EP1946060A1 - Drucksensor für hydraulische medien in kraftfahrzeugbremssystemen und dessen verwendung - Google Patents
Drucksensor für hydraulische medien in kraftfahrzeugbremssystemen und dessen verwendungInfo
- Publication number
- EP1946060A1 EP1946060A1 EP06778327A EP06778327A EP1946060A1 EP 1946060 A1 EP1946060 A1 EP 1946060A1 EP 06778327 A EP06778327 A EP 06778327A EP 06778327 A EP06778327 A EP 06778327A EP 1946060 A1 EP1946060 A1 EP 1946060A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- membrane
- sensor according
- sensor
- pressure
- pressure sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012528 membrane Substances 0.000 claims abstract description 48
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 239000003990 capacitor Substances 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000009530 blood pressure measurement Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241000158147 Sator Species 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0055—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/08—Means for indicating or recording, e.g. for remote indication
- G01L19/086—Means for indicating or recording, e.g. for remote indication for remote indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0072—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
- G01L9/0075—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
Definitions
- the invention relates to a pressure sensor according to the preamble of claim 1 and its use.
- DE 199 63 786 A1 discloses a pressure sensor which is basically suitable for use in an electronically controlled brake system for determining the pressure of a hydraulic fluid.
- the sensor consists essentially of a semiconductor layer, which is applied to a Borsili ⁇ katglas. If the sensor is pressurized, a mechanical stress arises in the material between the layers, which can be measured on the basis of the piezoelectric effect by suitably mounted electrical electrodes. Due to the materials used is known from the above reference pressure sensor for ag ⁇ sive media without an additional protective measure, such as an embedded in silicon, can be used.
- the invention relates to a pressure sensor, in particular for measuring pressures greater than 100 bar, with a through Pressurizing deflectable and / or deformable membrane.
- a closed (first) hollow volume which is filled in particular at least partially ⁇ with a gas or a gas mixture.
- the membrane is essentially flat (without any pressure difference) and rests on a support frame for the membrane, which tightly seals off the edge region of the membrane from a base body on which the support frame rests.
- the support frame may be manufactured separately or brought on ⁇ or be part of a molding of the main body or the membrane surface.
- the pressure sensor has at least one pressure transducer, which converts the deflection and / or deformation of the membrane into at least one electrical variable according to the capacitive, piezoresistive or another principle or with the aid of at least one strain gauge.
- the pressure sensor is tightly gekap ⁇ sible on all sides and has no guided outward electrical contacts or lines.
- the all-round sealed enclosure provides the advantage that a long life of the sensor is achieved even under harsh, humid ambient conditions.
- the sensor is suitable for use in liquids, particularly preferably in aggressive media.
- At least one electrically conductive measuring electrode is located in the region of the membrane surface, so that it is moved by the preformable membrane surface.
- a counter electrode is present, which is attached to the main body and forms a capacitor together with the measuring electrode.
- the membrane surface has a substantially non-deformed part, which is for example in the vicinity of the Ran ⁇ , on which is provided with a reference electrode, which allows a capacitive reference measurement in conjunction with the or another counter electrode.
- a reference electrode which allows a capacitive reference measurement in conjunction with the or another counter electrode.
- the base body and / or the support frame is preferably at least partially made of a corrosion-resistant material, in particular based on plastic or metal or ceramic.
- the membrane is preferably made of either metal, plastic or a ceramic material. The materials mentioned may also contain small amounts of components of other materials, as long as the desired corrosion resistance is not significantly affected thereby.
- the membrane consists of a ceramic material whose pressure-dependent deflection is determined to be particularly capacitive.
- the membrane is also possible and therefore provided as an alternative preferred embodiment to equip the pressure sensor according to the invention with pressure-resistively changeable electrical conductor structures and in this way to provide a variable by the pressurization electrical signal available. It is expedient that the membrane is a pressure measuring plate.
- the membrane surface is part of the housing.
- the advantage is a very high resistance to aggressive media measurement, such as a high pressure fluid.
- Possible materials for deformation body are then also ceramic, metal, glass but also plastic.
- the degree of pressurization is not capacitive, but measured with resistively pressure-dependent measuring structures, which are connected to the electronic unit.
- the sensor ⁇ form with a resistive measurement structure is preferably used of the resistive structure of the piezoresistive effect or dehnungsinduzier- te change of shape.
- the deformation element is preferably formed monolithically from silicon. The actual measuring elements are then implanted in particular in the pressure measuring plate. Upon initiation of a pressure, a mechanical stress is generated in the membrane and / or the pressure measuring plate.
- the resistive structures can be produced as a thin film or thick film. However, the resistive structures are preferably applied as thick-film material. It is expedient that the sensor in the housing for processing a signal ⁇ for processing the at least one electrical ⁇ rule output variable having the pressure transducer.
- the senor for processing the capacitor voltage or in the case of the resistive conductor has a signal processing electrically connected to the corresponding structures.
- This signal processing is designed in particular as a user-specific integrated circuit.
- the sensor preferably further comprises means coupled to said signal processing ⁇ or integrated in this Sendeein ⁇ direction for wireless transmission of print information.
- the sensor uses a particular tegrated in the sensor in ⁇ additional antenna structure and / or a formant ⁇ nentechnik, which is in particular an electrode of the condensate ⁇ sator structure. This has the advantage that compared to be ⁇ known pressure sensors no corrosion-sensitive electrical contacts are needed to the outside.
- the senor is designed for a, in particular periodic ⁇ cal, measurement and / or data transmission at defined time ⁇ points.
- expedient is the design of the sensor for a constant measurement and / or REMtra ⁇ tion.
- the wireless signal transmission is well known.
- the sensor has an internal source, which makes Ener ⁇ (battery) and systems in which the sensor is fed through an external electromagnetic field and this energy for periodically transmitting uses its values. All systems have in common that you need an antenna to carry over ⁇ and usually have a signal pre-processing and a high-frequency part.
- the signal processing is preferably carried out integrated.
- the sensor is expediently cylindrical, wherein the cylinder height is particularly suitably smaller than the cylinder diameter.
- the basic body together with bearing surface and membrane forms a first cavity and additionally with a cover arranged opposite the membrane side and also opposite to the membrane introduced into the base recess a further cavity, wherein integrated in the further cavity signal processing is.
- an antenna structure is preferably arranged, which is placed in particular on the inner surface of the cover.
- the invention also relates to the use of the previously described sensor in motor vehicle control devices, in particular in motor vehicle brake control devices. Further preferred is the use of the sensor in directly measuring tire pressure monitoring systems. Further preferred embodiments will become apparent from the following description of an embodiment with reference to figures.
- FIG. 1 is a schematic representation of a capacitive pressure sensor with a cavity in cross-section
- FIG. 3 shows the pressure sensor according to FIGS. 1 and 2 in a spatial representation
- Fig. 4 shows a second example of a pressure sensor with two cavities
- Fig. 5 is an illustration of the sensor according to Fig. 1 with signal processing circuit and antenna structure.
- the capacitive pressure sensor in FIG. 1 consists of a deformable ceramic membrane 1 which rests on a base body 3 made of ceramic via a solder ring 2.
- a first metallic capacitor plate 4 (measuring electrode) is fixedly connected to the membrane.
- a metallic second metallic Kon ⁇ capacitor plate 5 (counter electrode).
- Electrode 4 is a further, electrically isolated from the measuring electrode reference electrode 8.
- counter electrode 5 is designed so large that it is both measuring electrode 4 and reference electrode 7 opposite.
- Lotring 2 forms an annular support frame for membrane 1 on the base 3.
- the second capacitor plate 5 is directly connected to ASIC 7.
- ASIC 7 a user-specific integrated circuit is included, which is electrically conductively connected to the capacitor plates 4, 5 and reference electrode 8. It is also possible according to an example not shown that counter electrode is combined with ASIC 7. is formed directly by the ASIC that also carries the pri ⁇ mare signal processing. Via a leadframe, the processed signals are routed to the outside. The housing is closed by a glued lid, for example. Metal or ceramic.
- Fig. 2 shows the pressure sensor in Fig. 1 with a deformed by pressurization membrane 1 '.
- the pressure-induced deflection of the membrane reduces the distance between the capacitor plates 4 and 5. This results in an electrically measurable increase in the capacitance of the capacitor formed by the capacitor plates 4, 5.
- Fig. 3 the capacitive pressure sensor according to Figures 1 and 2 is shown in three-dimensional view.
- FIG. 4 illustrates an example of a sensor having an antenna structure 9 and an additional cavity 8.
- the antenna structure described in FIG. 4 may also be provided in the sensor according to FIGS. 1 to 3 according to an example which is not shown.
- Antenna structure 4 is formed spirally. This can be applied by Dunnfilm- (CVD, sputtering) or thick film process in the desired shape.
- the antenna structure can be applied by means of lithographic processes with a subsequent etching process.
- HF components can be applied to membrane 1.
- FIG. 4 shows a sensor with a further cavity 8, which is formed on the opposite side of the base body 3 as a recess. Cavity 8 is closed by a lower cover 10. ASIC 7 can be arranged in the lower cavity 8. Antenna structure 9 is placed in cavity 8 on cover 10. A connection of ASIC 7 with antenna structure 9 or the electrodes 4, 5 and 8 takes place either via bonding wires or other suitable connection technologies.
- the components antenna structure 9, ASIC 7 with integrated RF transmitter are integrated together in the housing of the pressure sensor. This results in an all-round encapsulation of the sensor.
- the sensor according to FIG. 5 differs from the previously explained sensors in that the capacitor plates are replaced by resistive layers 11.
- the arrangement of ASIC 7 in cavity 6 corresponds to beispielgeclaren, not shown embodiment of a sensor according to FIG. 1 with ASIC.
- Resistive layers 11 are applied to membrane 1 by means of thin-film or thick-film technologies. It is likewise possible to adhere suitable silicon elements known per se to membrane 1 for deformation measurement.
- ⁇ hollow space 6 and 8 may alternatively be filled with oil or with some other material.
- the senor has a pressure measuring plate instead of the membrane.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Drucksensor, insbesondere zur Messung von Drücken größer als 100 bar, mit einer durch Druckbeaufschlagung auslenkbaren und/oder verformbaren Membran (1, 1'), einem unter der Membran liegenden abgeschlossenen Hohlvolumen (6), welches insbesondere zumindest teilweise mit einem Gas oder einer Gasmischung gefüllt ist, einem Auflagerahmen (2) für die Membran, welcher den Randbereich der Membran gegenüber einem Grundkörper (3) dicht abschließt, und mit zumindest einem Druckmesswandler, welcher die Auslenkung und/oder Verformung der Membran nach dem kapazitiven, piezoresistiven oder einem anderen Prinzip oder mit Hilfe mindestens eines Dehnungsmessstreifens in mindestens eine elektrische Größe umwandelt, wobei der Drucksensor allseitig dicht gekapselt ist und keine nach außen geführten elektrischen Kontakte oder Leitungen aufweist.
Description
Drucksensor für hydraulische Medien in Kraftfahrzeugbrems- Systemen und dessen Verwendung
Die Erfindung betrifft einen Drucksensor gemäß Oberbegriff von Anspruch 1 sowie dessen Verwendung.
Aus der DE 199 63 786 Al geht ein Drucksensor hervor, welcher grundsätzlich für die Anwendung in einem elektronisch geregelten Bremssystem zur Bestimmung des Drucks einer Hydraulikflüssigkeit geeignet ist. Der Sensor besteht im wesentlichen aus einer Halbleiterschicht, die auf ein Borsili¬ katglas aufgebracht ist. Wird der Sensor mit Druck beaufschlagt, entsteht zwischen den Schichten eine mechanische Spannung im Material, welche auf Grund des piezoelektrischen Effekts durch geeignet angebrachte elektrische Elektroden gemessen werden kann. Auf Grund der verwendeten Materialien ist der aus der obigen Schrift bekannte Drucksensor für ag¬ gressive Medien nicht ohne eine zusätzliche Schutzmaßnahme, wie zum Beispiel eine Einbettung in Silikon, einsetzbar.
Es besteht daher die Aufgabe, einen für die oben genannte Anwendung besonders geeigneten Drucksensor zur Verfügung zu stellen, welcher sich durch eine besonders hohe Resistenz gegenüber aggressiven Medien auszeichnet.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Druck¬ sensor gemäß Anspruch 1, der insbesondere ohne eine Einbet¬ tung in ein Schutzmaterial auskommt.
Die Erfindung betrifft einen Drucksensor, insbesondere zur Messung von Drücken größer als 100 bar, mit einer durch
Druckbeaufschlagung auslenkbaren und/oder verformbaren Membran. Unterhalb der Membran befindet sich ein abgeschlossenes (erstes) Hohlvolumen, welches insbesondere zumindest teil¬ weise mit einem Gas oder einer Gasmischung gefüllt ist. Die Membran ist im Wesentlichen (ohne anstehender Druckdifferenz) eben und liegt auf einem Auflagerahmen für die Membran auf, welcher den Randbereich der Membran gegenüber einem Grundkörper dicht abschließt, auf dem der Auflagerahmen aufliegt. Der Auflagerahmen kann gesondert gefertigt oder auf¬ gebracht sein oder Teil einer Ausformung des Grundkörpers oder der Membranfläche sein. Der Drucksensor weist zumindest einem Druckmesswandler, welcher die Auslenkung und/oder Verformung der Membran nach dem kapazitiven, piezoresistiven oder einem anderen Prinzip oder mit Hilfe mindestens eines Dehnungsmessstreifens in mindestens eine elektrische Größe umwandelt, auf. Der Drucksensor ist allseitig dicht gekap¬ selt und weist keine nach außen geführten elektrischen Kontakte oder Leitungen auf.
Durch die allseitig dichte Kapselung ergibt sich der Vorteil, dass auch unter rauen, feuchten Umgebungsbedingungen eine lange Lebensdauer des Sensors erreicht wird. Insbesondere ist der Sensor für eine Verwendung in Flüssigkeiten, besonders bevorzugt in aggressiven Medien geeignet.
Im Falle der Ausbildung des Sensors mit einer Kondensatorstruktur befindet sich zumindest eine elektrisch leitende Messelektrode im Bereich der Membranfläche, so dass diese von der vorformbaren Membranfläche bewegt wird. Zudem ist eine Gegenelektrode vorhanden, welche am Grundkörper befestigt ist und gemeinsam mit der Messelektrode einen Kondensator bildet. Durch die Druckbeaufschlagung des Sensors ändert
sich die Auslenkung der Membran und damit der Abstand der Kondensatorplatten. Die damit einhergehende Kapazitätsänderung kann als ein Maß für den Druck herangezogen werden.
Vorzugsweise weist die Membranfläche einen im wesentlichen nicht verformten Teil, der zum Beispiel in der Nähe des Ran¬ des liegt, auf, welcher mit einer Referenzelektrode versehen ist, die in Verbindung mit der oder einer weiteren Gegenelektrode eine kapazitive Referenzmessung erlaubt. Durch Einbeziehung der Referenzmessung kann die Genauigkeit der Druckmessung erhöht werden beziehungsweise eine Kompensation von Störgrößen erreicht werden.
Der Grundkörper und/oder der Auflagerahmen besteht bevorzugt zumindest teilweise aus einem korrosionsbeständigen Material, insbesondere auf Basis von Kunststoff oder Metall oder Keramik. Die Membran ist vorzugsweise entweder aus Metall, aus Kunststoff oder aus einem keramischen Material hergestellt. Die genannten Materialien können außerdem in geringen Mengen Bestandteile anderer Materialien aufweisen, so lange die angestrebte Korrosionsbeständigkeit dadurch nicht wesentlich beeinträchtigt wird.
Die Membran besteht insbesondere aus einem keramischen Material, dessen druckabhängige Auslenkung besonders bevorzugt kapazitiv ermittelt wird. Es ist aber auch möglich und daher als eine alternative bevorzugte Ausführungsform vorgesehen, den erfindungsgemäßen Drucksensor mit durch Druck resistiv veränderbaren elektrischen Leiterstrukturen auszurüsten und auf diese Weise ein durch die Druckbeaufschlagung veränderbares elektrisches Signal zur Verfügung zu stellen.
Es ist zweckmäßig, dass die Membran eine Druckmessplatte ist .
Vorzugsweise ist die Membranfläche Teil des Gehäuses.
Wenn der erfindungsgemäße Sensor insbesondere im Wesentlichen vollständig auf Basis von Keramik hergestellt ist, er¬ gibt sich der Vorteil einer besonders hohen Resistenz gegenüber aggressiven Messmedien, wie zum Beispiel einer unter hohem Druck stehenden Bremsflüssigkeit. Mögliche Materialien für Verformungskörper sind dann ebenfalls Keramik, Metall, Glas aber auch Kunststoff.
Nach einer alternativ bevorzugten Ausführungsform wird das Maß der Druckbeaufschlagung nicht kapazitiv, sondern mit re- sistiv druckabhängigen Messstrukturen gemessen, welche mit der Elektronikeinheit verbunden sind. Bei der Ausführungs¬ form des Sensors mit einer resistiven Messstruktur wird bevorzugt der piezoresistive Effekt oder die dehnungsinduzier- te Gestaltsänderung der resistiven Struktur genutzt. Bei dem Sensor nach dem piezoresistiven Prinzip ist der Verformungskörper bevorzugt monolithisch aus Silizium gebildet. Die eigentlichen Messelemente sind dann insbesondere in die Druckmessplatte implantiert. Bei Einleitung eines Druckes wird eine mechanische Spannung in der Membran und/oder der Druckmessplatte erzeugt.
Die resistiven Strukturen lassen sich als Dünnfilm oder Dickschicht herstellen. Die resistiven Strukturen sind jedoch bevorzugt als Dickschichtmaterial aufgebracht.
Es ist zweckmäßig, dass der Sensor im Gehäuse eine Signal¬ verarbeitung zur Verarbeitung der mindestens einen elektri¬ schen Ausgangsgroße des Druckmesswandlers aufweist.
Bevorzugt weist der Sensor zur Verarbeitung der Kondensatorspannung oder im Falle der resistiven Leiter eine mit den entsprechenden Strukturen elektrisch verbundene Signalverarbeitung auf. Diese Signalverarbeitung ist insbesondere als anwenderspezifischer integrierter Schaltkreis aufgebaut.
Der Sensor umfasst weiterhin bevorzugt eine mit der Signal¬ verarbeitung verbundene oder in dieser integrierte Sendeein¬ richtung zur drahtlosen Übertragung einer Druckinformation. Hierzu nutzt der Sensor insbesondere eine in den Sensor in¬ tegrierte zusatzliche Antennenstruktur und/oder eine Anten¬ nenstruktur, welche insbesondere eine Elektrode der Konden¬ satorstruktur ist. Dies hat den Vorteil, dass gegenüber be¬ kannten Drucksensoren keine korrosionsempfindlichen elektrischen Kontakte nach außen benotigt werden.
Vorzugsweise ist der Sensor für eine, insbesondere periodi¬ sche, Messung und/oder Datenübertragung zu definierten Zeit¬ punkten ausgelegt. Alternativ zweckmäßig ist die Auslegung des Sensors für eine standige Messung und/oder Datenübertra¬ gung.
Die drahtlose Signalubertragung ist hinreichend bekannt. Es existieren Systeme bei denen der Sensor eine interne Ener¬ giequelle besitzt (Batterie) und Systeme, bei denen sich der Sensor durch ein externes elektromagnetisches Feld speist und diese Energie zum periodischen Übertragen seiner Werte nutzt .
Allen Systemen ist gemein, dass Sie eine Antenne zum Über¬ tragen benotigen und in der Regel eine Signalvorverarbeitung sowie einen Hochfrequenzteil besitzen.
Wie gesagt, ist die Signalverarbeitung bevorzugt integriert ausgeführt .
Der Sensor ist zweckmaßigerweise zylinderförmig ausgebildet ist, wobei besonders zweckmäßig die Zylinderhohe kleiner als der Zylinderdurchmesser ist.
Gemäß einer weiteren bevorzugten Ausfuhrungsform des Sensors bildet der Grundkorper zusammen mit Auflageflache und Membran einen ersten Hohlraum und zusatzlich mit einer gegenüber der Membranseite angeordneten Abdeckung und einer ebenfalls gegenüberliegend zur Membran in den Grundkorper eingebrachten Ausnehmung einen weiteren Hohlraum, wobei in dem weiteren Hohlraum die Signalverarbeitung integriert ist.
Im weiteren Hohlraum des Sensors nach der weiteren bevorzugten Ausfuhrungsform ist vorzugsweise eine Antennenstruktur angeordnet, welche insbesondere an der inneren Oberflache der Abdeckung platziert ist.
Die Erfindung betrifft außerdem die Verwendung des zuvor beschriebenen Sensors in Kraftfahrzeugsteuergeraten, insbesondere in Kraftfahrzeugbremsensteuergeraten . Weiterhin bevorzugt ist die Verwendung des Sensors in direkt messenden Reifendruckkontrollsystemen .
Weitere bevorzugte Ausführungsformen ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels an Hand von Figuren.
Es zeigen
Fig. 1 eine schematische Darstellung eines kapazitiven Drucksensor mit einem Hohlraum im Querschnitt,
Fig. 2 der Drucksensor nach Fig. 1 bei Beaufschlagung mit Druck,
Fig. 3 der Drucksensor gemäß Fig. 1 und 2 in räumlicher Darstellung,
Fig. 4 ein zweites Beispiel für einen Drucksensor mit zwei Hohlräumen und
Fig. 5 eine Darstellung des Sensors entsprechend Fig. 1 mit Signalverarbeitungsschaltung und Antennenstruktur .
Der kapazitive Drucksensor in Fig. 1 besteht aus einer verformbaren Keramikmembran 1, die über einen Lotring 2 auf einem Grundkörper 3 aus Keramik aufsitzt. In einem mittleren, nach innen zum Hohlraum 6 gerichteten Oberflächenbereich der Membran 1 ist eine erste metallische Kondensatorplatte 4 (Messelektrode) mit der Membran fest verbunden. Ebenfalls zum Hohlraum 6 hin gerichtet befindet sich auf einer Fläche des Grundkörpers 3 eine metallische zweite metallische Kon¬ densatorplatte 5 (Gegenelektrode) . Im Außenbereich der nach innen gerichteten Membranfläche, also benachbart zu Mess-
elektrode 4 befindet sich ein weitere, von der Messelektrode elektrisch isolierte Referenzelektrode 8. Gegenelektrode 5 ist so groß ausgeführt, dass diese sowohl Messelektrode 4 als auch Referenzelektrode 7 gegenüber liegt. Lotring 2 bildet einen ringförmigen Auflagerahmen für Membran 1 auf Grundkorper 3. Die zweite Kondensatorplatte 5 ist mit ASIC 7 direkt verbunden. In ASIC 7 ist ein anwenderspezifischer integrierter Schaltkreis enthalten, welcher elektrisch leitend mit den Kondensatorplatten 4, 5 und Referenzelektrode 8 verbunden ist. Es ist auch nach einem nicht dargestellten Beispiel möglich, dass Gegenelektrode mit ASIC 7 vereint ist. wird direkt durch den ASIC gebildet, der auch die pri¬ märe Signalverarbeitung tragt. Über einen Leadframe werden die aufbereiteten Signale nach außen geleitet. Das Gehäuse ist verschlossen durch einen geklebten Deckel, bspw. aus Metall oder ebenfalls Keramik.
Fig. 2 zeigt den Drucksensor in Fig. 1 mit einer durch Druckbeaufschlagung verformten Membran 1 ' . Durch die druckinduzierte Auslenkung der Membran verringert sich der Abstand der Kondensatorplatten 4 und 5. Hierdurch ergibt sich eine elektrisch messbare Erhöhung der Kapazität des durch die Kondensatorplatten 4, 5 gebildeten Kondensators.
In Fig. 3 ist der kapazitive Drucksensor gemäß den Figuren 1 und 2 in dreidimensionaler Ansicht dargestellt.
Fig. 4 stellt ein Beispiel für einen Sensor mit einer Antennenstruktur 9 und einem zusatzlichen Hohlraum 8 dar. Die in Fig. 4 beschriebene Antennenstruktur kann nach einem nicht dargestellten Beispiel auch in dem Sensor nach den Fig. 1 bis 3 vorgesehen werden.
Antennenstruktur 9 benachbart zu Messelektrode 4 auf der In¬ nenseite von Membran 1 angebracht. Antennenstruktur 4 ist spiralförmig ausgebildet. Diese kann mittels Dunnfilm- (CVD, Sputtern) oder Dickschichtverfahren in der gewünschten Form aufgebracht werden. Ebenso kann ein Aufbringen der Antennenstruktur mittels lithografischer Verfahren mit anschließendem Atzprozess erfolgen. Eine elektrische Verbindung von An¬ tennenstruktur 4 mit ASIC 7 erfolgt über geeignete, nicht dargestellte Verbindungsstellen des Deckels. Dabei kommt so¬ wohl Kleben als auch Loten in Frage.
Zusatzlich zu Antennenstruktur 4 können an Membran 1 auch zusatzliche oberflachenmontierbare Bauteile - wie HF- Komponenten - aufgebracht werden.
Das Ausfuhrungsbeispiel in Fig. 4 zeigt einen Sensor mit einem weiteren Hohlraum 8, welcher auf der gegenüberliegenden Seite von Grundkorper 3 als Ausnehmung ausgebildet ist. Hohlraum 8 ist durch einen untere Abdeckung 10 verschlossen. ASIC 7 kann im unteren Hohlraum 8 angeordnet werden. Antennenstruktur 9 ist in Hohlraum 8 an Abdeckung 10 platziert. Eine Verbindung von ASIC 7 mit Antennenstruktur 9 oder den Elektroden 4, 5 und 8 erfolgt entweder über Bonddrahte oder andere geeignete Verbindungstechnologien.
Im Sensor gemäß Fig. 4 sind die Komponenten Antennenstruktur 9, ASIC 7 mit integriertem HF-Sender gemeinsam in das Gehäuse des Drucksensors integriert. Hierdurch ergibt sich eine allseitige Kapselung des Sensors.
Der Sensor gemäß Fig. 5 unterscheidet sich von den zuvor erläuterten Sensoren dadurch, dass die Kondensatorplatten durch resistive Schichten 11 ersetzt sind. Die Anordnung von ASIC 7 in Hohlraum 6 entspricht der beispielgemaßen, nicht dargestellten Ausfuhrungsform eines Sensors gemäß Fig. 1 mit ASIC. Resistive Schichten 11 sind mittels Dunnschicht- oder Dickschichttechnologien auf Membran 1 aufgebracht. Es ist ebenfalls möglich, zur Verformungsmessung geeignete, an sich bekannte Siliziumelemente auf Membran 1 aufzukleben. Hohl¬ räume 6 und 8 können mit Ol oder alternativ mit einem anderen Material gefüllt sein.
In einem nicht dargestellten Ausfuhrungsbeispiel weist der Sensor eine Druckmessplatte anstatt der Membran auf.
Claims
1. Drucksensor, insbesondere zur Messung von Drücken größer als 100 bar, mit einer durch Druckbeaufschlagung auslenkbaren und/oder verformbaren Membran (1, 1'), einem unter der Membran liegenden abgeschlossenen Hohlvolumen
(6), welches insbesondere zumindest teilweise mit einem Gas oder einer Gasmischung gefüllt ist, einem Auflagerahmen (2) für die Membran, welcher den Randbereich der Membran gegenüber einem Grundkörper (3) dicht abschließt, und mit zumindest einem Druckmesswandler, welcher die Auslenkung und/oder Verformung der Membran nach dem kapazitiven, piezoresistiven oder einem anderen Prinzip oder mit Hilfe mindestens eines Dehnungsmessstreifens in mindestens eine elektrische Größe umwandelt, dadurch gekennzeichnet, dass der Drucksensor allseitig dicht gekapselt ist und keine nach außen geführten elektrischen Kontakte oder Leitungen aufweist.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass dessen Druckmesswandler nach dem kapazitiven Prinzip arbeitet und wobei der Sensor zumindest eine elektrisch leitende Messelektrode (4), die von der vorformbaren Membranfläche bewegt wird, und zumindest eine Gegenelektrode (5), welche am Grundkörper befestigt ist und gemeinsam mit der Messelektrode einen Kondensator bildet, aufweist.
3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Membranfläche einen im wesentlichen nicht verformten Teil aufweist, welcher mit einer Referenzelekt- rode (8) versehen ist, die in Verbindung mit der oder einer weiteren Gegenelektrode eine kapazitive Referenzmessung erlaubt.
4. Sensor nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Grundkorper und/oder der Auflagerahmen zumindest teilweise aus einem korrosionsbeständigen Material, insbesondere auf Basis von Kunststoff oder Metall oder Keramik besteht und die Membran entweder aus Metall, aus Kunststoff oder aus einem keramischen Material besteht.
5. Sensor nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dieser im Gehäuse eine Sig¬ nalverarbeitung (7) zur Verarbeitung der mindestens einen elektrischen Ausgangsgroße des Druckmesswandlers aufweist .
6. Sensor nach Anspruch 5, dadurch gekennzeichnet, dass dieser eine mit der Signalverarbeitung verbundene oder in dieser integrierte Sendeeinrichtung zur drahtlosen Übertragung einer Druckinformation umfasst.
7. Sensor nach Anspruch 6, dadurch gekennzeichnet, dass dieser eine in den Sensor integrierte zusatzliche Antennenstruktur (9, 9') umfasst und/oder eine Antennenstruktur, welche insbesondere eine Elektrode der Kondensatorstruktur nutzt.
8. Sensor nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Membranflache Teil des Gehäuses ist.
9. Sensor nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dieser zylinderförmig ausgebildet ist, wobei insbesondere die Zylinderhöhe kleiner als der Zylinderdurchmesser ist.
10. Sensor nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Signalverarbeitung integriert ausgeführt ist.
11. Sensor nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Grundkörper (3) zusammen mit Auflagefläche (2) und Membran (1, 1') einen ersten Hohlraum (6) bildet und der Grundkörper mit einer gegenüber der Membranseite angeordneten Abdeckung (10) und einer ebenfalls gegenüberliegend zur Membran in den Grundkörper eingebrachten Ausnehmung einen weiteren Hohlraum (8) bildet, wobei in dem weiteren Hohlraum die Signalverarbeitung (7) integriert ist.
12. Sensor nach Anspruch 11, dadurch gekennzeichnet, dass im weitern Hohlraum eine Antennenstruktur (9') angeordnet ist, welche insbesondere an der inneren Oberfläche der Abdeckung platziert ist.
13. Verwendung des Sensors gemäß mindestens einem der Ansprüche 1 bis 12 in Kraftfahrzeugsteuergeräten, insbesondere in Kraftfahrzeugbremsensteuergeräten.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005039980 | 2005-08-23 | ||
DE102006039422A DE102006039422A1 (de) | 2005-08-23 | 2006-08-23 | Drucksensor für hydraulische Medien in Kraftfahrzeugbremssystemen und dessen Verwendung |
PCT/EP2006/065602 WO2007023168A1 (de) | 2005-08-23 | 2006-08-23 | Drucksensor für hydraulische medien in kraftfahrzeugbremssystemen und dessen verwendung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1946060A1 true EP1946060A1 (de) | 2008-07-23 |
Family
ID=37763289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06778327A Withdrawn EP1946060A1 (de) | 2005-08-23 | 2006-08-23 | Drucksensor für hydraulische medien in kraftfahrzeugbremssystemen und dessen verwendung |
Country Status (4)
Country | Link |
---|---|
US (1) | US8443676B2 (de) |
EP (1) | EP1946060A1 (de) |
DE (1) | DE102006039422A1 (de) |
WO (1) | WO2007023168A1 (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007054828A1 (de) * | 2007-08-08 | 2009-03-12 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Sensorelement und ein Verfahren zur Herstellung eines kapazitiven Sensors |
DE102008054879B4 (de) | 2008-12-18 | 2023-08-31 | Endress+Hauser SE+Co. KG | Drucksensor |
DE102011085329A1 (de) | 2011-10-27 | 2013-05-02 | Continental Teves Ag & Co. Ohg | Optischer Druckfühler und Verfahren zum optischen Erfühlen eines Drucks |
JP5990933B2 (ja) | 2012-02-29 | 2016-09-14 | オムロン株式会社 | 圧力センサパッケージの製造方法 |
US20130300571A1 (en) * | 2012-04-18 | 2013-11-14 | Farrokh Mohamadi | Interrogation of active and passive proppants for real-time monitoring of fractured wells |
DE102013222516A1 (de) | 2012-11-15 | 2014-06-12 | Continental Teves Ag & Co. Ohg | Drucksensor zur Bestimmung eines hydraulischen und/oder pneumatischen Drucks, Verfahren zur Justage des Drucksensors sowie Verwendung des Drucksensors |
DE102013210349A1 (de) | 2013-06-04 | 2014-12-04 | Conti Temic Microelectronic Gmbh | Optische Druckmessvorrichtung und optisches Druckmessverfahren |
DE102013222129B3 (de) * | 2013-10-30 | 2014-10-09 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Kapazitives Sensorelement mit integrierter Mess- und Referenzkapazität |
DE102014200507A1 (de) * | 2014-01-14 | 2015-07-16 | Robert Bosch Gmbh | Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren |
EP3227141A2 (de) * | 2014-12-02 | 2017-10-11 | Pavoni, Francesco | Bremssignalisierungssystem für fahrräder, motorräder und autos mit hydraulischen bremsen |
GB2542332A (en) * | 2015-06-29 | 2017-03-22 | Continental automotive systems inc | Pressure sensor device with a MEMS piezoresistive element attached to an in-circuit ceramic board |
JP6581849B2 (ja) * | 2015-09-01 | 2019-09-25 | アズビル株式会社 | 微細機械装置 |
DE102015122287A1 (de) * | 2015-12-18 | 2017-07-06 | Endress + Hauser Gmbh + Co. Kg | Kapazitiver Differenzdrucksensor |
TWI623733B (zh) * | 2016-08-25 | 2018-05-11 | 蘇州明皜傳感科技有限公司 | 壓力感測器以及其製造方法 |
TWI630330B (zh) | 2016-11-15 | 2018-07-21 | 財團法人工業技術研究院 | 智慧機械元件 |
DE102018209563B3 (de) | 2018-06-14 | 2019-07-18 | Siemens Aktiengesellschaft | Multifunktionaler Sensor für die Prozessindustrie |
CN110044521B (zh) * | 2019-05-29 | 2020-12-04 | 南京元感微电子有限公司 | 测量固体间压力的力传感器 |
FR3105415B1 (fr) * | 2019-12-23 | 2021-12-24 | Commissariat Energie Atomique | Capteur autonome à membrane |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19858828A1 (de) * | 1998-04-17 | 1999-10-28 | Micronas Intermetall Gmbh | Kapazitiver Sensor |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4064550A (en) * | 1976-03-22 | 1977-12-20 | Hewlett-Packard Company | High fidelity pressure transducer |
US5564434A (en) * | 1995-02-27 | 1996-10-15 | Medtronic, Inc. | Implantable capacitive absolute pressure and temperature sensor |
DE19637392A1 (de) | 1996-09-13 | 1998-03-26 | Siemens Ag | Drucksensor unter Verwendung von mit akustischen Oberflächenwellen arbeitenden Elementen - OFW-Elemente - |
US6209398B1 (en) * | 1998-09-18 | 2001-04-03 | Texas Instruments Incorporated | Fluid pressure transducer apparatus and method for assembling |
DE19963786A1 (de) | 1999-12-30 | 2001-07-05 | Aktiv Sensor Gmbh | Druckmesselement mit piezoresistiven Halbleiterelementen |
AU2002255953A1 (en) | 2001-03-27 | 2002-10-08 | Aron Z. Kain | Wireless system for measuring distension in flexible tubes |
DE10212947C1 (de) | 2002-03-22 | 2003-09-18 | Nord Micro Ag & Co Ohg | Drucksensor, insbesondere zur kapazitiven Bestimmung des Absolutdrucks |
DE10323297A1 (de) * | 2002-05-24 | 2003-12-04 | Continental Teves Ag & Co Ohg | Verfahren und Vorrichtung zur Messung von Drücken und deren Verwendung in Kraftfahrzeugen |
JP2004294413A (ja) * | 2003-02-12 | 2004-10-21 | Pacific Ind Co Ltd | 圧力センサ、送信機、及びタイヤ状態監視装置 |
DE10347215A1 (de) | 2003-10-10 | 2005-05-12 | Bosch Gmbh Robert | Mikromechanischer Sensor |
DE102004023063A1 (de) | 2004-05-11 | 2005-12-01 | Robert Bosch Gmbh | Mikromechanische piezoresistive Drucksensorenvorrichtung |
US7129828B2 (en) * | 2004-07-20 | 2006-10-31 | Honeywell International Inc. | Encapsulated surface acoustic wave sensor |
US7017416B1 (en) * | 2004-10-22 | 2006-03-28 | Honeywell International, Inc. | Disposable pressure diaphragm and wireless sensor systems and methods |
US7290454B2 (en) * | 2004-12-02 | 2007-11-06 | Honeywell International Inc. | Pressure flow sensor systems and pressure flow sensors for use therein |
US7698952B2 (en) * | 2006-10-03 | 2010-04-20 | Kla-Tencor Corporation | Pressure sensing device |
US7726184B2 (en) * | 2007-12-28 | 2010-06-01 | Honeywell International Inc. | Surface acoustic wave sensor and package |
US7730772B2 (en) * | 2007-12-28 | 2010-06-08 | Honeywell International Inc. | Surface acoustic wave sensor and package |
-
2006
- 2006-08-23 DE DE102006039422A patent/DE102006039422A1/de not_active Withdrawn
- 2006-08-23 US US12/063,780 patent/US8443676B2/en not_active Expired - Fee Related
- 2006-08-23 EP EP06778327A patent/EP1946060A1/de not_active Withdrawn
- 2006-08-23 WO PCT/EP2006/065602 patent/WO2007023168A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19858828A1 (de) * | 1998-04-17 | 1999-10-28 | Micronas Intermetall Gmbh | Kapazitiver Sensor |
DE19847563A1 (de) * | 1998-04-17 | 1999-10-28 | Micronas Intermetall Gmbh | Kapazitiver Sensor |
Non-Patent Citations (1)
Title |
---|
See also references of WO2007023168A1 * |
Also Published As
Publication number | Publication date |
---|---|
US8443676B2 (en) | 2013-05-21 |
DE102006039422A1 (de) | 2007-03-15 |
US20100263452A1 (en) | 2010-10-21 |
WO2007023168A1 (de) | 2007-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1946060A1 (de) | Drucksensor für hydraulische medien in kraftfahrzeugbremssystemen und dessen verwendung | |
EP1301762B1 (de) | Piezoelektrischer sensor | |
DE69807876T2 (de) | Kapazitiver druckwandler mit verbessertem elektrodenträger | |
DE102011082522B3 (de) | Drucksensor und Füllstandsmesseinrichtung | |
DE102015015417A1 (de) | Bedienvorrichtung für einen Kraftwagen und Verfahren zur Erzeugung eines haptischen Signals | |
EP1065488B1 (de) | Relativdrucksensor | |
DE102018105867A1 (de) | Differenzdrucksensor zum Bestimmen einer Differenzdruckgröße | |
DE3436440A1 (de) | Halbleiter-messeinrichtung | |
EP2724133B1 (de) | Drucksensoranordnung zur erfassung eines drucks eines fluiden mediums in einem messraum | |
EP3543671A1 (de) | Drucksensor | |
DE10221219A1 (de) | Drucksensor | |
DE10132269A1 (de) | Drucksensor | |
DE102013222129B3 (de) | Kapazitives Sensorelement mit integrierter Mess- und Referenzkapazität | |
WO2012100770A1 (de) | Elektrische messeinrichtung zur kraft- und/oder druckmessung | |
DE102021111671A1 (de) | Druckmesszelle mit Auswerteelektronik auf Verdrängungskörper | |
DE3940709A1 (de) | Druckaufnehmer | |
DE102013114741A1 (de) | Drucksensor | |
DE102006058269B4 (de) | Verfahren zur Kalibrierung mindestens eines Drucksensors und entsprechender Drucksensor | |
DE102009045158A1 (de) | Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung | |
DE102008041937A1 (de) | Drucksensoranordnung und Verfahren zur Herstellung einer Drucksensoranordnung | |
EP2098845B1 (de) | Keramischer Drucksensor | |
WO2016016026A1 (de) | Drucksensor und verfahren zum herstellen eines drucksensors | |
DE102010017191B4 (de) | Differenzdrucksensor mit Absolutdruckermittlung | |
WO2021073973A2 (de) | Organische leiterplatte, getriebe mit einer organischen leiterplatte und herstellungsverfahren zum herstellen einer organischen leiterplatte | |
DE102006039421A1 (de) | Drucksensoreinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR |
|
17Q | First examination report despatched |
Effective date: 20080821 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150303 |