EP1928494A2 - Kombinationstherapie zur immunstimulation - Google Patents

Kombinationstherapie zur immunstimulation

Info

Publication number
EP1928494A2
EP1928494A2 EP05778932A EP05778932A EP1928494A2 EP 1928494 A2 EP1928494 A2 EP 1928494A2 EP 05778932 A EP05778932 A EP 05778932A EP 05778932 A EP05778932 A EP 05778932A EP 1928494 A2 EP1928494 A2 EP 1928494A2
Authority
EP
European Patent Office
Prior art keywords
mrna
cytokine
rna
antigen
viral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05778932A
Other languages
English (en)
French (fr)
Inventor
Ingmar Hoerr
Steve Pascolo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Curevac SE
Original Assignee
Curevac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curevac AG filed Critical Curevac AG
Publication of EP1928494A2 publication Critical patent/EP1928494A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1841Transforming growth factor [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • A61K39/001106Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001148Regulators of development
    • A61K39/00115Apoptosis related proteins, e.g. survivin or livin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001152Transcription factors, e.g. SOX or c-MYC
    • A61K39/001153Wilms tumor 1 [WT1]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001156Tyrosinase and tyrosinase related proteinases [TRP-1 or TRP-2]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001157Telomerase or TERT [telomerase reverse transcriptase]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001169Tumor associated carbohydrates
    • A61K39/00117Mucins, e.g. MUC-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00118Cancer antigens from embryonic or fetal origin
    • A61K39/001182Carcinoembryonic antigen [CEA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001186MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001188NY-ESO
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001184Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
    • A61K39/001189PRAME
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00119Melanoma antigens
    • A61K39/001191Melan-A/MART
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00119Melanoma antigens
    • A61K39/001192Glycoprotein 100 [Gp100]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001193Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
    • A61K39/001194Prostate specific antigen [PSA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine

Definitions

  • the present invention relates to a method for immunostimulation in a
  • a mammal comprising administering an mRNA encoding an antigen of a pathogenic microorganism, and administering at least one cytokine, in particular GM-CSF, at least one cytokine mRNA, at least one CpG DNA, at least one adjuvant viral mRNA and / or at least one adjuvant RNA.
  • cytokine in particular GM-CSF, at least one cytokine mRNA, at least one CpG DNA, at least one adjuvant viral mRNA and / or at least one adjuvant RNA.
  • nucleic acids are both DNA and RNA.
  • DNA-based genetic vaccinations consisting of injection of naked plasmid DNA were first demonstrated in mice in the early 1990's. However, in clinical phase I / II studies, this technology has not been shown to fulfill the human expectations of mouse studies (6). Numerous DNA-based genetic vaccinations have since been developed. In this connection, various methods have been developed for introducing DNA into cells, such as, for example, calcium phosphate transfection, polyprene transfection, protoplast fusion, electroporation, microinjection and lipofection, lipofection in particular having proved to be a suitable method. Also contemplated is the use of DNA viruses as DNA vehicles. Due to their infectious properties, such viruses achieve a very high transfection rate. The viruses used are genetically modified in this process so that no functional infectious particles are formed in the transfected cell.
  • DNA vaccination poses further potential safety risks (7, 8).
  • the injected recombinant DNA must first reach the nucleus, this step may already reduce the efficiency of DNA vaccination.
  • the integration of foreign DNA into the host genome may affect the expression of the host genes and possibly trigger the expression of an oncogene or the destruction of a tumor suppressor gene.
  • a gene essential to the host - and thus the gene product - can be inactivated by the integration of the foreign DNA into the coding region of this gene.
  • the corresponding DNA vehicles for the expression of a DNA introduced into the cell, it is necessary for the corresponding DNA vehicles to contain a strong promoter such as the viral CMV promoter. Integration of such promoters into the genome of the treated cell can lead to undesirable changes in the regulation of gene expression in the cell.
  • Another disadvantage is that the DNA molecules remain in the nucleus for a long time, either as an episome or, as mentioned, integrated into the host genome. This leads to a production of the transgenic protein which is not limited in time or can not be limited and to the risk of associated tolerance to this transgenic protein.
  • the injection of DNA can trigger the development of anti-DNA antibodies (9) and the induction of autoimmune diseases.
  • RNA messenger RNA
  • mRNA messenger RNA
  • RNA does not integrate into the host genome, when using RNA as a vaccine, no viral sequences, such as promoters, etc., are required for efficient transcription, etc.
  • RNA is much less stable towards DNA (RNA is particularly responsible for the instability of the RNA).
  • degrading enzymes so-called RNases (ribonucleases), but also numerous other processes that destabilize the RNA), but methods for stabilizing RNA are now known in the art.
  • RNases ribonucleases
  • RNA-based vaccination i.a. Developed immunization strategies based on self-replicating RNA encoding both an antigen and a viral RNA replicase (13, 14). Although such methods are efficient, there are safety risks associated with the use of viral RNA.
  • RNA and the endogenous RNA could lead to the formation of new types of alpha viruses).
  • mRNA vaccines known in the prior art are that only a humoral immune response (type Th2) is triggered by mRNA vaccination.
  • type Th2 humoral immune response
  • all viruses and numerous bacteria, such as mycobacteria and parasites invade the cells, multiply there and are thus protected from antibodies. Therefore, in order to evoke in particular an antitumoral or antiviral immune response, the initiation of a cellular immune response (type Th1) is required.
  • the object of the present invention is therefore to provide a new system for gene therapy and genetic vaccination, which ensures a more effective immune response and thus a more effective protection in particular against intracellular pathogens and the diseases caused by these pathogens or against tumors. This object is achieved by the embodiments of the present invention characterized in the claims.
  • An object of the present invention is a method for immunostimulation in a mammal, comprising the following steps: a. Administering at least one mRNA containing a region coding for at least one antigen of a pathogen or at least one tumor antigen, and b. Administering at least one component selected from the group consisting of at least one cytokine, at least one cytokine mRNA, at least one CpG DNA, at least one adjuvant viral mRNA and at least one adjuvant RNA.
  • mRNA according to the invention which is the mRNA used in step (a) of the method according to the invention modified present.
  • the invention is based on the finding that the injection of naked stabilized mRNA causes a specific immune response (17). According to the invention, such an antigen-specific immune response has been investigated more closely, in particular in comparison to a DNA-induced immune response.
  • BALB / c mice were injected with nude, stabilized mRNA in one experimental approach and plasmid DNA in the other with another approach.
  • the nucleic acids contained an area coding for ⁇ -galactosidase.
  • IgGI antibodies were produced in the case of mRNA vaccination, whereas IgG2a antibodies were predominantly formed during DNA vaccination.
  • mRNA vaccination induces a humoral immune response (Th2) (production of IgG1)
  • DNA vaccination causes a cellular immune response (ThI) (production of IgG2a).
  • Th2 humoral immune response
  • ThI cellular immune response
  • nucleic acids were used which, instead of the ⁇ -galactosidase coding region, contained an area which encoded an antigen of a pathogen or a tumor antigen.
  • the dosage of the mRNA according to the invention depends in particular on the disease to be treated and its progress stage, as well as the body weight, the age and sex of the patient (the terms organism, mammal, human, patient are used synonymously in the context of the invention).
  • the concentration of the mRNA according to the invention may therefore vary within a range of about 1 ⁇ g to 100 mg / ml.
  • cytokine cytokine mRNA
  • CpG DNA adjuvo viral mRNA and / or adjuvant RNA
  • adjuvant properties as determined according to the invention, so that the compounds or components falling within these categories are to be regarded as adjuvants.
  • Adjuvan alternenschaften based on the effect of the compounds of the above categories to act immunostimulatory.
  • Components from the categories of cytokines or cytokines expressing cytokine mRNAs are as such already directly immuno-stimulatory effective.
  • Compounds of the other abovementioned categories can indirectly have an immunostimulatory effect by stimulating cytokine secretion in the treated animal (human or animal, in particular domestic animals).
  • Cytokines are an excellent adjuvant in the context of DNA vaccination as known in the art (19, 20, 24, 25).
  • a preferred cytokine is GM-CSF (Granulocyte Macrophage Colony Stimulating Factor), which increases the density of dendritic cells (DCs) in the skin and thus enhances a DNA vaccination-induced immune response.
  • the aim of the investigations according to the invention was to further enhance by cytokine administration an mRNA-induced immune response according to the invention.
  • the administration of cytokines in conjunction with peptides (26) and DNA (27) is well known in the art.
  • cytokine mRNA an mRNA which contains the coding region for a functional cytokine, a fragment or a variant thereof
  • a cytokine mRNA ie an mRNA which contains the coding region for a functional cytokine, a fragment or a variant thereof
  • G-CSF a cytokine mRNA which contains the coding region for a functional cytokine, a fragment or a variant thereof
  • M-CSF preferably a G-CSF, M-CSF or GM-CSF mRNA addition
  • cytokine mRNA when administered, preferably GM-CSF mRNA, before, simultaneously and after mRNA vaccination, a strong increase in IFN- ⁇ secretion takes place, as a result of which an indirect immunostimulatory effect is produced , Particularly good results were obtained in particular with the administration of cytokine mRNA, preferably GM-CSF mRNA, preferably approximately 24 hours after the administration of the mRNA according to the invention.
  • CpG is a relatively rare dinucleotide sequence in DNA, in which the cytosine residue is often methylated to give 5-methylcytosine.
  • the methylation of the cytosine residue has effects on gene regulation, such as the inhibition of the binding of transcription factors, the blockade of promoter sites, etc.). That is, not only was there an increased Th2 immune response, but also a Th1 immune response was induced. Again, particularly good results were obtained when the CpG DNA was administered approximately 24 hours after the administration of the mRNA according to the invention.
  • CpG DNA was used with the motif CpG DNA 1668 with the sequence 5'-TCC ATG ACG TTC CTG ATG CT-3 'or the motif CpG 1982 5'-TCC AGG ACT TCT CTC AGG TT-3' in the experiments.
  • adjuvo-viral mRNA can also trigger an immunostimulatory effect. In this case also becomes one
  • adjuvant viral mRNA adjuvant effects are typically those antigens that are viral matrix or surface proteins.
  • the adjuvant RNA is relatively short RNA molecules, for example, from about 2 to about 1000 nucleotides, preferably from about 8 to about 200 nucleotides, more preferably from 15 to about 31 nucleotides exist. According to the invention, the adjuvant RNA may also be present in single or double-stranded form.
  • double-stranded RNA with a length of 21 nucleotides can also be used as interference RNA in order to specifically switch off genes, for example of tumor cells, and thus specifically kill these cells or inactivate active genes which are responsible for malignant degeneration (Elbashir et al., Nature 2001, 411, 494-498).
  • the adjuvant RNA is used in the method of the invention in step (b.) And is preferably chemically modified, as disclosed below in connection with modifications.
  • the adjuvant RNA activates cells of the immune system (primarily Antigen-presenting cells, in particular dendritic cells (DC), as well as the defense cells, for example in the form of T-cells, are particularly strong and thus stimulate the immune system of an organism.
  • the adjuvant RNA leads in particular to an increased release of immune-controlling cytokines, for example interleukins, such as IL-6, IL-12, etc.
  • the dosage of the cytokine or of the cytokine mRNA or of the CpG DNA or of the adjuvo viral mRNA or of the adjuvant RNA depends on the mRNA according to the invention which contains a region coding for an antigen from a pathogen or a tumor antigen, the condition to be treated, the condition of the patient to be treated (weight, size, developmental status of the disease, etc.).
  • the dosage range is approximately in a concentration range of 5 to 300 ⁇ g / m 2 .
  • Vaccination or “vaccination” generally means the introduction of one or more antigens or, in the context of the invention, the introduction of the genetic information for one or more antigen (s) in the form of the mRNA according to the invention coding for the antigen (s) an organism, in particular in a / several cell / cells or tissue of this organism.
  • the mRNA according to the invention thus administered is translated into the antigen in the organism or in its cells, i. the antigen encoded by the mRNA according to the invention (also: antigenic polypeptide or antigenic peptide) is expressed, whereby an immune response directed against this antigen is stimulated.
  • an “immune stimulation” or “stimulation of an immune response” is usually carried out by the infection of a foreign organism (eg a mammal, especially a human) with a pathogen (or pathogenic organism).
  • a "pathogen” or “pathogenic organism” is in particular viruses and bacteria, but also all other pathogens (such as, for example, fungi or infection-inducing organisms, such as Trypanosomes, nematodes, etc.).
  • "Antigens" of a pathogen are substances (eg proteins, peptides, nucleic acids or fragments thereof) of the pathogen that are capable of triggering the production of antibodies. Also included in the invention are antigens from a tumor.
  • the antigen is expressed in cells associated with a tumor.
  • Antigens from tumors are especially those that are produced in the degenerate cells themselves. Preferably, these are located on the surface of the cells antigens.
  • the antigens from tumors are also those that are expressed in cells that are not (or were not originally) degenerate themselves, but are associated with the tumor in question. These include, for example, also antigens associated with tumor-supplying vessels or their (re) education, in particular those antigens associated with neovascularization or angiogenesis, for example. Growth factors such as VEGF, bFGF, etc.
  • antigens associated with a tumor such as those from cells of the tissue embedding the tumor.
  • a cytokine is generally a protein that influences the behavior of cells, and cytokines have specific receptors on their target cells, such as monokines, lymphokines or interleukins, interferons, immunoglobulins and chemokines. Particularly preferred according to the invention as cytokine GM-CSF or G-CSF or M-CSF.
  • administering means the organism to be treated, preferably mammal, particularly preferably human, a suitable Dose of the mRNA or the cytokine or the cytokine mRNA or the adjuvo-viral mRNA or the CpG DNA or the adjuvant RNA according to the invention.
  • Administration may be by any suitable means, preferably via injection, parenterally, for example, intravenously, intraarterially, subcutaneously, intramuscularly, intraperitoneally or intradermally. Likewise, topical or oral administration is possible.
  • the administered mRNA or adjuvant according to the invention is present in liquid form according to method step (b.), Typically in aqueous solution which may be buffered, for example with phosphate buffer, HEPES, citrate, acetate, etc., for example to a pH between 5.0 and 8.0, in particular 6.5 and 7.5, and further advantageous excipients and additives (for example human serum albumin, polysorbate 80, sugar, etc.) or even salts, for example NaCl, KCl etc . may contain.
  • aqueous solution which may be buffered, for example with phosphate buffer, HEPES, citrate, acetate, etc., for example to a pH between 5.0 and 8.0, in particular 6.5 and 7.5, and further advantageous excipients and additives (for example human serum albumin, polysorbate 80, sugar, etc.) or even salts, for example NaCl, KCl etc . may contain.
  • the present invention likewise provides a method for the treatment of diseases, in particular of cancerous or tumor diseases as well as of viral and bacterial infections, such as, for example, hepatitis B, HIV or MDR (multi-drug resistance) infections or vaccination
  • DNA and / or adjuvant RNA to a subject or to a patient, especially a human or a pet.
  • This is a combination therapy in which mRNA according to the invention and cytokine or
  • Cytokine mRNA or adjuvo viral mRNA or CpG DNA or adjuvant RNA are administered according to the invention together (in a mixture), separately and simultaneously or separately and in a time-graded manner.
  • the mRNA according to the invention and cytokine or cytokine mRNA or adjuvo viral mRNA or CpG DNA or the adjuvant RNA are separated or timed Gradually administered.
  • step b. 1 minute to 48 hours, preferably 20 minutes to 36 hours, also preferably 30 minutes to 24 hours, more preferably 10 hours to 30 hours, most preferably 12 hours to 28 hours, especially preferably 20 to 26 hours, after step a. performed.
  • the cytokine or the cytokine mRNA or adjuvo-viral mRNA or the CpG DNA or the adjuvant RNA can also be administered before or simultaneously with the mRNA according to the invention.
  • a cytokine mRNA having an adjuvant RNA and / or a CpG DNA can be administered in a mixture. If the combination of the components according to method step b. do not take place in a mixture, the combined components can also be separated according to process step b. be administered. It is also preferred, in process step b. two or more, preferably 2-4, components of the same category, for example at least two different cytokines or at least two different cytokine mRNAs with each other, optionally also, as disclosed above, with components of other categories, to be combined (in admixture or separately).
  • step a. and / or b. additionally administered at least one RNase inhibitor, preferably RNAsin or aurintricarboxylic acid.
  • RNase inhibitor preferably RNAsin or aurintricarboxylic acid.
  • Such an inhibitor is typically incorporated into the at least one composition administered according to method step (b.).
  • an immune response to an mRNA according to the invention is amplified or modulated in the method according to the invention, particularly preferably changed from a Th2 immune response to a Th1 immune response.
  • the at least one mRNA according to the invention from step (a.) Of the method according to the invention contains an area selected for at least one antigen from a tumor selected from the group consisting of 707-AP, AFP, ART-4, BAGE , Catenin / m, Bcr-ab I, CAMEL, CAP-I, CASP-8, CDC27 / m, CDK4 / m, CEA, CMV pp65, CT, Cyp-B, DAM, EGFRI, ELF2M, ETV6-AML1, G250 , GAGE, GnT-V, GpI OO, HAGE, HBS, HER-2 / neu, HLA-A * 0201-R170l, HPV-E7, HSP70-2M, HAST-2, hTERT (or hTRT), influenza matrix protein , in particular influenza A matrix M1 protein or influenza B matrix Ml protein, iCE, K1AA0205, LAGE
  • a tumor selected from the
  • the at least one mRNA according to the invention particularly preferably contains a region which is at least one antigen from a tumor selected from the group consisting of MAGE-A1 [accession number (accession number) M77481], MAGE-A6 [accession number NM_005363], melan-A [Accession number NM_005511], GP100 [Accession number M77348], Tyrosinase [Accession number NM_000372], Survivin [Accession number AF077350], CEA [Accession number NM_004363], Her-2 / neu [Accession number M11730], Mucin-1 [Accession number NM_002456], TERT [accession number NM_003219], PR3 [accession number NM_002777], VVT1 [accession number NM_000378], PRAME [accession number NM_006115], TNC (tenascin C) [accession number X78
  • the cytokine mRNA contains a section which codes for the cytokine or the adjuvo-viral mRNA a section which codes for a viral protein with adjuvant effect.
  • the nucleotide sequence used and designated here as cytokine mRNA or adjuvo viral mRNA can contain at least one further functional segment in addition to the coding segment, for example specific signal or regulatory segments. These signal or regulation sections serve, for example, for better translation of the i. S. of this invention administered mRNA (for example, in a 3'-terminal, untranslated region of the mRNA).
  • a signal or regulation section may also be provided in the coding region of the mRNA, for example 3'- or 5'-terminal region of the coding sequence, so that the signal or regulatory effect occurs only at the level of the expressed (fusion) protein.
  • a signal peptide sequence for example a leader sequence
  • a signal peptide sequence could be coexpressed which, after administration, cell entry and expression, results in targeted secretion of the mRNA administered by the mRNA according to the invention or an mRNA having adjuvant effect Process step (b.)) Encoded protein from the cell leads.
  • the secretion signal peptides of corresponding peptide or protein hormones for example of insulin, vasopressin, glucagon, etc.
  • the secretion signals of antibodies can be used as secretion signals by virtue of the mRNA containing its respective nucleotide sequence.
  • Functional fragments and / or functional variants of an mRNA according to the invention or an antigen or a cytokine or a cytokine mRNA or an adjuvo-viral mRNA or a CpG DNA or an adjuvant RNA of the invention are also included according to the invention.
  • "functional" means that the antigen or the mRNA according to the invention has immunological or immunogenic activity, in particular an immune response in an organism in which it is foreign Antigen (or a fragment thereof) can be translated.
  • a "fragment" in the context of the invention is a truncated antigen or a truncated mRNA or a truncated cytokine or a truncated cytokine mRNA or an adjuvo-viral mRNA or a truncated CpG DNA or a truncated adjuvant RNA of the These may be N-terminal, C-terminal or intrasequentially abbreviated amino acid or nucleic acid sequences.
  • the preparation of fragments of the invention is well known in the art and may be performed by one skilled in the art using standard techniques (see, eg, Maniatis et al., (2001), Molecular Cloning: Laboratory Manual, CoId Spring Harbor Laboratory Press).
  • the preparation of the fragments of the invention may be accomplished by modifying the DNA sequence encoding the wild-type molecule followed by transformation of that DNA sequence into a suitable host and expression of that modified DNA sequence, provided that the modification of the DNA does not destroy the described functional activities.
  • the production of the fragment can also be carried out by modifying the wild-type DNA sequence followed by an in vitro transcription and isolation of the mRNA, also on condition that the modification the DNA does not destroy the functional activity of the respective mRNA.
  • the identification of a fragment according to the invention can be carried out, for example, by sequencing the fragment and subsequently comparing the sequence obtained with the wild-type sequence. The sequencing can be done by standard methods that are numerous and well known in the art.
  • mRNAs or cytokines or cytokine mRNAs according to the invention are in particular called adjuvo-viral mRNAs which have sequence differences from the corresponding wild-type sequences ), Deletion (s) and / or substitution (s) of amino acids or nucleic acids, wherein a sequence homology of at least 60%, preferably 70%, more preferably 80%, also more preferably 85%, even more preferably 90% and am most preferably 97% is present.
  • the sequences can be aligned to be compared below.
  • Gaps in the sequence of the first amino acid or nucleic acid sequence are introduced and the amino acids or nucleic acids are compared at the corresponding position of the second amino acid or nucleic acid sequence. If a position in the first amino acid sequence is occupied by the same amino acid or nucleic acid as it is at a position in the second sequence, then both sequences are identical at that position.
  • the percent identity between two sequences is a function of the number of identical positions shared by the sequences.
  • the determination of the percentage identity of two sequences can be carried out using a mathematical algorithm.
  • a preferred but not limiting example of a mathematical algorithm used for comparison of two sequences the algorithm of Karlin et al. (1993), PNAS USA, 90: 5873-5877.
  • Such an algorithm is integrated into the NBLAST program which can identify sequences having a desired identity to the sequences of the present invention.
  • the gapped BLAST program can be used, as described in Altschul et al. (1997), Nucleic Acids Res. 25: 3389-3402.
  • Functional variants within the meaning of the invention may preferably be mRNA molecules according to the invention, cytokine mRNA or adjuvo viral mRNA molecules which have an increased stability and / or translation rate compared to their wild-type molecules. There may also be better transport into the cell of the (host) organism.
  • variants includes in particular those amino acid sequences which have conservative substitution with respect to the physiological sequences.
  • Conservative substitutions refer to those substitutions in which amino acids derived from the same class are interchanged.
  • Side chains which have a hydroxy function are also included.
  • one amino acid with one polar side chain is replaced by another amino acid with a likewise polar side chain or, for example, an amino acid characterized by a hydrophobic side chain is substituted by another amino acid with likewise hydrophobic side chain (eg serine (threonine) by threonine (Serine) or leucine (isoleucine) by isoleucine (leucine)).
  • an amino acid characterized by a hydrophobic side chain is substituted by another amino acid with likewise hydrophobic side chain
  • eg serine (threonine) by threonine (Serine) or leucine (isoleucine) by isoleucine (leucine) Insertions and substitutions are possible in particular at those sequence positions which do not cause any change in the three-dimensional structure or affect the binding region.
  • a change of a three-dimensional structure By insertion (s) or deletion (s), for example, with the help of CD spectra (circular dichroism spectra) easily verifiable (Urry, 1985, absorption, circular dichroism and ORD of polypeptides, in: Modern Physical Methods in Biochemistry, Neuberger et al. (ed.), Elsevier, Amsterdam).
  • CD spectra circular dichroism spectra
  • Each amino acid is encoded by a codon defined by three nucleotides (triplet), and it is possible to have one codon that encodes a particular amino acid for another For example, by selecting suitable alternative codons, the stability of the mRNA according to the invention can be increased.
  • a DNA-dependent DNA polymerase is used to synthesize the second strand of the oligonucleotide that is complementary to the template DNA strand.
  • a heteroduplex molecule containing a mismatch caused by the above-mentioned mutation in the oligonucleotide is obtained.
  • the oligonucleotide sequence is introduced into a suitable plasmid, this is introduced into a host cell, and in this host cell, the oligonucleotide DNA is replicated. With this technique one obtains nucleic acid sequences with targeted changes (mutations) which can be used for the production of variants according to the invention.
  • the at least one cytokine (from the cytokine category) is selected from the group consisting of IL-1 ( ⁇ / ⁇ ), 1L-2, 1L-3, IL-4, 1L-5 , 1L-6, 1L-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-18, 1L-21, IL-22, IL-23, IFN- ⁇ , IFN- ⁇ , IFN- ⁇ , LT- ⁇ , MCAF, RANTES, TGF ⁇ , TGF ⁇ i, TGF ⁇ 2, TNF ⁇ , TNF ⁇ and particularly preferably G-CSF, M-CSF or GM-CSF, in particular (recombinant or not recombinant) of the human forms of the aforementioned cytokines, as well as their variants or fragments.
  • a method step b Cytokine mRNA coding for one of the aforementioned cytokines,
  • mRNA from step (a.) And / or step (b.) (Ie, the cytokine or adjuvo viral mRNA according to the invention) or the adjuvant RNA from step (b.) Of the method according to the invention can be described as naked ( m) RNA or complexed with other components.
  • the mRNA from step (a.) And / or step (b.) Or the adjuvant RNA from step (b.) Of the invention Method as a modified (m) RNA, in particular stabilized (m) RNA, before.
  • Modifications of the mRNA according to the invention or of the (m) RNA from step (b) serve in particular to increase the stability of the mRNA according to the invention or of the (m) RNA from step (b.) But also to improve the transfer of the mRNA according to the invention or the (m) RNA from step (b.) (ie the cytokine mRNA, the adjuvo viral mRNA and the adjuvant RNA) into a cell or a tissue of an organism.
  • the mRNA according to the invention or the (m) RNA from step (b.) of the method according to the invention has one or more modifications, in particular chemical modifications, which are used to increase the half-life of the mRNA according to the invention or of the (m) RNA from step (b). b.) in the organism or improve the transfer of the mRNA according to the invention or the (m) RNA from step (b.) into the cell or a tissue.
  • the G / C content of the coding region of the modified mRNA according to the invention consists of step (a.) And / or the cytokine mRNA and / or the adjuvo viral mRNA
  • Amino acid sequence of the modified mRNA according to the invention or the mRNA from step (b.) Is preferably unchanged from the coded amino acid sequence of the respective wild-type mRNA.
  • This modification is based on the fact that the sequence of the sequence of the mRNA to be translated is essential for the efficient translation of an mRNA.
  • Significant here is the composition and sequence of the various nucleotides.
  • sequences with elevated G (guanosine) / C (cytosine) content are more stable than sequences with increased A (adenosine) / U (uracil) content. Therefore, according to the invention, while maintaining the translated amino acid sequence, the codons are varied with respect to the wild-type mRNA in such a way that they increasingly contain G / C nucleotides.
  • codons containing A and / or U nucleotides may be altered by substitution of other codons which encode the same amino acids but do not contain A and / or U. Examples for this are:
  • the codons for Arg can be changed from CGU or CGA or AGA or AGG to CGC or CGG;
  • the codons for AIa can be changed from GCU or GCA to GCC or GCG; - The codons for GIy can be changed from GGU or GGA to GGC or GGG.
  • Codons are used which contain a smaller proportion of A and / or U nucleotides. Examples for this are:
  • the codons for Phe can be changed from UUU to UUC;
  • the codons for Leu can be changed from UUA, UUG, CUU or CUA to CUC or CUG;
  • the codons for Ser can be changed from UCU or UCA or AGU to UCC, UCG or AGC; the codon for Tyr can be changed from UAU to UAC; the codon for Cys can be changed from UGU to UGC; the codon His can be changed from CAU to CAC;
  • the codon for GIn can be changed from CAA to CAG;
  • the codons for He can be changed from AUU or AUA to AUC; the codons for Thr can be changed from ACU or ACA to ACC or ACG;
  • the codon for Asn can be changed from AAU to AAC; the codon for Lys can be changed from AAA to AAG;
  • the codons for VaI can be changed from GUU or GUA to GUC or GUG; the codon for Asp can be changed from GAU to GAC;
  • the codon for GIu can be changed from GAA to GAG
  • the stop codon UAA can be changed to UAG or UGA.
  • substitutions listed above can be used both individually but also in all possible combinations for increasing the G / C content of the modified mRNA according to the invention or the cytokine mRNA or the adjuvo viral mRNA with respect to the respective wild-type mRNA (the original sequence) become.
  • all the codons occurring in the wild-type sequence for Thr can be changed to ACC (or ACG).
  • combinations of the above substitution possibilities are preferably used: Substitution of all codons coding for Thr in the original sequence (wild-type mRNA) to ACC (or ACG) and substitution of all codons originally coding for Ser to UCC (or UCG or AGC);
  • the G / C content of the antigen coding region of the modified mRNA or cytokine mRNA or adjuvovirus mRNA according to the invention is at least 7%, more preferably at least 15%, most preferably at least 20% % Points to the G / C content of the encoded region of the wild-type mRNA encoding the antigen.
  • step (a.) And / or step (b.) Of the method according to the invention is based on the finding that the translation efficiency is also determined by a different frequency in the occurrence of tRNAs in cells. Therefore, if so-called "rare" codons are increasingly present in an RNA sequence, the corresponding mRNA is significantly worse translated than in the case where codons coding for relatively "frequent" tRNAs are present.
  • the region coding for the antigen is changed from the corresponding region of the wild-type mRNA such that at least one wild-type codon Sequence coding for a relatively rare tRNA in the cell, exchanged for a codon which codes for a relatively frequent in the cell tRNA, which carries the same amino acid as the relatively rare tRNA.
  • This modification modifies the RNA sequences to insert codons for which common tRNAs are available.
  • all codons of the wild-type sequence which code for a relatively rare tRNA in the cell can each be exchanged for a codon which codes for a relatively frequent tRNA in the cell, which carries the same amino acid like the relatively rare tRNA.
  • tRNAs occur relatively frequently in the cell and which, in contrast, occur relatively rarely, is known to a person skilled in the art; see. eg Akashi, Curr. Opin. Genet. Dev. 2001, 11 (6): 660-666.
  • Particularly preferred are the codons which use the most frequently occurring tRNA for the particular amino acid, ie, for example, the gly codon which uses the tRNA most frequently occurring in the (human) cell.
  • the invention it is particularly preferable to link the, in particular, the maximum, sequential G / C content in the modified mRNA or cytokine mRNA according to the invention or the adjuvo viral mRNA with the "frequent" codons, without the amino acid sequence of the coding sequence Range of mRNA encoded antigen to change.
  • This preferred embodiment provides a particularly efficiently translated and stabilized mRNA according to the invention, for example, for the method according to the invention.
  • a mRNA according to the invention modified as described above can be determined on the basis of the computer program explained in WO 02/098443, the disclosure content of which is fully incorporated into the present invention.
  • the genetic code or its degenerative nature the nucleotide sequence of any mRNA can be modified so that a maximum G / C content in conjunction with the use of codons that occur as frequently as possible in the cell tRNAs , wherein the amino acid sequence encoded by the modified mRNA is preferably unchanged from the unmodified sequence.
  • only the G / C content or only the codon usage can be modified from the original sequence.
  • the source code in Visual Basic 6.0 (development environment used: Microsoft Visual Studio Enterprise 6.0 with Service Pack 3) is also given in WO 02/098443.
  • the A / U content in the vicinity of the ribosome binding site of the modified mRNA from step (a.) And / or step (b.) Of the method according to the invention over the A / U content in the environment of the ribosome binding site of the respective wild-type mRNA increased.
  • This modification (an increased A / U content around the ribosome binding site) increases the efficiency of ribosome binding to the mRNA of the invention.
  • Effective binding of the ribosomes to the ribosome binding site effects efficient translation of the mRNA or other mRNAs of the present invention having adjuvant properties.
  • a likewise preferred embodiment of the present invention relates to a method according to the invention, wherein the coding region and / or the 5 'and / or 3' untranslated region of the mRNA from step (a.) And / or step (b.) ( ie cytokine mRNA or adjuvo viral mRNA) to the respective wild-type mRNA is changed so that it contains no destabilizing sequence elements, wherein the encoded amino acid sequence of the modified mRNA to the respective wild-type mRNA is preferably not changed.
  • DSE destabilizing sequence elements
  • one or more such changes can be made to the corresponding region of the wild-type mRNA so that there are no or substantially no destabilizing sequence elements.
  • DSE present in the non-translated regions (3'- and / or 5'-UTR) can also be eliminated from the mRNA according to the invention.
  • destabilizing sequences include, for example, AU-rich sequences ("AURES") that occur in 3 'UTR portions of numerous unstable mRNAs (Caput et al., Proc. Natl. Acad., USA, 1986, 83: 1670-1674 ).
  • inventive or adjuvant mRNA molecules contained in the method according to the invention are therefore preferably modified from the wild-type mRNA in such a way that they have no such destabilizing sequences.
  • This also applies to those Sequenzmptive, which are recognized by possible endonucleases, for example.
  • the sequence GAACAAG which is contained in the 3 'UTR segment of the gene coding for the transferin receptor gene (Binder et al., EMBO J. 1994, 13: 1969 to 1980).
  • sequence motifs are also preferably removed in the modified mRNA according to the invention or the adjuvant mRNA (cytokine mRNA or adjuvo-viral mRNA) of the method according to the invention.
  • the mRNA from step (a.) And / or step (b.) has a 5'-cap structure.
  • cap structures which can be used in the present invention are m7G (5 ') ppp (5' (A, G (5 ') ppp (5') A and G (5 ') ppp (5') G) Modifications may also occur with adjuvant RNA from step (b.).
  • the mRNA from step (a.) And / or step (b.) Of the method according to the invention in a modified form has at least one IRES and / or at least one 5'- and / or 3'-stabilization sequence.
  • one or more so-called IRES can accordingly be inserted into the mRNA from step (a.) And / or step (b.)
  • An IRES can thus function as the sole ribosome binding site.
  • step (a.) and / or step (b.) which codes for a plurality of antigens which are to be translated independently of one another by the ribosomes ("multicistronic mRNA").
  • Sequences are those from picornaviruses (eg FMDV), pestviruses (CFFV), polioviruses (PV), encephalococytitis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical Porcine Fever Viruses (CSFV), Murine Leukoma Virus (MLV), Simean Immunodeficiency Viruses (SLV) or Cricket Paralysis Viruses (CrPV).
  • picornaviruses eg FMDV
  • CFFV pestviruses
  • PV polioviruses
  • ECMV encephalococytitis viruses
  • FMDV foot-and-mouth disease viruses
  • HCV hepatitis C viruses
  • CSFV classical Porcine Fever Viruses
  • MMV Murine Leukoma Virus
  • SLV Simean Immunodeficiency Viruses
  • Cricket Paralysis Viruses CrPV
  • the mRNA from step (a.) And / or step (b.) Of the method according to the invention has at least one 5 'and / or 3' stabilization sequence.
  • These stabilization sequences in the 5 1 and / or 3 'untranslated regions cause an increase in the half-life of the mRNA according to the invention in the cytosol.
  • These stabilizing sequences may have 100% sequence homology to naturally occurring sequences found in viruses, bacteria and eukaryotes, but may also be partially or wholly synthetic.
  • the untranslated sequences (UTR) of the globin gene for example of Homo sapiens or Xenopus laevis, may be mentioned.
  • a stabilization sequence has the general formula (C / U) CCAN x CCC (U / A) Py x UC (C / U) CC contained in the 3 1 UTR of the very stable mRNA coding for globin, - (I) -Col, 15-lipoxygenase or tyrosine hydroxylase encoded (see Holcik et al., Proc Natl Acad., See, USA 1997, 94: 2410-2414).
  • stabilizing sequences may be used alone or in combination with each other as well as in combination with other stabilizing sequences known to one skilled in the art.
  • the mRNA from step (a.) And / or step (b.) Of the inventive method therefore as globin UTR (untranslated regions) - stabilized mRNA, especially as ß-globin-UTR-stabilized mRNA, before. It has been found according to the invention that the injection of naked ⁇ -globin UTR (untranslated regions) -stabilized adjuvant mRNA according to the invention, optionally in combination with such modified or differently modified mRNA, into the auricle of a mammal (eg from mice) has a specific immune response against the antigen encoded by the mRNA according to the invention induced (17).
  • the inventors have tracked the course of the injected ⁇ -globin UTR-stabilized mRNA and the type of immune response it triggers, thus demonstrating translation in vivo (see Figure 1).
  • This vaccination strategy has been further investigated and a pharmaceutical mRNA has been developed that can be used in human clinical trials.
  • the modified mRNA from step (a.) And / or step (b.) Or the adjuvant RNA from step (b.) Of the method according to the invention comprises at least one analog of naturally occurring nucleotides.
  • This analogue / analogue serves to further stabilize the modified mRNA according to the invention, this being based on the fact that the RNA-degrading enzymes occurring in the cells preferably recognize naturally occurring nucleotides as substrate.
  • RNA degradation can be hampered, and the effect on translation efficiency upon incorporation of these analogs, particularly into the coding region of the mRNA, can have a positive or negative effect on translation efficiency.
  • nucleotide analogues useful in the present invention include phosphoramidates, phosphorothioates, peptide nucleotides, methylphosphonates, 7-deazaguanosine, 5-methylcytosine, and inosine.
  • the preparation of such analogs is well known to those skilled in the art, for example, from U.S. Patents 4,373,071, 4,401,796, 4,415,732, 4,458,066, 4,500,707, 4,668,777, 4,973,679 and 5,047,524 5,132,418, US 5,153,319, US 5,262,530 and 5,700,642.
  • analogs can occur in untranslated and translated regions of the modified mRNA.
  • substitutions, additions or eliminations of bases using a DNA template for the production of the modified mRNA according to the invention or of a mRNA from step (b.) are preferably introduced by means of techniques of customary site-directed mutagenesis (see, for example, Maniatis et al., Molecular Cloning : A Laboratory Manual, Colard Spring Harbor Laboratory Press, 3rd ed., CoId Spring Harbor, NY, 2001). In such a method, a corresponding DNA molecule is transcribed in vitro to produce the mRNA according to the invention or an mRNA from step (b.).
  • This DNA template has a suitable promoter, for example a 17 or SP6 promoter, for in vitro transcription, which is followed by the desired nucleotide sequence for the mRNA to be produced and a termination signal for in vitro transcription.
  • the DNA molecule which forms the template of the RNA construct to be produced is prepared by fermentative propagation and subsequent isolation as part of a plasmid replicable in bacteria.
  • suitable plasmids may, for example, the plasmids pT7Ts (GenBank accession number U26404; Lai et al, Development, 1995, 121: 2349-2360.), PGEM ® series, for example, pGEM ® -1 (GenBank accession number.
  • the mRNA from step (a.) And / or step (b.) Or the adjuvant RNA from step (b.) Of the method according to the invention is complexed or condensed with at least one cationic or polycationic agent, and modified to that extent.
  • a cationic or polycationic agent is an agent selected from the group consisting of protamine, poly-L-lysine, poly-L-arginine and histones.
  • the modified mRNA according to the invention or the adjuvant mRNA or adjuvant RNA from step (b.) Of the method according to the invention is stabilized with polyethyleneimine (PEI) and modified in this respect.
  • PEI polyethyleneimine
  • the mRNA according to the invention, the cytokine mRNA, the adjuvo viral mRNA and / or the adjuvant RNA can be present in single or double-stranded form and used as such or as a mixture in a method according to the invention.
  • at least one usually open end of the double strand preferably both, may also be covalently bonded to one another, for example via a "hairpin" structure.
  • the invention further relates to a product comprising at least one mRNA according to the invention, comprising a region coding for at least one antigen of a pathogen or at least one tumor antigen, and at least one component of at least one of the following categories selected from the group consisting of a cytokine, a cytokine mRNA, an adjuvo viral mRNA, a CpG DNA and an adjuvant RNA, as a combined preparation for simultaneous, separate or sequential use in the treatment and / or prophylaxis of tumor diseases (eg lymphoma, pancreatic, melanoma and other skin cancers, solid Tumors of the liver, lung, head, intestine, stomach, sarcoma), allergies, autoimmune diseases such as multiple sclerosis, viral and / or bacterial infections, especially HIV, influenza, rubella, measles, rabies, herpes, dengue fever , Yellow fever, hepatitis, pneumonia, legionnaires' disease, streptococcus
  • Patients with the aforementioned indications can also be treated with a method according to the invention.
  • the constituents of the product according to the invention at least one mRNA according to the invention containing a region coding for at least one antigen of a pathogen or at least one tumor antigen (1 st constituent) and at least one cytokine and / or at least one cytokine mRNA and / or at least one adjuvant viral mRNA and / or at least one CpG DNA and / or at least one adjuvant RNA (second constituent) are in functional unity through their targeted use.
  • the constituents of the product may be those described above, which are advantageous according to the invention Effect do not unfold independently, so that despite the spatial separation of the components 1 and 2 (for simultaneous, separate or time-graduated administration) their application as a new, not described in the prior art combination product is present.
  • the component 2 can contain several components, for example cytokine mRNA and CpG DNA or a cytokine and CpG DNA or also 2 different cytokine mRNAs, the component 2 can be used as a mixture (possibly different) components of possibly different ones of the aforementioned categories or but the (possibly different) components of possibly different of the aforementioned categories of ingredient 2 may also be present separately.
  • a product according to the invention may comprise all constituents, substances and embodiments as used in a method or method for the treatment and / or prophylaxis of diseases or combination therapy methods according to the present invention.
  • the invention further relates to a kit comprising at least one mRNA according to the invention containing a region coding for at least one antigen of a pathogen or at least one tumor antigen and at least one component from at least one of the following categories selected from the group consisting of a cytokine , a cytokine mRNA, an adjuvo viral mRNA, a CpG DNA and an adjuvant RNA containing the at least one mRNA according to the invention containing a coding for at least one antigen of a pathogen or at least one tumor antigen region, and the at least one Cyokin or at least one cytokine mRNA or at least one adjuvo-viral mRNA or at least one CpG DNA or at least one adjuvant RNA are separated, ie the kit consists of at least two parts.
  • the kit will contain more than two parts if iS of this invention contains two or more adjunctive components such as For example, in method step (b.) Can be administered separately from each other
  • a preferred embodiment of the invention relates to the use of the kit for the treatment and / or prophylaxis of cancer diseases, tumor diseases, in particular of the abovementioned specific tumor species, allergies,
  • Autoimmune diseases such as multiple sclerosis, and / or viral and / or bacterial infections, such as hepatitis B, HIV or MDR (multi-drug resistance) infections, influenza, herpes, rubella, measles, rabies, streptococcal, pneumococcal, enterococci , Staphylococcal or Escherichia infections or other infectious diseases mentioned in this application.
  • MDR multi-drug resistance
  • FIG. 1 shows the in vivo translation of injected mRNA according to the invention.
  • mice were injected into the auricle with injection buffer (150 mM NaCl, 10 mM HEPES) ("buffer”), ⁇ -galactosidase-encoding ⁇ -gliobin UTR-stabilized mRNA diluted in injection buffer (“Lac Z mRNA”) or ⁇ -galactosidase
  • injection buffer 150 mM NaCl, 10 mM HEPES
  • Buffer ⁇ -galactosidase-encoding ⁇ -gliobin UTR-stabilized mRNA diluted in injection buffer
  • Lac Z mRNA injection buffer
  • Sections are shown on the Y-axes in the diagrams (left half of Figure 1).
  • FIG. 2 shows the triggering of an antigen-specific immune response of the Th2 type by the injection of mRNA.
  • Mice were vaccinated and boosted with mRNA or DNA encoding
  • mice received a booster injection
  • Boost injection Again, two weeks later, the amount of ⁇ -galactosidase-specific antibodies present in the serum were determined by ELISA using isotype-specific reagents.
  • the left half of Figure 2 shows the IgG1 production, the right half of Figure 2 shows the IgG2a production.
  • () shows the curve for DNA-injected mice, () shows the curve for RNA-injected mice and ( ⁇ ) shows the curve for mice injected with injection buffer.
  • FIG. 3 shows the polarization of a Th2 immune response into a ThI
  • FIG. 3a Mice were injected with either ⁇ -galactosidase emulsified in Freund's adjuvant or mRNA encoding ⁇ -galactosidase or injection buffer (negative control).
  • GM-CSF total 2 ⁇ g recombinant protein: ca. 10 4 U (units)
  • FIG. 3a The left half of FIG. 3a shows ⁇ -gal-specific IgG1 antibodies (), the right half of FIG. 3a shows ⁇ -gal-specific IgG2a antibodies ( ⁇ , gray).
  • FIG. 3b The in vitro reactivation of T cells by ⁇ -galactosidase was checked by cytokine detection on day 4 of cultivation. The proportion of IFN ⁇ () and IL-4 (Q, gray) in the supernatant of the used splenocyte culture was measured by ELISA.
  • Figure 3c The cytotoxic activity of splenocytes cultured in the presence of purified ⁇ -galactosidase for six days was examined in a chromium release assay.
  • the target cells were P815 (H2 d) cells that are either corresponds with the synthetic peptide TPHPARIGL that the H2-L d dominant epitope of beta-galactosidase, loaded () or were not loaded ().
  • Figure 4 shows Table 1, in which the total number of injected mice is shown. The total number of mice whose splenocytes showed detectable cytokine release or ⁇ -galactosidase-specific cytotoxic activity in vitro in independent experiments is shown. Mice in which at least 10% more TPHPARIGL-loaded cells were killed compared to the average killed cells of the negative control group (buffer-injected mice) were classified as responding mice. Splenocyte cultures containing at least 100 pg / ml of cytokine more than the total of cytokine in the splenocyte cultures containing negative control mice (buffer-injected mice) were classified as responding cultures (responding mice).
  • FIG. 5 shows the polarization of a Th2 immune response in a Th1 immune response caused by the injection of GM-CSF RNA in addition to the mRNA according to the invention. All results presented concern mice of the same group in one experiment. The mice were mRNA coding for ⁇ -galactosidase, GM-
  • GM-CSF RNA (total 50 ⁇ g) was injected once, either 24 hours or 2 hours before the mRNA was injected or 24 hours after the injection of the mRNA (corresponds to the groups GM-CSF RNA T-1, GM-CSF). RNA TO and GM-CSF RNA T + 1). The amount of secreted IFN- ⁇ contained in the blood of the injected mice was determined by ELISA.
  • the mRNA was obtained by in vitro transcription of suitable template DNA and subsequent extraction and purification of the mRNA.
  • standard methods can be used, which are described in detail in the prior art and are familiar to the expert.
  • Maniatis et al. 2001
  • Molecular Cloning Laboratory Manual, CoId Spring Harbor Laboratory Press.
  • the NBLAST program was used.
  • pT7TS contains untranslated regions of alpha or beta globin gene and a polyA tail of 70 nucleotides:
  • Xenopus ß-globi ⁇ 5TJntranslated region GCTTGTTCTTTTTGCAGAAGCTCAGAATAAACGCTCAACTTTGGC
  • Xenopus ß-globin 3 'untranslated region GACTGACTAGGATCTGGTTACCACTAAACCAGCCTCAAGAACACCCGA ATGGAGTCTCTAAGCTACATAATACCAACTTACACTTACAAAATGTTG TCCCCCAAAATGTAGCCATTCGTATCTGCTCCTAATAAAAAGAAAGTT TCTTCACATTCTA or human ⁇ -globin untranslated region:
  • Figure 1 Graphic of the plasmid vector pT7TS
  • High purity plasmids were obtained with the Qiagen Endo-free Maxipreparation Kit or with the Machery-Nagel GigaPrep Kit.
  • the sequence of the vector was monitored and documented by double-stranded sequencing from the T7 promoter to the PstI or XbaI site. Plasmids whose cloned gene sequence was correct and without mutations were used for in vitro transcription.
  • genes The genes encoded by the mRNA according to the invention were amplified by PCR or extracted from the plasmids (described above). Examples of gene constructs that have been used are
  • MAGE-A1 (Accession number M77481): plasmid fragment HinDIII / Spel in T7TS HinDIII / Spel
  • MAGE-A6 (Accession number: NM_005363): PCR fragment SpeI in T7TS HinDIIlbluni / Spel
  • Her2 / neu (Accession number: M1 1730): PCR fragment HinDIII / Spel in T7TS HinDIII / Spel
  • Tyrosinase (Accession number: NM_000372): Plasmid fragment EcoRI blunt in T7TS HinDIII blunt / Spel blunt
  • CEA (Accession number: NM_004363): HinDIII / Spel PCR fragment in T7TS HinDIII / Spel
  • WT1 Plasmid fragment EcoRV / Kpnl blunt in T7TS HinDIII blunt / Spel blunt PR3 (Accession number: NM_002777):
  • PRAME (Accession number: NM_0061 15):
  • Plasmid fragment SacI blunt / BamHI in T7TS HinDIII blunt / BglII
  • Tenascin (Accession number X78565): PCR fragment Bglll blunt / Spel in T7TS HindIII blunt / Spel
  • EGFR1 (Accession number AF288738):
  • Sox9 (Accession number Z46629):
  • 500 ⁇ g of each of the above-described plasmids were linearized in a volume of 2.5 ml by digestion with the restriction enzyme PstI or XbaI in a 15 ml Falcon tube. This cut DNA construct was transferred to the RNA production unit. 2.5 ml of a phenol / chloroform / isoamyl alcohol mixture was added to the linearized DNA. The reaction vessel was vortexed for 2 minutes and centrifuged for 5 minutes at 4,000 rpm. The aqueous phase was lifted off and mixed with 1.75 ml of 2-propanol in a 15 ml Falcon tube.
  • This vessel was centrifuged for 30 minutes at 4,000 rpm, the supernatant discarded and 5 ml of 75% ethanol added.
  • the reaction vessel was centrifuged for 10 minutes at 4,000 rpm and the ethanol was removed.
  • the vessel was again centrifuged for 2 minutes and the remainder of the ethanol was removed with a microliter pipette tip.
  • the DNA pellet was then dissolved in 500 ⁇ l of RNase-free water (1 ⁇ g / ⁇ l).
  • RNA polymerase uses as substrate only 17 phage promoter sequences (Fa. Fermentas),
  • NTPs chemically synthesized and purified by HPLC. Purity over 96%
  • RNase inhibitor Rnasin, Injectable grade, produced recombinantly (Eco / ⁇ (Fa.
  • DNase Distributed as a drug through pharmacies as Pulmozym® (dornase alfa) (Roche).
  • reaction mixture was pipetted into a 15 ml Falcon tube: 100 ⁇ g linearized protein-free DNA,
  • ribonuclease inhibitor (recombinant, 40 U / ⁇ l); 80 ⁇ l rNTP mix (ATP, CTP, UTP 10 ⁇ M), 29 ⁇ l GTP (100 mM); 116 ⁇ l Cap Analog (10 mM);
  • RNA polymerase 200 U / ⁇ l
  • RNase-free water 50 ⁇ l 17 RNA polymerase (200 U / ⁇ l); 1045 ⁇ l RNase-free water.
  • the total volume was 2 ml and was incubated for 2 hours at 37 0 C in the heating block. Thereafter, 300 ⁇ l of DNAse: Pulmozyme TM (1 U / ⁇ l) were added and the mixture was incubated at 37 ° C. for a further 30 minutes. In this case, the DNA template was enzymatically degraded.
  • the final purification was carried out by phenol-chloroform extraction. However, it can also be carried out by means of anion exchange chromatography (eg MEGAclear TM from Ambion or Rneasy from Fa. Qiagen). After this purification of the mRNA, the RNA was precipitated against isopropanol and NaCl (1 M NaCl 1:10, isopropanol 1: 1, vortexed, centrifuged for 30 min at 4,000 rpm and 4 ° C and the pellet was washed with 75% ethanol) , The purified by phenol-chloroform extraction RNA was dissolved in RNase free water and incubated at 4 0 C for at least 12 hours.
  • anion exchange chromatography eg MEGAclear TM from Ambion or Rneasy from Fa. Qiagen.
  • An exemplary embodiment of the stabilized mRNA according to the invention relates to a ⁇ -globin UTR-stabilized mRNA.
  • a stabilized mRNA had the following structure: Cap-ß-globin UTR (80 bases) - ß-galactosidase coding sequence - ß-globin 3'-UTR (about 180 bases) poly A tail (A30 C 30 ).
  • constructs were also prepared which had a sequence coding for a previously described antigen from a pathogen or tumor.
  • the nucleic acid sequence of the coding region of the mRNA was optimized with respect to its G / C content.
  • the computer program described in WO 02/098443 was used which, with the aid of the genetic code or its degenerative nature, modifies the nucleotide sequence of an arbitrary mRNA in such a way that a maximum G / C Content in conjunction with the use of codons which code for tRNAs occurring as frequently as possible in the cell results, wherein the amino acid sequence encoded by the modified mRNA is preferably identical to the unmodified sequence.
  • P815 cells were incubated with 10% Htise inactivated fetal calf serum (PAN Systems, Germany), 2 mM L-glutamine, 100 U / ml penicillin and 100 ⁇ g / ml
  • RPMI 1640 Bio-Whittaker, Verviers, Belgium
  • CTL culture was performed in RPMI 1640 medium supplemented with 10% FCS, 2mM L-Glutamine, 100 U / ml penicillin ,! 00 ⁇ g / ml streptomycin, 50 ⁇ M ⁇ -mercaptoethanol, 50 ⁇ g / ml gentamycin, Ix MEM nonessential amino acids and 1 mM sodium pyruvate.
  • the CTLs were restimulated for one week with 1 ⁇ g / ml ⁇ -galactosidase (Sigma, Taufmaschinen, Germany). On day 4, the supernatants were gently collected and replaced with fresh medium containing 10 U / ml rlL-2 (final concentration).
  • mice 6 to 12 week old female BALB / c AnNCrIBR (H-2d) mice were purchased from Charles River (Sulzfeld, Germany). Approval for the genetic (DNA and mRNA) vaccination of the mice was granted by the Animal Ethics Committee in Tübingen (number IM / 200). The BALB mice were anesthetized with 20 mg pentobarbital intraperitoneally. The mice were then injected intradermally into both pinnae with 25 ⁇ g of ⁇ -globin UTR-stabilized mRNA encoding ⁇ -galactosidase diluted with injection buffer (150 mM NaCl, 10 mM HEPES).
  • injection buffer 150 mM NaCl, 10 mM HEPES
  • mice were treated under the same conditions (as in the first injection).
  • mice were replaced by 25 ⁇ g of ⁇ -giobin UTR-stabilized mRNA encoding ⁇ -galactosidase and 1 ⁇ g of GM-CSF in
  • Muc-1 and 1 ⁇ g IFN- ⁇ were injected.
  • GM-CSF total 2 ⁇ g recombinant protein: ca. TO 4 U (units)
  • the amount of ⁇ -galactosidase-specific IgGI or IgG2a antibodies contained in the blood of the injected mice was determined by ELISA (1:10 serum dilution). The background, obtained mainly by serum from buffer-injected mice at the same dilution, was withdrawn.
  • Splenocytes were stimulated in vitro with purified ⁇ -galactosidase (1 mg / ml) and CTL activity was determined after 6 days using a standard 51 Cr release assay (as described, for example, by Rammensee et al., 1989, Immunogenetics 30) : 296-302).
  • the death rate of the cells was determined by the amount of 51 Cr (A) released into the medium compared to the amount of spontaneous 51 Cr release of the target cells (B) and the total 51 Cr content of 1% Triton X-100 lysed target cells (C) by the formula:
  • % Zelilyse (A - B) - f (C - B) x 100.
  • stimulation of the splenocytes was performed with survivin, MAGE-3 and Muc-1 (concentration 1 mg / ml each). All other conditions in these experiments were identical to the conditions described above.
  • Antibodies Becton Dickinson, Heidelberg, Germany at a concentration of 1 ⁇ g / ml in coating buffer (0.02% NaN 3 , 15 mM Na 2 CO 3 , 15 mM NaHCO 3 , pH 9.6) coated. The plates were then saturated for 2 hours at 37 ° C. with 200 ⁇ l of blocking buffer (PBS-0.05% Tween 20-1% BSA).
  • Antibodies from Caltag (Burlington, CA) or 100 ⁇ l / well biotinylated anti-mouse anti-IFN or IL-4 (cytokine ELISA) detection antibody (Becton
  • Blocking buffer was added and the plates incubated for 1 hour at room temperature.
  • Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) concentrate at a concentration of 300 mg / l in 0.1 M citric acid, pH 4.35). After another 15 to 30 minutes at
  • mice 6 to 12 week old, female BALB / c AnNCrIBR (H-2d) mice (Charles River, Sulzfeld, Germany) BALB mice were anesthetized with 20 mg pentobarbital intraperitoneally analogously to Example 4 (see above). Mice were then injected intradermally into both pinnae with 25 ⁇ g of ⁇ -globin UTR-stabilized mRNA encoding ⁇ -galactosidase diluted with injection buffer (150 mM NaCl, 10 mM HEPES). Subsequently, 50 ⁇ g of GM-CSF RNA were injected once into the pinnae. Two weeks after the first injection, the mice were treated under the same conditions (as in the first injection).
  • injection buffer 150 mM NaCl, 10 mM HEPES
  • mice were incubated in
  • Experimental approach 1 injected injection buffer only (control); Experimental approach II: 50 ⁇ g GM-CSF RNA injected alone (control); Experimental approach III: 25 ⁇ g of ⁇ -globin-UTR-stabilized mRNA which is suitable for
  • streptavidin-HRP horseradish peroxidase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Communicable Diseases (AREA)
  • Pregnancy & Childbirth (AREA)
  • Molecular Biology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Pulmonology (AREA)
  • Neurosurgery (AREA)
  • Transplantation (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Immunstimulation in einem Säugetier, welches a. das Verabreichen mindestens einer mRNA enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich und b. das Verabreichen mindestens eines Cytokins, mindestens einer Cytokin-mRNA, mindestens einer CpG DNA oder mindestens einer adjuvanten RNA umfasst. Ebenfalls betrifft die Erfindung ein Erzeugnis sowie ein Kit, enthaltend die/das mRNA und Cytokin bzw. Cytokin-mRNA, bzw. CpG DNA bzw. adjuvante RNA der Erfindung enthält.

Description

Kombinationstherapie zur Immunstimulation
Die vorliegende Erfindung betrifft ein Verfahren zur Immunstimulation in einem
Säugetier, wobei das Verfahren das Verabreichen einer mRNA, die für ein Antigen eines pathogenen Mikroorganismus kodiert, sowie das Verabreichen mindestens eines Cytokins, insbesondere GM-CSF, mindestens einer Cytokin-mRNA, mindestens einer CpG DNA, mindestens einer adjuvo-viralen mRNA und/oder mindestens einer adjuvanten RNA umfasst.
Mit herkömmlichen Impfstoffen, die abgeschwächte oder inaktivierte Pathogene sowie weitere Substanzen, wie Zucker oder Proteinanteile, umfassen, können im Zusammenhang mit zahlreichen Erkrankungen befriedigende Ergebnisse erreicht werden. Jedoch ist es nicht möglich, mit solchen Impfstoffen einen ausreichenden Schutz gegen eine Vielzahl infektiöser Organismen, wie zum Beispiel HIV oder Plasmodium Falciparum, und insbesondere gegenüber Tumoren zu erzielen. Darüber hinaus besteht das Risiko, dass durch unerwünschte Rekombinationsereignisse neue Pathogene auftreten (wie z.B. im Fall der SARS- Epidemie).
In der Therapie und Prävention zahlreicher Erkrankungen spielen daher molekularmedizinische Verfahren, wie die Gentherapie und die genetische Vakzinierung, eine große Rolle. Basis dieser Verfahren ist die Einbringung von Nukleinsäuren in Zellen bzw. Gewebe des Patienten, gefolgt von der Verarbeitung der durch die eingebrachten Nukleinsäuren kodierten Informationen, d.h. der Expression der erwünschten Polypeptide bzw. Proteine. Als einzubringende Nukleinsäuren kommt hierbei sowohl DNA als auch RNA in Betracht.
Genetische Vakzinierungen, die aus der Injektion von nackter Plasmid-DNA bestehen, wurden erstmals in den frühen 90iger Jahren an Mäusen demonstriert. Es stellte sich jedoch in Studien der klinischen Phasen l/II heraus, dass diese Technologie beim Menschen nicht die durch die Studien an Mäusen geweckten Erwartungen erfüllen konnte (6). Zahlreiche DNA-basierte genetische Vakzinierungen wurden seitdem entwickelt. In diesem Zusammenhang sind verschiedene Verfahren zur Einbringung von DNA in Zellen, wie bspw. Calciumphosphat-Transfektion, Polypren-Transfektion, Protoplasten-Fusion, Elektroporation, Mikroinjektion und Lipofektion, entwickelt worden, wobei sich insbesondere die Lipofektion als geeignetes Verfahren herausgestellt hat. Ebenfalls kommt die Verwendung von DNA-Viren als DNA-Vehikel in Betracht. Derartige Viren erzielen aufgrund ihrer infektiösen Eigenschaften eine sehr hohe Transfektionsrate. Die verwendeten Viren werden bei diesem Verfahren genetisch verändert, damit in der transfizierten Zelle keine funktionsfähigen infektiösen Partikel gebildet werden. Trotz dieser Vorsichtsmaßnahme kann jedoch, z.B. aufgrund möglicher Rekombinationsereignisse, ein Risiko der unkontrollierten Ausbreitung der eingebrachten gentherapeutisch wirksamen sowie viralen Gene nicht ausgeschlossen werden. Daneben birgt die DNA- Vakzinierung weitere potentielle Sicherheitsrisiken (7, 8). Die injizierte rekombinante DNA muss zunächst den Zellkern erreichen, dieser Schritt kann bereits die Effizienz der DNA- Vakzinierung verringern. Im Zellkern besteht die Gefahr, dass die DNA in das Wirtsgenom integriert. Die Integration von Fremd-DNA in das Wirtsgenom kann Einfluss auf die Expression der Wirtsgene haben und eventuell die Expression eines Onkogens oder die Zerstörung eines Tumorsupressorgens auslösen. Ebenfalls kann ein für den Wirt essentielles Gen - und damit das Genprodukt - durch die Integration der Fremd-DNA in den kodierenden Bereich dieses Gens inaktiviert werden. Eine besondere Gefahr besteht dann, wenn die Integration der DNA in ein Gen erfolgt, das in die Regulation des Zellwachstums involviert ist. In diesem Fall kann die Wirtszelle in einen entarteten Zustand gelangen und zur Krebs- bzw. Tumorbildung führen.
Darüber hinaus ist es für die Expression einer in die Zelle eingebrachten DNA erforderlich, dass die entsprechenden DNA-Vehikel einen starken Promotor, wie den viralen CMV-Promotor, enthalten. Die Integration derartiger Promotoren in das Genom der behandelten Zelle kann zu unerwünschten Veränderungen der Regulierung der Genexpression in der Zelle führen. Ein weiterer Nachteil ist, dass die DNA-Moleküle für lange Zeit im Zellkern verbleiben, entweder als Episom oder, wie erwähnt, in das Wirtsgenom integriert. Dies führt zu einer zeitlich nicht begrenzten bzw. nicht begrenzbaren Produktion des transgenen Proteins und zu der Gefahr einer damit verbundenen Toleranz gegenüber diesem transgenen Protein. Weiterhin kann durch die Injektion von DNA die Entwicklung von anti-DNA- Antikörpern (9) und die Induktion von Autoimmunkrankheiten ausgelöst werden.
Sämtliche dieser aufgezählten Risiken, die mit einer genetischen Vakzinierung verbunden sind, liegen nicht vor, wenn messenger RNA (mRNA) anstelle von DNA verwendet wird. Beispielsweise integriert mRNA nicht in das Wirtsgenom, bei der Verwendung von RNA als Vakzine sind keine viralen Sequenzen, wie Promotoren etc., zur wirksamen Transkription erforderlich usw.. Zwar ist RNA gegenüber DNA weitaus instabiler (verantwortlich für die Instabilität der RNA sind insbesondere RNA-abbauende Enzyme, sog. RNasen (Ribonucleasen), aber auch zahlreiche weitere Prozesse, welche die RNA destabilisieren), jedoch sind im Stand der Technik mittlerweile Verfahren zur Stabilisierung von RNA bekannt. So beispielsweise in WO 03/051401, WO 02/098443, WO 99/14346, EP-A-1083232, US 5,580,859 und US 6,214,804. Es sind auch Methoden zum Schutz der RNA vor einer Degradierung durch Ribonukleasen entwickelt worden, die unter der Verwendung von Liposomen (15) oder einer intra-cytosolischen in vivo Verabreichung der Nukleinsäure mit einer ballistischen Vorrichtung ("Gene gun") erfolgen (16). Ebenfalls wurde eine ex vivo Methode vorgestellt, die sich auf die Transfektion von dentritischen Zellen bezieht (12).
Für eine RNA-basierte Vakzinierung wurden u.a. Immunisierungsstrategien entwickelt, die auf selbst-replizierender RNA basieren, die sowohl für ein Antigen als auch eine virale RNA Replikase kodieren (13, 14). Solche Verfahren sind zwar effizient, jedoch bestehen Sicherheitsrisiken bei der Verwendung von viralen RNA-
Replikasen in genetischen Vakzinen (eine Rekombination zwischen der injizierten
RNA und der endogenen RNA könnte zu der Bildung neuer Typen von alpha-Viren führen).
Insgesamt ist festzustellen, dass im Stand der Technik keine mRNA-Vakzine beschrieben wird, welche die Auslösung einer Immunantwort in dem Organismus, dem sie appliziert wird, sicherstellt, diese erhöht und dabei unerwünschte Nebenwirkungen weitestgehend vermeidet.
Ein weiterer großer Nachteil der im Stand der Technik bekannten mRNA-Vakzine besteht darin, dass durch eine mRNA-Vakzinierung lediglich eine humorale Immunantwort (Typ Th2) ausgelöst wird. Alle Viren und zahlreiche Bakterien, wie beispielsweise Mycobakterien und Parasiten, dringen jedoch in die Zellen ein, vermehren sich dort und sind so vor Antikörpern geschützt. Um daher insbesondere eine antitumorale oder antivirale Immunantwort hervorzurufen, ist die Auslösung einer zellulären Immunantwort (Typ Th1) erforderlich.
Die Aufgabe der vorliegenden Erfindung ist es demnach, ein neues System zur Gentherapie und genetischen Vakzinierung bereitzustellen, das eine effektivere Immunanwort und damit einen effektiveren Schutz insbesondere gegenüber intrazellulären Pathogenen und den durch diese Pathogene hervorgerufenen Erkrankungen oder auch gegenüber Tumoren gewährleistet. Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen der vorliegenden Erfindung gelöst.
Ein Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Immunstimulation in einem Säugetier, umfassend die folgenden Schritte: a. Verabreichen mindestens einer mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und b. Verabreichen mindestens einer Komponente ausgewählt aus der Gruppe, bestehend aus mindestens einem Cytokin, mindestens einer Cytokin- mRNA, mindestens einer CpG DNA, mindestens einer adjuvo-viralen mRNA und mindestens einer adjuvanten RNA.
Nachfolgend wird die mRNA, die einen für mindestens ein Antigen aus einem Pathogen oder mindestens ein Tumorantigen kodiert, als „erfindungsgemäße mRNA" bezeichnet. Es handelt sich hierbei um die in Schritt (a.) des erfindungsgemäßen Verfahrens eingesetzte mRNA. Diese kann modifiziert oder nicht modifiziert vorliegen.
Der Erfindung liegt die Erkenntnis zugrunde, dass die Injektion von nackter stabilisierter mRNA eine spezifische Immunantwort hervorruft (17). Erfindungsgemäß wurde eine solche antigen-spezifische Immunantwort näher untersucht, insbesondere im Vergleich zu einer DNA-induzierten Immunantwort. Hierzu wurde BALB/c-Mäusen in einem Versuchsansatz nackte, stabilisierte mRNA und in einem anderen Versuchsansatz Plasmid-DNA in das Ohr injiziert. In beiden Versuchsansätzen enthielten die Nukleinsäuren einen für ß-Galactosidase kodierenden Bereich. Im Ergebnis war festzustellen, dass im Fall der mRNA- Vakzinierung überwiegend IgGI -Antikörper produziert wurden, während bei der DNA-Vakzinierung überwiegend lgG2a-Antikörper gebildet wurden. Erfindungsgemäß konnte damit nachgewiesen werden, dass mRNA-Vakzinierung eine humorale Immunantwort (Th2) hervorruft (Produktion von IgG1), während DNA-Vakzinierung eine zelluläre Immunantwort (ThI ) hervorruft (Produktion von lgG2a). Überraschenderweise konnte durch diese Untersuchung demnach auch festgestellt werden, dass die Entscheidung, ob in einem Säugetier, hier in Mäusen, eine humorale oder zelluläre Immunantwort ausgelöst wird, weder von dem Verabreichungsweg noch von dem Antigen, das durch die Nukleinsäure kodiert wird, abhängig ist, sondern vielmehr von der Art der Nukleinsäure, RNA oder DNA. In weiteren Versuchsansätzen wurden Nukleinsäuren verwendet, die anstelle des ß- Galactosidase kodierenden Bereichs einen Bereich enthielten, der für ein Antigen eines Pathogens oder eines Tumorantigens kodierte. Auf solche Antigen kodierenden Bereiche wird nachfolgend näher eingegangen. In diesen Versuchsansätzen zeigten sich ebenfalls die vorangehend beschriebenen Resultate bezüglich der Auslösung einer Th1 - bzw. Th2-Immunantwort. Die Dosierung der erfindungsgemäßen mRNA hängt insbesondere von der zu behandelnden Erkrankung und deren Fortschrittsstadium, wie auch dem Körpergewicht, dem Alter und dem Geschlecht des Patienten ab (Die Begriffe Organismus, Säugetier, Mensch, Patient werden im Sinne der Erfindung synonym verwendet). Die Konzentration der erfindungsgemäßen mRNA kann daher innerhalb eines Bereichs von ungefähr 1 μg bis 100 mg/ml variieren.
Darüber hinaus wurde erfindungsgemäß erkannt, dass besonders vorteilhafte Eigenschaften sich dann einstellen, wenn die erfindungsgemäße mRNA in Kombination mit mindestens einer Komponente mindestens einer der folgenden Kategorien, nämlich Cytokin, Cytokin-mRNA, CpG DNA, adjuvo-virale mRNA und/oder adjuvante RNA, verabreicht wird. Komponenten der vorgenannten Kategorien haben Adjuvanzeigenschaften, wie erfindungsgemäß festgestellt, so dass die unter diese Kategorien fallenden Verbindungen oder Komponenten als Adjuvanten zu betrachten sind. Diese Adjuvanzeigenschaften beruhen auf der Wirkung der Verbindungen der vorgenannten Kategorien, immunstimulatorisch zu wirken. Komponenten aus den Kategorien der Cytokine oder Cytokin- exprimierenden Cytokin-mRNAs sind als solche bereits unmittelbar immun- stimulatorisch wirksam. Verbindungen der anderen vorgenannten Kategorien können mittelbar immunstimulatorisch dadurch wirken, dass sie die Cytokin- Sekretion im behandelten Lebewesen (human oder Tier, insbesondere Haustieren) stimulieren.
Entsprechend haben die Erfinder den Einfluss von Cytokinen auf RNA-Vakzinierung untersucht. Cytokine stellen im Zusammenhang mit DNA-Vakzinierungen - wie aus dem Stand der Technik bekannt - ein hervorragendes Adjuvanz dar (19,20,24,25). Ein bevorzugtes Cytokin ist GM-CSF (Granulocyte Macrophage Colony Stimulating Factor), das die Dichte der Dendritischen Zellen (dendritic cells; DCs) in der Haut erhöht und damit eine durch eine DNA-Vakzinierung hervorgerufene Immunantwort verstärkt. Ziel der erfindungsgemäßen Untersuchungen war es, durch Cytokin-Verabreichung auch eine erfindungsgemäße mRNA-induzierte Immunantwort noch weiter zu verstärken. Die Verabreichung von Cytokinen in Verbindung mit Peptiden (26) und DNA (27) ist im Stand der Technik bekannt. Allerdings konnten zum einen bislang keine befriedigenden Ergebnisse erzielt werden, vermutlich (auch) dadurch, dass ein geeigneter Zeitpunkt für die Verabreichung von GM-CSF nicht festgelegt werden konnte, zum anderen sind Vakzinierungen, die mit Peptiden bzw. DNA durchgeführt werden, nicht auf RNA- basierten Vakzinierungen übertragbar. Hierauf wurde vorstehend bereits detailliert eingegangen.
Erfindungsgemäß wurden parallele Versuche durchgeführt, in denen die Zugabe eines Cytokins in Proteinform, bevorzugt eine GM-CSF-Zugabe, zu verschiedenen
Zeitpunkten vor, nach und gleichzeitig mit einer m RNA-Vakzinierung (wobei die
(erfindungsgemäße) mRNA für ß-Galactosidase, ein Antigen eines Pathogens oder ein tumorantigen kodierte) erfolgte. Im Ergebnis blieb festzustellen, dass eine
Verabreichung vor der Vakzinierung keinen wesentlichen Effekt auf Qualität oder Quantität (Typ und Menge des produzierten Immunglobulins IgG1/IgG2a) ausübte (siehe Figur 3 für ß-Galactosidase). Überraschenderweise konnte erfindungsgemäß jedoch festgestellt werden, dass bei Verabreichung von einem Cytokin, bevorzugt GM-CSF, nach der mRNA-Vakzinierung, nicht nur eine erhöhte Th2-Immunantwort vorlag, sondern darüber hinaus auch eine Th1 -Immunantwort induziert wurde (siehe Figur 3 und Tabelle 1). Besonders gute Ergebnisse ergaben sich bei der Verabreichung von einem Cytokin, bevorzugt GM-CSF, vorzugsweise ungefähr 24 Stunden nach der Verabreichung der erfindungsgemäßen mRNA.
Darüber hinaus wurden auch entsprechende Versuche durchgeführt, in denen statt des Cytokins in Proteinform die Zugabe einer Cytokin-mRNA (d.h. einer mRNA, die den kodierenden Bereich für ein funktionelles Cytokin, ein Fragment oder eine Variante desselben enthält), bevorzugt eine G-CSF, M-CSF oder GM-CSF-mRNA- Zugabe, zu verschiedenen Zeitpunkten vor, nach und gleichzeitig mit einer mRNA- Vakzinierung (wobei die (erfindungsgemäße) mRNA für ß-Galactosidase kodierte) erfolgte. Das Ergebnis der Verabreichung, ausgedrückt durch die Sekretion eines Cytokins (IFN-γ) kann aus Figur 5 entnommen werden. Überraschenderweise konnte erfindungsgemäß auch hier festgestellt werden, dass bei Verabreichung von Cytokin-mRNA, bevorzugt GM-CSF-mRNA, vor, gleichzeitig und nach der mRNA- Vakzinierung eine starke Erhöhung der IFN-γ-Sekretion erfolgt, wodurch eine mittelbar immunstimulatorische Wirkung hervorgerufen wird. Besonders gute Ergebnisse ergaben sich insbesondere bei der Verabreichung von Cytokin-mRNA, bevorzugt GM-CSF-mRNA, vorzugsweise ungefähr 24 Stunden nach der Verabreichung der erfindungsgemäßen mRNA.
Entsprechende Ergebnisse wurden bei der Verabreichung von CpG DNA vor, nach und gleichzeitig mit der vorangehend beschriebenen mRNA-Vakzinierung erreicht. CpG stellt in der DNA eine relativ seltene Dinukleotidfolge dar, bei der der Cytosinrest häufig methyliert ist, so dass 5-Methylcytosin vorliegt. Die Methyl ierung des Cytosinrestes hat Auswirkungen auf die Genregulation, wie z.B. die Hemmung der Bindung von Transkriptionsfaktoren, die Blockade von Promotorstellen usw.). D.h., auch hier lag nicht nur eine erhöhte Th2-Immunantwort vor, sondern darüber hinaus wurde eine Th1 -Immunantwort induziert. Auch hier wurden besonders gute Ergebnisse erzielt, wenn die CpG DNA ungefähr 24 Stunden nach der Verabreichung der erfindungsgemäßen mRNA verabreicht wurde. Insbesondere wurde CpG DNA mit dem Motiv CpG DNA 1668 mit der Sequenz 5'-TCC ATG ACG TTC CTG ATG CT-3' oder dem Motiv CpG 1982 5'-TCC AGG ACT TCT CTC AGG TT-3' in den Versuchen verwendet.
Auch die Verabreichung von adjuvo-viraler mRNA vermag einen immunstimulatorischen Effekt auszulösen. In diesem Fall wird ebenfalls eine
Cytokin-Ausschüttung herbeigeführt. Als Beispiele für derartige adjuvo-virale mRNAs wären mRNAs zu nennen, die für das Influenza-Matrixprotein oder das
HBS-Oberflächenprotein codieren. Insgesamt kommen typischerweise für eine adjuvante Wirkung einer adjuvo-viralen mRNA solche Antigene in Betracht, die virale Matrix- oder Oberflächenproteine darstellen.
Entsprechende Ergebnisse wurden bei der Verabreichung von adjuvanter RNA vor, nach und gleichzeitig mit der vorangehend beschriebenen mRNA-Vakzinierung erreicht. Bei der adjuvanten RNA handelt es sich um relativ kurze RNA-Moleküle, die bspw. aus etwa 2 bis etwa 1.000 Nukleotiden, vorzugsweise aus etwa 8 bis etwa 200 Nukleotiden, besonders bevorzugt aus 15 bis etwa 31 Nukleotiden, bestehen. Erfindungsgemäß kann die adjuvante RNA ebenfalls einzel- oder doppelsträngig vorliegen. Dabei kann insbesondere doppelsträngige RNA mit einer Länge von 21 Nucleotiden auch als Interferenz-RNA eingesetzt werden, um spezifisch Gene, z.B. von Tumorzellen, auszuschalten, und so diese Zellen gezielt abzutöten oder um darin aktive, für eine maligne Entartung verantwortlich zu machende Gene zu inaktivieren (Elbashir et al., Nature 2001 , 411 , 494-498). Die adjuvante RNA wird in dem erfindungsgemäßen Verfahren in Schritt (b.) eingesetzt und ist bevorzugt chemisch modifiziert, wie nachfolgend im Zusammenhang mit Modifikationen offenbart. Die adjuvante RNA aktiviert Zellen des Immunsystems (vornehmlich Antigen-präsentierende Zellen, insbesondere dentritische Zellen (DC), sowie die Abwehrzellen, bspw. in Form von T-Zellen), besonders stark und stimuliert so das Immunsystem eines Organismus. Die adjuvante RNA führt hierbei insbesondere zu einer vermehrten Freisetzung von immunsteuernden Cytokinen, bspw. Interleukinen, wie IL-6, IL-12 usw..
Die Dosierung des Cytokins bzw. der Cytokin-mRNA bzw. der CpG DNA bzw. der adjuvo-viralen mRNA bzw. der adjuvanten RNA ist abhängig von der verwendeten erfindungsgemäßen mRNA, die einen für ein Antigen aus einem Pathogen oder einem Tumorantigen kodierenden Bereich enthält, der zu behandelnden Erkrankung, dem Zustand des zu behandelnden Patienten (Gewicht, Größe, Entwicklungsstatus der Erkrankung etc.). Die Dosierungsbandbreite liegt ungefähr in einem Konzentrationsbereich von 5 bis 300 μg/m2.
„Vakzinierung" bzw. „Impfung" bedeutet im allgemeinen die Einbringung eines oder mehrerer Antigene oder im Sinne der Erfindung die Einbringung der genetischen Information für ein oder mehrere Antigen(e) in Form der für das/die Antigen(e) kodierenden erfindungsgemäßen mRNA in einen Organismus, insbesondere in eine/mehrere Zelle/Zellen bzw. Gewebe dieses Organismus. Die so verabreichte erfindungsgemäße mRNA wird in dem Organismus bzw. in dessen Zellen in das Antigen translatiert, d.h. das von der erfindungsgemäßen mRNA kodierte Antigen (auch: antigenes Polypeptid oder antigenes Peptid) wird exprimiert, wodurch eine gegen dieses Antigen gerichtete Immunantwort stimuliert wird.
Eine „Immunstimulation" oder „Stimulierung einer Immunantwort" erfolgt in der Regel durch die Infektion eines fremden Organismus (z.B. einem Säugetier, insbesondere einem Mensch) mit einem Pathogen (oder auch pathogenen Organismus). Von einem „Pathogen" oder „pathogenen Organismus" im Sinne der Erfindung sind insbesondere Viren und Bakterien, jedoch auch alle anderen Pathogene (wie z.B. Pilze oder infektionsauslösende Organismen, wie Trypanosomen, Nematoden etc.) umfasst. „Antigene'' eines Pathogens sind Substanzen (z.B. Proteine, Peptide, Nukleinsäuren oder Fragmente hiervon) des Pathogens, die in der Lage sind, die Bildung von Antikörpern auszulösen. Ebenfalls umfasst von der Erfindung sind Antigene aus einem Tumor. Hierunter ist zu verstehen, dass das Antigen in mit einem Tumor assoziierten Zellen exprimiert wird. Antigene aus Tumoren sind insbesondere solche, die in den entarteten Zellen selbst produziert werden. Vorzugsweise handelt es sich dabei um auf der Oberfläche der Zellen lokalisierte Antigene. Des Weiteren sind die Antigene aus Tumoren aber auch solche, die in Zellen exprimiert werden, welche nicht selbst (oder ursprünglich nicht selbst) entartet sind (waren), jedoch mit dem in Rede stehenden Tumor assoziiert sind. Dazu gehören bspw. auch Antigene, die mit Tumor-versorgenden Gefäßen bzw. deren (Neu-)Bildung zusammenhängen, insbesondere solche Antigene, die mit der Neovaskularisierung oder Angiogenese assoziiert sind, bspw. Wachstumsfaktoren wie VEGF, bFGF, usw.. Weiterhin umfassen derartige mit einem Tumor zusammenhängende Antigene solche aus Zellen des den Tumor einbettenden Gewebes.
Unter einem „Cytokin" ist ganz allgemein ein Protein zu verstehen, das das Verhalten von Zellen beeinflusst. Die Wirkung von Cytokinen erfolgt über spezifische Rezeptoren auf ihren Zielzellen. Zu den Cytokinen gehören beispielsweise Monokine, Lymphokine oder auch Interleukine, Interferone, Immunglobuline und Chemokine. Besonders bevorzugt wird erfindungsgemäß als Cytokin GM-CSF oder G-CSF oder M-CSF.
„Verabreichen" der/des erfindungsgemäßen mRNA und des Cytokins bzw. der Cytokin-mRNA bzw. der adjuvo-viralen mRNA bzw. der CpG DNA bzw. der adjuvanten RNA bedeutet, dem zu behandelnden Organismus, vorzugsweise Säugetier, besonders bevorzugt Mensch, eine geeignete Dosis der erfindungsgemäßen mRNA bzw. des Cytokins bzw. der Cytokin-mRNA bzw. der adjuvo-viralen mRNA bzw. der CpG DNA bzw. der adjuvanten RNA zuzuführen. Die Verabreichung kann auf jede geeignete Weise erfolgen, vorzugsweise über eine Injektion, parenteral, bspw. intravenös, intraarteriell, subkutan, intramuskulär, intraperitoneal oder intradermal. Ebenso ist eine topische oder orale Verabreichung möglich. Auf die Dosierung der erfindungsgemäßen mRNA bzw. des Cytokins bzw. der Cytokin-mRNA bzw. der adjuvo-viralen mRNA bzw. der CpG DNA bzw. der adjuvanten RNA wurde bereits oben näher eingegangen. Typischerweise liegt die verabreichte erfindungsgemäße mRNA oder das Adjuvans gemäß Verfahrensschritt (b.) in flüssiger Form vor, typischerweise in wässriger Lösung, die gepuffert sein kann, bspw. mit Phosphatpuffer, HEPES, Citrat, Acetat etc., bspw. auf einen pH- Wert zw. 5,0 und 8,0, insbesondere 6,5 und 7,5, und weitere vorteilhafte Arzneimittelhilfs- und -Zusatzstoffe (bspw. humanes Serumalbumin, Polysorbat 80, Zucker etc.) oder auch Salze, bspw. NaCI, KCl etc. enthalten kann.
Konsequenterweise ist von der vorliegenden Erfindung ebenfalls ein Verfahren zur Behandlung von Erkrankungen, insbesondere von Krebs- bzw. Tumorerkrankungen sowie von viralen und bakteriellen Infektionen, wie beispielsweise Hepatitis B, HlV oder MDR (multi-drug resistance)-lnfektionen bzw. eine Vakzinierung zur
Prävention der vorstehend genannten Erkrankungen umfasst, welches das
Verabreichen der erfindungsgemäßen mRNA und mindestens einer Komponente der nachfolgenden Kategorien Cytokin, Cytokin-mRNA, adjuvo-virale mRNA, CpG
DNA und/oder adjuvante RNA an ein Lebewesen oder an einen Patienten, insbesondere einen Menschen oder ein Haustier, umfasst. Hierbei handelt es sich um eine Kombinationstherapie, bei der erfindungsgemäße mRNA und Cytokin bzw.
Cytokin-mRNA bzw. adjuvo-virale mRNA bzw. CpG DNA bzw. adjuvante RNA erfindungsgemäß gemeinsam (in einem Gemisch), getrennt und zeitgleich oder getrennt und zeitlich abgestuft verabreicht werden.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die/das erfindungsgemäße mRNA und Cytokin bzw. Cytokin-mRNA bzw. adjuvo- virale mRNA bzw. CpG DNA bzw. der adjuvante RNA getrennt bzw. zeitlich abgestuft verabreicht. Hierbei wird in einer besonders bevorzugten Ausführungsform in dem erfindungsgemäßen Verfahren der Schritt b. 1 Minute bis 48 Stunden, bevorzugt 20 Minuten bis 36 Stunden, ebenfalls bevorzugt 30 Minuten bis 24 Stunden, stärker bevorzugt 10 Stunden bis 30 Stunden, am stärksten bevorzugt 12 Stunden bis 28 Stunden, insbesondere bevorzugt 20 bis 26 Stunden, nach Schritt a. vorgenommen. Erfindungsgemäß kann das/die Cytokin bzw. die Cytokin-mRNA bzw. adjuvo-virale mRNA bzw. die CpG DNA bzw. die adjuvante RNA aber auch vor oder gleichzeitig mit der erfindungsgemäßen mRNA verabreicht werden.
Insbesondere können die gemäß Verfahrungsschritt b. einsetzbaren Substanzen auch in jeder beliebigen Kombination verabreicht werden, d.h. es können erfindungsgemäß bspw. eine Cytokin-mRNA mit einer adjuvanten RNA und/oder einer CpG DNA in einem Gemisch verabreicht werden. Sollte die Kombination der Komponenten gemäß Verfahrungsschritt b. nicht in einem Gemisch erfolgen, können die miteinander kombinierten Komponenten auch separiert gemäß Verfahrensschritt b. verabreicht werden. Bevorzugt ist es auch, im Verfahrensschritt b. zwei oder mehr, vorzugsweise 2-4, Komponenten derselben Kategorie, bspw. mindestens zwei verschiedene Cytokine oder mindestens zwei verschiedene Cytokin-mRNAs miteinander, ggf. auch, wie oben offenbart, mit Komponenten weiterer Kategorien, zu kombinierten (im Gemisch oder getrennt).
In einer weiteren bevorzugten Ausführungsform wird in dem erfindungsgemäßen Verfahren in Schritt a. und/oder b. zusätzlich mindestens ein RNase-lnhibitor, vorzugsweise RNAsin oder Aurintricarbonsäure verabreicht. Dies dient dazu, einem Abbau der DNA durch RNasen (RNA-abbauende Enzyme) vorzubeugen. Ein derartiger Inhibitor wird typischerweise in die mindestens eine gemäß Verfahrensschritt (b.) verabreichte Zusammensetzung eingearbeitet.
In einer bevorzugten Ausführungsform wird in dem erfindungsgemäßen Verfahren eine Immunantwort auf einer erfindungsgemäße mRNA verstärkt bzw. moduliert, besonders bevorzugt von einer Th2-Immunantwort in eine Th1 -Immunantwort verändert.
In einer bevorzugten Ausführungsform der Erfindung enthält die mindestens eine erfindungsgemäße mRNA aus Schritt (a.) des erfindungsgemäßen Verfahrens einen Bereich, der für mindestens ein Antigen aus einem Tumor ausgewählt aus der Gruppe, bestehend aus 707-AP, AFP, ART-4, BAGE, -Catenin/m, Bcr-abI, CAMEL, CAP-I, CASP-8, CDC27/m, CDK4/m, CEA, CMV pp65, CT, Cyp-B, DAM, EGFRI, ELF2M, ETV6-AML1 , G250, GAGE, GnT-V, GpI OO, HAGE, HBS, HER-2/neu, HLA- A*0201-R170l, HPV-E7, HSP70-2M, HAST-2, hTERT (oder hTRT), Influenza Matrix- Protein, insbesondere Influenza A-Matrix-M1 -Protein oder Influenza B-Matrix-Ml - Protein, iCE, K1AA0205, LAGE, z.B. LAGE-I, LDLR/FUT, MAGE, z.B. MAGE-A, MAGE-B, MAGE-C, MAGE-A1 , MAGE-2, MAGE-3, MAGE-6, MAGE-10, MART- 1/Melan-A, MC1 R, Myosin/m, MUCl, MUM-I, -2, -3, NA88-A, NY-ESO-I , p190 minor bcr-abl, Pml/RAR , PRAME, Proteinase 3, PSA, PSM, PTPRZ1, RAGE, RU1 oder RU2, SAGE, SART-1 oder SART-3, SEC61G, SOX9, SPCl, SSX, Survivin, TEL/AML1, TERT, TNC, TPl/m, TRP-1 , TRP-2, TRP-2/INT2, Tyrosinase und VVT1 kodiert.
Besonders bevorzugt enthält die mindestens eine erfindungsgemäße mRNA einen Bereich, der für mindestens ein Antigen aus einem Tumor sind ausgewählt aus der Gruppe bestehend aus MAGE-A1 [Accession number (Zugriffsnummer) M77481], MAGE-A6 [Accession number NM_005363], Melan-A [Accession number NM_OO5511], GP100 [Accession number M77348], Tyrosinase [Accession number NM_000372], Survivin [Accession number AF077350], CEA [Accession number NM_004363], Her-2/neu [Accession number M11730], Mucin-1 [Accession number NM_002456], TERT [Accession number NM_003219], PR3 [Accession number NM_002777], VVT1 [Accession number NM_000378], PRAME [Accession number NM_006115], TNC (Tenascin C) [Accession number X78565], EGFRI („Epidermal Growth Factor Receptor 1 ") [Accession number AF288738], S0X9 [Accession number Z46629], SEC61 G [Accession number NM_014302], PTPRZ1 (Protein Tyrosine Phosphatase, Rezeptor-Typ, Z-Polypeptid 1) [Accession number NM_002851], CMV pp65 [Accession number M15120], HBS-Antigen [Accession number E00121], Influenza A-Matrix-M1 -Protein Accession number AF348197 und Influenza B-Matrix-Ml -Protein Accession number V01099 kodiert.
Im Sinne der vorliegenden Erfindung enthält die Cytokin-mRNA einen Abschnitt, der für das Cytokin kodiert bzw. die adjuvo-virale mRNA einen Abschnitt, der für ein virales Protein mit adjuvanter Wirkung kodiert. Allerdings kann auch in diesem Fall (wie auch im Fall der erfindungsgemäßen mRNA) die eingesetzte und hier als Cytokin-mRNA bzw. adjuvo-virale mRNA bezeichnete Nukleotidsequenz neben dem kodierenden Abschnitt mindestens einen weiteren funktionellen Abschnitt enthalten, bspw. spezifische Signal- oder Regulationsabschnitte. Diese Signal- oder Regulationsabschnitte dienen bspw. zur besseren Translation der i. S. dieser Erfindung verabreichten mRNA (bspw. in einem 3'-terminalen, nicht-translatierten Bereich der mRNA). Allerdings kann ein Signal- oder Regulationsabschnitt auch im codierenden Bereich der mRNA, bspw. 3'- oder 5'-terminaIen Bereich der codierenden Sequenz vorgesehen sein, so dass die Signal- oder Regulationswirkung erst auf der Ebene des exprimierten (Fusions)proteins auftritt. So könnte bspw. im codierenden Bereich der mRNA eine Signalpeptidsequenz (bspw. eine leader- Sequenz) mitexprimiert werden, die - nach Verabreichung, Zelleintritt und Expression - zu einer gezielten Sekretion des durch die verabreichte mRNA (erfindungsgemäße mRNA oder eine mRNA mit adjuvanter Wirkung aus Verfahrensschritt (b.)) codierten Proteins aus der Zelle führt. Bspw. können als Sekretionssignale die Sekretionssignalpeptide entsprechender Peptid- oder Proteinhormone (z.B. von Insulin, Vasopressin, Glukagon etc.) oder bspw. auch die Sekretionssignale von Antikörpern eingesetzt werden, indem die mRNA deren jeweilige Nukleotidsequenz enthält. Erfindungsgemäß sind ebenfalls funktionelle Fragmente und/oder funktionelle Varianten einer erfindungsgemäßen mRNA bzw. eines Antigens bzw. eines Cytokins bzw. einer Cytokin-mRNA bzw. einer adjuvo-viralen mRNA bzw. einer CpG DNA bzw. einer adjuvanten RNA der Erfindung mit umfasst. „Funktionell" im Sinne der Erfindung bedeutet, dass das Antigen bzw. die erfindungsgemäße mRNA immunologische bzw. immunogene Aktivität aufweist, insbesondere eine Immunantwort in einem Organismus, in dem es fremd ist, auslöst. Die erfindungsgemäße mRNA ist funktionell, wenn sie in ein funktionelles Antigen (oder ein Fragment hiervon) translatiert werden kann.
Unter einem „Fragment" im Sinne der Erfindung ist ein verkürztes Antigen bzw. eine verkürzte mRNA bzw. ein verkürztes Cytokin bzw. eine verkürzte Cytokin-mRNA bzw. eine adjuvo-virale mRNA bzw. eine verkürzte CpG DNA bzw. eine verkürzte adjuvante RNA der vorliegenden Erfindung zu verstehen. Es kann sich hierbei um N-terminal, C-terminal oder intrasequentiell verkürzte Aminosäure- bzw. Nukleinsäuresequenzen handeln.
Die Herstellung erfindungsgemäßer Fragmente ist im Stand der Technik gut bekannt und kann von einem Fachmann unter Anwendung von Standardverfahren durchgeführt werden (siehe z.B. Maniatis et al. (2001), Molecular Cloning: Laboratory Manual, CoId Spring Harbour Laboratory Press). Im allgemeinen kann die Herstellung der erfindungsgemäßen Fragmente durch Modifizieren der DNA- Sequenz, die das Wildtyp-Molekül kodiert, gefolgt von einer Transformation dieser DNA-Sequenz in einen geeigneten Wirt und Expression dieser modifizierten DNA- Sequenz, unter der Voraussetzung, dass die Modifikation der DNA die beschriebenen funktionellen Aktivitäten nicht zerstört, durchgeführt werden. Im Falle der erfindungsgemäßen mRNA oder einer Cytokin-mRNA oder einer adjuvo- viralen mRNA kann die Herstellung des Fragments ebenfalls durch Modifizieren der Wildtyp-DNA-Sequenz gefolgt von einer in vitro Transkription und Isolierung der mRNA erfolgen, ebenfalls unter der Voraussetzung, dass die Modifikation der DNA die funktionelle Aktivität der jeweiligen mRNA nicht zerstört. Die Identifizierung eines erfindungsgemäßen Fragments kann beispielsweise über eine Sequenzierung des Fragments und einem nachfolgenden Vergleich der erhaltenen Sequenz mit der Wildtyp-Sequenz erfolgen. Die Sequenzierung kann anhand von Standardverfahren, die im Stand der Technik zahlreich und gut bekannt sind, erfolgen.
Als „Varianten" im Sinne der Erfindung werden insbesondere solche erfindungsgemäßen mRNAs bzw. Cytokine bzw. Cytokin-mRNAs adjuvo-virale mRNAs bezeichnet, die Sequenzunterschiede zu den entsprechenden Wildtyp- Sequenzen aufweisen. Bei diesen Sequenzabweichungen kann es sich um eine oder mehrere lnsertion(en), Deletion(en) und/oder Substitution(en) von Aminosäuren bzw. Nukleinsäuren handeln, wobei eine Sequenzhomologie von mindestens 60%, bevorzugt 70%, stärker bevorzugt 80%, ebenfalls stärker bevorzugt 85%, noch stärker bevorzugt 90% und am meisten bevorzugt 97% vorliegt.
Um die prozentuale Identität zweier Nukleinsäure- oder Aminosäuresequenzen zu bestimmen, können die Sequenzen abgeglichen werden, um nachfolgend miteinander verglichen zu werden. Hierfür können z.B. Lücken in die Sequenz der ersten Aminosäure- bzw. Nukleinsäuresequenz eingeführt werden und die Aminosäuren bzw. Nukleinsäuren an der entsprechenden Position der zweiten Aminosäure- bzw. Nukleinsäuresequenz verglichen werden. Wenn eine Position in der ersten Aminosäuresequenz mit der gleichen Aminosäure bzw. der gleichen Nukleinsäure besetzt ist, wie es an einer Position in der zweiten Sequenz der Fall ist, dann sind beide Sequenzen an dieser Position identisch. Die prozentuale Identität zwischen zwei Sequenzen ist eine Funktion der Anzahl identischer Positionen geteilt durch die Sequenzen.
Die Bestimmung der prozentualen Identität zweier Sequenzen kann anhand eines mathematischen Algorithmus durchgeführt werden. Ein bevorzugtes, jedoch nicht beschränkendes, Beispiel eines mathematischen Algorithmus, der für den Vergleich zweier Sequenzen herangezogen werden kann, ist der Algorithmus von Karlin et al. (1993), PNAS USA, 90:5873-5877. Ein solcher Algorithmus ist in dem NBLAST- Programm integriert, mit dem Sequenzen identifiziert werden können, die eine gewünschte Identität zu den Sequenzen der vorliegenden Erfindung besitzen. Um einen Lücken-Abgleich (auch "gapped alignment"), wie oben beschrieben, zu erhalten, kann das "Gapped BLAST"-Programm verwendet werden, wie in Altschul et al. (1997), Nucleic Acids Res, 25:3389-3402 beschrieben.
Funktionelle Varianten im Sinne der Erfindung, können vorzugsweise erfindungsgemäße mRNA-Moleküle, Cytokin-mRNA- oder adjuvo-virale mRNA- Moleküle sein, die eine erhöhte Stabilität und/oder Translationsrate gegenüber ihren Wildtyp-Molekülen aufweisen. Ebenfalls kann ein besserer Transport in die Zelle des (Wirts-)Organismus vorliegen.
Unter den Begriff Varianten fallen insbesondere solche Aminosäuresequenzen, die gegenüber den physiologischen Sequenzen konservative Substitution aufweisen. Als konservative Substitutionen werden solche Substitutionen bezeichnet, bei denen Aminosäuren gegeneinander ausgetauscht werden, die aus der gleichen Klasse stammen. Insbesondere gibt es Aminosäuren mit aliphatischen Seitenketten, positiv oder negativ geladenen Seitenketten, aromatischen Gruppen in der Seitenketten oder Aminosäuren, deren Seitenketten Wasserstoffbrücken eingehen können, bspw. Seitenketten, die eine Hydroxyfunktion besitzen. Das bedeutet, dass bspw. eine Aminosäure mit einer polaren Seitenkette durch eine andere Aminosäure mit einer gleichfalls polaren Seitenkette ersetzt wird oder beispielsweise eine durch eine hydrophobe Seitenkette gekennzeichnete Aminosäure durch eine andere Aminosäure mit gleichfalls hydrophober Seitenkette substituiert wird (z.B. Serin (Threonin) durch Threonin (Serin) bzw. Leucin (Isoleucin) durch Isoleucin (Leucin)). Insertionen und Substitutionen sind insbesondere an solchen Sequenzpositionen möglich, die keine Veränderung der dreidimensionalen Struktur hervorrufen oder den Bindungsbereich betreffen. Eine Veränderung einer dreidimensionalen Struktur durch Insertion(en) oder Deletion(en) ist bspw. mit Hilfe von CD-Spektren (Zirkulardichroismus-Spektren) leicht überprüfbar (Urry, 1985, Absorption, circular Dichroism and ORD of Polypeptides, in: Modern Physical Methods in Biochemistry, Neuberger et al. (Hrgb.), Elsevier, Amsterdam).
Ebenfalls umfasst sind Varianten, bei denen ein „codon usage" erfolgt. Jede Aminosäure wird durch ein Codon, das durch jeweils drei Nukleotide (Triplett) definiert wird, kodiert. Es ist möglich, ein Codon, das eine bestimmte Aminosäure kodiert, gegen ein anderes Codon, das dieselbe Aminosäure kodiert, auszutauschen. Durch die Wahl geeigneter alternativer Codons kann beispielsweise die Stabilität der erfindungsgemäßen mRNA erhöht werden. Hierauf wird nachstehend noch näher eingegangen.
Geeignete Verfahren zur Herstellung von erfindungsgemäßen Varianten mit Aminosäuresequenzen, die gegenüber den Wildtyp-Sequenzen Substitutionen aufweisen, werden bspw. in den Druckschriften" US 4,737,462, US 4,588,585, US 4,959,314, US 5,116,943, US 4,879,111 und US 5,017,691 offenbart. Die Herstellung von Varianten im allgemeinen wird insbesondere auch von Maniatis et al, (2001 ), Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Laboratory Press) beschrieben. Es können hierbei Codons weggelassen, ergänzt oder ausgetauscht werden. Varianten im Sinne der Erfindung können ebenfalls hergestellt werden, indem in die Nukleinsäuren, welche für die Varianten kodieren, Veränderungen eingeführt werden, wie bspw. Insertionen, Deletionen und/oder Substitutionen einer oder mehrerer Nukleotide. Im Stand der Technik sind zahlreiche Verfahren für derartige Veränderungen von Nukleinsäuresequenzen bekannt. Eine der am meisten verwendeten Techniken ist die Oligonukleotid- gerichtete Orts-spezifische Mutagenese (siehe Comack B., Current Protocols in Molecular Biology, 8.01 -8.5.9, Ausubel F. et al., Aufl. 1991 ). Bei dieser Technik wird ein Oligonukleotid synthetisiert, dessen Sequenz eine bestimmte Mutation aufweist. Dieses Oligonukleotid wird dann mit einem Template hybridisiert, das die Wildtyp-Nukleinsäuresequenz enthält. Bevorzugt wird bei dieser Technik ein einzelsträngiges Template verwendet. Nach dem Annealing von Oligonukleotid und Template, wird eine DNA-abhängige DNA-Polymerase eingesetzt, um den zweiten Strang des Oligonukleotids, der komplementär zu dem Template-DNA-Strang ist, zu synthetisieren. Als Ergebnis wird ein Heteroduplex-Molekül erhalten, welches eine Fehlpaarung enthält, die durch die oben erwähnte Mutation in dem Oligonukleotid entsteht. Die Oligonukleotidsequenz wird in ein geeignetes Plasmid eingeführt, dieses wird in eine Wirtszelle eingeführt und in dieser Wirtszelle wird die Oligonukleotid-DNA repliziert. Mit dieser Technik erhält man Nukleinsäuresequenzen mit gezielten Veränderungen (Mutationen), welche für die Herstellung von Varianten gemäß der Erfindung verwendet werden können.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das mindestens eine Cytokin (aus der Cytokin-Kategorie) ausgewählt aus der Gruppe, die aus IL-I (α/ß), 1L-2, 1L-3, IL-4, 1L-5, 1L-6, 1L-7, IL-8, IL-9, IL-I O, IL-12, IL-13, IL- 15, IL-18, 1L-21, IL-22, IL-23, IFN-α, IFN-ß, IFN-γ, LT-α, MCAF, RANTES, TGFα, TGFßi , TGFß2, TNFα, TNFß und besonders bevorzugt G-CSF, M-CSF oder GM-CSF besteht, insbesondere (rekombinante oder nicht-rekombinante) der humanen Formen der vorgenannten Cytokine, ebenso wie deren Varianten oder Fragmenten. In einer anderen bevorzugten Ausführungsform wird in einem Verfahrensschritt b. Cytokin-mRNA, die für eines der vorgenannten Cytokine, deren Fragmente oder Varianten, codiert bzw. entsprechende codierende Abschnitte enthält, eingesetzt.
Die mRNA aus Schritt (a.) und/oder Schritt (b.) (d.h. die erfindungsgemäße, die Cytokin- oder die adjuvo-virale mRNA) oder die adjuvante RNA aus Schritt (b.) des Verfahrens gemäß der Erfindung kann als nackte (m)RNA oder komplexiert mit weiteren Komponenten vorliegen.
In einer bevorzugten Ausführungsform liegt die mRNA aus Schritt (a.) und/oder Schritt (b.) bzw. die adjuvante RNA aus Schritt (b.) des erfindungsgemäßen Verfahrens als modifizierte (m)RNA, insbesondere stabilisierte (m)RNA, vor. Modifikationen der erfindungsgemäßen mRNA bzw. der (m)RNA aus Schritt (b.) dienen hierbei vor allem der Erhöhung der Stabilität der erfindungsgemäßen mRNA bzw. der (m)RNA aus Schritt (b.) aber auch der Verbesserung des Transfers der erfindungsgemäßen mRNA bzw. der (m)RNA aus Schritt (b.) (d.h. der Cytokin- mRNA, der adjuvo-viralen mRNA und der adjuvanten RNA) in eine Zelle bzw. ein Gewebe eines Organismus. Vorzugsweise weist die erfindungsgemäße mRNA bzw. die (m)RNA aus Schritt (b.) des erfindungsgemäßen Verfahrens eine oder mehrere Modifikationen, insbesondere chemische Modifikationen, auf, die zur Erhöhung der Halbwertszeit der erfindungsgemäßen mRNA bzw. der (m)RNA aus Schritt (b.) im Organismus beitragen bzw. den Transfer der erfindungsgemäßen mRNA bzw. der (m)RNA aus Schritt (b.) in die Zelle bzw. ein Gewebe verbessern.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist der G/C-Gehalt des kodierenden Bereichs der modifizierten erfindungsgemäßen mRNA aus Schritt (a.) und/oder der Cytokin-mRNA und/oder der adjuvo-viralem mRNA aus
Schritt (b.) des erfindungsgemäßen Verfahrens gegenüber dem G/C-Gehalt des kodierenden Bereichs der jeweiligen Wildtyp-RNA erhöht, wobei die kodierte
Aminosäuresequenz der modifizierten erfindungsgemäßen mRNA oder der mRNA aus Schritt (b.) gegenüber der kodierten Aminosäuresequenz der jeweiligen Wildtyp- mRNA vorzugsweise nicht verändert ist.
Diese Modifikation beruht auf der Tatsache, dass für die effiziente Translation einer mRNA die Sequenzabfolge des zu translatierenden Bereichs der mRNA wesentlich ist. Bedeutungsvoll ist hier die Zusammensetzung und die Abfolge der verschiedenen Nukleotide. Insbesondere sind Sequenzen mit erhöhtem G (Guanosin)/C (Cytosin)-Gehalt stabiler als Sequenzen mit einem erhöhten A (Adenosin)/U (Uracil)-Gehalt. Daher werden erfindungsgemäß unter Beibehaltung der translatierten Aminosäureabfolge die Codons gegenüber der Wildtyp-mRNA derart variiert, dass sie vermehrt G/C-Nukleotide beinhalten. Aufgrund der Tatsache, dass mehrere Codons für ein und dieselbe Aminosäure kodieren (sog. „Degeneration des genetischen Codes"), können die für die Stabilität günstigsten Codons ermittelt werden (sog. „alternative Codonverwendung" oder englisch: „codon usage").
In Abhängigkeit von der durch die modifizierte mRNA (aus Schritt (a.) oder (b.)) zu kodierenden Aminosäure sind unterschiedliche Möglichkeiten zur Modifikation der erfindungsgemäßen mRNA-Sequenz oder der Cytokin-mRNA-Sequenz oder der adjuvo-viralen mRNA-Sequenz gegenüber der Wildtyp-Sequenz möglich. Im Fall von Aminosäuren, die durch Codons kodiert werden, die ausschließlich G- oder C- Nukleotide enthalten, ist keine Modifikation des Codons erforderlich. So erfordern die Codons für Pro (CCC oder CCG), Arg (CGC oder CGG), AIa (GCC oder GCG) und GIy (GGC oder GGG) keine Veränderung, da kein A oder U vorhanden ist.
Dem entgegen können Codons, welche A- und/oder U-Nukleotide enthalten durch Substitution anderer Codons, welche die gleichen Aminosäuren kodieren, jedoch kein A und/oder U enthalten, verändert werden. Beispiele hierfür sind:
- die Codons für Pro können von CCU oder CCA zu CCC oder CCG verändert werden;
- die Codons für Arg können von CGU oder CGA oder AGA oder AGG zu CGC oder CGG verändert werden;
- die Codons für AIa können von GCU oder GCA zu GCC oder GCG verändert werden; - die Codons für GIy können von GGU oder GGA zu GGC oder GGG verändert werden.
In anderen Fällen können A- bzw. U-Nukleotide zwar nicht aus den Codons eliminiert werden, jedoch ist es möglich, den A- und U-Gehalt zu verringern, indem Codons verwendet werden, die einen geringeren Anteil A- und/oder U-Nukleotide enthalten. Beispiele hierfür sind:
- die Codons für Phe können von UUU zu UUC verändert werden; - die Codons für Leu können von UUA, UUG, CUU oder CUA zu CUC oder CUG verändert werden;
- die Codons für Ser können von UCU oder UCA oder AGU zu UCC, UCG oder AGC verändert werden; das Codon für Tyr kann von UAU zu UAC verändert werden; - das Codon für Cys kann von UGU zu UGC verändert werden; das Codon His kann von CAU zu CAC verändert werden;
- das Codon für GIn kann von CAA zu CAG verändert werden;
- die Codons für He können von AUU oder AUA zu AUC verändert werden; die Codons für Thr können von ACU oder ACA zu ACC oder ACG verändert werden;
- das Codon für Asn kann von AAU zu AAC verändert werden; das Codon für Lys kann von AAA zu AAG verändert werden;
- die Codons für VaI können von GUU oder GUA zu GUC oder GUG verändert werden; - das Codon für Asp kann von GAU zu GAC verändert werden;
- das Codon für GIu kann von GAA zu GAG verändert werden,
- das Stop-Codon UAA kann zu UAG oder UGA verändert werden.
Im Falle der Codons für Met (AUG) und Trp (UGG) besteht hingegen keine Möglichkeit der Sequenzmodifikation.
Die vorstehend aufgeführten Substitutionen können sowohl einzeln aber auch in allen möglichen Kombinationen zur Erhöhung des G/C-Gehalts der modifizierten erfindungsgemäßen mRNA oder der Cytokin-mRNA oder der adjuvo-viralen mRNA gegenüber der jeweiligen Wildtyp-mRNA (der ursprünglichen Sequenz) verwendet werden. So können beispielsweise alle in der Wildtyp-Sequenz auftretenden Codons für Thr zu ACC (oder ACG) verändert werden. Bevorzugt werden jedoch beispielsweise Kombinationen der vorstehenden Substitutionsmöglichkeiten verwendet: - Substitution aller in der ursprünglichen Sequenz (Wildtyp-mRNA) für Thr kodierenden Codons zu ACC (oder ACG) und Substitution aller ursprünglich für Ser kodierenden Codons zu UCC ( oder UCG oder AGC);
Substitution aller in der ursprünglichen Sequenz für He kodierenden Codons zu AUC und Substitution aller ursprünglich für Lys kodierenden Codons zu AAG und Substitution aller ursprünglich für Tyr kodierenden Codons zu UAC;
Substitution aller in der ursprünglichen Sequenz für VaI kodierenden Codons zu GUC (oder GUG) und Substitution aller ursprünglich für GIu kodierenden Codons zu GAG und Substitution aller ursprünglich für AIa kodierenden Codons zu GCC (oder GCG) und Substitution aller ursprünglich für Arg kodierenden Codons zu CGC (oder CGG); - Substitution aller in der ursprünglichen Sequenz für VaI kodierenden Codons zu GUC (oder GUG) und Substitution aller ursprünglich für GIu kodierenden Codons zu GAG und Substitution aller ursprünglich für AIa kodierenden Codons zu GCC (oder GCG) und Substitution aller ursprünglich für GIy kodierenden Codons zu GGC (oder GGG) und Substitution aller ursprünglich für Asn kodierenden Codons zu AAC; - Substitution aller in der ursprünglichen Sequenz für VaI kodierenden Codons zu GUC (oder GUG) und Substitution aller ursprünglich für Phe kodierenden Codons zu UUC und Substitution aller ursprünglich für Cys kodierenden Codons zu UGC und Substitution aller ursprünglich für Leu kodierenden Codons zu CUG (oder CUC) und Substitution aller ursprünglich für GIn kodierenden Codons zu CAG und Substitution aller ursprünglich für Pro kodierenden Codons zu CCC (oder CCG); usw.
Vorzugsweise wird der G/C-Gehalt des für das Antigen kodierenden Bereichs der modifizierten erfindungsgemäßen mRNA oder der Cytokin-mRNA oder der adjuvo- viralen mRNA um mindestens 7%-Punkte, stärker bevorzugt um mindestens 15%- Punkte, besonders bevorzugt um mindestens 20%-Punkte gegenüber dem G/C- Gehalt des kodierten Bereichs der für das Antigen kodierenden Wildtyp-mRNA erhöht. Besonders bevorzugt ist es in diesem Zusammenhang, den G/C-Gehalt der modifizierten erfindungsgemäßen mRNA oder der Cytokin-mRNA oder der adjuvo- viralen mRNA, insbesondere in dem für das Antigen kodierenden Bereich, im Vergleich zur Wildtyp-Sequenz maximal zu erhöhen.
Eine weitere bevorzugte Modifikation der mRNA aus Schritt (a.) und/oder Schritt (b.) des erfindungsgemäßen Verfahrens basiert auf der Erkenntnis, dass die Translationseffizienz ebenfalls durch eine unterschiedliche Häufigkeit im Auftreten von tRNAs in Zellen bestimmt wird. Sind daher in einer RNA-Sequenz vermehrt sogenannte "seltene" Codons vorhanden, so wird die entsprechende mRNA deutlich schlechter translatiert als in dem Fall, dass für relativ "häufige" tRNAs kodierende Codons vorhanden sind.
Somit wird in der modifizierten erfindungsgemäßen mRNA oder der Cytokin-mRNA oder der Cytokin-mRNA oder der adjuvo-viralen mRNA des erfindungsgemäßen Verfahrens, der für das Antigen kodierende Bereich gegenüber dem entsprechenden Bereich der Wildtyp-mRNA derart verändert, dass mindestens ein Codon der Wildtyp-Sequenz, das für eine in der Zelle relativ seltene tRNA kodiert, gegen ein Codon ausgetauscht, das für eine in der Zelle relativ häufige tRNA kodiert, welche die gleiche Aminosäure trägt wie die relativ seltene tRNA. Durch diese Modifikation werden die RNA-Sequenzen derart modifiziert, dass Codons eingefügt werden, für die häufig vorkommende tRNAs zur Verfügung stehen. Anders ausgedrückt, können durch diese Modifikation erfindungsgemäß alle Codons der Wildtyp-Sequenz, die für eine in der Zelle relativ seltene tRNA kodieren, jeweils gegen ein Codon ausgetauscht werden, das für eine in der Zelle relativ häufige tRNA kodiert, welche jeweils die gleiche Aminosäure trägt wie die relativ seltene tRNA.
Welche tRNAs relativ häufig in der Zelle auftreten und welche demgegenüber relativ selten auftreten, ist einem Fachmann bekannt; vgl. bspw. Akashi, Curr. Opin. Genet. Dev. 2001 , 11 (6): 660-666. Insbesondere bevorzugt sind die Codons, welche für die jeweilige Aminosäure die am häufigsten auftretende tRNA verwenden, also bspw. das Gly-Codon, das die in der (humanen) Zelle am häufigsten auftretende tRNA verwendet.
Erfindungsgemäß besonders bevorzugt ist es, den in der modifizierten erfindungsgemäßen mRNA oder der Cytokin-mRNA oder der adjuvo-viralen mRNA erhöhten, insbesondere maximalen, sequenziellen G/C-Anteil mit den "häufigen" Codons zu verknüpfen, ohne die Aminosäuresequenz des durch den kodierenden Bereich der mRNA kodierten Antigens zu verändern. Diese bevorzugte Ausführungsform stellt eine besonders effizient translatierte und stabilisierte erfindungsgemäße mRNA bspw. für das erfindungsgemäße Verfahren bereit.
Die Ermittlung einer wie vorstehend beschrieben modifizierten erfindungsgemäßen mRNA (Erhöhung des G/C-Gehalts; Austausch von tRNAs) kann anhand des in der WO 02/098443 - deren Offenbarungsgehalt vollinhaltlich in die vorliegende Erfindung einbezogen wird - erläuterten Computerprogramms ermittelt werden. Mit diesem Computerprogramm kann anhand des genetischen Codes bzw. dessen degenerativer Natur die Nucleotid-Sequenz einer beliebigen mRNA derart modifiziert werden, dass sich ein maximaler G/C-Gehalt in Verbindung mit der Verwendung von Codons, die für möglichst häufig in der Zelle vorkommende tRNAs kodieren, ergibt, wobei die durch die modifizierte mRNA kodierte Aminosäure-Sequenz gegenüber der nicht-modifizierten Sequenz vorzugsweise nicht verändert ist. Alternativ kann auch nur der G/C-Gehalt oder nur die Codonverwendung gegenüber der ursprünglichen Sequenz modifiziert werden. Der Quellcode in Visual Basic 6.0 (eingesetzte Entwicklungsumgebung: Microsoft Visual Studio Enterprise 6.0 mit Servicepack 3) ist ebenfalls in der WO 02/098443 angegeben. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist der A/U-Gehalt in der Umgebung der Ribosomen-Bindungsstelle der modifizierten mRNA aus Schritt (a.) und/oder Schritt (b.) des erfindungsgemäßen Verfahrens gegenüber dem A/U-Gehalt in der Umgebung der Ribosomen-Bindungsstelle der jeweiligen Wildtyp-mRNA erhöht. Diese Modifikation (ein erhöhter A/U-Gehalt um die Ribosomen-Bindungsstelle) erhöht die Effizienz der Ribosomen-Bindung an die erfindungsgemäße mRNA. Eine wirksame Bindung der Ribosomen an die Ribosomen-Bindungsstelle (Kozak-Sequenz: GCCGCCACCAUGG, das AUG bildet das Startcodon) bewirkt wiederum eine effiziente Translation der erfindungsgemäßen mRNA oder der anderen vorgenannten mRNAs mit Adjuvanseigenschaften.
Eine ebenfalls bevorzugte Ausführungsform der vorliegenden Erfindung betrifft ein erfindungsgemäßes Verfahren, wobei der kodierende Bereich und/oder der 5'- und/oder 3'-nicht-translatierte Bereich der mRNA aus Schritt (a.) und/oder Schritt (b.) (d.h. Cytokin-mRNA oder adjuvo-virale mRNA) gegenüber der jeweiligen Wildtyp-mRNA derart verändert ist, dass er keine destabilisierenden Sequenzelemente enthält, wobei die kodierte Aminosäuresequenz der modifizierten mRNA gegenüber der jeweiligen Wildtyp-mRNA vorzugsweise nicht verändert ist. Es ist bekannt, dass beispielsweise in den Sequenzen eukaryotischer mRNAs destabilisierende Sequenzelemente (DSE) auftreten, an welche Signalproteine binden und den enzymatischen Abbau der mRNA in vivo regulieren. Daher können zur weiteren Stabilisierung der modifizierten mRNA gegebenenfalls im für das Antigen kodierenden Bereich ein oder mehrere derartige Veränderungen gegenüber dem entsprechenden Bereich der Wildtyp-mRNA vorgenommen werden, so dass dort keine bzw. im wesentlichen keine destabilisierenden Sequenzelemente enthalten sind. Durch derartige Veränderungen können erfindungsgemäß ebenfalls in den nicht-translatierten Bereichen (3'- und/oder 5'-UTR) vorhandene DSE aus der erfindungsgemäßen mRNA eliminiert werden. Derartige destabilisierende Sequenzen sind bspw. AU-reiche Sequenzen ("AURES"), die in 3'-UTR-Abschnitten zahlreicher instabiler mRNA vorkommen (Caput et al., Proc. Natl. Acad. Sei. USA 1986, 83: 1670 bis 1674). Die in dem erfindungsgemäßen Verfahren enthaltenen erfindungsgemäßen oder adjuvanten mRNA-Moleküle sind daher vorzugsweise derart gegenüber der Wildtyp-mRNA verändert, dass sie keine derartigen destabilisierenden Sequenzen aufweisen. Dies gilt auch für solche Sequenzmptive, die von möglichen Endonukleasen erkannt werden, bspw. die Sequenz GAACAAG, die im 3' UTR-Segment des für den Transferin-Rezeptor kodierenden Gens enthalten ist (Binder et al., EMBO J. 1994, 13: 1969 bis 1980). Auch diese Sequenzmotive werden bevorzugt in der modifizierten erfindungsgemäßen mRNA oder der adjuvanten mRNA (Cytokin- mRNA oder adjuvo-virale mRNA) des erfindungsgemäßen Verfahrens entfernt.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weist die mRNA aus Schritt (a.) und/oder Schritt (b.) (bspw. die Cytokin-mRNA) des erfindungsgemäßen Verfahrens eine 5'-Cap-Struktur auf. Beispiele von Cap- Strukturen, die erfindungsgemäß verwendet werden können, sind m7G(5')ppp (5'(A,G(5')ppp(5')A und G(5')ppp(5')G. Derartige Modifikationen können auch bei der adjuvanten RNA aus Schritt (b.) auftreten.
Ferner ist es bevorzugt, dass die mRNA aus Schritt (a.) und/oder Schritt (b.) des erfindungsgemäßen Verfahrens in einer modifizierten Form einen Poly(A)-Schwanz, vorzugsweise von mindestens 25 Nukleotiden, stärker bevorzugt von mindestens 50 Nukleotiden, noch stärker bevorzugt von mindestens 70 Nukleotiden, ebenfalls stärker bevorzugt von mindestens 100 Nukleotiden, am stärksten bevorzugt von mindestens 200 Nukleotiden aufweist.
Ebenfalls bevorzugt weist die mRNA aus Schritt (a.) und/oder Schritt (b.) des erfindungsgemäßen Verfahrens in einer modifizierten Form mindestens eine IRES und/oder mindestens eine 5'- und/oder 3'-Stabilisierungssequenz auf. Erfindungsgemäß können demnach in die mRNA aus Schritt (a.) und/oder Schritt (b.) eine oder mehrere sog. IRES (engl, „internal ribosomal entry side") eingefügt werden. Eine IRES kann so als alleinige Ribosomen-Bindungsstelle fungieren, sie kann jedoch auch zur Bereitstellung einer mRNA aus Schritt (a.) und/oder Schritt (b.) dienen, die mehrere Antigene kodiert, die unabhängig voneinander durch die Ribosomen translatiert werden sollen ("multicistronische mRNA"). Beispiele erfindungsgemäß verwendbarer IRES-Sequenzen sind diejenigen aus Picornaviren (z.B. FMDV), Pestviren (CFFV), Polioviren (PV), Enzephalo-Myocarditis-Viren (ECMV), Maul-und-Klauenseuche-Viren (FMDV), Hepatitis-C-Viren (HCV), Klassisches-Schweinefieber-Viren (CSFV), Murines-Leukoma-Virus (MLV), Simean- Immundefizienz-Viren (SlV) oder Cricket-Paralysis-Viren (CrPV).
Weiterhin bevorzugt weist die mRNA aus Schritt (a.) und/oder Schritt (b.) des erfindungsgemäßen Verfahrens mindestens eine 5'- und/oder 3'- Stabilisierungssequenz auf. Diese Stabilisierungssequenzen in den 51- und/oder 3'- nicht-translatierten Bereichen bewirken eine Erhöhung der Halbwertszeit der erfindungsgemäßen mRNA im Cytosol. Diese Stabilisierungssequenzen können eine 100%ige Sequenzhomologie zu natürlich vorkommenden Sequenzen, die in Viren, Bakterien und Eukaryoten auftreten, aufweisen, können aber auch teilweise oder vollständig synthetischer Natur sein. Als Beispiel für stabilisierende Sequenzen, die in der vorliegenden Erfindung verwendbar sind, können die nicht-translatierten Sequenzen (UTR) des -Globingens, bspw. von Homo sapiens oder Xenopus laevis, genannt werden. Ein anderes Beispiel einer Stabilisierungssequenz weist die allgemeine Formel (C/U)CCANxCCC(U/A)PyxUC(C/U)CC auf, die im 31UTR der sehr stabilen mRNA enthalten ist, die für -Globin, -(I)-CoI lagen, 15-Lipoxygenase oder für Tyrosin-Hydroxylase kodiert (vgl. Holcik et al., Proc. Natl. Acad. Sei. USA 1997, 94: 2410 bis 2414). Selbstverständlich können derartige Stabilisierungssequenzen einzeln oder in Kombination miteinander als auch in Kombination mit anderen, einem Fachmann bekannten Stabilisierungssequenzen verwendet werden. Bevorzugt liegt die mRNA aus Schritt (a.) und/oder Schritt (b.) des erfindungsgemäßen Verfahrens daher als Globin-UTR (untranslated regions)- stabilisierte mRNA, insbesondere als ß-Globin-UTR-stabilisierte mRNA, vor. Es konnte erfindungsgemäß festgestellt werden, dass die Injektion von nackter ß-Globin-UTR (untranslated regions)-stabilisierter erfindungsgemäßer, ggf. in Kombination mit ebenfalls derart oder anders modifizierter adjuvanter mRNA, in die Ohrmuschel eines Säugetiers (z.B. von Mäusen) eine spezifische Immunantwort gegen das Antigen, das durch die erfindungsgemäße mRNA kodiert wird, induziert (17). Mit anderen Worten, haben die Erfinder den Verlauf der injizierten ß-Globin- UTR-stabilisierten mRNA und den Typ der Immunantwort, den sie auslöst, verfolgt bzw. untersucht und so eine Translation in vivo nachgewiesen (siehe Figur 1). Diese Vakzinierungsstrategie wurde weiter untersucht und es wurde eine pharmazeutische mRNA entwickelt, die in humanen klinischen Versuchen verwendet werden kann.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist die modifizierte mRNA aus Schritt (a.) und/oder Schritt (b.) bzw. die adjuvante RNA aus Schritt (b.) des erfindungsgemäßen Verfahrens mindestens ein Analoges natürlich vorkommender Nukleotide auf. Dieses/diese Analoges/Analoga dient/dienen der weiteren Stabilisierung der modifizierten erfindungsgemäßen mRNA, wobei dies auf der Tatsache beruht, dass die in den Zellen vorkommenden RNA-abbauenden Enzyme als Substrat vorzugsweise natürlich vorkommende Nukleotide erkennen. Durch Einfügen von Nukleotid-Analoga in die RNA kann daher der RNA-Abbau erschwert werden, wobei die Auswirkung auf die Translationseffizienz bei Einfügen dieser Analoga, insbesondere in den kodierenden Bereich der mRNA, einen positiven oder negativen Effekt auf die Translationseffizienz haben kann. In einer keineswegs abschließenden Aufzählung können als Beispiele erfindungsgemäß verwendbarer Nukleotidanaloga Phosphoramidate, Phosphorthioate, Peptidnukleotide, Methylphosphonate, 7-Deazaguaonsin, 5-Methylcytosin und lnosin genannt werden. Die Herstellung derartiger Analoga sind einem Fachmann bspw. aus den US-Patenten 4,373,071, US 4,401,796, US 4,415,732, US 4,458,066, US 4,500,707, US 4,668,777, US 4,973,679, US 5,047,524, US 5,132,418, US 5,153,319, US 5,262,530 und 5,700,642 bekannt. Erfindungsgemäß können derartige Analoga in nicht-translatierten und translatierten Bereichen der modifizierten mRNA vorkommen.
Einem Fachmann sind verschiedene Verfahren geläufig, die beschriebenen Modifikationen vorzunehmen. Einige dieser Verfahren wurden bereits in dem obigen Abschnitt zu den Varianten der Erfindung beschrieben. Beispielsweise kann zur Substitution von Codons in der modifizierten erfindungsgemäßen mRNA bzw. einer mRNA (Cytokin-mRNA oder adjuvo-viraler mRNA) oder adjuvanten RNA aus Schritt (b.) oder im Falle kürzerer kodierender Bereiche die gesamte erfindungsgemäße mRNA chemisch unter Verwendung von Standardtechniken synthetisiert werden.
Bevorzugt werden allerdings Substitutionen, Additionen oder Eliminierungen von Basen unter Verwendung einer DNA-Matrize zur Herstellung der modifizierten erfindungsgemäßen mRNA oder einer mRNA aus Schritt (b.) mit Hilfe von Techniken der gängigen zielgerichteten Mutagenese eingeführt (siehe z.B. Maniatis et al., Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Laboratory Press, 3. Aufl., CoId Spring Harbor, NY, 2001). Bei einem solchen Verfahren wird zur Herstellung der erfindungsgemäßen mRNA oder einer mRNA aus Schritt (b.) ein entsprechendes DNA-Molekül in vitro transkribiert. Diese DNA-Matrize besitzt einen geeigneten Promotor, bspw. einen 17 -oder SP6-Promotor, für die in vitro Transkription, dem die gewünschte Nukleotidsequenz für die herzustellende (erfindungsgemäße) mRNA und ein Terminationssignal für die in vitro Transkription folgen. Erfindungsgemäß wird das DNA-Molekül, das die Matrize des herzustellenden RNA-Konstrukts bildet, durch fermentative Vermehrung und anschließende Isolierung als Teil eines in Bakterien replizierbaren Plasmids hergestellt. Als für die vorliegende Erfindung geeignete Plasmide können bspw. die Plasmide pT7Ts (GenBank-Zugriffsnummer U26404; Lai et al., Development 1995, 121 : 2349 bis 2360), pGEM®-Reihe, bspw. pGEM®-1 (GenBank-Zugriffsnummer X65300; von Promega) und pSP64 (GenBank-Zugriffsnummer X65327) genannt werden; vgl. auch Mezei und Starts, Purification of PCR Products, in: Griffin und Griffin (Hrsg.), PCR Technology: Current Innovation, CRC Press, Boca Raton, FL, 2001.
Es kann so unter Verwendung kurzer synthetischer DNA-Oligonukleotide, die an den entstehenden Schnittstellen kurze einzelsträngige Übergänge aufweisen, oder durch chemische Synthese hergestellte Gene die gewünschte Nukleotidsequenz nach einem Fachmann geläufigen molekularbiologischen Methoden in ein geeignetes Plasmid kloniert werden (vgl. Maniatis et al., supra). Das DNA-Molekül wird dann aus dem Plasmid, in welchem es in einfacher oder mehrfacher Kopie vorliegen kann, durch Verdauung mit Restriktionsendonukleasen ausgeschnitten.
Neben den vorgenannten Modifikationen auf der Ebene der Nukleotidsequenz können weitere Modifikationen in die mRNA aus Schritt a. und/oder b. eingeführt werden.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist die mRNA aus Schritt (a.) und/oder Schritt (b.) bzw. die adjuvante RNA aus Schritt (b.) des erfindungsgemäßen Verfahrens mit mindestens einem kationischen oder polykationischen Agens komplexiert oder kondensiert ist und insoweit modifiziert. Bevorzugt handelt es sich bei einem solchen kationischen oder polykationischen Agens um ein Agens, das aus der Gruppe bestehend aus Protamin, Poly-L-Lysin, Poly-L-Arginin und Histonen ausgewählt ist.
Durch diese Modifikation auf der Basis der Komplexierung der mRNA aus Schritt (a.) (erfindungsgemäße mRNA) und/oder Schritt (b.) bzw. der adjuvanten RNA aus Schritt (b.) kann der wirksame Transfer der modifizierten (m)RNA in die zu behandelnden Zellen bzw. das zu behandelnde Gewebe bzw. den zu behandelnden Organismus dadurch verbessert werden, dass die vorgenannte (m)RNA mit einem kationischen Peptid oder Protein assoziiert oder daran gebunden ist. Insbesondere ist dabei die Verwendung von Protamin als polykationisches, Nukleinsäure-bindendes Protein besonders wirksam. Die Verwendung anderer kationischer Peptide oder Proteine, wie Poly-L-Lysin oder Histonen, ist selbstverständlich ebenfalls möglich. Diese Vorgehensweise zur Stabilisierung der vorgenannten (m)RNA-Moleküle in einem erfindungsgemäßen Verfahren wird beispielsweise in EP-A-1083232 beschrieben, deren diesbezüglicher Offenbarungsgehalt in die vorliegende Erfindung vollumfänglich eingeschlossen ist.
In einer weiteren Ausführungsform der vorliegenden Erfindung wird die modifizierte erfindungsgemäße mRNA oder die adjuvante mRNA bzw. adjuvante RNA aus dem Schritt (b.) des erfindungsgemäßen Verfahrens mit Polyethylenimin (PEI) stabilisiert und insoweit modifiziert.
Die erfindungsgemäße mRNA, die Cytokin-mRNA, die adjuvo-virale mRNA und/oder die adjuvante RNA (jeweils modifiziert oder nicht) kann einzel- oder doppelsträngig vorliegen und als solche oder einem Gemisch in einem erfindungsgemäßen Verfahren eingesetzt werden. Im Falle einer Doppelsträngigkeit kann auch zumindest ein üblicherweise offenes Ende des Doppelstrangs, vorzugsweise beide, miteinander kovalent verbunden sein, bspw. über eine „hairpin"-Struktur.
Sämtliche der, unter Bezugnahme auf die erfindungsgemäße mRNA aus Schritt (a.), voranstehend beschriebenen Modifikationen (z.B. Einführung von Nukleotidanaloga, 5'-Cap-Stuktur usw.), finden im Sinne der Erfindung ebenfalls auf die adjuvante RNA bzw. auf die Cytokin-mRNA oder adjuvo-virale mRNA aus Schritt (b.) des erfindungsgemäßen Verfahrens Anwendung.
Die vorstehend beschriebenen, sämtlichen Modifikationen der erfindungsgemäßen mRNA bzw. der Cytokin-mRNA, der adjuvo-viralen mRNA bzw. der adjuvanten RNA des erfindungsgemäßen Verfahrens können im Sinne der Erfindung einzeln oder in Kombinationen miteinander auftreten.
Ein weiterer Gegenstand der Erfindung betrifft ein Erzeugnis, enthaltend mindestens eine erfindungsgemäße mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und mindestens eine Komponente mindestens einer der nachfolgenden Kategorien, ausgewählt aus der Gruppe, bestehend aus einem Cytokin, einer Cytokin-mRNA, einer adjuvo- viralen mRNA, einer CpG DNA und einer adjuvanten RNA, als Kombinationspräparat zur gleichzeitigen, getrennten oder zeitlich abgestuften Anwendung bei der Behandlung und/oder Prophylaxe von Tumorerkrankungen (z.B. Lymphome, Pankreastumor, Melanome sowie andere Hautkrebsarten, solide Tumore der Leber, der Lunge, des Kopfes, des Darms, des Magens, Sarkome) , Allergien, Autoimmunerkrankungen, wie Multiple Sklerose, viralen und/oder bakteriellen Infektionen, insbesondere HIV, Influenza, Röteln, Masern, Tollwut, Herpes, Dengue-Fieber, Gelbfieber, Hepatitis, Pneumonien, Legionärskrankheit, Streptokokken-, Enterokokken-, Staphylokokken-Infektionen oder Infektionen mit protozoologischen Erregern, bspw. Trypanosomen.
Patienten mit den vorgenannten Indikationen können auch mit einem erfindungsgemäßen Verfahren behandelt werden.
Die Bestandteile des erfindungsgemäßen Erzeugnisses: mindestens eine erfindungsgemäße mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich (1. Bestandteil) und mindestens ein Cytokin und/oder mindestens eine Cytokin-mRNA und/oder mindestens eine adjuvo-virale mRNA und/oder mindestens eine CpG DNA und/oder mindestens eine adjuvante RNA (2. Bestandteil), stehen durch ihre zielgerichtete Verwendung in funktioneller Einheit. Die Bestandteile des Erzeugnisses können die oben beschriebene, erfindungsgemäße, vorteilhafte Wirkung nicht unabhängig voneinander entfalten, so dass trotz der räumlichen Trennung der Bestandteile 1 und 2 (zur gleichzeitigen, getrennten oder zeitlich abgestuften Verabreichung) ihre Anwendung als neues, nicht im Stand der Technik beschriebenes Kombinationserzeugnis vorliegt. Da der Bestandteil 2 mehrere Komponenten enthalten kann, bspw. Cytokin-mRNA und CpG DNA oder ein Cytokin und CpG DNA oder auch 2 verschiedene Cytokin-mRNAs, kann der Bestandteil 2 als Gemisch (ggf. verschiedener) Komponenten ggf. verschiedener der vorgenannten Kategorien oder aber die (ggf. verschiedenen) Komponenten ggf. verschiedener der vorgenannten Kategorien des Bestandteils 2 können auch separat voneinander vorliegen.
Ein erfindungsgemäßes Erzeugnis kann alle Bestandteile, Substanzen und Ausführungsformen umfassen, wie sie in einem Verfahren bzw. Therapieverfahren bzw. Verfahren zur Behandlung und/oder Prophylaxe von Erkrankungen bzw. Kombinationstherapieverfahren gemäß der vorliegenden Erfindung eingesetzt werden.
Ein weiterer Gegenstand der Erfindung betrifft ein Kit, das mindestens eine erfindungsgemäße mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und mindestens eine Komponente aus mindestens einer der nachfolgend Kategorien, ausgewählt aus der Gruppe, bestehend aus einem Cytokin, einer Cytokin-mRNA, einer adjuvo- viralen mRNA, einer CpG DNA und einer adjuvanten RNA, enthält, wobei die mindestens eine erfindungsgemäße mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und das mindestens eine Cyokin oder mindestens eine Cytokin-mRNA oder mindestens eine adjuvo-virale mRNA oder mindestens eine CpG DNA oder mindestens eine adjuvante RNA voneinander getrennt sind, also das Kit aus mindestens zwei Teilen besteht. Mehr als zwei Teile wird das Kit dann enthalten, wenn i.S. dieser Erfindung zwei oder mehr als adjuvante Komponenten, wie sie bspw. in Verfahrensschritt (b.) verabreicht werden können, voneinander getrennt im Kit enthalten sind.
Eine bevorzugte Ausführungsform der Erfindung betrifft die Verwendung des Kits zur Behandlung und/oder Prophylaxe von Krebserkrankungen, Tumorerkrankungen, insbesondere von den vorgenannten spezifischen Tumorspecies, Allergien,
Autoimmunerkrankungen, wie Multiple Sklerose, und/oder viralen und/oder bakteriellen Infektionen, wie beispielsweise Hepatitis B, HIV oder MDR (multi-drug resistance)-lnfektionen, Influenza, Herpes, Röteln, Masern, Tollwut, Streptokokken-, Pneumokokken-, Enterokokken-, Staphylokokken- oder Escherichia-Infektionen oder weitere in dieser Anmeldung genannte Infektionserkrankungen.
Die in der nachfolgenden Beschreibung der Figuren sowie in den nachfolgenden Beispielen genannte mRNA betrifft die erfindungsgemäße mRNA.
Figuren
Figur 1 zeigt die in vivo Translation von injizierter erfindungsgemäßer mRNA.
Mäusen wurden in die Ohrmuschel Injektionspuffer (150 mM NaCI, 10 mM HEPES) („Puffer"), ß-Galactosidase kodierende ß-GIobin-UTR- stabilisierte mRNA, verdünnt in Injektionspuffer, („Lac Z mRNA") oder ß-Galactosidase kodierende DNA in PBS („lacZ DNA") injiziert. 16 Stunden nach der Injektion wurden die Mäuse getötet, die Ohren wurden rasiert, entfernt und in Einbettungsmedium eingefroren. Dann wurden Gefrierabschnitte angefertigt, fixiert und über Nacht mit X-GaI enthaltender Lösung angefärbt. Zellen, die ß-Galactosidase exprimierten, erschienen blau. Die Anzahl der in jeden Abschnitt detektierten blauen Zellen wird in den Diagrammen (linke Hälfte der Figur 1) dargestellt. Auf der X-Achse ist die Länge des analysierten Ohrabschnitts aufgetragen (0 ist willkürlich dem ersten Abschnitt, zugeordnet, der blaue Zellen zeigt; bei den mit Puffer injizierten Mäusen, wurde der Bereich, der 2 mm um die Injektionsstelle lag, analysiert und die 0 willkürlich bestimmt): Jeder Abschnitt beträgt 50 μm und somit decken einige aufeinanderfolgende Abschnitte eine Gesamtdistanz von einigen Millimetern ab. In jedem der Diagramme
(Puffer-injizierte Mäuse, mRNA-injizierte Mäuse, DNA-injizierte Mäuse) sind die beiden Abschnitte, die durch einen Stern und eine graue Säule gekennzeichnet sind, die Abschnitte, die in den begleitenden Mikroskopie-Abbildungen (rechte Hälfte der Figur 1 ) dargestellt sind. Hier zeigen offene Pfeile eine endogene Expression der ß-Galactosidase-Aktivität hauptsächlich in den Ohrfollikeln an. Diese endogene Aktivität ist durch eine sehr schwache und diffuse Blaufärbung erkennbar. Schwarz ausgefüllte Pfeile zeigen blaue Zellen an, die aus der Aufnahme und Translation einer ß-Galactosidase kodierenden exogenen Nukleinsäure resultieren. Solche Zellen sind an der Injektionsstelle in der Dermis lokalisiert und zeigen eine starke Blaufärbung. Einzelne Abschnitte wurden fotografiert. Die Abschnitte mit den meisten blauen Zellen werden dargestellt (sie entsprechen den Abschnitten, die in den Diagrammen mit einem Stern markiert sind). Die Anzahl der blauen Zellen in jedem der aufeinanderfolgenden
Abschnitte wird auf den Y-Achsen in den Diagrammen (linke Hälfte der Figur 1 ) dargestellt.
Figur 2 zeigt die Auslösung einer Antigen-spezifischen Immunantwort des Typs Th2, durch die Injektion von mRNA. Mäuse wurden vakziniert und verstärkt („boosted") mit mRNA oder DNA, die für ß-
Galactosidase kodiert, oder ihnen wurde Injektionspuffer injiziert.
Zwei Wochen später erhielten die Mäuse eine Auffrischungsinjektion
(Boost-lnjektion). Wiederum zwei Wochen später wurde die Menge an ß-Galactosidase-spezifischen Antikörpern, die in dem Serum vorhanden waren, durch ELISA unter Verwendung von Isotyp¬ spezifischen Reagenzien bestimmt. Die linke Hälfte der Figur 2 zeigt die IgG1 -Produktion, die rechte Hälfte der Figur 2 zeigt die lgG2a- Produktion. ( ) zeigt die Kurve für DNA-injizierte Mäuse, ( ) zeigt die Kurve für RNA-injizierte Mäuse und (♦) zeigt die Kurve für Mäuse, die mit Injektionspuffer injiziert wurden.
Figur 3 zeigt die Polarisation einer Th2-Immunantwort in eine ThI -
Immunantwort, verursacht durch die Injektion von GM-CSF. Alle dargestellten Ergebnisse betreffen Mäuse der gleichen Gruppe in einem Experiment. Die Gesamtanzahl der Mäuse, die in vier unabhängigen Experimenten eine Immunantwort zeigten, wird in Tabelle 1 (Figur 4) dargestellt.
Figur 3a: Den Mäusen wurde entweder ß-Galactosidase, emulgiert in Freund's Adjuvanz, oder mRNA, die für ß-Galactosidase kodiert, oder Injektionspuffer (als Negativkontrolle) injiziert. GM-CSF (Gesamtmenge 2 μg rekombinantes Protein: ca. 104 U (Units)) wurde einmal injiziert, entweder 24 Stunden oder 2 Stunden vor der Injektion der mRNA oder 24 Stunden nach der Injektion der mRNA (entspricht den Gruppen GM-CSF T-1, GM-CSF T-O und GM-CSF T+1). Die Menge an ß-Galactosidase-spezifischen IgG1 - oder IgG2a- Antikörpem, die im Blut der injizierten Mäuse enthalten waren, wurden durch ELISA bestimmt (1 :10 Serumverdünnung). Der Hintergrund, der hauptsächlich durch das Serum von Puffer-injizierten
Mäusen bei gleicher Verdünnung erhalten wurde, wurde abgezogen. Die linke Hälfte der Figur 3a zeigt ß-Gal-spezifische IgG1 -Antikörper ( ), die rechte Hälfte der Figur 3a zeigt ß-Gal-spezifische IgG2a- Antikörper (□, grau). Figur 3b: Die in vitro Reaktivierung von T-Zellen durch ß-Galactosidase wurde anhand einer Cytokin-Detektion am Tag 4 der Kultivierung überprüft. Der Anteil an IFNγ ( ) und IL-4 (Q, grau) in dem Überstand der verwendeten Splenocyten-Kultur wurde mittels ELISA gemessen.
Figur 3c: Die cytotoxische Aktivität von Splenocyten, die in der Gegenwart von aufgereinigter ß-Galactosidase für sechs Tage kultiviert wurden, wurde in einem Chrom-Freisetzungs-Assay überprüft. Die Zielzellen waren P815 (H2d)-Zellen, die entweder mit dem synthetischen Peptid TPHPARIGL, das dem dominanten H2-Ld-Epitop von ß-Galactosidase entspricht, beladen waren ( ) oder nicht beladen waren ( ).
Figur 4 zeigt Tabelle 1, in der die Gesamtanzahl der injizierten Mäuse dargestellt wird. Die Gesamtanzahl der Mäuse, deren Splenocyten eine detektierbare Cytokin-Freisetzung oder eine ß-Galactosidase- spezifische cytotoxische Aktivität in vitro in unabhängigen Experimenten zeigten, wird dargestellt. Mäuse, bei denen mindestens 10% mehr TPHPARIGL-beladene Zellen abgetötet wurden, im Vergleich zu den durchschnittlich abgetöteten Zellen der Negativkontrollgruppe (Puffer-injizierte Mäuse), wurden als Mäuse mit einer Immunantwort (respondierende) eingestuft. Splenocytenkulturen, die mindestens 100 pg/ml Cytokin mehr als den Gesamtgehait an Cytokin in den Splenocytenkulturen, der Negativkontrollmäuse (Puffer-injizierte Mäuse) enthielten, wurden als respondierende Kulturen (respondierende Mäuse) eingestuft. Die fettgedruckten Zahlen zeigen Gruppen an, in denen mehr als die Hälfte der Mäuse eine Immunantwort auf die Vakzine gemäß der untersuchten Parameter (Cytokin oder cytotoxische Aktivität) zeigten. Figur 5: zeigt die Polarisation einer Th2-lmmunantwort in eine Th1 - Immunantwort, verursacht durch die Injektion von GM-CSF-RNA zusätzlich zur erfindungsgemäßen mRNA. Alle dargestellten Ergebnisse betreffen Mäuse der gleichen Gruppe in einem Experiment. Den Mäusen wurde dazu mRNA, die für ß-Galactosidase kodiert, GM-
CSF-RNA oder Injektionspuffer injiziert. GM-CSF-RNA (Gesamtmenge 50 μg) wurde einmal injiziert, entweder 24 Stunden oder 2 Stunden vor der Injektion der mRNA oder 24 Stunden nach der Injektion der mRNA (entspricht den Gruppen GM-CSF-RNA T-1 , GM-CSF-RNA T-O und GM-CSF-RNA T+l). Die Menge an sekretiertem lFN-γ, die im Blut der injizierten Mäuse enthalten waren, wurden durch ELISA bestimmt.
Die nachfolgenden Beispiele sind dazu gedacht, die Erfindung weiter zu illustrieren. ie sind nicht dazu gedacht, die Gegenstände der Erfindung hierauf zu beschränken.
Beispiele
Beispiel 1 : Herstellung der mRNA
Die mRNA wurde durch in vitro Transkription geeigneter Template-DNA und anschliessender Extraktion und Aufreinigung der mRNA erhalten. Hierzu können Standardverfahren verwendet, die im Stand der Technik zahlreich beschrieben werden und dem Fachmann geläufig sind. Beispielsweise Maniatis et al. (2001), Molecular Cloning: Laboratory Manual, CoId Spring Harbour Laboratory Press. Gleiches gilt auch für die Sequenzierung der mRNA, die sich der (nachfolgend beschriebenen) Aufreinigung der mRNA anschloss. Hier wurde insbesondere das NBLAST-Programm verwendet.
Die Herstellung der erfindungsgemäßen mRNA erfolgte generell gemäß nachfolgender Vorgehensweise:
1. Vektor
Die Gene, für welche die jeweilige mRNA kodiert, wurden in den Plasmidvektor pT7TS eingeführt. pT7TS enthält nicht translatierte Regionen des alpha- oder des beta-Globingens sowie einen polyA-Schwanz von 70 Nukleotiden:
T7 Promotor Xbal
Xenopus ß-globiα 5TJntranslated region: GCTTGTTCTTTTTGCAGAAGCTCAGAATAAACGCTCAACTTTGGC
Xenopus ß-Globin 3' nicht translatierte Region ("Untranslated region"): GACTGACTAGGATCTGGTTACCACTAAACCAGCCTCAAGAACACCCGA ATGGAGTCTCTAAGCTACATAATACCAACTTACACTTACAAAATGTTG TCCCCCAAAATGTAGCCATTCGTATCTGCTCCTAATAAAAAGAAAGTT TCTTCACATTCTA oder human α-Globin nicht translatierte Region:
CTAGTGACTGATAGCCCGCTGGGCCTCCCAACGGGCCCTCCTCCCCTC
Abbildung 1 : Graphik des Plasmidvektors pT7TS
Plasmide mit hoher Reinheit wurden mit dem Qiagen Endo-free Maxipreparation Kit oder mit dem Machery-Nagel GigaPrep Kit erhalten. Die Sequenz des Vektors wurde über eine Doppelstrang-Sequenzierung vom T7 Promotor bis zur PstI- oder Xbal-Stelle kontrolliert und dokumentiert. Plasmide, deren einklonierte Gensequenz korrekt und ohne Mutationen war, wurden für die in vitro Transkription benutzt.
2. Gene Die Gene, für welche die erfindungsgemäße mRNA kodiert, wurden mittels PCR amplifiziert oder aus den (oben beschriebenen) Plasmiden extrahiert. Beispiele für Genkonstrukte, die eingesetzt wurden, sind
GP100 (Accession number M77348):
PCR-Fragment Spei in T7TS HinDIII blunt/Spel
MAGE-A1 (Accession number M77481 ): Plasmid-Fragment HinDIII/Spel in T7TS HinDIII/Spel
MAGE-A6 (Accession number: NM_005363): PCR-Fragment Spei in T7TS HinDIIlbluni/Spel
Her2/neu (Accession number: Ml 1730): PCR-Fragment HinDIII/Spel in T7TS HinDIII/Spel
Tyrosinase (Accession number: NM_000372): Plasmid-Fragment EcoRI blunt in T7TS HinDIII blunt/Spel blunt
Melan-A (Accession number: NM_005511 ):
Plasmid-Fragment Notl blunt in T7TS Hindlll blunt/Spel blunt
CEA (Accession number: NM_004363): PCR-Fragment HinDIII/Spel in T7TS HinDIII/Spel
Tert (Accession number: NM_003219):
PCR fragment Hindlll/Spel in T7TS HinDIII/Spel
WT1 (Accession number: NM_000378): Plasmid fragment EcoRV/Kpnl blunt in T7TS HinDIII blunt/Spel blunt PR3 (Accession number: NM_002777):
Plasmid fragment EcoRl blunt/Xbal in T7TS HinDIII bluni/Spel
PRAME (Accession number: NM_0061 15):
Plasmid fragment BamH1 blunt/Xbal in T7TS HinDIII blunt/Spel
Survivin (Accession number AF077350): PCR-Fragment HinDIll/Spel in T7TS HinDIII/Spel
Mucini (Accession number NM_002456):
Plasmid-Fragment: SacI blunt/BamHI in T7TS HinDIII blunt/Bglll
Tenascin (Accession number X78565): PCR fragment BgIII blunt/Spel in T7TS HinDIII blunt/Spel
EGFR1 (Accession number AF288738):
PCR fragment HinDIll/Spe1 in T7TS HinDIII/Spe I
Sox9 (Accession number Z46629):
PCR fragment HinDIII/Spel in T7TS HinDIll/Spel
Sec61 G (Accession number NM_014302): PCR fragment HinDIII/Spel in T7TS HinDIll/Spel
PTRZ1 (Accession number NM_002851 ):
PCR fragment EcoRV/Spel in T7TS HinDIII blunt/Spel 3. in vitro Transkription
3.1. Herstellung Protein-freier DNA
500 μg von jedem der vorbeschriebenen Plasmide wurden in einem Volumen von 2,5 ml durch einen Verdau mit dem Restriktionsenzym PstI oder Xbal in einem 15 ml Falcon Röhrchen linearisiert. Dieses geschnittene DNA-Konstrukt wurde in die RNA Produktionseinheit überführt. 2,5 ml einer Mischung aus Phenol/Chloroform/Isoamylalkohol wurde zu der linearisierten DNA zugegeben. Das Reaktionsgefäß wurde für 2 Minuten gevortext und für 5 Minuten bei 4.000 rpm zentrifuguiert. Die wässrig Phase wurde abgehoben und mit 1,75 ml 2-Propanol in einem 15 ml Falcon Röhrchen vermischt. Dieses Gefäß wurde 30 Minuten bei 4.000 rpm zentrifugiert, der Überstand verworfen und 5 ml von 75% Ethanol zugegeben. Das Reaktionsgefäß wurde für 10 Minuten bei 4.000 rpm zenrifugiert und der Ethanol wurde entfernt. Das Gefäß wurde nochmals für 2 Minuten zentrifugiert und die Reste des Ethanols wurden mit einer Mikroliter-Pipettenspitze entfernt. Das DNA Pellet wurd dann in 500 μl RNase-freien Wasser aufgelöst (1 μg/μl).
3.2. enzymatische mRNA-Synthese
Materialien: - 17 Polymerase: aufgereinigt aus einem Eco/Z-Stamm, der ein Plasmid mit dem
Gen für die Polymerase enthält. Diese RNA-Polymerase verwendet als Substrat nur 17 Phagen-Promotor-Sequenzen (Fa. Fermentas),
NTPs: chemisch synthetisiert und über HPLC aufgereinigt. Reinheit über 96%
(Fa. Fermentas), - CAP Analogon: chemisch synthetisiert und über HPLC aufgereinigt. Reinheit über 90% (Fa. Trilink),
RNase Inhibitor: Rnasin, Injectable grade, rekombinant hergestellt (Eco/ή (Fa.
Fermentas), DNase: Vertrieb als Medikament über Apotheken als Pulmozym® (dornase alfa) (Fa. Roche).
In ein 15 ml Falcon Röhrchen wurde folgendes Reaktionsgemisch pipettiert: 100 μg linearisierte proteinfreie DNA,
400 μl 5x Puffer (Tris-HCI pH 7.5, MgCI2, Spermidin, DTT, Inorganische
Pyrophosphotase 25 U),
20 μl Ribonuclease Inhibitor (rekombinant, 40 U/μl); 80 μl rNTP-Mix (ATP, CTP, UTP 10OmM) , 29μl GTP (100 mM); 116 μl Cap Analog (10O mM);
50 μl 17 RNA Polymerase (200 U/μl) ; 1045 μl RNase-freies Wasser.
Das Gesamtvolumen betrug 2 ml und wurde für 2 Stunden bei 37 0C im Heizblock inkubiert. Danach wurden 300 μl DNAse: Pulmozyme ™(1 U/μl) zugegeben und die Mischung wurde für weitere 30 Minuten bei 37 0C inkubiert. Hierbei wurde das DNA-Template enzymatisch abgebaut.
5. Aufreinigung der mRNAs 5.1. LiCl-Präzipitation (Lithium-Chlorid/Ethanolfällung)
Bezogen auf 20-40 ug RNA wurde diese folgendermaßen durchgeführt: LiCI-Fällung 25 μl LiCl-Lösung f8Ml
30 μl WFI („water for injection", Wasser zur Injektion) wurden zu dem Transkriptionsansatz (20 μl) gegeben und vorsichtig gemischt. In das Reaktionsgefäß wurden 25 μl LiCl-Lösung zugegeben und die Lösungen mindestens 10 Sekunden gevortext. Der Ansatz wurde bei
-2O0C für mindestens 1 Stunde inkubiert. Das verschlossene Gefäß wurde anschließend bei 4°C mit 4.000 rpm für 30 Minuten zentrifugiert. Der Überstand wurde verworfen. Waschen
Es wurden 5 μl 75%iger Ethanol zu jedem Pellet zugegeben (unter der Sicherheitswerkbank). Die verschlossenen Gefäße wurden 20 Minuten bei 4°C mit 4.000 rpm zentrifugiert. Der Überstand wurde verworfen (unter der Sicherheitswerkbank) und es wurde nochmals 2 Minuten bei 40C mit 4.000 rpm zentrifugiert. Der Überstand wurde vorsichtig mit einer Pipette entfernt (unter der Sicherheitswerkbank). Danach wurde das Pellet ca. 1 Stunde getrocknet (unter der Sicherheitswerkbank).
Resuspension
Zu den gut getrockneten Pellets wurden je 10 μl WFI gegeben (unter der Sicherheitswerkbank). Das jeweilige Pellet wurde sodann in einem Schüttelgerät über Nacht bei 4°C gelöst.
5.2. Endreinigung
Die Endreinigung erfolgte durch Phenol-Chloroform-Extraktion. Sie kann jedoch ebenfalls mittels Anionenaustauschchromatographie erfolgen (z.B. MEGAclear ™ von Fa. Ambion oder Rneasy von Fa. Qiagen). Nach dieser Aufreinigung der mRNA, wurde die RNA gegen lsopropanol und NaCI präzipitiert (1 M NaCI 1 :10, lsopropanol 1 :1 , gevortext, 30 Min. bei 4.000 rpm und 4 °C zentrifugiert und das Pellet wurde mit 75% Ethanol gewaschen). Die mittels Phenol-Chloroform- Extraktion aufgereinigte RNA wurde in RNase freiem Wasser gelöst und mindestens 12 Stunden bei 4 0C inkubiert. Die Konzentration jeder mRNA wurde bei OD260 Absorption gemessen. (Die Chlorophorm-Phenol-Extraktion erfolgte nach Sambrook J., Fritsch E.F., and Maniatis T., in Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Laboratory Press, NY, Vol. 1 ,2,3 (1989)). Beispiel 2: Stabilisierung der mRNA
Eine beispielhafte Ausführungsform der erfindungsgemäßen, stabilisierten mRNA betrifft eine ß-Globin-UTR-stabilisierte mRNA. Eine derart stabilisierte mRNA wies die folgende Struktur auf: Cap-ß-Globin-UTR (80 Basen) - ß-Galactosidase- Kodierungssequenz - ß-Globin-3'-UTR (ca. 180 Basen)-poly A-Schwanz (A30C30). Anstelle der ß-Galactosidase-Kodierungssequenz wurden ebenfalls Konstrukte erstellt, die eine für ein bereits oben beschriebenes Antigen aus einem Pathogen oder Tumor kodierende Sequenz aufwiesen.
Als weitere beispielhafte Ausführungsform der erfindungsgemäßen, stabilisierten mRNA wurde die Nukleinsäuresequenz des kodierenden Bereichs der mRNA bezüglich ihres G/C-Gehalts optimiert. Zur Ermittlung der Sequenz einer modifizierten, erfindungsgemäßen mRNA wurde das in der WO 02/098443 beschriebene Computerprogramm verwendet, das mit Hilfe des genetischen Codes bzw. dessen degenerativer Natur die Nucleotid-Sequenz einer beliebigen mRNA derart modifiziert, dass sich ein maximaler G/C-Gehalt in Verbindung mit der Verwendung von Codons, die für möglichst häufig in der Zelle vorkommende tRNAs kodieren, ergibt, wobei die durch die modifizierte mRNA kodierte Aminosäure-Sequenz gegenüber der nicht-modifizierten Sequenz vorzugsweise identisch ist. Alternativ kann auch nur der G/C-Gehalt oder nur die Codonverwendung gegenüber der ursprünglichen Sequenz modifiziert werden. Der Quellcode in Visual Basic 6.0 (eingesetzte Entwicklungsumgebung: Microsoft Visual Studio Enterprise 6.0 mit Servicepack 3) ist ebenfalls in der WO 02/098443, deren Offenbarung Gegenstand der vorliegenden Erfindung ist, angegeben.
Beispiel 3: Zellkultivierung
P815-Zellen wurden mit 10%igem H itze-inakti vierten fötalen Kälberserum (PAN Systems, Deutschland), 2 mM L-Glutamin, 100U/ml Penicillin und 100 μg/ml
Streptomycin ergänzt und in einem RPMI 1640 (Bio-Whittaker, Verviers, Belgien) kultiviert. Die CTL-Kultivierung wurde in RPMI 1640-Medium, ergänzt mit 10%igem FCS, 2 mM L-Glutamine, 100 U/ml Penicillin,! 00 μg/ml Streptomycin, 50 μM ß-Mercaptoethanol, 50 μg/ml Gentamycin, Ix MEM-nicht essentielle Aminosäuren und 1 mM Natriumpyruvat, ausgeführt. Die CTLs wurden eine Woche lang mit 1 μg/ml ß-Galactosidase (Sigma, Taufkirchen, Deutschland) restimuliert. Am Tag 4 wurden die Überstände vorsichtig gesammelt und durch frisches Medium ersetzt, das 10 U/ml rlL-2 (Endkonzentration) enthielt.
In parallelen Versuchsansätzen erfolgte die Restimulierung mit jeweils 1 ,3 μg/ml Survivin, 1 μg MAGE-3 und 0,8 μg Muc-1. Sämtliche anderen Bedingungen waren in diesen Versuchsansätzen identisch mit den vorbeschriebenen Bedingungen.
Beispiel 4: Immunisierung von Mäusen
6 bis 12 Wochen alte, weibliche BALB/c AnNCrIBR (H-2d)-Mäuse wurden von Charles River (Sulzfeld, Deutschland) bezogen. Eine Genehmigung für die genetische (DNA und mRNA) Vakzinierung der Mäuse wurde von dem Komitee für Tierethik in Tübingen erteilt (Nummer IM/200). Die BALB-Mäuse wurden mit 20 mg Pentobarbital intraperitoneal anästhesiert. Den Mäusen wurden dann intradermal in beide Ohrmuscheln 25 μg ß-Globin-UTR-stabilisierte mRNA, kodierend für ß- Galactosidase, die mit Injektionspuffer (150 mM NaCI, 10 mM HEPES) verdünnt wurde, injiziert. Es wurden nachfolgend 5.103 Units (1 μg) GM-CSF (Peprotech, Ine, Rocky Hill, New York, USA), verdünnt mit 25 μl PBS, injiziert. Dies entsprach einer Gesamtmenge von 2 μg (ca. 104 Units), die lediglich einmal injiziert wurde. Eine solche Dosierung liegt in dem untersten Bereich der normalerweise bei Mäusen gewählten Dosierungen (26). Zwei Wochen nach der ersten Injektion wurden die Mäuse unter den gleichen Bedingungen (wie bei der ersten Injektion) behandelt.
In parallelen Versuchsansätzen I, Il + III, die unter den gleichen, vorstehend beschriebenen, Bedingungen, durchgeführt wurden, wurde Mäusen anstelle von 25 μg ß-Giobin-UTR-stabilisierter mRNA, die für ß-Galactosidase kodierte, und 1 μg GM-CSF in
Versuchsansatz 1: 30 μg ß-Globin-UTR-stabilisierter mRNA, kodierend für
Survivin und 1,2 μg lL-2, in Versuchsansatz II: 23 μg ß-Globin-UTR-stabilisierter mRNA, kodierend für
MAGE-3 und 2 μg 1L-12 und in
Versuchsansatz Hl: 18 μg ß-Globin-UTR-stabilisierter mRNA, kodierend für
Muc-1 und 1 μg IFN-α injiziert.
GM-CSF (Gesamtmenge 2 μg rekombinantes Protein: ca. T O4 U (Units)) wurde einmal injiziert, entweder 24 Stunden oder 2 Stunden vor der Injektion der mRNA oder 24 Stunden nach der Injektion der mRNA (entspricht den Gruppen GM-CSF T- 1 , GM-CSF T-O und GM-CSF T+1). Die Menge an ß-Galactosidase-spezifischen IgGI- oder lgG2a-Antikörpern, die im Blut der injizierten Mäuse enthalten waren, wurden durch ELISA bestimmt (1 :10 Serumverdünnung). Der Hintergrund, der hauptsächlich durch das Serum von Puffer-injizierten Mäusen bei gleicher Verdünnung erhalten wurde, wurde abgezogen.
Beispiel 5: Chromfreisetzungs-Assay
Splenocyten wurden in vitro mit aufgereinigter ß-Galactosidase (1 mg/ml) stimuliert und die CTL-Aktivität wurde nach 6 Tagen unter Verwenden eines Standard 51Cr- Freisetzungs-Assays bestimmt (wie beispielsweise beschrieben von Rammensee et al., 1989, lmmunogenetics 30: 296-302). Die Sterberate der Zellen wurde anhand der in das Medium freigesetzten Menge an 51Cr (A) im Vergleich zu der Menge spontaner 51Cr-Freisetzung der Zielzellen (B) und dem Gesamtgehalt an 51Cr von 1 % Triton-X-100-lysierten Zielzellen (C) mittels der Formel:
% Zelilyse = (A - B) -f (C - B) x 100 bestimmt. In parallelen Versuchsansätzen erfolgte die Stimulierung der Splenocyten mit Survivin, MAGE-3 und Muc-1 (Konzentration jeweils 1 mg/ml). Sämtliche anderen Bedingungen in diesen Versuchsansätzen waren identisch mit den vorbeschriebenen Bedingungen.
Beispiel 6: ELISA
MaxiSorb-Platten von Nalgene Nunc International (Nalge, Dänemark) wurden über Nacht bei 4 0C mit 100 μl ß-Galactosidase bei einer Konzentration von 100 μg/ml (Antikörper-
ELISA) oder mit 50 μl anti-Maus-anti-lFNγ- oder -IL-4- (Cytokin-ELISA) „Capture"-
Antikörpern (Becton Dickinson, Heidelberg, Deutschland) bei einer Konzentration von 1 μg/ml in Beschichtungspuffer (0,02% NaN3, 15 mM Na2CO3, 15 mM NaHCO3, pH 9,6) beschichtet. Die Platten wurden dann für 2 Stunden bei 37 0C mit 200 μl of Blockierungspuffer (PBS-0,05% Tween 20-1% BSA) abgesättigt. Nachfolgend wurden sie mit Sera (Antikörper-ELISA) bei 1 :10-, 1 :30- und 1 :90-Verdünnungen in Waschpuffer oder l OOμl des Zellkulturüberstandes (Cytokin-ELISA) für 4 bis 5 Tage bei 37 0C inkubiert. Dann wurden 100 μl von 1 :1.000- Verdünnungen von Ziege-anti-Maus-lgG1 - oder -lgG2a-
Antikörpern (Antikörper-ELISA) von Caltag (Burlington, CA, USA) oder 100 μl/Well biotinylierte anti-Maus-anti-IFN - oder -IL-4- (Cytokin-ELISA) Detektions-Antikörper (Becton
Dickinson, Heidelberg, Deutschland) bei einer Konzentration von 0,5 μg/ml in
Blockierungspuffer hinzugefügt und die Platten 1 Stunde bei Raumtemperatur inkubiert.
Für den Cytokin-ELISA wurden nach 3 Waschschritten mit Waschpuffer, 100 μl einer 1 :1.000-Verdünnung Streptavidin-HRP (BD Biosciences, Heidelberg, Deutschland) pro Well hinzugefügt. Nach 30 Minuten bei Raumtemperatur wurden pro Well 100 μl ABTS (2,2'-
Azino-bis-(3-ethylbenzthiazolin-6-sulfonsäure))-Konzentrat bei einer Konzentration von 300 mg/l in 0,1 M Zitronensäure, pH 4,35) hinzugefügt. Nach weiteren 15 bis 30 Minuten bei
Raumtemperatur, wurde die Extinktion bei OD405 mit einem Sunrise ELISA-Reader von Tecan (Crailsheim, Deutschland) gemessen. Die Mengen der Cytokine wurden anhand einer
Standardkurve berechnet, die durch Titrieren bestimmter Mengen rekombinanter Cytokine erstellt wurde (BD Pharmingen, Heidelberg, Deutschland). In parallelen Versuchsansätzen wurden die MaxiSorb-Platten mit Survivin, MAGE-3 und Muc-1 (jeweils 100 μl) beschichtet. Sämtliche anderen Bedingungen in diesen parallelen Versuchsansätzen waren mit den vorbeschriebenen Bedingungen identisch.
Beispiel 7: Immunisierung von Mäusen mit GM-CSF-RNA (vgl. Fig. 5)
6 bis 12 Wochen alten, weiblichen BALB/c AnNCrIBR (H-2d)-Mäusen (Charles River, Sulzfeld, Deutschland) BALB-Mäuse wurden analog zu Beispiel 4 (siehe oben) mit 20 mg Pentobarbital intraperitoneal anästhesiert. Den Mäusen wurden dann intradermal in beide Ohrmuscheln 25 μg ß-Globin-UTR-stabilisierte mRNA, kodierend für ß-Galactosidase, die mit Injektionspuffer (150 mM NaCI, 10 mM HEPES) verdünnt wurde, injiziert. Es wurden nachfolgend 50 μg GM-CSF-RNA in die Ohrmuscheln einmal injiziert. Zwei Wochen nach der ersten Injektion wurden die Mäuse unter den gleichen Bedingungen (wie bei der ersten Injektion) behandelt.
In parallelen Versuchsansätzen I, II, III, IV und V, die unter den gleichen, vorstehend beschriebenen, Bedingungen, durchgeführt wurden, wurde Mäusen in
Versuchsansatz 1: lediglich Injektionspuffer injiziert (Kontrolle); Versuchsansatz II: 50 μg GM-CSF-RNA alleine injiziert (Kontrolle); Versuchsansatz III: 25 μg ß-Globin-UTR-stabilisierter mRNA, die für ß-
Galactosidase kodierte, und 50 μg GM-CSF-RNA injiziert, wobei die GM-CSF-RNA 24 Stunden vor der für ß- Gaiactosidase kodierenden ß-Globin-UTR-stabilisierten mRNA verabreicht wurde (entsprechend t - 1 ); Versuchsansatz V: 25 μg ß-Globin-UTR-stabilisierter mRNA, die für ß-
Galactosidase kodierte, und 50 μg GM-CSF-RNA injiziert, wobei die GM-CSF-RNA 2 Stunden vor der für ß- Galactosidase kodierenden ß-Globin-UTR-stabilisierten mRNA verabreicht wurde (entsprechend t - 0); Versuchsansatz V 25 μg ß-Globin-UTR-stabilisierter mRNA, die für ß-
Galactosidase kodierte, und 50 μg GM-CSF-RNA injiziert, wobei die GM-CSF-RNA 24 Stunden nach der für ß- Galactosidase kodierenden ß-Globin-UTR-stabilisierten mRNA verabreicht wurde (entsprechend t + 1 ).
Maxi Sorb-Platten von Nalgene Nunc International (Nalge Dänemark) wurden über Nacht bei 4° C mit 50 ml eines Antimaus-Anti-lnterferon-γ (IFNγ)-Antikörpers mit 1 mg/ml in einem Beschichtungspuffer (0,02% NaN3, 15mM Na2CO3, 15 mM NaHCO3, pH 6,6) ausplattiert. Die Platten wurden dann mit 200 ml des Blockierungspuffers (PBS-0,05% Tween 20-1 % BSA) für 2 Stunden bei 37° C gesättigt und dann mit 100 ml des Zellkulturüberstands (Cytokine-ELISA) für 4-5 h bei 37° C inkubiert. 100 μl von 1 :1000 Verdünnungen von 100 μl pro Well des biotinylierten Antimaus-Anti-IFNγ- Detektionsantikörper (Becton Dickinson) wurde bei 0,5 mg/ml in einem Blockierungspuffer hinzugefügt und für eine Stunde bei Raumtemperatur inkubiert. Nach 3 Waschschritten mit Waschpuffer, wurde 100 ml einer 1 zu 1000 Verdünnung von Streptavidin-HRP (Meerrettichperoxidase, BD Biosciences, Heidelberg, Deutschland) pro Well hinzugefügt. Nach 30 Minuten bei Raumtemperatur wurden 100 ml pro Well von ABTS (300 mg/l 2,2- Azino-bis-(3-ethylbenzthiazolin-6-sulfonsäure) in 0,1 M Citrat, pH 4,35) Substrat hinzugegeben. Nach 15 bis 30 Minuten bei Raumtemperatur wurde die Extinktion bei OD405 mit einem Sunrise ELISA-Auslesegerät von Tecan (Crailsheim, Deutschland) gemessen und die Mengen des Cytokins nach einer Standardkurve, die durch Titrierung mit bestimmten Mengen von rekombinanten Cytokinen erhalten wurde (BD Pharmingen, Heidelberg, Deutschland), berechnet. Es ist deutlich erkennbar, dass die Immunstimulation durch Gabe von GM-CSF-mRNA vor, etwa zeitgleich und nach der Injektion von ß- Galactosidase-mRNA deutlich erhöht ist.
Literaturliste
1. Tang,D.C, DeVit,M. & Johnston,S.A. Genetic immunization is a simple method for eliciting an immune response. Nature356, 152-154 (1992).
2. UlmerJ.B. etal. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science259, 1745-1749 (1993).
3. Wang,B. etal. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sei USA 90, 4156-4160 (1993).
4. Robinson,H.L, Hunt,LA. & Webster, R. G. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine Λ Λ, 957-960 (1993).
5. Fynan,E.F. etal. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Λcad Sei USA 90, 11478-
11482 (1993).
6. UlmerJ.B. An Update on the State of the art of DNA vaccines. Curr. Opin. DrugDiscov. Devel. 4, 192-197 (2001).
7. Donnelly,J., Berry,K. & UlmerJ.B. Technical and regulatory hurdles for DNA vaccines. IntJ Parasitol. 33, 457-467 (2003).
8. Klinman,D.M. etal. DNA vaccines: safety and efficaey issues. Springer Semin. Immunopathol. 19, 245-256 (1997).
9. Gilkeson,G.S., Pippen,A.M. & Pisetsky,D.S. Induction of cross-reactive anti- dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest 95, 1398-1402 (1995). 10. Saenz-BadillosJ., Amin,S.P. & Granstein,R.D. RNA as a tumor Vaccine: a review of the literature. Exp DermatolΛO, 143-154 (2001).
11. Sullenger,B.A. & Gilboa,E. Emerging clinical applications of RNA. Nature 418, 252-258 (2002).
12. Nair,S.K. etal. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. NatBiotechnolΛb, 364-369 (1998).
13. Ying,H. etal. Cancer therapy using a self-replicating RNA Vaccine. NaL Med. 5, 823-827 (1999).
14. Schirmacher,V. etal. Intra-pinna anti-tumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine. Gene Ther. 7, 1137-1147 (2000).
15. Martinon,F. etal. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. EurJ ImmunolTi, MΛ ^Λ lll (1993).
16. Vassilev,V.B., Gil,LH. & Donis,R.O. Microparticle-mediated RNA immunization against bovine viral diarrhea virus. Vaccine 19, 2012-2019 (2001).
17. Hoerr,l., Obst,R., Rammensee,H.G. & Jung,G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J Immunol. 30, 1 -7 (2000).
18. Granstein,R.D., Ding, W. & Ozawa,H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol '114, 632-636 (2000). 19. Iwasaki,A., Stiernholm,B.J., Chan,AX, Berinstein,N.L. & Barber,B.H. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol Λ S§, 4591 -4601 (1997).
20. Warren,T.L & Weiner,G.J. Uses of granulocyte-macrophage colony- stimulating factor in Vaccine development. Curr. Opin. Hematol. 7, 168-173
(2000).
21. Scheel,B. etal. Immunostimulating capacities of stabilized RNA molecules. Eur. J. Immunol. 34, 537-547 (2004).
22. Diebold,S.S., Kaisho,T., Hemmi,H., Akira,S. & Reis E Sousa. lnnate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.
Science 303, 1529-1531 (2004).
23. HeiI,F. etal. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Sc/ence303, 1526-1529 (2004).
24. Kwissa,M., Kroger,A., Hauser,Hv Reimann,J. & Schirmbeck,R. Cytokine- facilitated priming of CD8(+) T cell responses by DNA vaccination. J Mol.
Med 81, 91-101 (2003).
25. ChoJ.H., Lee,S.W. & Sung,Y.C. Enhanced cellular immunity to hepatitis C virus nonstructural proteins by codelivery of granulocyte macrophage-colony stimulating factor gene in intramuscular DNA immunization. Vaccine 17, 1136-1144 (1999).
26. WeberJ. etal. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide Vaccine for resected Stage Il melanoma. Cancer97, 186-200 (2003).
27. Kusakabe,K. etal. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an H1V-1 -specific DNA Vaccine.
J Immunol 164, 3102-3111 (2000).

Claims

Patentansprüche
1. Verfahren zur Immunstimulation in einem Säugetier umfassend die folgenden Schritte: a. Verabreichen mindestens einer mRNA enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich und b. Verabreichen mindestens einer Komponente mindestens einer der nachfolgend Kategorien ausgewählt aus der Gruppe bestehend aus einem Cytokin, einem Cytokin-mRNA, einer adjuvo-viralen mRNA, einer CpG-DNA und einer adjuvanten RNA.
2. Verfahren nach Anspruch 1 , wobei Schritt b. 1 Minute bis 48 Stunden, bevorzugt 20 Minuten bis 36 Stunden, ebenfalls bevorzugt 30 Minuten bis 24 Stunden, stärker bevorzugt 10 Stunden bis 30 Stunden, am stärksten bevorzugt 12 Stunden bis 28 Stunden, insbesondere bevorzugt 20 Stunden bis 26 Stunden, nach Schritt a. erfolgt.
3. Verfahren nach einem der vorangehenden Ansprüche, wobei in Schritt a. zusätzlich mindestens ein RNase-lnhibitor, vorzugsweise RNAsin oder
Aurintricarbonsäure, verabreicht wird.
4. Verfahren nach einem der vorangehenden Ansprüche, wobei eine Immunantwort verstärkt bzw. moduliert wird, vorzugsweise von einer Th2- Immunantwort in eine Th1 -Immunantwort verändert wird.
5. Verfahren nach einem der vorangehenden Ansprüche, wobei die mindestens eine mRNA aus Schritt (a.) einen Bereich enthält, der für mindestens ein Antigen aus einem Tumor ausgewählt aus der Gruppe, bestehend aus 707- AP, AFP, ART-4, BAGE, -Catenin/m, Bcr-abl, CAMEL, CAP-1 , CASP-8,
CDC27/m, CDK4/m, CEA, CMV pp65, CT, Cyp-B, DAM, EGFRI, ELF2M, ETV6-AML1 , G250, GAGE, GnT-V, GpI OO, HAGE, HBS, HER-2/neu, HLA- A*O2O1-R17OI, HPV-E7, HSP70-2M, HAST-2, hTERT (oder hTRT), Influenza Matrix-Protein, insbesondere Influenza A-Matrix-M1 -Protein oder Influenza B-Matrix-M1 -Protein, iCE, KIAA0205, LAGE, z.B. LAGE-1, LDLR/FUT, MAGE, z.B. MAGE-A, MAGE-B, MAGE-C, MAGE-A1 , MAGE-2, MAGE-3,
MAGE-6, MAGE-10, MART-1/Melan-A, MC1 R, Myosin/m, MUCl, MUM-1, -
2, -3, NA88-A, NY-ESO-1, p190 minor bcr-abl, Pml/RAR , PRAME, Proteinase 3, PSA, PSM, PTPRZ1, RAGE, RU1 oder RU2, SAGE, SART-1 oder SART-3, SEC61 G, SOX9, SPCl, SSX, Survivin, TEL/AML1, TERT, TNC, TPl/m, TRP-I , TRP-2, TRP-2/INT2, Tyrosinase und WTl kodiert.
6. Verfahren nach einem der vorangehenden Ansprüche, wobei das mindestens eine Cytokin ausgewählt ist aus der Gruppe bestehend aus IL-I (α/ß), IL-2, IL-
3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-I O, IL-12, IL-13, IL-15, IL-18, IL-21, IL- 22, IL-23, IFN-α, IFN-ß, IFN-γ, LT-α, MCAF, RANTES, TGFα, TGFßl , TGFß2,
TNFα, TNFß und besonders bevorzugt G-CSF oder GM-CSF oder M-CSF.
7. Verfahren nach einem der vorangehenden Ansprüche, wobei die mindestens eine mRNA aus Schritt (a.) und/oder aus Schritt (b.) als nackte oder komplexierte mRNA vorliegt.
8. Verfahren nach einem der vorangehenden Ansprüche, wobei die mindestens eine mRNA aus Schritt (a.) und/oder aus Schritt (b.) als Globin-UTR (untranslated regions)-stabilisierte mRNA, insbesondere als ß-Globin-UTR- stabilisierte mRNA, vorliegt.
9. Verfahren nach einem der vorangehenden Ansprüche, wobei die mindestens eine mRNA aus Schritt (a.) und/oder aus Schritt (b.) als modifizierte mRNA, insbesondere als stabilisierte mRNA, vorliegt.
10. Verfahren nach einem der vorangehenden Ansprüche, wobei der G/C-Gehalt des kodierenden Bereichs der modifizierten mRNA aus Schritt (a.) und/oder aus Schritt (b.) gegenüber dem G/C-Gehalt des kodierenden Bereichs der Wildtyp-RNA erhöht ist, wobei die kodierte Aminosäuresequenz der modifizierten mRNA gegenüber der kodierten Aminosäuresequenz der
Wildtyp-mRNA vorzugsweise nicht verändert ist.
11.Verfahren nach einem der vorangehenden Ansprüche, wobei der A/U-Gehalt in der Umgebung der Ribosomen-Bindungsstelle der modifizierten mRNA aus Schritt (a.) und/oder aus Schritt (b.) gegenüber dem A/U-Gehalt in der
Umgebung der Ribosomen-Bindungsstelle der Wildtyp-mRNA erhöht ist.
12. Verfahren nach einem der vorangehenden Ansprüche, wobei der kodierende Bereich und/oder der 5'- und/oder 3'-nicht-translatierte Bereich der modifizierten mRNA aus Schritt (a.) und/oder aus Schritt (b.) gegenüber der
Wildtyp-mRNA derart verändert ist, dass er keine destabilisierenden Sequenzelemente enthält, wobei die kodierte Aminosäuresequenz der modifizierten mRNA gegenüber der Wildtyp-mRNA vorzugsweise nicht verändert ist.
13. Verfahren nach einem der vorangehenden Ansprüche, wobei die modifizierte mRNA aus Schritt (a.) und/oder aus Schritt (b.) eine 5'-Cap-Struktur und/oder einen Poly(A)-Schwanz, vorzugsweise von mindestens 25 Nukleotiden, stärker bevorzugt von mindestens 50 Nukleotiden, noch stärker bevorzugt von mindestens 70 Nukleotiden, ebenfalls stärker bevorzugt von mindestens
100 Nukleotiden, am stärksten bevorzugt von mindestens 200 Nukleotiden, und/oder mindestens eine IRES und/oder mindestens eine 5'- und/oder 3'- Stabilisierungssequenz aufweist.
14. Verfahren nach einem der vorangehenden Ansprüche, wobei die modifizierte mRNA aus Schritt (a.) und/oder aus Schritt (b.) oder die adjuvante RNA aus Schritt (b.) mindestens ein Analoges natürlich vorkommender Nukleotide aufweist.
15. Verfahren nach einem der vorangehenden Ansprüche, wobei die modifizierte mRNA aus Schritt (a.) und/oder aus Schritt (b.) oder die adjuvante RNA aus Schritt (b.)mit mindestens einem kationischen oder polykationischen Agens komplexiert oder kondensiert ist.
16. Verfahren nach einem der vorangehenden Ansprüche, wobei das kationische oder polykationische Agens ausgewählt ist aus der Gruppe bestehend aus Protamin, Poly-L-Lysin, Poly-L-Arginin und Histonen.
17. Verfahren nach einem der vorgenannten Ansprüche zur Behandlung von
Tumorerkrankungen, Allergien, Autoimmunerkrankungen, wie Multiple Sklerose, protozoologischen, viralen und/oder bakteriellen Infektionen.
18. Erzeugnis, enthaltend mindestens eine mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und mindestens eine Komponente aus mindestens einer der nachfolgenden Kategorien ausgewählt aus der Gruppe, bestehend aus einem Cytokin, einer CpG DNA, einer Cytokin-mRNA, einer adjuvo- viralen mRNA und einer adjuvanten RNA, als Kombinationspräparat zur gleichzeitigen, getrennten oder zeitlich abgestuften Anwendung bei der
Behandlung und/oder Prophylaxe von Tumorerkrankungen, Allergien,
Autoimmunerkrankungen, wie Multiple Sklerose, viralen und/oder bakteriellen Infektionen.
19. Kit, enthaltend mindestens eine mRNA enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und mindestens eine Komponente aus mindestens einer Kategorie ausgewählt aus der Gruppe, bestehend aus einem Cytokin, einer Cytokin- mRNA, einer adjuvo-viralen mRNA, einer CpG DNA mindestens und einer adjuvanten RNA, wobei die mindestens eine mRNA, enthaltend einen für mindestens ein Antigen eines Pathogens oder mindestens ein Tumorantigen kodierenden Bereich, und das mindestens eine Cytokin oder die mindestens eine Cytokin-mRNA oder die mindestens eine CpG DNA oder die mindestens eine adjuvante RNA oder die mindestens eine adjuvo-virale mRNA voneinander getrennt sind.
20. Verwendung des Kits nach Anspruch 19 zur Behandlung und/oder Prophylaxe von Tumorerkrankungen, Allergien, Autoimmunerkrankungen, wie Multiple Sklerose, protozoologischen, viralen und/oder bakteriellen
Infektionen.
EP05778932A 2004-09-02 2005-08-31 Kombinationstherapie zur immunstimulation Withdrawn EP1928494A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004042546A DE102004042546A1 (de) 2004-09-02 2004-09-02 Kombinationstherapie zur Immunstimulation
PCT/EP2005/009383 WO2006024518A1 (de) 2004-09-02 2005-08-31 Kombinationstherapie zur immunstimulation

Publications (1)

Publication Number Publication Date
EP1928494A2 true EP1928494A2 (de) 2008-06-11

Family

ID=35453319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05778932A Withdrawn EP1928494A2 (de) 2004-09-02 2005-08-31 Kombinationstherapie zur immunstimulation

Country Status (4)

Country Link
US (3) US20080025944A1 (de)
EP (1) EP1928494A2 (de)
DE (1) DE102004042546A1 (de)
WO (1) WO2006024518A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4035659A1 (de) 2016-11-29 2022-08-03 PureTech LYT, Inc. Exosome zur ausgabe von therapeutischen wirkstoffen

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832603B1 (de) * 2001-06-05 2010-02-03 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt, enkodierend für ein bakterielles Antigen sowie deren Verwendung
DE10162480A1 (de) 2001-12-19 2003-08-07 Ingmar Hoerr Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen
DE10229872A1 (de) * 2002-07-03 2004-01-29 Curevac Gmbh Immunstimulation durch chemisch modifizierte RNA
DE102005023170A1 (de) * 2005-05-19 2006-11-23 Curevac Gmbh Optimierte Formulierung für mRNA
CA2655933C (en) 2006-06-23 2014-09-09 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in cancer
DE102006035618A1 (de) * 2006-07-31 2008-02-07 Curevac Gmbh Nukleinsäure der Formel (I): GlXmGn, insbesondere als immunstimulierendes Adjuvanz
EP2046954A2 (de) 2006-07-31 2009-04-15 Curevac GmbH Nukleinsäure der formel (i): gixngn, oder (ii): cixmcn, insbesondere als immunstimulierendes mittel/adjuvans
DE102007001370A1 (de) 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
WO2009039198A2 (en) * 2007-09-17 2009-03-26 The Trustees Of The University Of Pennsylvania Generation of hyperstable mrnas
EP2042193A1 (de) * 2007-09-28 2009-04-01 Biomay AG RNA-Impfstoffe
WO2009046739A1 (en) 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating prostate cancer (pca)
WO2009046738A1 (en) * 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating lung cancer, particularly of non-small lung cancers (nsclc)
CZ301561B6 (cs) * 2007-12-04 2010-04-14 Výzkumný ústav živocišné výroby, v. v. i. Prostredek pro prevenci a potlacování kokcidióz
MX2010008468A (es) 2008-01-31 2010-08-30 Curevac Gmbh Acidos nucleicos de la formula (i) (nug1xmgnnv)a y derivados de los mismos como un agente/adyuvante inmunoestimulante.
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
WO2010060186A1 (en) 2008-11-03 2010-06-03 Alethia Biotherapeutics Inc. Antibodies that specifically block the biological activity of a tumor antigen
EP2387414A1 (de) * 2009-01-13 2011-11-23 Transgene SA Verwendung einer saccharomyces cerevisiae mitochondrialen nukleinsäuren-fraktion zur immunstimulation
CN201397956Y (zh) * 2009-03-23 2010-02-03 富士康(昆山)电脑接插件有限公司 电连接器组件
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
WO2011069529A1 (en) 2009-12-09 2011-06-16 Curevac Gmbh Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids
CN103025876A (zh) 2010-07-30 2013-04-03 库瑞瓦格有限责任公司 用于转染和免疫刺激的核酸与二硫化物交联的阳离子成分的复合体
EP2600901B1 (de) 2010-08-06 2019-03-27 ModernaTX, Inc. Pharmazeutische zusammensetzungen enthaltenbearbeitete nukleinsäuren und ihre medizinische verwendung
WO2012019630A1 (en) 2010-08-13 2012-02-16 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
DE19177059T1 (de) 2010-10-01 2021-10-07 Modernatx, Inc. N1-methyl-pseudouracile enthältendes ribonucleinsäuren sowie ihre verwendungen
WO2012089225A1 (en) 2010-12-29 2012-07-05 Curevac Gmbh Combination of vaccination and inhibition of mhc class i restricted antigen presentation
WO2012116715A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in newborns and infants
WO2012113413A1 (en) 2011-02-21 2012-08-30 Curevac Gmbh Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
WO2012116714A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in elderly patients
WO2012135805A2 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
DK3173427T3 (da) 2011-03-31 2019-08-05 Adc Therapeutics Sa Antistoffer mod nyre-associeret antigen 1 og antigen-bindende fragmenter deraf
JP6184945B2 (ja) 2011-06-08 2017-08-23 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド mRNA送達のための脂質ナノ粒子組成物および方法
WO2013012875A2 (en) 2011-07-18 2013-01-24 Mount Sinai School Of Medicine Bacterial rnas as vaccine adjuvants
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
LT3682905T (lt) 2011-10-03 2022-02-25 Modernatx, Inc. Modifikuoti nukleozidai, nukleotidai ir nukleorūgštys bei jų naudojimas
PL2791160T3 (pl) 2011-12-16 2022-06-20 Modernatx, Inc. Kompozycje zmodyfikowanego mrna
RS58918B1 (sr) 2012-01-09 2019-08-30 Adc Therapeutics Sa Agensi za tretman trostruko negativnog raka dojke
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
WO2013120500A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen
PL2814962T3 (pl) * 2012-02-15 2018-11-30 Curevac Ag Kwas nukleinowy zawierający lub kodujący histonowy trzonek-pętlę i sekwencję poli(A) lub sygnał poliadenylacji do zwiększania ekspresji zakodowanego antygenu patogennego
WO2013120497A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein
WO2013120498A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen
WO2013120499A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen
SG11201403450VA (en) 2012-03-27 2014-09-26 Curevac Gmbh Artificial nucleic acid molecules for improved protein or peptide expression
MX357803B (es) 2012-03-27 2018-07-24 Curevac Ag Moléculas de ácido nucleico artificiales.
CA2866945C (en) 2012-03-27 2021-05-04 Curevac Gmbh Artificial nucleic acid molecules comprising a 5'top utr
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
DE18200782T1 (de) 2012-04-02 2021-10-21 Modernatx, Inc. Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
CN104411338A (zh) * 2012-04-02 2015-03-11 现代治疗公司 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
ES2864878T5 (es) 2012-06-08 2024-10-23 Translate Bio Inc Administración pulmonar de ARN, a células objetivo no pulmonares
RS63237B1 (sr) 2012-11-26 2022-06-30 Modernatx Inc Terminalno modifikovana rnk
AU2014220957A1 (en) 2013-02-22 2015-07-30 Curevac Ag Combination of vaccination and inhibition of the PD-1 pathway
RS62565B1 (sr) 2013-03-14 2021-12-31 Translate Bio Inc Metode i kompozicije za isporuku antitela kodiranih od strane irnk
MX365409B (es) 2013-03-14 2019-05-31 Shire Human Genetic Therapies Composiciones de ácido ribonucleico mensajero del regulador transmembrana de fibrosis quística y métodos y usos relacionados.
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
ES2670529T3 (es) 2013-03-15 2018-05-30 Translate Bio, Inc. Mejora sinergística de la entrega de ácidos nucleicos a través de formulaciones mezcladas
CN105473157A (zh) 2013-08-21 2016-04-06 库瑞瓦格股份公司 组合疫苗
SG10201801431TA (en) 2013-08-21 2018-04-27 Curevac Ag Respiratory syncytial virus (rsv) vaccine
MX2016002152A (es) 2013-08-21 2017-01-05 Curevac Ag Metodo para aumentar la expresion de proteinas codificadas por arn.
CN110195072A (zh) 2013-08-21 2019-09-03 库瑞瓦格股份公司 狂犬病疫苗
US10023626B2 (en) 2013-09-30 2018-07-17 Modernatx, Inc. Polynucleotides encoding immune modulating polypeptides
EA201690675A1 (ru) 2013-10-03 2016-08-31 Модерна Терапьютикс, Инк. Полинуклеотиды, кодирующие рецептор липопротеинов низкой плотности
WO2015062738A1 (en) 2013-11-01 2015-05-07 Curevac Gmbh Modified rna with decreased immunostimulatory properties
CN103555762B (zh) * 2013-11-15 2015-06-24 新乡医学院 Afp和gm-csf双基因共表达重组载体及其制备方法和应用
AU2014375404C1 (en) 2013-12-30 2020-11-19 CureVac Manufacturing GmbH Methods for RNA analysis
JP6704850B2 (ja) 2013-12-30 2020-06-03 キュアバック アーゲー 人工核酸分子
JP6584414B2 (ja) 2013-12-30 2019-10-02 キュアバック アーゲー 人工核酸分子
US11254951B2 (en) 2014-12-30 2022-02-22 Curevac Ag Artificial nucleic acid molecules
CA2935878C (en) 2014-03-12 2023-05-02 Curevac Ag Combination of vaccination and ox40 agonists
EP3129050A2 (de) 2014-04-01 2017-02-15 CureVac AG Polymerträger-cargo-komplex zur verwendung als immunstimulierendes mittel oder als ein adjuvans
AU2015249553B2 (en) 2014-04-23 2021-03-04 Modernatx, Inc. Nucleic acid vaccines
AU2015273933B2 (en) 2014-06-10 2021-02-11 CureVac Manufacturing GmbH Methods and means for enhancing RNA production
CA2953341C (en) 2014-06-25 2023-01-24 Acuitas Therapeutics Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
EP4241784A3 (de) 2014-12-12 2023-11-15 CureVac SE Künstliche nukleinsäuremoleküle zur verbesserten proteinexpression
WO2016165825A1 (en) 2015-04-13 2016-10-20 Curevac Ag Method for producing rna compositions
WO2016165831A1 (en) 2015-04-17 2016-10-20 Curevac Ag Lyophilization of rna
EP3173092B1 (de) 2015-04-22 2019-06-26 CureVac AG Rna-haltige zusammensetzung zur behandlung von tumorerkrankungen
CN107889503A (zh) 2015-04-30 2018-04-06 库瑞瓦格股份公司 固定化的聚(n)聚合酶
EP3294885B1 (de) 2015-05-08 2020-07-01 CureVac Real Estate GmbH Verfahren zur herstellung von rna
MX2017014538A (es) 2015-05-15 2018-03-02 Curevac Ag Regimenes de cebado-refuerzo que implican la administracion de al menos un constructo de arnm.
SG11201708541QA (en) 2015-05-20 2017-12-28 Curevac Ag Dry powder composition comprising long-chain rna
SG10201910431RA (en) 2015-05-20 2020-01-30 Curevac Ag Dry powder composition comprising long-chain rna
PT3303583T (pt) 2015-05-29 2020-07-07 Curevac Ag Um método para produção e purificação de rna, compreendendendo pelo menos um passo de filtração por fluxo tangencial
WO2016193226A1 (en) 2015-05-29 2016-12-08 Curevac Ag Method for adding cap structures to rna using immobilized enzymes
FI3313829T3 (fi) 2015-06-29 2024-07-01 Acuitas Therapeutics Inc Lipidejä ja lipidinanohiukkasformulaatioita nukleiinihappojen annostelemiseksi
US10501768B2 (en) 2015-07-13 2019-12-10 Curevac Ag Method of producing RNA from circular DNA and corresponding template DNA
WO2017015463A2 (en) 2015-07-21 2017-01-26 Modernatx, Inc. Infectious disease vaccines
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
HUE057613T2 (hu) 2015-09-17 2022-05-28 Modernatx Inc Vegyületek és készítmények terápiás szerek intracelluláris bejuttatására
WO2017064146A1 (en) 2015-10-12 2017-04-20 Curevac Ag Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
US20190218546A1 (en) 2015-10-16 2019-07-18 Modernatx, Inc. Mrna cap analogs with modified phosphate linkage
WO2017066791A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Sugar substituted mrna cap analogs
EP3362460A1 (de) 2015-10-16 2018-08-22 Modernatx, Inc. Mrna-kappenanaloga und verfahren zum mrna-kappen
WO2017066782A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Hydrophobic mrna cap analogs
EP3364983A4 (de) 2015-10-22 2019-10-23 ModernaTX, Inc. Impfstoffe gegen atemwegevirus
EP3364950A4 (de) 2015-10-22 2019-10-23 ModernaTX, Inc. Impfstoffe gegen tropenkrankheiten
AU2016342045A1 (en) 2015-10-22 2018-06-07 Modernatx, Inc. Human cytomegalovirus vaccine
HUE061564T2 (hu) 2015-10-28 2023-07-28 Acuitas Therapeutics Inc Új lipidek és lipid nanorészecske készítmények nukleinsavak bevitelére
WO2017081110A1 (en) 2015-11-09 2017-05-18 Curevac Ag Rotavirus vaccines
US10799463B2 (en) 2015-12-22 2020-10-13 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
AU2016375021B2 (en) 2015-12-22 2022-02-03 CureVac SE Method for producing RNA molecule compositions
WO2017109161A1 (en) 2015-12-23 2017-06-29 Curevac Ag Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof
US11723967B2 (en) 2016-02-17 2023-08-15 CureVac SE Zika virus vaccine
EP3423595A1 (de) 2016-03-03 2019-01-09 CureVac AG Rns-analyse durch gesamthydrolyse
CA3020343A1 (en) 2016-04-08 2017-10-12 Translate Bio, Inc. Multimeric coding nucleic acid and uses thereof
EP3448427A1 (de) 2016-04-29 2019-03-06 CureVac AG Für einen antikörper codierende rns
EP3452101A2 (de) 2016-05-04 2019-03-13 CureVac AG Rna-codierung eines therapeutischen proteins
EP3452493A1 (de) 2016-05-04 2019-03-13 CureVac AG Nukleinsäuremoleküle und verwendungen davon
JP2019519516A (ja) 2016-05-18 2019-07-11 モデルナティーエックス, インコーポレイテッド がんの治療のためのmRNA併用療法
JP7194594B2 (ja) 2016-05-18 2022-12-22 モデルナティエックス インコーポレイテッド 免疫調節ポリペプチドをコードするmRNAの組み合わせ及びその使用
LT3458083T (lt) 2016-05-18 2023-02-10 Modernatx, Inc. Polinukleotidai, koduojantys interleukiną-12 (il12), ir jų naudojimas
BR112018075479A2 (pt) 2016-06-09 2019-03-19 Curevac Ag portadores híbridos para carga de ácido nucleico
JP2019522047A (ja) 2016-06-13 2019-08-08 トランスレイト バイオ, インコーポレイテッド オルニチントランスカルバミラーゼ欠損症治療のためのメッセンジャーrna療法
CA3027201A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
CA3041307A1 (en) 2016-10-21 2018-04-26 Giuseppe Ciaramella Human cytomegalovirus vaccine
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
US11279923B2 (en) 2016-11-28 2022-03-22 Curevac Ag Method for purifying RNA
US11542490B2 (en) 2016-12-08 2023-01-03 CureVac SE RNAs for wound healing
MA50335A (fr) 2016-12-08 2020-08-19 Modernatx Inc Vaccins à acide nucléique contre des virus respiratoires
US11464836B2 (en) 2016-12-08 2022-10-11 Curevac Ag RNA for treatment or prophylaxis of a liver disease
WO2018115527A2 (en) 2016-12-23 2018-06-28 Curevac Ag Mers coronavirus vaccine
WO2018115507A2 (en) 2016-12-23 2018-06-28 Curevac Ag Henipavirus vaccine
EP3558354A1 (de) 2016-12-23 2019-10-30 CureVac AG Impfstoff gegen das lassa-virus
MA47515A (fr) 2017-02-16 2019-12-25 Modernatx Inc Compositions immunogènes très puissantes
US11253605B2 (en) 2017-02-27 2022-02-22 Translate Bio, Inc. Codon-optimized CFTR MRNA
KR102700956B1 (ko) 2017-02-28 2024-09-03 사노피 치료적 rna
HRP20230063T1 (hr) 2017-03-15 2023-03-17 Modernatx, Inc. Spoj i pripravci za intracelularnu isporuku terapijskih sredstava
WO2018170336A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
EP3595676A4 (de) 2017-03-17 2021-05-05 Modernatx, Inc. Rna-impfstoffe gegen zoonosen
AU2018240515B2 (en) 2017-03-24 2024-07-25 CureVac SE Nucleic acids encoding CRISPR-associated proteins and uses thereof
US11905525B2 (en) 2017-04-05 2024-02-20 Modernatx, Inc. Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
WO2018191657A1 (en) 2017-04-13 2018-10-18 Acuitas Therapeutics, Inc. Lipids for delivery of active agents
WO2018200975A1 (en) 2017-04-27 2018-11-01 Vanderbilt University Hepatitis c virus gene sequences and methods of use therefor
AU2018256877B2 (en) 2017-04-28 2022-06-02 Acuitas Therapeutics, Inc. Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
IL270631B2 (en) 2017-05-16 2024-03-01 Translate Bio Inc Treatment of cystic fibrosis through the administration of mRNA with an optimal codon encoding ctfr
CA3063723A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
CA3066932A1 (en) 2017-07-04 2019-01-10 Curevac Ag Novel nucleic acid molecules
JP7355731B2 (ja) 2017-08-16 2023-10-03 アクイタス セラピューティクス インコーポレイテッド 脂質ナノ粒子製剤における使用のための脂質
US12065396B2 (en) 2017-08-17 2024-08-20 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US11542225B2 (en) 2017-08-17 2023-01-03 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
WO2019036030A1 (en) 2017-08-17 2019-02-21 Acuitas Therapeutics, Inc. LIPIDS FOR USE IN LIPID NANOPARTICLE FORMULATIONS
WO2019036638A1 (en) 2017-08-18 2019-02-21 Modernatx, Inc. METHODS FOR PREPARING MODIFIED RNA
WO2019038332A1 (en) 2017-08-22 2019-02-28 Curevac Ag VACCINE AGAINST BUNYAVIRUS
MX2020002348A (es) 2017-08-31 2020-10-08 Modernatx Inc Métodos de elaboración de nanopartículas lipídicas.
US10653767B2 (en) 2017-09-14 2020-05-19 Modernatx, Inc. Zika virus MRNA vaccines
CN111511924A (zh) 2017-11-08 2020-08-07 库瑞瓦格股份公司 Rna序列调整
EP3723796A1 (de) 2017-12-13 2020-10-21 CureVac AG Flavivirus-impfstoff
EP3727428A1 (de) 2017-12-20 2020-10-28 Translate Bio, Inc. Verbesserte zusammensetzung und verfahren zur behandlung von ornithintranscarbamylase-mangel
CN111511928A (zh) 2017-12-21 2020-08-07 库瑞瓦格股份公司 偶联到单一支持物或标签的线性双链dna和用于制备所述线性双链dna的方法
KR102578060B1 (ko) * 2018-03-23 2023-09-13 한림대학교 산학협력단 항균용 항체 및 그 용도
EP3781591A1 (de) 2018-04-17 2021-02-24 CureVac AG Neuartige rsv-rna-moleküle und zusammensetzungen zur impfung
US20220409536A1 (en) 2018-09-19 2022-12-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
CN113271926A (zh) 2018-09-20 2021-08-17 摩登纳特斯有限公司 脂质纳米颗粒的制备及其施用方法
US12042527B2 (en) 2019-01-08 2024-07-23 Modernatx, Inc. Use of mRNAs encoding OX40L, IL-23 and IL-36gamma in combination with immune checkpoint blockade for treating particular cancers
MX2021009245A (es) 2019-01-31 2021-11-12 Modernatx Inc Metodos de preparacion de nanoparticulas lipidicas.
JP7545395B2 (ja) 2019-01-31 2024-09-04 モデルナティエックス インコーポレイテッド ボルテックスミキサならびにその関連する方法、システム、及び装置
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
EP3938379A4 (de) 2019-03-15 2023-02-22 ModernaTX, Inc. Hiv-rna-vakzine
MX2022002342A (es) 2019-08-30 2022-06-14 Univ Yale Composiciones y metodos para suministro de acidos nucleicos a celulas.
US20240277830A1 (en) 2020-02-04 2024-08-22 CureVac SE Coronavirus vaccine
US11241493B2 (en) 2020-02-04 2022-02-08 Curevac Ag Coronavirus vaccine
EP4132576A1 (de) 2020-04-09 2023-02-15 Suzhou Abogen Biosciences Co., Ltd. Nukleinsäureimpfstoffe gegen coronavirus
IL297084A (en) 2020-04-09 2022-12-01 Suzhou Abogen Biosciences Co Ltd Lipid nanoparticle compounds
KR20230030588A (ko) 2020-06-30 2023-03-06 쑤저우 아보젠 바이오사이언시스 컴퍼니 리미티드 지질 화합물 및 지질 나노입자 조성물
EP4182297A1 (de) 2020-07-16 2023-05-24 Acuitas Therapeutics, Inc. Kationische lipide zur verwendung in lipidnanopartikeln
EP4168391A1 (de) 2020-08-20 2023-04-26 Suzhou Abogen Biosciences Co., Ltd. Lipidverbindungen und lipidnanopartikelzusammensetzungen
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
KR20230164648A (ko) 2020-12-22 2023-12-04 큐어백 에스이 SARS-CoV-2 변이체에 대한 RNA 백신
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022152141A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Polymer conjugated lipid compounds and lipid nanoparticle compositions
JP2024517529A (ja) 2021-05-24 2024-04-23 スージョウ・アボジェン・バイオサイエンシズ・カンパニー・リミテッド 脂質化合物及び脂質ナノ粒子組成物
JP2024533865A (ja) 2021-09-14 2024-09-12 レナゲード セラピューティクス マネージメント インコーポレイテッド 環状脂質及びその使用方法
JP2024534697A (ja) 2021-09-14 2024-09-20 レナゲード セラピューティクス マネージメント インコーポレイテッド 非環状脂質及びその使用方法
AR127312A1 (es) 2021-10-08 2024-01-10 Suzhou Abogen Biosciences Co Ltd Compuestos lipídicos ycomposiciones de nanopartículas lipídicas
CN116064598B (zh) 2021-10-08 2024-03-12 苏州艾博生物科技有限公司 冠状病毒的核酸疫苗
AU2022358824A1 (en) 2021-10-08 2024-04-11 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
IL313486A (en) 2021-12-16 2024-08-01 Acuitas Therapeutics Inc Lipids for use in lipid nanoparticle formulations
EP4452928A1 (de) 2021-12-23 2024-10-30 Renagade Therapeutics Management Inc. Eingeschränkte lipide und verfahren zur verwendung davon
AU2022422983A1 (en) 2021-12-23 2024-05-16 Suzhou Abogen Biosciences Co., Ltd. Lipid compound and lipid nanoparticle composition
AU2023251104A1 (en) 2022-04-07 2024-10-17 Renagade Therapeutics Management Inc. Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents
CN117327709A (zh) * 2022-06-24 2024-01-02 深圳瑞吉生物科技有限公司 用于实体肿瘤的治疗性mRNA及其应用
WO2024037578A1 (en) 2022-08-18 2024-02-22 Suzhou Abogen Biosciences Co., Ltd. Composition of lipid nanoparticles
WO2024192291A1 (en) 2023-03-15 2024-09-19 Renagade Therapeutics Management Inc. Delivery of gene editing systems and methods of use thereof
WO2024192277A2 (en) 2023-03-15 2024-09-19 Renagade Therapeutics Management Inc. Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) * 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US4458066A (en) * 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4500707A (en) * 1980-02-29 1985-02-19 University Patents, Inc. Nucleosides useful in the preparation of polynucleotides
US5132418A (en) * 1980-02-29 1992-07-21 University Patents, Inc. Process for preparing polynucleotides
US4973679A (en) * 1981-03-27 1990-11-27 University Patents, Inc. Process for oligonucleo tide synthesis using phosphormidite intermediates
US4415732A (en) * 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US4668777A (en) * 1981-03-27 1987-05-26 University Patents, Inc. Phosphoramidite nucleoside compounds
US4373071A (en) * 1981-04-30 1983-02-08 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4401796A (en) * 1981-04-30 1983-08-30 City Of Hope Research Institute Solid-phase synthesis of polynucleotides
US4588585A (en) 1982-10-19 1986-05-13 Cetus Corporation Human recombinant cysteine depleted interferon-β muteins
US4737462A (en) 1982-10-19 1988-04-12 Cetus Corporation Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β
US4959314A (en) 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5116943A (en) 1985-01-18 1992-05-26 Cetus Corporation Oxidation-resistant muteins of Il-2 and other protein
US5017691A (en) 1986-07-03 1991-05-21 Schering Corporation Mammalian interleukin-4
US5153319A (en) * 1986-03-31 1992-10-06 University Patents, Inc. Process for preparing polynucleotides
US4879111A (en) 1986-04-17 1989-11-07 Cetus Corporation Treatment of infections with lymphokines
US5262530A (en) * 1988-12-21 1993-11-16 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US5047524A (en) * 1988-12-21 1991-09-10 Applied Biosystems, Inc. Automated system for polynucleotide synthesis and purification
US6214804B1 (en) * 1989-03-21 2001-04-10 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
EP0609739A1 (de) * 1993-02-02 1994-08-10 American Cyanamid Company Methode der Umkehrung der Immunsuppression in Vakzinen
DE69533295T3 (de) * 1994-02-16 2009-07-16 The Government Of The United States Of America, As Represented By The Secretary, The Department Of Health And Human Services Melanoma-assoziierte Antigene, Epitope davon und Impstoffe gegen Melanoma
HUT76094A (en) * 1994-03-18 1997-06-30 Lynx Therapeutics Oligonucleotide n3'-p5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties
WO1995026204A1 (en) * 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5700642A (en) * 1995-05-22 1997-12-23 Sri International Oligonucleotide sizing using immobilized cleavable primers
US6265387B1 (en) * 1995-10-11 2001-07-24 Mirus, Inc. Process of delivering naked DNA into a hepatocyte via bile duct
US20030143204A1 (en) * 2001-07-27 2003-07-31 Lewis David L. Inhibition of RNA function by delivery of inhibitors to animal cells
US6090391A (en) * 1996-02-23 2000-07-18 Aviron Recombinant tryptophan mutants of influenza
ES2241042T3 (es) * 1996-10-11 2005-10-16 The Regents Of The University Of California Conjugados de polinucleotido inmunoestimulador/ molecula inmunomoduladora.
EP0855184A1 (de) * 1997-01-23 1998-07-29 Grayson B. Dr. Lipford Pharmazeutisches Präparat das ein Polynukleotid und ein Antigen enthält, insbesondere zur Impfung
US6406705B1 (en) * 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6589940B1 (en) * 1997-06-06 2003-07-08 Dynavax Technologies Corporation Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
AU9319398A (en) 1997-09-19 1999-04-05 Sequitur, Inc. Sense mrna therapy
ATE243045T1 (de) * 1997-11-20 2003-07-15 Vical Inc Behandlung von krebs durch verwendung von zytokin-exprimierender polynukleotiden und zusammensetzungen dafür
US6514948B1 (en) * 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
US20050112141A1 (en) * 2000-08-30 2005-05-26 Terman David S. Compositions and methods for treatment of neoplastic disease
US20040106567A1 (en) * 1999-09-07 2004-06-03 Hagstrom James E. Intravascular delivery of non-viral nucleic acid
ATE289630T1 (de) 1999-09-09 2005-03-15 Curevac Gmbh Transfer von mrnas unter verwendung von polykationischen verbindungen
CA2398756A1 (en) * 2000-01-31 2001-08-02 Eyal Raz Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
DE60124098T2 (de) * 2000-06-23 2007-04-05 Wyeth Holdings Corp. Modifiziertes Morbillivirus V Proteine
US20040005667A1 (en) * 2000-07-03 2004-01-08 Giuloi Ratti Immunisation against chlamydia pneumoniae
AU2002211490A1 (en) * 2000-10-04 2002-04-15 The Trustees Of The University Of Pennsylvania Compositions and methods of using capsid protein from flaviviruses and pestiviruses
US20020132788A1 (en) * 2000-11-06 2002-09-19 David Lewis Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo
DE02708018T1 (de) * 2001-03-09 2004-09-30 Gene Stream Pty. Ltd. Neue expressionsvektoren
ES2230502T3 (es) * 2001-04-23 2005-05-01 Amaxa Gmbh Disolucion tampon para la electroporacion y procedimiento que incluye el uso de la misma.
EP1832603B1 (de) 2001-06-05 2010-02-03 CureVac GmbH Stabilisierte mRNA mit erhöhtem G/C-Gehalt, enkodierend für ein bakterielles Antigen sowie deren Verwendung
US7785610B2 (en) * 2001-06-21 2010-08-31 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—III
AR045702A1 (es) * 2001-10-03 2005-11-09 Chiron Corp Composiciones de adyuvantes.
DE10148886A1 (de) * 2001-10-04 2003-04-30 Avontec Gmbh Inhibition von STAT-1
US7276489B2 (en) * 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
DE10162480A1 (de) * 2001-12-19 2003-08-07 Ingmar Hoerr Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen
AU2003230806B2 (en) * 2002-04-04 2009-05-07 Zoetis Belgium S.A. Immunostimulatory G,U-containing oligoribonucleotides
DE10229872A1 (de) * 2002-07-03 2004-01-29 Curevac Gmbh Immunstimulation durch chemisch modifizierte RNA
AR040575A1 (es) * 2002-07-16 2005-04-13 Advisys Inc Plasmidos sinteticos optimizados en codones de expresion en mamiferos
CA2522213A1 (en) * 2003-04-08 2004-10-28 Dante J. Marciani Semi-synthetic saponin analogs with carrier and immune stimulatory activities for dna and rna vaccines
DE10335833A1 (de) * 2003-08-05 2005-03-03 Curevac Gmbh Transfektion von Blutzellen mit mRNA zur Immunstimulation und Gentherapie
US20060241076A1 (en) * 2005-04-26 2006-10-26 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006024518A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4035659A1 (de) 2016-11-29 2022-08-03 PureTech LYT, Inc. Exosome zur ausgabe von therapeutischen wirkstoffen

Also Published As

Publication number Publication date
US20170000870A1 (en) 2017-01-05
DE102004042546A1 (de) 2006-03-09
US20120213818A1 (en) 2012-08-23
US20080025944A1 (en) 2008-01-31
WO2006024518A1 (de) 2006-03-09

Similar Documents

Publication Publication Date Title
EP1928494A2 (de) Kombinationstherapie zur immunstimulation
EP2216028B1 (de) Immunstimulation durch chemisch modifizierte eingelsträngige RNA
EP1832603B1 (de) Stabilisierte mRNA mit erhöhtem G/C-Gehalt, enkodierend für ein bakterielles Antigen sowie deren Verwendung
DE102004035227A1 (de) mRNA-Gemisch zur Vakzinierung gegen Tumorerkrankungen
EP1615663B1 (de) Mittel zur behandlung von infektionen mit leishmanien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060622

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

R17D Deferred search report published (corrected)

Effective date: 20060309

17Q First examination report despatched

Effective date: 20090731

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 38/00 20060101ALI20120123BHEP

Ipc: A61K 39/00 20060101ALI20120123BHEP

Ipc: A61P 35/00 20060101ALI20120123BHEP

Ipc: A61K 39/39 20060101AFI20120123BHEP

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120710