 2006-08-24 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine

Also Published As

Publication number Publication date
DE502007006537D1 (de) 2011-04-07
EP1947322A3 (de) 2009-08-05
ATE499522T1 (de) 2011-03-15
EP1947322B1 (de) 2011-02-23
DE102007002278A1 (de) 2008-07-17

Similar Documents

Publication Publication Date Title
EP1693564B1 (de) Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
EP1831540B1 (de) Kraftstoffinjektor mit direkt angesteuertem einspritzventilglied
EP1756415B1 (de) Kraftstoffinjektor mit variabler aktorübersetzung
EP2052148B1 (de) Kraftstoffinjektor mit direkter nadelsteuerung und servoventil-unterstützung
EP1831539B1 (de) Kraftstoffinjektor mit direkter steuerung des einspritzventilgliedes
EP1705369A1 (de) Kraftstoffinjektor für Verbrennungskraftmaschinen
EP1651857B1 (de) Kraftstoffeinspritzvorrichtung
EP1135596A1 (de) Ventil zum steuern von flüssigkeiten
EP2670970A1 (de) Kraftstoffinjektor
DE102008000301B4 (de) Injektor
EP2743493B1 (de) Kraftstoffinjektor
WO2004040117A1 (de) Kraftstoff-einspritzeinrichtung für brennkraftmaschinen
EP1947322B1 (de) Injektor zum Einspritzen von Kraftstoff
DE102005015733A1 (de) Zweistufige direkte Ansteuerung eines Einspritzventilglieds mit Schieber
EP1908953B1 (de) Kraftstoffeinspritzanlage
WO2008113630A1 (de) Kraftstoffinjektor mit verbessertem einspritzverhalten
EP1525390A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE19949525B4 (de) Druckübersetzer für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit hydraulisch unterstützter Wiederbefüllung
DE10333693B3 (de) Kraftstoffeinspritzvorrichtung
EP2930345B1 (de) Kraftstoffinjektor
EP3035520B1 (de) Hydraulische kopplereinheit zur steuerung eines ventils
EP2884089B1 (de) Hydraulischer Koppler
EP2133552B1 (de) Kraftstoffinjektor
DE102005025138B4 (de) Dosierventil
EP1601870A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20100205

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006537

Country of ref document: DE

Date of ref document: 20110407

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006537

Country of ref document: DE

Effective date: 20110407

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110223

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110603

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006537

Country of ref document: DE

Effective date: 20111124

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 499522

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181218

Year of fee payment: 12

Ref country code: IT

Payment date: 20181218

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210217

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006537

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701