EP1927723B1 - Palier de stator d'un compresseur axial d'une turbomachine avec lamelles transversales pour l'augmentation de rendement - Google Patents

Palier de stator d'un compresseur axial d'une turbomachine avec lamelles transversales pour l'augmentation de rendement Download PDF

Info

Publication number
EP1927723B1
EP1927723B1 EP07022949A EP07022949A EP1927723B1 EP 1927723 B1 EP1927723 B1 EP 1927723B1 EP 07022949 A EP07022949 A EP 07022949A EP 07022949 A EP07022949 A EP 07022949A EP 1927723 B1 EP1927723 B1 EP 1927723B1
Authority
EP
European Patent Office
Prior art keywords
stator
transverse
wall
transverse plates
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07022949A
Other languages
German (de)
English (en)
Other versions
EP1927723A1 (fr
Inventor
Wolfram Dr. Hage
Robert Dr. Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP1927723A1 publication Critical patent/EP1927723A1/fr
Application granted granted Critical
Publication of EP1927723B1 publication Critical patent/EP1927723B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/13Two-dimensional trapezoidal

Definitions

  • the invention relates to a stator stage of an axial compressor of an axial flow machine, which comprises at least one stator blade, which comprises a suction side and a pressure side.
  • Rotor and stator stages are used alternately in axial flow machines in an axial compressor.
  • an axial compressor as used for example in a gas turbine, an attempt is made to obtain the highest possible pressure build-up in each stage.
  • a profile design of stator blades is made. The profile is set so that a forming flow on the stator blades remains in a working area corresponding to a design.
  • the blades are bounded laterally by walls, an outer wall forming a housing, and an inner wall forming a hub. On these walls, relatively thick boundary layers are formed, especially in the middle and high-pressure compressor area. From measurements taken by J.
  • a turbomachine with intermediate blades known as flow guide There is provided for reducing secondary flow losses of fluid flow through a bladed flow channel of a turbomachine to arrange at least one intermediate blade between two full blades on at least one flow-limiting side wall.
  • a depth of the intermediate blade is less than a depth of the full blades that extend from one boundary wall to an opposite boundary wall.
  • a profile thickness is much thinner than that of a full bucket.
  • a suction-side profile of the intermediate blade is preferably contoured in the same way as the suction-side profile of the full blade.
  • the blade channel is subdivided locally into subchannels and a leading edge (blade nose) of the intermediate blades is set back (in the flow direction) relative to the leading edges (blade lugs) of the full blades.
  • the trailing edge of the intermediate blade is preferably offset from the rear edges of the full blades, that is, offset from a main flow direction.
  • a turbomachine with a turnaround passage formed between two adjacent blades and boundary surfaces is known.
  • For reducing a secondary flow of a boundary layer fluid at least one projecting from the boundary surface of the flow channel fence is provided.
  • a depth with which the fence projects into the passage resembles, for example, a thickness of the local boundary layer.
  • the projecting depth of the fence increases with a distance along the chord at a rate sufficient to limit the steady increase in boundary layer fluid along the fence.
  • the invention is therefore based on the technical object to provide a compressor stage for an axial compressor of a turbomachine, in which the losses, in particular due to flow separation on the walls, are reduced, that is, an increase in efficiency is achieved.
  • a stator stage of an axial compressor of a turbomachine comprising at least one stator blade, which in turn comprises a suction side and a pressure side, spaced from at least one wall, to which the stator blade adjacent to the suction side the stator vane extend a plurality of cross blades in a flow volume, wherein Quedamellen chord lengths of the plurality of cross blades with a distance from the suction side of the stator blade decrease.
  • the flow volume is that volume of the stator stage through which a fluid flows during operation.
  • Such transverse blades which are arranged on a wall spaced from the suction side of a stator blade between two adjacent stator blades, are capable of influencing a secondary flow forming therefrom from a pressure side of a stator blade arranged adjacent to the suction side of the at least one stator blade Extent of detachment is reduced and thereby a Resistance or loss due to the secondary flow along the at least one wall is reduced. Furthermore, it is achieved by the plurality of transverse lamellae that a secondary flow promoted corner separation at the at least one wall adjacent, in the main flow direction rear corner of the stator blade suction side is reduced, which also leads to a reduction in the efficiency losses.
  • the transverse blades comprise a first side and an opposite second side whose surface normal to a surface normal of the at least one wall is an angle of between 70 ° and 110 °, more preferably between 85 ° and 95 ° and most preferably of 90 °.
  • the transverse lamellae each extend preferably in the radial direction into the flow volume from the wall. This ensures that the secondary flow which forms parallel to the wall surface is best prevented from propagating.
  • a particularly small additional flow resistance due to the transverse lamellae is obtained when the first side of the transverse lamellae has a surface curvature which corresponds to the surface curvature of the suction side of the at least one stator blade.
  • the second side of the transverse lamellae has the same surface curvature as the first side.
  • the cross blades in this embodiment a parallel aligned first and second side, each having a surface curvature corresponding to that of the stator blade, which has the stator blade in the corresponding area adjacent to the at least one wall.
  • the transverse blades are preferably oriented so that the surface of the suction side of the at least one stator blade can be brought into registry with the first side of the transverse blades by rotations about a central axis of the compressor stage.
  • transverse lamella or the first side of each transverse lamella can thus be regarded as a surface section of the stator blade, which is arranged so as to be twisted along the wall about an azimuthal angle about the central axis of the axial compressor.
  • the transverse lamellae have a front edge facing the main flow and an opposite rear edge, an outer edge adjoining the at least one wall and an inner edge projecting into the flow volume and lying opposite the outer edge, wherein a maximum transverse lamella chord length , measured from the leading edge to the trailing edge, is greater than a maximum cross-blade depth measured from the outer edge to the inner edge.
  • the transverse lamella chord length of the suction side closest to the plurality of transverse lamellae is between 30% to 70%, more preferably between 40% and 60%, and most preferably 50%, of a stator chord.
  • the cross lamella with the maximum quedamella chord length has a transverse lamella chord length of 50% of a stator chord length in order to optimally influence the secondary flow and adds no "unnecessary" flow resistance beyond the positive effect to the compressor stage ,
  • a contour of the transverse lamellae is in each case preferably designed such that a front and inner contour of the transverse lamella approximates and / or corresponds to a streamline course of the main flow, spaced from the wall. This ensures that the cross-blade is flowed around by the main flow as low as possible and provides no additional flow resistance or the lowest possible additional flow resistance.
  • the front contour faces the main flow direction.
  • the inner contour protrudes into the flow volume, i. into a passage between the stator wings, into it.
  • a good approximation is obtained with a transverse lamella in which a chamfered edge is formed between the front edge and the inner edge.
  • An embodiment which has proven to be particularly advantageous is one in which one of the plurality of transverse lamellae has an equidistant spacing from the suction side of the stator blade and the several transverse lamellae are mutually spaced apart. This means that the transverse lamellae are equidistant from each other and from the stator blade in the azimuthal direction. The area along the wall is thus subdivided into several zones, thereby eliminating pressure equalization along the wall between the various zones. As advantageous, a cross-plate number between 2 and 10 has been found.
  • Other embodiments may provide a non-equidistant arrangement of the transverse blades.
  • a distance between 3% and 7%, more preferably between 4% and 6% and most preferably 5% of a profile length of the suction side of the stator blade has been found.
  • the transverse lamella depth of the plurality of transverse lamellae has the same maximum transverse lamella depth.
  • the transverse lamella depth of the plurality of transverse lamellae decreases with a distance from the suction side of the stator blade.
  • the configuration of the stator stage is particularly advantageous when extending from one of the at least one wall opposite wall to which the at least one stator blade also adjacent, one or preferably also a plurality of additional transverse lamellae.
  • the at least one wall can represent both an outer wall and a hub.
  • transverse lamellae are arranged on both the hub-forming wall and the outer wall.
  • the arrangement of the transverse lamellae preferably takes place such that in each case the rear edge of the plurality of transverse lamellae and / or the additional transverse lamellae terminate with a corresponding rear edge of the stator blade in the axial direction of the turbomachine.
  • the secondary flow is formed between the stator blades. This means that in the axial direction behind the stator blades no cross blades arranged transversely to the propagation direction of the secondary flow have to be provided.
  • the transverse lamellae are arranged such that their rear edge does not terminate with the edge of the profile of the stator blade but "end" in the main flow direction in front of the stator blade trailing edge, then at least a part of the secondary flow can form such that corner removal is undesirably assisted.
  • the plurality of transverse fins are arranged within a volume in which a secondary flow caused by wall detachment from the pressure side of an adjacently arranged further stator blade to the suction side of the at least one stator blade forms into the main flow in an operation corresponding to a design of the turbomachine the at least one transverse lamella and / or the further transverse lamellae are aligned transversely to the secondary flow.
  • the orientation of the Slats transverse to this Sekundarströmun.9. Is the cause of the designation of the slats as cross blades. This is transverse not only in the sense of 90 ° to understand.
  • FIG. 3 schematically a section of a stator stage of an axial compressor according to the prior art is shown.
  • the stator stage comprises at least one stator blade 1. Adjacent to the at least one stator blade 1, a further stator blade 1 'is arranged. The at least one stator blade 1 and the adjacent stator blade 1 'each adjoin a wall 2 forming an outer wall.
  • a flow direction of a main flow 4 is indicated by double arrows.
  • a thickness of a wall boundary layer 4c grows in the region of the stator blade 1 or adjacent stator blade 1 '. This is due to the fact that the main flow 4 is delayed by a profiling of the stator blade 1 or adjacent stator blade 1 '.
  • a main axis of the turbomachine is oriented parallel to the display plane. Profiles of three stator blades 1, 1 ', 1 "can be seen: The main direction of flow is from bottom left to top right This flow direction, which deviates from an axial direction of the turbomachine, is caused by a rotor stage located upstream of the stator stage visualized flow lines 4a is in Fig. 1 to recognize that it comes in a passage 6 between the stator blades 1 to a flow separation.
  • FIG. 2 is one with Fig. 1 corresponding schematic representation of a wall pressure distribution of a stator stage according to the prior art shown.
  • Fig. 1 corresponding schematic representation of a wall pressure distribution of a stator stage according to the prior art shown.
  • Lines of constant static pressure cp less than 0 are entered by means of dashed lines and the line constants of positive pressure by solid thin lines.
  • the line shown in bold and denoted by SL represents a detachment line.
  • the inflow direction of the main flow 4 is indicated by an arrow. It can be seen that the detachment line SL runs obliquely to the main flow direction.
  • Fig. 4 schematically a section of a stator stage of an axial compressor is shown, in which spaced from the suction side 1a of the stator blade 1, a transverse blade 3 and further transverse blades 3 'are arranged, which extend from the wall 2 in a flow volume 7.
  • the stator blade 1 has a profile length 1j and a chord length 1g.
  • the cross-blade 3 preferably has a clearance from the suction side 1a which is preferably between 3% and 7%, more preferably between 4% and 6% and most preferably 5% of the profile length 1j of the suction side 1a of the stator blade 1. The same distance, the cross blades 3, 3 'of each other.
  • a surface of the suction side 1a of the stator blade 1 can be brought to cover the first side 1a by a virtual rotation along the azimuth direction 8 about the central axis of the turbomachine.
  • the fins 3 and further fins 3 'further have a main flow 4 facing front edge 3c, 3c' and an opposite edge 3d, 3d 'on. Between the front edge 3c, 3c 'and the rear edge 3d, 3d', a maximum transverse lamella chord length 3g or 3g 'can be determined.
  • the transverse lamella 3 and the further transverse lamellae 3 'furthermore have one of the outer wall facing Outer edge 3e or 3e 'and a projecting into the flow volume 7 inner edge 3f and 3f. Between the outer edge 3e and the inner edge 3f, a transverse lamella depth 3h or 3h 'can be determined in each case.
  • the lamellae are designed such that a maximum transverse lamella chord length 3g, 3g 'is greater than a maximum lamella depth 3h, 3h'. Furthermore, in the embodiment according to Fig.
  • Fig. 6 is a section of a schematic cross-sectional drawing through a stator stage shown with the embodiment according to Fig. 4 corresponds.
  • a stator 1 is arranged between a outer wall 2a and an opposite wall 2b, which forms the hub.
  • the illustrated embodiment is intended to indicate a real stator stage only schematically.
  • the transverse louver depth 3h, 3h ' is shown greatly enlarged in relation to a distance of the wall 2a from the opposite wall 2b.
  • a preferred embodiment of a stator stage is shown schematically.
  • the related to Fig. 4 described features and advantages apply essentially also for the embodiment according to Fig. 5 , In this embodiment, however, both a transverse lamella chord length 3g, 3g 'and a transverse lamella depth 3h, 3h' decreases with a distance from the suction side 1a of the stator blade of the individual transverse lamellae 3, 3 '. This leads to an optimal Reduction of unwanted losses.
  • Both in the embodiment according to Fig. 4 as well as the embodiment according to Fig. 5 closes the rear edge 3d, 3d 'of the cross blades in each case with a rear edge 1d of the stator blade in the axial direction.
  • FIG. 5 illustrated embodiment of the stator stage represents a preferred embodiment, it will be apparent to those skilled in the art that embodiments are also conceivable in which the louver depths 3h, 3h 'of the plurality of transverse blades 3, 3' are identical.
  • a separation along a separation line 15 is shown, which arises in a flow 14 with a strong pressure gradient. It is believed that the pressure of the outside flow dp dx 16 imposes itself on the pressure of detachment. In the separation region, a secondary flow 14b is created, which is opposite to the flow 14.
  • Fig. 10 are introduced in the Abl Harbor which transverse fins 13, which divide the pressure area of the secondary flow into several areas of equal pressure. An expansion of the secondary flow area on the wall 12 is thus reduced and the edge losses are thereby minimized. Between the cross blades 13 there is a formation of an altered secondary flow 14e, which is conducive to an effect of the transverse blades.
  • the integrate loss coefficient results from the integration of the local loss coefficient over the blade pitch and the blade height of the compressor grid.
  • the blade pitch indicates the distance of the stator blades.
  • the stator height indicates a radial span of the stator blade, i. a distance from the hub to the outer wall. It is thus integrated azimuthally and radially.
  • a local total pressure loss coefficient results from a difference of the average total pressure of the inflow (indicated by a bar above the variable) and the local total pressure in the wake of the compressor grating, which is normalized with the mean dynamic pressure of the inflow.
  • FIG. 10 shows a change in the integrated over the division of the total pressure coefficient In a Verdlchter stator passage (dashed data curve) compared with a reference configuration (solid line of the data curve).
  • Figures 11a and 11b are schematic sectional views each represented by a schematic passage of a compressor stator stage transversely to the main propagation direction at the level of a trailing edge of a stator blade, viewed in the direction opposite to the main flow direction, wherein a number of cross blades is different. Shown are schematic compressor stator stage configurations. Shown is a passage of a compressed stator grid, similar to those of 6 and 7 , The illustration is simplified in that the boundary wall 2a and the opposite boundary wall 2b are assumed to be straight.
  • the section through the stator stage is shown at the trailing edge transverse to the axial direction, ie, the main flow direction of the stator stage, with an upper edge 24 and a lower edge 25 indicating half a passage height above the stator blade and below the stator blade, respectively, and not actually existing To represent components of the stator.
  • the viewing direction is opposite to the main flow direction.
  • the trailing edge 1d of the stator blade is located in a center of the considered passage. Above the suction side are located at equidistant intervals a plurality of cross blades 3, 3 '.
  • Fig. 11a There are eight cross blades in a passage, three of which have a smaller distance from the pressure side 1b than from the suction side 1a of the stator blade.
  • Fig. 11b a view of a stator step passage is shown, which comprises only six transverse blades 3.
  • This embodiment is opposite to the Fig. 11a in that the number of transverse lamellae and the wall areas over which the transverse lamellae 3 extend along the wall 2a or the opposite wall 2b approximately coincide with the areas in which a secondary flow running transversely to the main flow direction along the walls 2a, 2b in FIG Operation of the stator can be formed.
  • An extension of these areas, in which the disturbing secondary flow is formed, is indicated schematically by a contour 23.
  • a transverse lamella depth 3h which indicates how far the individual transverse lamellae project from the side wall 2a or opposite side wall 2b into the flow volume 7, is also important.
  • Fig. 12a and 12b are schematic sectional views again each by a schematic passage of a compressor stator stage transverse to the main flow direction at the level of a trailing edge 1d of a Stator5schaufel similar to those after Fig. 11a and 11b shown. While in both views 12a and 12b a number of the plurality of transverse blades 3, 3 'is optimally selected, the transverse blades protrude in the Fig. 12a all equally far into the flow volume 7 inside. In Fig. 12b On the other hand, the transverse louver depths 3h, 3h ', 3h "of the individual transverse louvers 3, 3', 3" are different.
  • a transverse lamella depth 3h, 3h ', 3h decreases with a distance of the transverse lamella 3, 3', 3" from the suction side 1a of the stator blade 1ab. This means that the transverse lamella 3, 3 ', 3 ", which is farthest from the suction side 1a of the stator blade 1, projects the least far into the flow volume 7.
  • Such a gradation of the transverse lamella depths 3h, 3h', 3h” forms on best a depth of the secondary flow region 23 measured against the side wall 2a and the opposite side wall 2b from.
  • transverse blades 3, 3 ' which are arranged on the side wall 2a and have an identical distance as a corresponding transverse blade 3 ", which is arranged on the opposite side wall 2b, from the suction side 1a of the stator blade, can have a different transverse blade depth 3h, 3h'. 3h "of the corresponding transverse lamella 3.”
  • an optimal number of transverse lamellae on the side wall may deviate from that on the opposite side wall.
  • Fig. 13a and 13b In each case, a schematic sectional view along a main flow direction or an axial direction of the turbomachine of sections of a schematic compressor stator stage is shown. While at the stator stage, which in Fig. 13a is shown, the individual transverse blades 3, 3 'all have an identical Querlamellensehenentre 3g, takes in Fig. 13b , which represents a preferred embodiment, a Querlamellensehenin 3g with a distance of the transverse blades 3, 3 'from the suction side 1a of the stator blade 1ab.
  • the Querlamellensahnannostin 3g are thus optimally adapted to the influenced secondary flow area 23 along the side wall 2.
  • a transverse lamellar depth is preferably chosen in this optimal embodiment, as in Fig. 12b is shown. This means that a transverse lamellar depth decreases with a distance from the suction side 1a of the stator blade 1.
  • the transverse lamellae and further transverse lamellae have a simple geometric contour.
  • the contour is preferably conformed to a streamline shape that forms in the mainstream spaced from the wall.
  • This means that the contour of the cross blades is chosen so that they fill the area where the secondary flow forms along the wall as well as possible.
  • an optimal suppression of the secondary flow is achieved and at the same time an additional resistance, which is inevitably linked to the cross blades, kept as low as possible.
  • the leading edges and the inner edges, including the bevelled edges may form a common continuous contour.
  • a (maximum) cross-blade chord length in such a case is a maximum dimension measured along the axial direction of the compressor stage.
  • a (maximum) cross-plate depth is correspondingly a maximum distance, measured perpendicular to the adjacent side wall.
  • transverse blades and their arrangement are given only by way of example.
  • they may have a curvature other than the curvature of the suction side of the stator vanes and be oriented differently along the wall, as long as they are oriented transversely to the secondary flow forming on the wall in the passage between the stator vanes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (16)

  1. Etage de stator d'un compresseur axial d'une turbomachine comprenant au moins une aube de stator (1), qui comporte un côté aspiration (1a) et un côté refoulement (1b), et plusieurs lamelles transversales (3, 3'), qui s'étendent depuis au moins une paroi (2 ; 2a, 2b), à laquelle l'aube de stator (1) est adjacente, à distance du côté aspiration (1a) de l'aube de stator (1) vers un volume d'écoulement, caractérisé en ce que les longueurs de la corde des lamelles transversales (3g, 3g') des plusieurs lamelles transversales (3, 3') diminuent en s'éloignant du côté aspiration (1a) de l'aube de stator (1).
  2. Etage de stator selon la revendication 1, caractérisé en ce que les plusieurs lamelles transversales (3, 3') présentent une même profondeur de lamelles transversales (3h, 3h').
  3. Etage de stator selon la revendication 1, caractérisé en ce que les profondeurs des lamelles transversales (3h, 3h') des plusieurs lamelles transversales (3, 3') diminuent en s'éloignant du côté aspiration (1a) de l'aube de stator (1).
  4. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une des plusieurs lamelles transversales (3) du côté aspiration (1a) de l'aube de stator (1) et les plusieurs lamelles transversales (3') présentent respectivement une distance équidistante les unes des autres.
  5. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que la distance équidistante est comprise entre 3 % et 7 %, de préférence entre 4 % et 6 % et de manière préférée d'entre toutes de 5 % d'une longueur de profil (1j) du côté aspiration (1a) de l'aube de stator (1).
  6. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une ou plusieurs lamelles transversales supplémentaires (3") s'étendent en plus depuis une paroi (2b) opposée à l'au moins une paroi (2a) et à laquelle l'au moins une aube de stator (1) est également adjacente.
  7. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que respectivement une arête arrière (3d) des plusieurs lamelles transversales (3) et/ ou des lamelles transversales supplémentaires (3") se terminent avec une arête arrière correspondante (1d) de l'aube de stator (1) dans le sens axial de la turbomachine.
  8. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que les plusieurs lamelles transversales (3) comprennent un premier côté (3a) et un deuxième côté opposé (3b), dont les normales à la surface (9, 10) forment par rapport à la normale à la surface (11) de l'au moins une paroi un angle compris entre 70° et 110°, de préférence entre 85° et 95° et de manière préférence d'entre toutes de 90°.
  9. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que l'au moins une paroi (2) est une paroi extérieure (2a) ou un moyeu (2b).
  10. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier côté (3a, 3a') des lamelles transversales (3, 3') présente une courbure de surface, qui correspond à la courbure de surface du côté aspiration (1a) de l'au moins une aube de stator (1).
  11. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième côté (3b, 3b') des lamelles transversales (3, 3') présente une même courbure de surface que le premier côté (3a, 3a').
  12. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que les plusieurs lamelles transversales (3, 3') comprennent une arête avant (3c, 3c') tournée vers l'afflux d'un écoulement principal (4) et une arête arrière (3d, 3d') opposée, une arête extérieure (3e, 3e') adjacente à l'au moins une paroi (2 ; 2a, 2b) ainsi qu'une arête intérieure (3f, 3f') opposée à l'arête extérieure (3e, 3e') pénétrant dans le volume d'écoulement, une longueur maximum de la corde des lamelles transversales (3g, 3g'), mesurée de l'arête avant (3c, 3c') à l'arête arrière (3d, 3d'), étant supérieure à une profondeur maximum des lamelles transversales (3h, 3h') mesurée de l'arête extérieure (3e) à l'arête intérieure (3f).
  13. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que la longueur de la corde des lamelles transversales (3g) des plusieurs lamelles transversales (3, 3') adjacentes le plus directement au côté aspiration (1a) est comprise entre 30 % et 70 %, de préférence entre 40 % et 60 %, de manière préférée d'entre toutes de 50 % d'une longueur de la corde du profil de stator (1g).
  14. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une arête (3h, 3h') biseautée est réalisée entre l'arête avant (3c, 3c') et l'arête intérieure (3f, 3f').
  15. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un contour avant et un contour intérieur des plusieurs lamelles transversales (3, 3') correspondent à une ligne de courant de l'écoulement principal (4), à distance de la paroi (2 ; 2a, 2b).
  16. Etage de stator selon l'une quelconque des revendications précédentes, caractérisé en ce que les plusieurs lamelles transversales (3, 3') sont agencées à l'intérieur d'un volume, dans lequel se forme un écoulement secondaire (4b), provoqué par détachement de paroi et dirigé du côté refoulement (1b') d'une autre aube de stator (1') agencée de manière adjacente vers le côté aspiration (1a) de l'au moins une aube de stator (1), par rapport à l'écoulement principal (4) dans un fonctionnement correspondant d'une conception de la turbomachine, les plusieurs lamelles transversales (3, 3') étant orientées transversalement à l'écoulement secondaire (4b).
EP07022949A 2006-11-28 2007-11-27 Palier de stator d'un compresseur axial d'une turbomachine avec lamelles transversales pour l'augmentation de rendement Not-in-force EP1927723B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006057063A DE102006057063B3 (de) 2006-11-28 2006-11-28 Stator-Stufe eines Axialverdichters einer Strömungsmaschine mit Querlamellen zur Wirkungsgradsteigerung

Publications (2)

Publication Number Publication Date
EP1927723A1 EP1927723A1 (fr) 2008-06-04
EP1927723B1 true EP1927723B1 (fr) 2009-10-28

Family

ID=39092596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07022949A Not-in-force EP1927723B1 (fr) 2006-11-28 2007-11-27 Palier de stator d'un compresseur axial d'une turbomachine avec lamelles transversales pour l'augmentation de rendement

Country Status (2)

Country Link
EP (1) EP1927723B1 (fr)
DE (1) DE102006057063B3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005796A (zh) * 2014-05-09 2014-08-27 上海交通大学 新型涡轮叶栅端壁的沟槽减损结构和方法
EP2799721A1 (fr) 2013-05-03 2014-11-05 Techspace Aero S.A. Redresseur de turbomachine axiale avec ailerons en pied d'aubes
CN111156201A (zh) * 2019-12-30 2020-05-15 江汉大学 一种轴流风机及其导流叶片

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938871B1 (fr) * 2008-11-25 2014-11-14 Snecma Grille d'aubes de turbomachine munie de guides d'ecoulement
DE102008060424A1 (de) 2008-12-04 2010-06-10 Rolls-Royce Deutschland Ltd & Co Kg Strömungsmaschine mit Seitenwand-Grenzschicht-Barriere
FR2939852B1 (fr) * 2008-12-15 2014-10-31 Snecma Etage d'aubes statoriques dans un compresseur
DE102009052142B3 (de) * 2009-11-06 2011-07-14 MTU Aero Engines GmbH, 80995 Axialverdichter
FR2976634B1 (fr) 2011-06-14 2013-07-05 Snecma Element de turbomachine
CN202991534U (zh) * 2011-07-09 2013-06-12 拉姆金动力系统有限责任公司 超音速压缩机
FR2987875B1 (fr) * 2012-03-09 2015-08-21 Snecma Generateurs de vortex places dans le canal inter-aubes d'un redresseur de compresseur.
FR2993021B1 (fr) 2012-07-06 2014-08-22 Snecma Turbomachine avec generateur de tourbillons a calage variable
DE102013224050B3 (de) * 2013-08-23 2014-11-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Axialverdichter
FR3014943B1 (fr) * 2013-12-18 2019-03-29 Safran Aircraft Engines Piece de turbomachine a surface non-axisymetrique
US9874221B2 (en) 2014-12-29 2018-01-23 General Electric Company Axial compressor rotor incorporating splitter blades
US9938984B2 (en) 2014-12-29 2018-04-10 General Electric Company Axial compressor rotor incorporating non-axisymmetric hub flowpath and splittered blades
US20170114796A1 (en) * 2015-10-26 2017-04-27 General Electric Company Compressor incorporating splitters
RU170008U1 (ru) * 2016-06-27 2017-04-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Лопаточная решетка осевой турбомашины
FR3059735B1 (fr) 2016-12-05 2020-09-25 Safran Aircraft Engines Piece de turbomachine a surface non-axisymetrique
DE102017222817A1 (de) 2017-12-14 2019-06-19 MTU Aero Engines AG Turbinenmodul für eine strömungsmaschine
DE102018206601A1 (de) * 2018-04-27 2019-10-31 MTU Aero Engines AG Schaufel, Schaufelsegment und Baugruppe für eine Turbomaschine und Turbomaschine
BE1026810B1 (fr) * 2018-11-28 2020-07-01 Safran Aero Boosters Sa Contouring dynamique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039736A (en) * 1954-08-30 1962-06-19 Pon Lemuel Secondary flow control in fluid deflecting passages
DE1937395A1 (de) * 1969-07-23 1971-02-11 Dettmering Prof Dr Ing Wilhelm Gitter zur Vermeidung der Sekundaerstroemung
DE2135286A1 (de) * 1971-07-15 1973-01-25 Wilhelm Prof Dr Ing Dettmering Lauf- und leitradgitter fuer turbomaschinen
EP0978632A1 (fr) * 1998-08-07 2000-02-09 Asea Brown Boveri AG Turbomachine avec aubes intermédiaires divisant le courant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799721A1 (fr) 2013-05-03 2014-11-05 Techspace Aero S.A. Redresseur de turbomachine axiale avec ailerons en pied d'aubes
US9739154B2 (en) 2013-05-03 2017-08-22 Safran Aero Boosters Sa Axial turbomachine stator with ailerons at the blade roots
CN104005796A (zh) * 2014-05-09 2014-08-27 上海交通大学 新型涡轮叶栅端壁的沟槽减损结构和方法
CN104005796B (zh) * 2014-05-09 2015-12-30 上海交通大学 新型涡轮叶栅端壁的沟槽减损结构和方法
CN111156201A (zh) * 2019-12-30 2020-05-15 江汉大学 一种轴流风机及其导流叶片

Also Published As

Publication number Publication date
DE102006057063B3 (de) 2008-07-31
EP1927723A1 (fr) 2008-06-04

Similar Documents

Publication Publication Date Title
EP1927723B1 (fr) Palier de stator d'un compresseur axial d'une turbomachine avec lamelles transversales pour l'augmentation de rendement
DE69601283T2 (de) Strömungsleitenden Vorrichtung für ein Gasturbinentriebwerk
EP2025945B1 (fr) Machine de traitement des écoulements dotée d'un creux de paroi de canal de ceinture
EP1657401B1 (fr) Turbomachine comprenant des aubes avec une augmentation de la longueur des chordes du profil dans l'extrémité de l'aube
EP2623793B1 (fr) Turbomachine avec grille d'aubes
DE602004006323T2 (de) Verfahren zur Herstellung einer Turbine mit Turbinenschaufeln unterschiedlicher Resonanzfrequenzen samt einer solchen Turbine
DE102007056953B4 (de) Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
EP1632662B1 (fr) Turbomachine avec soutirage
EP0990090B1 (fr) Pale de rotor d'un moteur a ecoulement axial
EP1798375B1 (fr) Profil d'aube pour aubes statoriques variables
EP2696029B1 (fr) Grille d'aube avec définition de contour de la paroi latérale et turbomachine
EP1760321A2 (fr) Pale d'une turbomachine
EP0846867A2 (fr) Turbomachine avec un étage de compression transsonique
EP2275643B1 (fr) Aube de moteur dotée d'une charge de rebords avant surélevée
DE102008037154A1 (de) Strömungsarbeitsmaschine
EP2538024B1 (fr) Aube dans une turbomachine
EP3940200A1 (fr) Roue à aubes d'une turbomachine
DE102008052401A1 (de) Strömungsarbeitsmaschine mit Laufspalteinzug
DE102009033591A1 (de) Strömungsarbeitsmaschine mit Schaufelreihengruppe
EP3147499B1 (fr) Pale de rotor a profil optimise contre le bruit et procede de fabrication d'une pale de rotor
DE102012104240A1 (de) Hybridströmungs-Schaufeldesign
EP1759090A1 (fr) Aube comportant une zone de transition
DE10340827A1 (de) Reparaturverfahren für eine Schaufel einer Strömungsarbeitsmaschine
DE102008059874A1 (de) Geometrische Gestaltung der Laufradschaufeln eines Turboladers
EP3369892B1 (fr) Contournage d'une plate-forme de grille d'aube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20080710

AKX Designation fees paid

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191029

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191029

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201127