EP1925775A1 - Gegen Explosionen unempfindlicher Tunnel - Google Patents

Gegen Explosionen unempfindlicher Tunnel Download PDF

Info

Publication number
EP1925775A1
EP1925775A1 EP07121280A EP07121280A EP1925775A1 EP 1925775 A1 EP1925775 A1 EP 1925775A1 EP 07121280 A EP07121280 A EP 07121280A EP 07121280 A EP07121280 A EP 07121280A EP 1925775 A1 EP1925775 A1 EP 1925775A1
Authority
EP
European Patent Office
Prior art keywords
tunnel
layer
compressible
wall
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07121280A
Other languages
English (en)
French (fr)
Inventor
Peter-Michael Dr. Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ed Zueblin AG
Original Assignee
Ed Zueblin AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ed Zueblin AG filed Critical Ed Zueblin AG
Publication of EP1925775A1 publication Critical patent/EP1925775A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/05Lining with building materials using compressible insertions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor

Definitions

  • the invention relates to the construction of insensitive to explosions in the tunnel interior tunnels.
  • the tunnel wall is generally reinforced accordingly.
  • the tunnel wall must be made so thick that the residual cross-section remaining in the interior of the tunnel after an explosion still has sufficient stability. If the tunnel is e.g. from Tübbingen, the individual segments must be made thicker. It makes them heavier and less manageable.
  • the EP 0 296 067 B1 discloses a lightweight sandwich panel for protecting the exterior of buildings from shock and temperature effects.
  • the object of the invention is a tunnel wall, which has a greater explosion protection effect in detonations in the tunnel interior than a conventionally created tunnel wall of the same mass, and a method for producing such a tunnel wall. Regardless of the manufacturing (Ortbeton- or ready-mixed solution) this should be much thinner and easier to produce with the same protective effect, as a conventional monolithic tunnel wall with given exclusively on the increased wall thickness explosion protection effect.
  • An essential feature of the invention is in this case to construct the tunnel wall from the exterior of the tunnel to the interior of the tunnel out of several, but at least two layers, each of which has a different main function.
  • the outermost layer facing the soil material consists of a concrete, preferably a high-strength or ultrahigh-strength concrete, a fiber-reinforced high-strength or ultrahigh-strength concrete or a reinforced concrete.
  • the tray is at least 20 inches thick.
  • At least one further layer joins the outermost layer in the direction of the tunnel interior, which is elastically or inelastically deformable compared to normal concrete. This layer partially absorbs the energy of an explosion and passes the remaining energy over a larger area and a stretched time interval to the outermost layer of the tunnel.
  • the explosion protection layer is for this purpose according to the invention much more compressible than concrete.
  • the explosion protection layer either directly adjoins the outer tray or is separated from it only by a thin surface finishing or blocking layer (e.g., sealing film).
  • the explosion protection layer has a lower density compared to conventional concrete.
  • a layer is preferably a gas-containing and thus more easily compressible solid suitable.
  • a solid would be aerated concrete, for example.
  • Another preferred material for the energy absorbing layer is polymer concrete.
  • Polymer concrete is particularly well suited because it is both deformable and compressible at low cost and also has a waterproof effect.
  • Another preferred material for the energy absorbing layer is dense foam having a density of more than 100 kilograms per cubic meter.
  • Such hard foam has a low density, is inexpensive and sufficiently compressible for the inventive purpose.
  • the explosion protection layer is due to the good interchangeability after a damage, preferably segmentally composed of standard segments.
  • the thickness of the explosion protection layer is preferably between 2 and 30 centimeters. Surprisingly, even layer thicknesses of a few centimeters are sufficient to ensure explosion protection for the carrier shell even for a particularly dangerous internal explosion, such as the explosion in a tunnel, for terrorist explosives fired at a distance from the tunnel wall (for example in a motor vehicle).
  • the layer must be at least 5% elastic or inelastically compressible at 1000 bar (static), but less than 90%.
  • the explosion protection layer may also be a product produced with a defined computationally optimized structure, which may be e.g. honeycomb structure, like some crumple zones of an automobile.
  • the explosion protection layer is preferred in the case of a tunnel with Ortbetonau touchschale later added as a prefabricated plate via conventional connecting means.
  • the deformability of the plates makes it possible to compensate for tolerances of the mold during their manufacture. With easily deformable material even flat plates can be adapted to the curved tunnel wall. For a material that can not bend sufficiently in the desired thickness, the layer is then preferably achieved by several superimposed thinner plates.
  • An explosion protection layer can also be used e.g. as shotcrete are subsequently applied to the inside of the tray. This can be done by spraying or foaming.
  • the explosion protection layer can be retrofitted as in an in-situ reinforced tunnel.
  • the use of tubbing segments which already carry the explosion protection layer during installation is preferred even during the production of the tunnel. This can be glued / molded in the manufacture of the segments or be after curing, but even before installation, the tubule attached (glued / screwed / anchored / attached with Velcro).
  • An easily replaceable explosion protection layer makes tunnel maintenance easy after an explosion.
  • the explosion protection layer is milled off / sawed / cut off by known erosive measures down to the supporting outer shell (also possible with high-pressure cutting jet) and then replaced (possibly together with an additional thin surface-finishing or water-barrier layer).
  • the explosion protection layer may also be incorporated into a cavity formed by a wall (e.g., fire barrier wall) supported by posts / spacers spaced from the tray.
  • the supports / spacers are preferably designed to yield / compressible when force.
  • This wall has closable filling openings, through which compressible, explosive dissipating material is subsequently filled.
  • the material then does not necessarily have its own dimensional stability, but may also be fluid.
  • a simple and cheap design is sand.
  • Another is sintered recycled plastic, which is pressed through the openings in the still soft state.
  • Another possibility is to produce the cavity by means of a lost formwork without supports / spacers, when the filling material exerts an adhesive effect on the lost formwork and the trayshell surface by keeping the permanent formwork spaced from the trayshell surface, then backfilled with the adhesive explosion protection material and after completion of the filling process and sufficient adhesive action, the brackets of the lost formwork are removed.
  • the energy-absorbing layer often has an unfavorable fire behavior.
  • an upstream fire protection layer facing the interior of the tunnel can therefore additionally protect the energy-absorbing explosion protection layer against the effects of fire from inside the tunnel.
  • the fire protection layer may consist, for example, of fire protection concrete, a fire protection coating or fire protection plates.
  • the fire-resistant concrete may be, for example, reinforced concrete or a fiber concrete in which e.g. Polymer fibers are included. Other fiber types such as flax or glass fibers are conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf einen Tunnel, der durch eine aus mindestens zwei Schichten aufgebaute Wandung eine erhöhte Sicherheit gegenüber Explosionen im Tunnelinnenraum bietet. Die äußerste, dem Boden zugewandte Schicht (1) dient als Tragschicht. Sie kann entweder vor Ort erstellt werden oder durch vorgefertigte Fertigteile (3), z.B. Tübbinge. Die Tragschicht (1) besteht aus Beton, bevorzugt aus hochfestem Beton, aus faserbewehrtem Beton oder aus Stahlbeton. An die äußere Schicht schließt sich in Richtung Tunnelinneres, eventuell getrennt durch eine dünne oberflächenveredelnde oder sperrende Schicht, eine energieabsorbierende Deformationsschicht (2) an. Diese kann in einem gesonderten Arbeitsgang nach Herstellung der Tragschale (1) an dieser befestigt werden oder auch zusammen mit dem Tübbing (3) hergestellt und eingebaut werden. Sie ist mit einer Stärke von 2 bis 30 Zentimetern überraschend dünn und engt daher, auch bei nachträglicher Montage an schon bestehenden Tunneln, das Lichtraumprofil kaum ein. Die Deformationsschicht wird bedarfsweise gegen das Tunnelinnere hin durch eine Brandschutzschicht gegen Brandeinwirkung geschützt.

Description

    Technisches Gebiet
  • Die Erfindung betrifft den Bau von gegen Explosionen im Tunnelinnenraum unempfindlicheren Tunneln.
  • Stand der Technik
  • Um Tunnel gegen Explosionen im Tunnelinnenraum unempfindlicher zu machen, wird im allgemeinen die Tunnelwand entsprechend verstärkt. Die Tunnelwandung muss dabei so dick ausgebildet werden, dass der nach einer Explosion im Tunnelinnenraum verbleibende Restquerschnitt noch eine ausreichende Standsicherheit aufweist. Besteht der Tunnel z.B. aus Tübbingen, so müssen die einzelnen Tübbinge dicker gemacht werden. Sie werden damit schwerer und sind nicht mehr so gut zu handhaben.
  • Im Baubereich ist die Sandwichbauweise aus dem Wärmeschutz von Gebäuden bekannt.
  • Die EP 0 296 067 B1 offenbart eine leichte Sandwichplatte zum Schutz des Äußeren von Gebäuden vor Schock- und Temperatureinwirkungen.
  • Aus der DE 201 21 159 U1 ist ein gegen Brandeinwirkung geschütztes Bauteil aus Beton, insbesondere ein Tübbing aus Beton für den Tunnelausbau, bekannt. Der bekannte Tübbing besteht aus lediglich einem Material.
  • Aus der WO 2006/034675 ist ein kompressibler Beton und ein Verfahren zu dessen Herstellung bekannt, bei dem ab einer zunehmenden Langzeitbelastung ein Fließen des Betons erfolgt. Eine allein aus diesem Material erstellte Tunnelwandung ist ausschließlich zum Schutz vor einem mit der Zeit zunehmenden Gebirgsdruck geeignet und nicht für eine nur kurzzeitig wirkende Schockbeanspruchung infolge einer Explosion.
  • Aufgabe der Erfindung
  • Aufgabe der Erfindung ist eine Tunnelwandung, die eine größere Explosionsschutzwirkung bei Detonationen im Tunnelinnenraum aufweist als eine herkömmlich erstellte Tunnelwandung gleicher Masse, sowie ein Verfahren zur Herstellung einer solchen Tunnelwandung. Unabhängig von der Herstellart (Ortbeton- oder Fertigteillösung) soll diese bei gleicher Schutzwirkung deutlich dünner und leichter herstellbar sein, als eine herkömmliche monolithische Tunnelwandung mit ausschließlich über die erhöhte Wanddicke gegebener Explosionsschutzwirkung.
  • Darstellung der Erfindung
  • Die Aufgabe wird durch die im Kennzeichen der Ansprüche 1, 6 und 7 angegebenen Merkmale gelöst.
  • Wesentliches Merkmal der Erfindung ist hierbei, die Tunnelwandung vom Tunneläußeren zum Tunnelinneren hin aus mehreren, mindestens jedoch zwei Schichten aufzubauen, von denen jede eine unterschiedliche Hauptfunktion ausübt.
  • Die äußerste, dem Bodenmaterial zugewandte Schicht besteht aus einem Beton, bevorzugt einem hochfesten oder ultrahochfesten Beton, einem mit Fasern bewehrten hochfesten oder ultrahochfesten Beton oder einem Stahlbeton.
  • Die Tragschale ist mindesten 20 Zentimeter stark.
  • An die äußerste Schicht schließt sich in Richtung Tunnelinneres mindestens eine weitere Schicht an, die verglichen mit normalem Beton elastisch oder unelastisch deformierbar ist. Diese Schicht absorbiert teilweise die Energie einer Explosion und gibt die verbleibende Energie über eine größere Fläche und ein gedehntes Zeitintervall an die äußerste Schicht des Tunnels weiter. Die Explosionsschutzschicht ist hierzu erfindungsgemäß deutlich stärker komprimierbar als Beton. Die Explosionsschutzschicht grenzt entweder direkt an die äußere Tragschale an oder ist von ihr nur durch eine dünne oberflächenveredelnde oder sperrende Schicht (z.B. Dichtungsfolie) getrennt.
  • Die Explosionsschutzschicht weist im Vergleich zu herkömmlichem Beton eine geringere Dichte auf.
  • Als solche Schicht ist bevorzugt ein gashaltiger und damit leichter komprimierbarer Feststoff geeignet. Ein solcher Feststoff wäre zum Beispiel Porenbeton.
  • Ein weiteres, bevorzugt verwendetes Material für die energieabsorbierende Schicht ist Polymerbeton. Polymerbeton ist besonders gut geeignet, da er bei geringen Kosten gleichzeitig deformierbar und komprimierbar ist und auch noch zusätzlich wasserdichtend wirkt.
  • Ein weiteres bevorzugtes Material für die energieabsorbierende Schicht ist dichter Hartschaum mit einer Dichte von mehr als 100 Kilogramm pro Kubikmeter. Solcher Hartschaum hat eine geringe Dichte, ist kostengünstig und für den erfinderischen Zweck ausreichend komprimierbar.
  • Die Explosionschutzschicht ist, der guten Austauschbarkeit nach einem Schadensfall wegen, bevorzugt segmentartig aus Standardsegmenten zusammengesetzt.
  • Mittels dieser Standardsegmente läßt sich auch ein bereits bestehender Tunnel nachträglich mit einer Explosionsschutzschicht ausstatten.
  • Die Dicke der Explosionschutzschicht beträgt bevorzugt zwischen 2 und 30 Zentimetern. Überraschenderweise genügen bereits Schichtdicken von wenigen Zentimetern um einen Explosionschutz für die Tragschale auch für eine besonders gefährliche Innenexplosion, wie sie die Explosion in einem Tunnel darstellt, für mit Abstand zur Tunnelwandung (z.B. in einem Kraftfahrzeug) gezündete terroristische Sprengkörper zu gewährleisten.
  • Hierzu muß die Explosionsschutzschicht aber gewisse Anforderungen erfüllen:
  • Die Schicht muß bei 1000 bar (statisch) um mindestens 5 % elastisch oder unelastisch komprimierbar sein, aber um weniger als 90%.
  • Bei der Explosionsschutzschicht kann es sich auch um ein mit definierter rechnerisch optimierter Struktur hergestelltes Produkt handeln, das z.B. wabenförmig aufgebaut ist, wie manche Knautschzonen eines Automobils.
  • Die Explosionsschutzschicht wird im Falle eines Tunnels mit Ortbetonaußenschale bevorzugt nachträglich als vorgefertigte Platte über übliche Verbindungsmittel angebracht. Die Deformierbarkeit der Platten ermöglicht dabei den Ausgleich von Toleranzen der Form bei deren Herstellung. Bei leicht deformierbarem Material können sogar ebene Platten der gekrümmten Tunnnelwandung angepaßt werden. Bei einem Material, das sich in der Sollstärke nicht ausreichend biegen läßt, wird die Schicht dann bevorzugt durch mehrere übereinanderliegende dünnere Platten erreicht.
  • Eine Explosionsschutzschicht kann auch z.B. wie Spritzbeton nachträglich an der Innenseite der Tragschale aufgebracht werden. Dies kann durch Aufspritzen oder Aufschäumen erfolgen.
  • Bei einem Tunnel mit Außenschale aus Tübbingen kann die Explosionschutzschicht wie bei einem Ortbetontunnel nachträglich angebracht werden. Bevorzugt ist aber schon bei der Herstellung des Tunnels die Verwendung von Tübbingen, die bereits beim Einbau die Explosionsschutzschicht tragen. Diese kann bei der Herstellung der Tübbinge angeklebt/angegossen sein oder nach der Aushärtung, aber noch vor dem Einbau, der Tübbinge angebracht (geklebt/ geschraubt/ verankert / mit Klettverschluß angehängt) sein.
  • Eine leicht austauschbare Explosionsschutzschicht erleichtert die Wartung des Tunnels nach einer Explosion. Ohne das Vorhandensein eines leichten Lösemechanismus wird hierzu die Explosionsschutzschicht durch bekannte abtragende Maßnahmen bis auf die tragende Außenschale abgefräst /abgesägt/ abgeschnitten (auch mit Hochdruckschneidstrahl möglich) und dann ersetzt (eventuell zusammen mit einer zusätzlichen dünnen oberflächenveredelnden oder wassersperrenden Schicht).
  • Die Explosionsschutzschicht kann auch in einen Hohlraum eingebracht sein, der durch eine durch Stützen / Abstandshalter mit Abstand zur Tragschale gehaltene Wand (z.B. auch Brandschutzwand) gebildet ist. Die Stützen/Abstandshalter sind bevorzugt bei Krafteinwirkung nachgebend/stauchbar ausgeführt.
  • Diese Wand weist verschließbare Einfüllöffnungen auf, durch die hindurch komprimierbares, Explosionskräfte dissipierendes Material nachträglich eingefüllt wird. Das Material muß dann nicht unbedingt eine eigene Formbeständigkeit aufweisen, sondern kann auch fluid sein. Eine einfache und billige Ausgestaltung ist Sand. Eine andere ist gesintertes Recycling-Plastik, das durch die Öffnungen im noch weichen Zustand eingepreßt wird.
  • Eine andere Möglichkeit ist, den Hohlraum mittels einer verlorenen Schalung ohne Stützen/Abstandshalter zu erzeugen, wenn das Füllmaterial eine Klebewirkung auf die verlorene Schalung und die Tragschalenoberfläche ausübt, indem die verlorene Schalung mit Abstand zur Tragschalenoberfläche gehalten wird, dann mit dem klebenden Explosionsschutzmaterial hinterfüllt wird und nach Beendigung des Einfüllvorganges und hinreichender Haftwirkung die Halterungen der verlorenen Schalung entfernt werden.
  • Als verlorene Schalung können z.B. Brandschutzplatten dienen.
  • Materialgemäss weist die energieabsorbierende Schicht häufig ein ungünstiges Brandverhalten auf.
  • Um einen zuverlässigen Brandschutz zu gewährleisten, kann daher zusätzlich eine zum Tunnelinneren weisende vorgelagerte Brandschutzschicht die energieabsorbierende Explosionsschutzschicht vor Brandeinwirkungen aus dem Tunnelinneren schützen.
  • Die Brandschutzschicht kann z.B. aus Brandschutzbeton, aus einer Brandschutzbeschichtung oder aus Brandschutzplatten bestehen.
  • Der Brandschutzbeton kann zum Beispiel Stahlbeton oder ein Faserbeton sein, in dem z.B. Polymerfasern enthalten sind. Auch andere Faserarten wie Flachs- oder Glasfasern sind denkbar.
  • Die Figuren zeigen schematisch einige mögliche Ausgestaltungen der Erfindung:
  • Figur 1:
    Querschnitt eines aus mindestens 2 Schichten bestehenden Tunnels, bei dem die äußere Schale in Ortbeton erstellt ist;
    Figur 2:
    Querschnitt eines aus mindestens 2 Schichten bestehenden Tunnels, bei dem die äußere Schale aus Tübbingen erstellt ist;
    Figur 3:
    Darstellung eines mindestens aus zwei Schichten bestehenden Aufbaus der Tunnelwandung, mit der Tragschale (1) und einer austauschbaren inneren Schale als deformierbarer Schutzschicht (2);
    Figur 4:
    Darstellung einer aus zwei Schichten bestehenden Tunnelwandung im fertigen Zustand. Die Tragschale kann hierbei aus Ortbeton (1) oder Fertigteilen / Tübbingen (3) bestehen, die innere Schutz- bzw. Deformationsschicht aus einem gegenüber der Tragschale deutlich komprimierbareren Material;
    Figur 5:
    Darstellung einer aus drei Schichten bestehenden Tunnelwandung im fertigen Zustand. Gegenüber der Figur 4 ist auf der Tunnelinnenseite eine zusätzliche Brandschutzschicht (4) angeordnet.
    Bezugszeichenliste
  • 1
    Tragschale (Tunnelaußenschale) aus Ortbeton
    2
    Explosionsschutzschicht
    3
    Tragschale aus Fertigteilen (Tübbingen)
    4
    innere Brandschutzschicht

Claims (9)

  1. Tunnel, bei dem die Tunnelwandung in Richtung vom Tunneläußeren zum Tunnelinnern aus mehreren Schichten besteht, die unterschiedliche Funktionen ausüben,
    dadurch gekennzeichnet, dass die Tunnelwandung aus mindestens zwei Schichten (1, 3; 2) besteht:
    a.) einer äußersten, zum Baugrund gerichteten Schicht (1, 3) als Tragschale zur Aufnahme der Nutzlasten, die aus Ortbeton oder aus vorgefertigten Tübbingen besteht und eine Mindeststärke von 20 Zentimetern aufweist, wobei es sich bei dem Beton um Stahlbeton, hochfesten oder ultrahochfesten Beton mit oder ohne Fasergehalt handelt, und
    b.) einer auf der Innenseite der Tragschale (1, 3) angeordneten, direkt an sie angrenzenden, oder durch eine dünne oberflächenveredelnde oder sperrende Schicht getrennten, komprimierbaren Schutzschicht (2) zur Aufnahme von Explosionskräften,
    wobei diese nachträglich aus Segmenten zusammengesetzt ist und durch Verbindungsmittel an der Tragschale oder einer möglichen dünnen Zwischenschicht befestigt ist,
    oder nachträglich als durchgängige aufgespritzte/aufgeschäumte Schicht angebracht ist,
    wobei diese Explosionschutzschicht (2) die Eigenschaft hat, bei statischem Druck von 1000 bar um mehr als 5 % aber weniger als 90 Prozent komprimierbar zu sein.
  2. Tunnel nach Anspruch 1,
    dadurch gekennzeichnet, dass auf der dem Tunnelinneren zugewandten Seite der Schutzschicht (2) eine zusätzliche Brandschutzschicht (4) angebracht ist.
  3. Tunnel nach mindestens einem der Ansprüche 1 und 2,
    dadurch gekennzeichnet, dass das Material der komprimierbaren Schutzschicht (2) ein Festkörper mit in radialer Richtung tragender und die benachbarten Schichten verbindender Funktion ist.
  4. Tunnel nach mindestens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass auf der Tunnelinnenseite durch eine mit Abstand vor der Tragschale gehaltene, im wesentlichen geschlossene Schale/Wand mit verschließbaren Einfüllöffnungen, ein Hohlraum geschaffen ist, der mit einem Medium gefüllt ist, welches deutlich besser komprimierbar ist als Beton und Explosionskräfte dissipiert an die Tragschale weiterleitet, wobei der Abstand zwischen der geschlossenen Schale/Wand und der Tragschicht eingehalten wird durch:
    a) die Schale/Wand und die Tragschale verbindende Stützen / Abstandhalter oder
    b) das eingefüllte Material selbst, welches über eine Klebewirkung die Schale/Wand als verlorene Schalung mit der Tragschale verbindet.
  5. Komprimierbares, Explosionskräfte dissipierendes Material als Füllung in einem Hohlraum einer Tunnelwandung nach Anspruch 4,
    dadurch gekennzeichnet, daß es sich bei dem Material um Sand oder gesintertes Plastik-Recyclingmaterial handelt.
  6. Tübbing für einen Tunnel nach mindestens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass er an der zur Tunnelinnenseite ausgerichteten Oberfläche einer mindestens 20 Zentimeter dicken Betonaußenschale, oder an der Oberfläche einer auf dieser Oberfläche angeordneten dünnen Veredelungs- oder Sperrschicht, werkmäßig eine 2 bis 30 Zentimeter starke komprimierbare Explosionsschutzschicht (2) aufweist, die durch Ankleben, Anschrauben, Verankern, Anhaken oder Befestigung nach dem Prinzip eines Klettverschlusses angebracht ist, wobei die Explosionsschutzschicht (2) die Eigenschaft hat, bei statischem Druck von 1000 bar um mehr als 5 % aber weniger als 90 % komprimierbar zu sein.
  7. Verfahren zur nachträglichen Aufrüstung eines Tunnels mit Explosionsschutz gegen Innenraumexplosionen,
    dadurch gekennzeichnet, daß direkt an die Tragschale des bereits existierenden Tunnels, oder an eine an der Tragschale angeordnete dünne oberflächenveredelnde oder sperrende Schicht, über Verbindungsmittel eine nur 2 bis 30 Zentimeter dicke und damit das Lichtraumprofil kaum ändernde Explosionsschutzschicht angebracht wird, die aus einem Material besteht, welches bei einem Druck von 1000 bar um mindestens 5% aber weniger als 90 % komprimierbar ist und diese Schicht in Form von vorgefertigten Platten oder als durchgängige aufgespritzte/aufgeschäumte Schicht angebracht wird.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, daß ebene Platten mit Sollstärke der Explosionsschutzschicht verwendet werden, die der Krümmung der Tunnelwandung beim Montagevorgang angepaßt werden.
  9. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, daß ebene Platten verwendet werden, die beim Montagevorgang der Krümmung der Tunnelwandung angepaßt werden und daß die Sollstärke der Explosionsschutzschicht durch Übereinanderlegen mehrerer solcher Platten erreicht wird.
EP07121280A 2006-11-22 2007-11-22 Gegen Explosionen unempfindlicher Tunnel Withdrawn EP1925775A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610055416 DE102006055416A1 (de) 2006-11-22 2006-11-22 Sicherheitstübbing

Publications (1)

Publication Number Publication Date
EP1925775A1 true EP1925775A1 (de) 2008-05-28

Family

ID=39148600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07121280A Withdrawn EP1925775A1 (de) 2006-11-22 2007-11-22 Gegen Explosionen unempfindlicher Tunnel

Country Status (2)

Country Link
EP (1) EP1925775A1 (de)
DE (1) DE102006055416A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239416A2 (de) 2009-04-02 2010-10-13 Herold Kunststofftechnik Betontübbing und Verfahren zur Herstellung desselben
FR3021346A1 (fr) * 2014-05-21 2015-11-27 Const Mecaniques Consultants Element de construction pour la realisation d'un tunnel, tunnel comprenant un tel element et procedes de fabrication d'un tel element et d'un tel tunnel
FR3081493A1 (fr) * 2018-05-25 2019-11-29 Solexperts Ag Procédé et dispositif d’excavation de cavités sous terre
US10519772B2 (en) * 2015-04-03 2019-12-31 Agence Nationale Pour La Gestion Des Dechets Radioactifs Construction element for creating a tunnel, tunnel comprising such an element and methods for constructing such an element and such a tunnel
CN114991563A (zh) * 2022-04-25 2022-09-02 南京理工大学 一种消波板材
CN117266878A (zh) * 2023-11-09 2023-12-22 湖南省交通规划勘察设计院有限公司 一种隧道用的预制式防爆箱涵

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1934995A1 (de) 1969-07-10 1971-01-28 Dynamit Nobel Ag Tunnel mit Aussenring,Isolierung und Innenschalung
CH520825A (fr) * 1968-12-07 1972-03-31 Dso Technoexportstroy Revêtement expansible en béton pour tunnel à pression et procédé pour sa fabrication
US4363565A (en) * 1979-02-21 1982-12-14 Mackenzie Colin N P Tunnelling
DE3523869C1 (de) * 1985-07-04 1986-09-25 Ruhrkohle Ag, 4300 Essen Streckenausbau, bestehend aus mit abbindenden Baustoffen füllbaren flexiblen Schläuchen
EP0296067B1 (de) 1987-06-19 1992-04-15 GIAT Industries Leichte Sandwichplatte verwendbar zur Herstellung von Wärme- und stossbeständigen mehrschichtigen Strukturen
DE4133577A1 (de) 1991-10-10 1992-06-17 Gbm Ges Fuer Baugeologie Und M Ausbau dynamisch beanspruchter untertaegiger hohlraeume mit daempfender zwischenschicht
JP2001311395A (ja) * 2000-04-28 2001-11-09 Ohbayashi Corp シールドトンネル覆工における耐火構造
DE20121159U1 (de) 2001-08-31 2002-05-08 Hochtief Ag Hoch Tiefbauten Gegen Brandeinwirkung geschütztes Bauteil aus Beton
WO2006034675A1 (de) 2004-09-29 2006-04-06 Kloeckner Reinhard Kompressibler beton und verfahren zu dessen herstellung
CN1888393A (zh) 2006-07-18 2007-01-03 武汉理工大学 一种功能梯度盾构管片及其制备方法
EP1790624A2 (de) * 2005-11-28 2007-05-30 Hochtief Construction AG Mörtel, insbesondere zur Verfüllung von Hohlräumen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH520825A (fr) * 1968-12-07 1972-03-31 Dso Technoexportstroy Revêtement expansible en béton pour tunnel à pression et procédé pour sa fabrication
DE1934995A1 (de) 1969-07-10 1971-01-28 Dynamit Nobel Ag Tunnel mit Aussenring,Isolierung und Innenschalung
US4363565A (en) * 1979-02-21 1982-12-14 Mackenzie Colin N P Tunnelling
DE3523869C1 (de) * 1985-07-04 1986-09-25 Ruhrkohle Ag, 4300 Essen Streckenausbau, bestehend aus mit abbindenden Baustoffen füllbaren flexiblen Schläuchen
EP0296067B1 (de) 1987-06-19 1992-04-15 GIAT Industries Leichte Sandwichplatte verwendbar zur Herstellung von Wärme- und stossbeständigen mehrschichtigen Strukturen
DE4133577A1 (de) 1991-10-10 1992-06-17 Gbm Ges Fuer Baugeologie Und M Ausbau dynamisch beanspruchter untertaegiger hohlraeume mit daempfender zwischenschicht
JP2001311395A (ja) * 2000-04-28 2001-11-09 Ohbayashi Corp シールドトンネル覆工における耐火構造
DE20121159U1 (de) 2001-08-31 2002-05-08 Hochtief Ag Hoch Tiefbauten Gegen Brandeinwirkung geschütztes Bauteil aus Beton
WO2006034675A1 (de) 2004-09-29 2006-04-06 Kloeckner Reinhard Kompressibler beton und verfahren zu dessen herstellung
EP1790624A2 (de) * 2005-11-28 2007-05-30 Hochtief Construction AG Mörtel, insbesondere zur Verfüllung von Hohlräumen
CN1888393A (zh) 2006-07-18 2007-01-03 武汉理工大学 一种功能梯度盾构管片及其制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2239416A2 (de) 2009-04-02 2010-10-13 Herold Kunststofftechnik Betontübbing und Verfahren zur Herstellung desselben
DE102009003726B3 (de) * 2009-04-02 2010-11-04 Herold Kunststofftechnik Betontübbing und Verfahren zur Herstellung desselben
AU2019283806B2 (en) * 2014-05-21 2021-04-01 Agence Nationale Pour La Gestion Des Dechets Radioactifs Construction element for creating a tunnel, tunnel comprising such an element and methods for constructing such an element and such a tunnel
JP2020056304A (ja) * 2014-05-21 2020-04-09 コンストリュクスィオン、メカニク、コンスュルタントConstructions Mecaniques Consultants トンネルを作るための建築要素、そのような要素を備えるトンネル、並びに、そのような要素及びそのようなトンネルを建築する方法
CN106460510A (zh) * 2014-05-21 2017-02-22 建筑机械咨询公司 构建隧道的建造元件和包括其的隧道及其构建方法
JP2017516937A (ja) * 2014-05-21 2017-06-22 コンストリュクスィオン、メカニク、コンスュルタントConstructions Mecaniques Consultants トンネルを作るための建築要素、そのような要素を備えるトンネル、並びに、そのような要素及びそのようなトンネルを建築する方法
RU2689964C2 (ru) * 2014-05-21 2019-05-29 Констрюксьон Меканик Консюльтан Строительный элемент для создания туннеля, туннель, содержащий такой элемент, и способы конструирования такого элемента и такого туннеля
JP2022174014A (ja) * 2014-05-21 2022-11-22 コンストリュクスィオン、メカニク、コンスュルタント トンネルを作るための建築要素、そのような要素を備えるトンネル、並びに、そのような要素及びそのようなトンネルを建築する方法
FR3021346A1 (fr) * 2014-05-21 2015-11-27 Const Mecaniques Consultants Element de construction pour la realisation d'un tunnel, tunnel comprenant un tel element et procedes de fabrication d'un tel element et d'un tel tunnel
WO2015177463A3 (fr) * 2014-05-21 2016-02-04 Constructions Mecaniques Consultants Élément de construction pour la réalisation d'un tunnel, tunnel comprenant un tel élément et procédés de fabrication d'un tel élément et d'un tel tunnel
US10774640B2 (en) 2014-05-21 2020-09-15 Agence Nationale Pour La Gestion Des Dechets Radioactifs Construction element for creating a tunnel, tunnel comprising such an element and methods for constructing such an element and such a tunnel
CN106460510B (zh) * 2014-05-21 2020-09-15 建筑机械咨询公司 构建隧道的建造元件和包括其的隧道及其构建方法
US10519772B2 (en) * 2015-04-03 2019-12-31 Agence Nationale Pour La Gestion Des Dechets Radioactifs Construction element for creating a tunnel, tunnel comprising such an element and methods for constructing such an element and such a tunnel
FR3081493A1 (fr) * 2018-05-25 2019-11-29 Solexperts Ag Procédé et dispositif d’excavation de cavités sous terre
CN114991563A (zh) * 2022-04-25 2022-09-02 南京理工大学 一种消波板材
CN117266878A (zh) * 2023-11-09 2023-12-22 湖南省交通规划勘察设计院有限公司 一种隧道用的预制式防爆箱涵
CN117266878B (zh) * 2023-11-09 2024-03-15 湖南省交通规划勘察设计院有限公司 一种隧道用的预制式防爆箱涵

Also Published As

Publication number Publication date
DE102006055416A1 (de) 2008-05-29

Similar Documents

Publication Publication Date Title
EP1925775A1 (de) Gegen Explosionen unempfindlicher Tunnel
EP1955005B1 (de) Schutzstruktur und schutzsystem
WO1989008181A1 (en) Reinforced concrete construction for road tunnels
DE2904338C2 (de) Verfahren zum Zerstören von Betonwänden o.dgl. Gegenständen aus ähnlichem Material durch Sprengeinwirkungen
EP1695019B1 (de) Schutzstruktur und schutzsystem
EP0425950B1 (de) Unter Verwendung von Glasscheiben oder Glasschalen errichtetes Bauwerk.
WO2006034675A1 (de) Kompressibler beton und verfahren zu dessen herstellung
EP3795026A2 (de) Abdecksystem für isolationseinrichtungen an bau- und tragwerken
EP0358164B1 (de) Verfahren zum Herstellen eines Leckanzeige- und/oder Wärmedämmspaltes zwischen einer Wand und Verkleidungsplatten sowie hierfür verwendbare Verkleidungsplatten
DE102011118854A1 (de) Verfahren zur nachträglichen Bewehrung eines Containments für Kernkraftwerke
Su et al. Mitigation of blast effects on aluminum foam protected masonry walls
DE102014006115B3 (de) Schutzvorrichtung für einen Gebäudeteil
DE102014006114B3 (de) Vorsatzvorrichtung für ein Bauwerk
DE3236569A1 (de) Verbundausbau
EP0531770B1 (de) Lichtschacht für Kellerfenster
EP1446547B1 (de) Türblatt mit mindestens einer deckplatte aus stein, vorzugsweise für eine zimmertür und verfahren zu seiner herstellung
DE202014003507U1 (de) Vorsatzvorrichtung für Bauwerke
DE202014003508U1 (de) Schutzvorrichtung für einen Gebäudeteil
DE3942760C2 (de) Verwendung von Verbundblechzuschnitten als Mittel zur Unterdrückung von störenden Anschlaggeräuschen beim Öffnen und Schließen von Garagentorblättern
DE2518138A1 (de) Schutzwand gegen laermimmissionen
EP3034711B1 (de) Deckenrandschalungselement
AT509719B1 (de) Verwendung von zumindest einer, in einem oder unter einem gebäude angeordneten zwischenlage
DE2853386A1 (de) Verkleidung fuer tunnelwandungen
EP2706148A1 (de) Verfahren zur Tragfähigkeitsverbesserung von im Baugrund gesetzten offenen Profilen sowie damit erstelltes System
DE3019781A1 (de) Schutzraum zum personenschutz gegen explosionen und strahlungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081120

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141014