EP1936165B1 - Procédé et appareil de commande pour l'amortissement de choc lorsque l'embrayage du convertisseur de couple est ouvert - Google Patents

Procédé et appareil de commande pour l'amortissement de choc lorsque l'embrayage du convertisseur de couple est ouvert Download PDF

Info

Publication number
EP1936165B1
EP1936165B1 EP07021057A EP07021057A EP1936165B1 EP 1936165 B1 EP1936165 B1 EP 1936165B1 EP 07021057 A EP07021057 A EP 07021057A EP 07021057 A EP07021057 A EP 07021057A EP 1936165 B1 EP1936165 B1 EP 1936165B1
Authority
EP
European Patent Office
Prior art keywords
torque
internal combustion
combustion engine
deviation
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07021057A
Other languages
German (de)
English (en)
Other versions
EP1936165A2 (fr
EP1936165A3 (fr
Inventor
Antoon Janssen Nicolaas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP1936165A2 publication Critical patent/EP1936165A2/fr
Publication of EP1936165A3 publication Critical patent/EP1936165A3/fr
Application granted granted Critical
Publication of EP1936165B1 publication Critical patent/EP1936165B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/12Engine control specially adapted for a transmission comprising a torque converter or for continuously variable transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus

Definitions

  • the invention relates to a method for controlling an internal combustion engine in a drive train, which has a hydraulic torque converter with an impeller and a turbine wheel, at a transition from a coasting operation to a traction operation.
  • the invention further relates to a control device which is set up to carry out the method.
  • Such a method and such a control device is in each case from DE 102 06 199 C1 known, which shows a control of an internal combustion engine in conjunction with a drive train of a motor vehicle.
  • the drive train on a rotational angle clearance and / or is elastically rotatable.
  • a driveline with a clutch and a two-mass flywheel and a driveline with a hydraulic torque converter are called.
  • the angular play and the elastic rotatability are provided in the drive train between the internal combustion engine and the drive wheels and serve for the vibration-decoupling of the internal combustion engine from the drive train.
  • a speed equality is called at a docking point, the DE 102 06 199 C1 defined as a structurally predetermined maximum angle of rotation between play-affected elements of the drive train.
  • the docking point characterizes the time at which the games shift and the driveline is braced or biased in the other direction. It is important in this prior art, soft to solve the driveline of an effective in the push operation first rotation angle stop and soft to create an effective in the train operation second rotation angle stop.
  • the rotational angle stop results in each case by applying two adjacent flanks of components mechanically coupled to a play and / or in that an elastic return torque reaches the value of the twisting moment.
  • the torque and power-determining throttle position is the control unit of the DE 102 06 199 C1 when load changes not only depending on the driver's request, but also set in dependence on rotational angle and speed differences between different locations of the drive train.
  • the DE 102 06 199 C1 refers in this context as influencing factors the total angle of rotation of the drive train, which results as a result of play and / or elastic deformations, the angular velocity of the primary side at the end of the shift operation, the angular velocity of the secondary side in Docking time and the acceleration capacity and / or the braking capacity of the internal combustion engine.
  • the terms of the primary side and the secondary side obviously refer to the example with the two-mass flywheel. This results from the fact that the DE 102 06 199 C1 these terms only in connection with the example of the driveline calls, which has a two-mass flywheel. Elsewhere it says in the DE 102 06 199 C1 in that the speed of the internal combustion engine for the example with the hydraulic torque converter is not a variable that is significant for the speed on the turbine side of the torque converter.
  • the torque transmitted by the torque converter, and the turbine torque of the torque converter are important parameters.
  • the transmitted torque of the torque converter, or to control its turbine torque This could be influenced as a result, the difference in the speeds of converter end and Wandlerfernem end of the elasticity and play having drive train.
  • the difference DE 102 06 199 C1 essentially two phases: In a first phase designated as waiting time, the torque of the internal combustion engine corresponding to the driver's request is set and transferred to the drive train without further action. In contrast, in a second phase, referred to as engagement time, there is a reduction in the torque of the internal combustion engine via an ignition intervention and / or a change in the throttle valve position.
  • DE102004005728 discloses a method of controlling an internal combustion engine at a transition from a coasting operation to a traction operation. If the difference between the rotational speeds of the impeller and the turbine wheel of the torque converter is equal to zero, the torque of the internal combustion engine is set so that a predeterminable maximum temporal gradient is not exceeded.
  • FR2881795 the profile of the rotational speed of the internal combustion engine is set as a function of the rotational speed of the turbine wheel.
  • a simultaneous detection and comparison of the rotational speeds of the impeller and the turbine wheel and the determination of a deviation of the rotational speed of the impeller from the rotational speed of the turbine wheel is provided.
  • the torque of the internal combustion engine is adjusted under certain conditions in dependence on the deviation of the rotational speed of the impeller from the rotational speed of the turbine wheel and in dependence on a rate of change of the rotational speed of the impeller.
  • a shift of the influence of the driver's request on the torque setpoint formation to other influencing variables takes place.
  • These other influencing variables allow a comparatively slow matching of the rotational speed of the impeller to the rotational speed of the turbine wheel. This slow alignment is triggered when the speed of the turbine wheel is greater than the speed of the impeller and the deviation simultaneously falls below a predetermined threshold.
  • the invention thus relates to a control of the internal combustion engine, which takes into account properties of the torque converter.
  • it is the subject of the DE 102 06 199 C1 Therefore, to solve the lying behind the torque converter driveline soft from an effective in pushing operation rotation angle stop and soft to create an effective in train operation angle of rotation stop. It is therefore not about avoiding jerky torque peaks in the turbine torque.
  • FIG. 1 a powertrain 10 of a motor vehicle with an internal combustion engine 12, a hydraulic torque converter 14, the at least one impeller 16, a turbine 18 and a lockup clutch 20, a change gear 22, a differential 24 and drive wheels 26 and 28th
  • Hydrodynamic converter which work not only as a fluid coupling, but also as a torque converter, additionally have a stator 30, which deflects the hydraulic fluid circulating between impeller 16 and turbine 18 in response to a speed difference between the impeller 16 and the turbine 18.
  • the impeller 16 is rotatably connected to a crankshaft of the internal combustion engine 12, while the turbine 18 is rotatably connected to a drive shaft of the transmission 22.
  • the lockup clutch 20 is a controllable friction clutch that is parallel to the torque converter 14.
  • the internal combustion engine 12 is controlled by a control unit 32, which processes signals in which various operating parameters of the drive train 10 are mapped.
  • a driver's intention generator 34 which detects a torque demand FW of the driver
  • the signal n_1 of a first speed sensor 36 which detects a speed of the pump wheel 16 as a speed of the crankshaft of the internal combustion engine 10
  • the signal n_2 of a second speed sensor 38 detects a rotational speed n_2 of the turbine wheel 18, and, alternatively or in addition to a detected signal n_2, the signal n_3 a wheel speed sensor 40, which detects a rotational speed n_3 of a drive wheel 26 of the motor vehicle.
  • control unit 32 knows the gear engaged in the change gear 22, it can determine the speed n_2 from the speed n_3 and the present gear ratio.
  • control unit 32 controls the controller 32 via the control connection 42 and the change gear 22 and, with a signal KB, the closed state of the lockup clutch 20th
  • the second speed n_2 results in a certain speed of the transmission 22 from the driving speed, ie the speed n_3.
  • wheel speed sensor 40 therefore has cost advantages resulting from a possible saving of the second speed sensor 38.
  • control unit 32 It is also not necessary for each operating parameter processed by the control unit 32 to have its own sensor because the control unit 32 can model different operating parameters with the aid of mathematical models from other, measured operating parameters.
  • control unit 32 From the received sensor and sensor signals, the control unit 32 forms, among other manipulated variables S_L, S_K and S_Z for adjusting the internal combustion engine 12 for generating the torque.
  • control unit 32 is adapted, in particular programmed, to carry out the method according to the invention or one of its embodiments and / or to control the corresponding method sequence.
  • the internal combustion engine 12 typically includes subsystems 44, 46, 38 of which a subsystem 44 is for controlling the filling of combustion chambers, a subsystem 46 is for controlling mixture formation, and a subsystem 48 is for controlling the ignition of the combustion chamber fillings.
  • the subsystem 44 for controlling the fillings has an electronically controlled throttle valve for controlling the air supply to the internal combustion engine 12, which is controlled by a control signal S_F.
  • the subsystem 46 for controlling the mixture formation has an arrangement of injectors, via which fuel is metered into the intake manifold or into individual combustion chambers of the internal combustion engine 12 with control signals S_K. Control signals S_Z are used to trigger ignitions in the combustion chambers.
  • the torque generated by the internal combustion engine 12 can in particular by limiting the combustion chamber fillings and / or by switching off the fuel supply be reduced to one or more combustion chambers and / or by delaying the triggering of ignitions with respect to an ignition point at which an optimal torque would result (retard the ignition).
  • FIG. 1 illustrates an embodiment of the invention in the form of a block diagram of the control unit 32.
  • the individual blocks can be assigned both to individual method steps and to function modules of the control unit 32, so that the FIG. 2 discloses both method aspects and apparatus aspects of the invention.
  • control unit 32 processes the signals FW, n_1 and n_2 to the actuating signals S_F, S_K and S_Z. At the same time, the control unit 32 detects the rotational speed n_1 of the impeller 16 and the rotational speed n_2 of the turbine wheel 18. As already explained, n_2 can also be modeled from the signals of other sensors as an alternative to a measurement.
  • a block 50 is used to determine a rate of change of the rotational speed n_1 of the impeller 16. In one embodiment, the determination is carried out by forming a time derivative d / dt (n_1).
  • a deviation of the rotational speed n_1 of the impeller 16 from the rotational speed n_2 of the turbine wheel 18 is determined.
  • the determined values of the deviation dn and the rate of change d / dt (n_1) of the rotational speed n_1 of the impeller 16 are used to address an instationary setpoint generator 54, which determines the setpoint values M_soll_i for the torque of the internal combustion engine 12 as a function of its input variables dn and d / dt ( n_1).
  • the setpoint values M_soll_i output by the unsteady setpoint generator 54 are used to control a block 56, in which at least one of the manipulated variables S_L, S_K and S_Z is formed.
  • the formation of the manipulated variables S_F and / or S_K and / or S_Z for controlling the subsystems 44 and / or 46 and / or 48 takes place from the FIG. 1 such that the internal combustion engine 12 generates the required torque M_soll_1.
  • the Switzerland ists-setpoint generator 66 is used to output torque setpoints M_soll_z in train operation, in which a dominant dependence of the torque setpoint desired by the driver request FW or other requirements, which are formed in the control unit 32 for a control of the engine 12. Such requirements arise, for example, by a speed limitation, in which the torque of the internal combustion engine 12 is reduced as needed to prevent the exceeding of a maximum permissible speed of the internal combustion engine 12.
  • the software switch 62 couples the torque setpoint and, thus, the adjustment of the engine torque from Switzerland ists-setpoint generator 66 and connects the output 60 of the unsteady setpoint generator 54 to the input 58 of the block 56.
  • the speed n_2 of the turbine wheel 18 is greater than the speed n_1 of the impeller 16 and the deviation falls below a predetermined threshold value S.
  • comparator 68 For this purpose, a comparison of the simultaneously detected speed values n_1 and n_2 takes place in the comparator 68.
  • a signal at the output of the comparator 68 indicates whether the rotational speed n_2 of the turbine wheel 18 is greater than the rotational speed n_1 of the impeller 16. This situation typically occurs during coasting.
  • comparator 68 then provides a logical 1, while in train operation, where n_1 is typically greater than or equal to n_2, it provides a logic zero.
  • a comparison of the deviation dn formed in the link 52 with a predetermined threshold value S provided by a memory cell 72 takes place parallel in time in another comparator 70. The comparison is made such that a signal at the output of the comparator 70 indicates whether the threshold value S is exceeded. In one embodiment, comparator 70 then provides a logical one.
  • the rotational speeds n_1 of the pump wheel 16 and n_2 of the turbine wheel 18 are simultaneously detected and compared with each other, a deviation dn of the rotational speed n_1 of the impeller 16 from the rotational speed n_2 of the turbine wheel 18 is determined, and then when the rotational speed n_2 of the turbine wheel 18 is greater as the rotational speed n_1 of the impeller 16 and the deviation dn equal to n_2 minus n_1 a predetermined Threshold S falls below, the torque of the internal combustion engine in dependence on the deviation dn and a rate of change d / dt (n_1) of the impeller 16 is set.
  • the torque setpoints are in this case given depending on a speed deviation dn and a rate of change d / dt (n_1) a speed n_1, which is the realization of a control of the speed n_1 of the impeller 16 to the value of the speed n_2 of the turbine wheel 18 with a PD Characteristic allows (P equals proportional, D equals differential).
  • the specification of the torque setpoint by the unsteady setpoint generator 54 is not completely independent of the driver's request FW, which in the FIG. 2 is represented by the dashed feed of signal FW to block 54.
  • the dependency on the driver's request is preferably so pronounced in the case of the transient setpoint generator 54 that a fast and wide actuation of an accelerator pedal makes the driver's request FW more pronounced and the PD control function more limited.
  • the controller 32 interprets such actuation of the accelerator pedal by the driver as a request for priority of the torque request before comfort functions such as the load shock absorption.
  • FIG. 3 shows qualitative courses of the speeds n_1 and n_2 over the time t in carrying out the method according to the invention.
  • the drive train 10 is in coasting mode with the lockup clutch 20 open.
  • the speed n_1 of the pump wheel 16 is smaller than the speed n_2 of the turbine wheel 18.
  • the torque converter 14 does not transmit any torque. Such conditions arise, for example, when the motor vehicle is rolling at low speed and the driver further reduces his torque requirement. Under a low speed is understood in this context, a speed of less than 40 km / h.
  • the converter lockup clutch 20 is open, the rotational speed n_1 of the impeller 16 then falls below the rotational speed n_2 of the turbine wheel 18.
  • the driver requests a higher torque at which the driveline 10 transitions from coasting to traction.
  • the specification of the torque setpoint is first dominated by the driver request FW for a higher torque, so that the speed n_1 of the engine 12 initially increases. Since the rotational speed of the impeller 16, which corresponds to the rotational speed n_1 of the internal combustion engine, is initially lower than the rotational speed n_2 of the turbine wheel 18, initially no appreciable torque transfer from the impeller 16 to the turbine wheel 18 takes place. The impeller 16 therefore initially rotates unloaded high, which is responsible for the initially steep increase in speed n_1.
  • the software switch 62 in the FIG. 2 transferred, so that the setpoint specification is decoupled from the dominance of the driver's request by Huawei foundeds setpoint generator 66 and done by the unsteady setpoint generator 54.
  • the desired value input thus takes place as a function of the rate of change d / dt (n_1) of the rotational speed n_1 and the value of the deviation of the rotational speed n_1 of the impeller 16 from the rotational speed n_2 of the turbine wheel 18.
  • the reference value specification by the instationary setpoint generator 54 is carried out with the aim of allowing the rotational speed n_1 of the impeller 16 to run at a comparatively shallow gradient through the value of the rotational speed n_2 of the turbine wheel 18, so that the torque transmission starts smoothly.
  • the torque transmission starts when the rotational speed n_1 of the impeller 16 exceeds the rotational speed n_2 of the turbine wheel 18 or at least approaches it.
  • the setpoint default is switched back to the Huawei ists-Sollgeber 66.
  • this is done when the value of the deviation dn greater than or equal to zero.
  • the switching to the setpoint specification by the Wersted setpoint generator 66 may also be configured so that it takes place at a configurable positive or negative speed difference n_1 minus n_2. At the subject of FIG. 3 this switchover takes place at time t2. Alternatively or additionally, the switching can take place even after a predetermined period of time has elapsed after the time t1.
  • the downshift to the setpoint specification by the Switzerland ists setpoint generator 66 then takes place when the speed n_1 of the impeller 16 exceeds the sum of the speed n_2 of the turbine wheel 18 and a predetermined offset.
  • this embodiment provides that the torque of the internal combustion engine is adjusted as a function of the deviation dn and the rate of change d / dt (n_1) until the deviation after a change of its sign exceeds a predetermined threshold value.
  • the offset at which the setpoint input is activated and deactivated by the unsteady setpoint generator 54 is configurable for each gear in the gearbox 22, so that the torque of the internal combustion engine 12 is set in addition depending on a gear ratio set in the gearbox 22 becomes.
  • Both embodiments allow a adapted to the tensile force and inertial conditions at different speeds and speeds gear shock absorption with open converter clutch.
  • a further preferred embodiment provides that the torque of the internal combustion engine 12 is set only as a function of the deviation dn and the rate of change d / dt (n_1) if a driving stability program has not been deactivated and / or if a change in the gear set in the transmission Translation is not performed, and / or if a modification of the control of the internal combustion engine 12 is not activated for accelerated heating of a catalyst and / or the torque of the internal combustion engine 12th is set only in response to the difference dn and the rate of change d / dt (n_1) when the lockup clutch 20 is not closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Fluid Gearings (AREA)

Claims (8)

  1. Procédé de commande d'un moteur à combustion interne (12) dans une chaîne de transmission (10), qui présente un convertisseur de couple hydraulique (14) avec une roue de pompe (16) et une roue de turbine (18), dans le cas d'un transfert d'un mode de poussée dans lequel pratiquement aucun couple n'est transmis à la roue de turbine, en un mode de traction dans lequel un couple est transmis, les régimes (n_1) de la roue de pompe (16) et de la roue de turbine (18) étant détectés en même temps et comparés les uns aux autres, un écart (dn) du régime (n_1) de la roue de pompe (16) par rapport au régime (n_2) de la roue de turbine (18) étant détecté, caractérisé en ce que lorsque le régime (n_2) de la roue de turbine (18) est supérieur au régime (n_1) de la roue de pompe (16) et que l'écart (dn) est inférieur à une valeur seuil prédéfinie (S), le couple du moteur à combustion interne (12) est ajusté en fonction de l'écart (dn) et d'une vitesse de variation (d/dt (n_1)) du régime (n_1) de la roue de pompe (16).
  2. Procédé selon la revendication 1, caractérisé en ce que le couple du moteur à combustion interne (12) n'est ajusté en fonction de l'écart (dn) et de la vitesse de variation (d/dt (n_1)) que lorsqu'un programme de stabilité de conduite n'a pas été désactivé.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple du moteur à combustion interne (12) n'est ajusté en fonction de l'écart (dn) et de la vitesse de variation (d/dt (n-1)) que lorsqu'une variation de la démultiplication établie dans une transmission à changement de vitesse (22) n'est pas effectuée.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple du moteur à combustion interne (12) n'est ajusté en fonction de l'écart (dn) et de la vitesse de variation (d/dt(n_1)) que lorsqu'une modification de la commande du moteur à combustion interne (12) pour un chauffage accéléré d'un catalyseur n'est pas activée.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple du moteur à combustion interne (12) n'est ajusté en fonction de l'écart (dn) et de la vitesse de variation (d/dt(n_1)) que lorsqu'un embrayage de pontage de convertisseur (20) n'est pas fermé.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple du moteur à combustion interne (12) est ajusté en complément en fonction d'une démultiplication établie dans la transmission à changement de vitesse.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple du moteur à combustion interne (12) est ajusté en complément en fonction du souhait du conducteur (FW).
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le couple du moteur à combustion interne (12) est ajusté en fonction de l'écart (dn) et de la vitesse de variation (d/dt(n_1)) jusqu'à ce que l'écart (dn) dépasse une valeur seuil prédéterminée (S) après un changement de signe.
EP07021057A 2006-12-23 2007-10-27 Procédé et appareil de commande pour l'amortissement de choc lorsque l'embrayage du convertisseur de couple est ouvert Expired - Fee Related EP1936165B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006061439A DE102006061439A1 (de) 2006-12-23 2006-12-23 Verfahren und Steuergerät zur Lastschlagdämpfung bei offener Wandlerüberbrückungskupplung

Publications (3)

Publication Number Publication Date
EP1936165A2 EP1936165A2 (fr) 2008-06-25
EP1936165A3 EP1936165A3 (fr) 2008-12-24
EP1936165B1 true EP1936165B1 (fr) 2011-09-07

Family

ID=39253759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07021057A Expired - Fee Related EP1936165B1 (fr) 2006-12-23 2007-10-27 Procédé et appareil de commande pour l'amortissement de choc lorsque l'embrayage du convertisseur de couple est ouvert

Country Status (3)

Country Link
US (1) US8005601B2 (fr)
EP (1) EP1936165B1 (fr)
DE (1) DE102006061439A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022553A1 (de) * 2010-06-02 2011-12-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs
FR2971550A1 (fr) * 2011-02-16 2012-08-17 Peugeot Citroen Automobiles Sa Dispositif de transmission de puissance integrant un convertisseur de couple et procede de pilotage d'un tel dispositif
US10189460B2 (en) * 2015-02-12 2019-01-29 Ford Global Technologies, Llc Methods and system for operating a vehicle transmission
US10131342B2 (en) * 2016-12-14 2018-11-20 Ford Global Technologies, Llc Engine friction model adaptation
CN114687869A (zh) * 2020-12-31 2022-07-01 宝能汽车集团有限公司 车辆的控制方法和车辆

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121592A (ja) * 1994-10-27 1996-05-14 Fuji Heavy Ind Ltd 自動変速機のロックアップ制御装置
US6266597B1 (en) * 1999-10-12 2001-07-24 Ford Global Technologies, Inc. Vehicle and engine control system and method
GB2389922B (en) * 1999-10-12 2004-03-03 Ford Global Tech Llc Vehicle and engine control system and method
WO2001075288A1 (fr) * 2000-04-04 2001-10-11 Robert Bosch Gmbh Procede et dispositif pour la commande de l'unite d'entrainement d'un vehicule automobile
DE10206199C1 (de) 2001-02-01 2002-12-19 Daimler Chrysler Ag Steuerung eines Motors
DE10333183A1 (de) * 2003-07-22 2005-02-17 Daimlerchrysler Ag Verfahren zum Betrieb eines Antriebsstranges für ein Kraftfahrzeug
US6910990B2 (en) * 2003-09-09 2005-06-28 Ford Global Technologies, Llc Engine control to reduce impacts due to transmission gear lash while maintaining high responsiveness to the driver
JP2007515333A (ja) * 2003-12-20 2007-06-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 惰性運転における車両駆動ユニットの運転方法および装置
DE102004005728B4 (de) * 2004-01-14 2017-04-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Abtriebseinheit eines Fahrzeugs
FR2881795A1 (fr) 2005-02-08 2006-08-11 Peugeot Citroen Automobiles Sa Procede de controle de l'inversion de la puissance dans un systeme comportant un convertisseur de couple et ensemble mecanique integrant ledit procede
DE102006008642A1 (de) * 2006-02-24 2007-08-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridfahrzeugs
US7676315B2 (en) * 2006-03-07 2010-03-09 Ford Global Technologies, Llc Vehicle response during vehicle acceleration conditions
US7524255B2 (en) * 2006-07-27 2009-04-28 Gm Global Technology Operations, Inc. Tip-in bump reduction methods and systems

Also Published As

Publication number Publication date
EP1936165A2 (fr) 2008-06-25
DE102006061439A1 (de) 2008-06-26
EP1936165A3 (fr) 2008-12-24
US20080215216A1 (en) 2008-09-04
US8005601B2 (en) 2011-08-23

Similar Documents

Publication Publication Date Title
DE19837816B4 (de) Verfahren und Vorrichtung zum Steuern einer Kupplung
DE19922740B4 (de) System zum Steuern des Motorbremsmoments im Schubbetrieb
EP1895200B1 (fr) Procédé pour élargir des fonctions d'un frein d'engrenage
DE60027534T2 (de) Gangschalteinrichtung- und Verfahren eines Fahrzeugs
EP2238339B1 (fr) Procédé pour faire fonctionner un dispositif d'entraînement hybride
DE19912506A1 (de) Vorrichtung und Verfahren zum Steuern des Kupplungsöldrucks in Automatikgetrieben
DE10236291A1 (de) Verfahren zur Schlupfsteuerung einer Kupplung
DE102008009135A1 (de) Verfahren und Steuergerät zur Steuerung eines Triebstrangs eines Kraftfahrzeuges
EP1936166A2 (fr) Procédé et dispositif de commande pour la protection d'un embrayage dans un ensemble de transmission d'un véhicule automobile
EP1936165B1 (fr) Procédé et appareil de commande pour l'amortissement de choc lorsque l'embrayage du convertisseur de couple est ouvert
DE4235827A1 (de) Verfahren und Einrichtung zur Steuerung der Ausgangsleistung einer Antriebseinheit eines Fahrzeugs
DE19615806B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeuges
EP1959151A2 (fr) Procédé et appareil de commande destinés à la détection de l'état de fermeture d'un embrayage dans un entraînement de véhicule automobile
EP1613852B1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne par surveillance du couple
DE19712871A1 (de) Kupplungssystem
EP2019768B1 (fr) Procédé et dispositif de commande d'une boîte de vitesses automatique
DE19824480A1 (de) Verfahren und Vorrichtung zum Steuern des Betriebs einer zwischen einem Antriebsmotor und einem Gangschaltgetriebe angeordneten Kupplung im Antriebsstrang eines Kraftfahrzeugs
DE10031771A1 (de) Kraftfahrzeug
DE10249098A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit mit einer Brennkraftmaschine
DE102013112967A1 (de) Verfahren zum Steuern eines Verbrennungsmotors
DE4335726B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE4403597B4 (de) Verfahren und Einrichtung zur Steuerung der Ausgangsleistung einer Antriebseinheit eines Fahrzeugs
DE102010033853B4 (de) Verfahren zur Anfahrunterstützung eines Fahrzeugs
DE4313746A1 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Antriebseinheit eines Fahrzeugs
WO2016177367A1 (fr) Procédé de commande de l'embrayage d'un véhicule une fois terminée une marche en roue libre du véhicule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DR. ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090624

17Q First examination report despatched

Effective date: 20090729

AKX Designation fees paid

Designated state(s): DE GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DR. ING. H.C. F. PORSCHE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008076

Country of ref document: DE

Effective date: 20111103

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20111021

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120611

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008076

Country of ref document: DE

Effective date: 20120611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181024

Year of fee payment: 12

Ref country code: GB

Payment date: 20181019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190923

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191027

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008076

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501