EP1924346B1 - Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente - Google Patents

Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente Download PDF

Info

Publication number
EP1924346B1
EP1924346B1 EP06777833A EP06777833A EP1924346B1 EP 1924346 B1 EP1924346 B1 EP 1924346B1 EP 06777833 A EP06777833 A EP 06777833A EP 06777833 A EP06777833 A EP 06777833A EP 1924346 B1 EP1924346 B1 EP 1924346B1
Authority
EP
European Patent Office
Prior art keywords
mixing
elements
accordance
longitudinal axis
mixing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06777833A
Other languages
English (en)
French (fr)
Other versions
EP1924346A2 (de
Inventor
Gottlieb Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STAMIXCO AG
Original Assignee
Stamixco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamixco AG filed Critical Stamixco AG
Priority to EP06777833A priority Critical patent/EP1924346B1/de
Publication of EP1924346A2 publication Critical patent/EP1924346A2/de
Application granted granted Critical
Publication of EP1924346B1 publication Critical patent/EP1924346B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431972Mounted on an axial support member, e.g. a rod or bar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/822Combinations of dissimilar mixers with moving and non-moving stirring devices in the same receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/56General build-up of the mixers
    • B01F35/561General build-up of the mixers the mixer being built-up from a plurality of modules or stacked plates comprising complete or partial elements of the mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/06Mixing of food ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32015Flow driven

Definitions

  • the invention relates to a mixing element according to the preamble of claim 1.
  • the invention further relates to a kit with mixing elements according to the preamble of claim 11.
  • the invention further relates to a mixer according to the preamble of claim 14.
  • the documents EP 0063729 and WO 99/00180 disclose a device for inverting and mixing fluids in a tube with at least one mixing element.
  • the mixing element consists of guide surfaces, which are configured such that fluid elements flowing in the center of the pipe are transported to the outside, and fluid elements flowing outward to be transported inward, which is also referred to as a flow inversion or a short inversion.
  • This inversion allows intensive mixing over the entire pipe cross-section, and also improves, if necessary, the heat transfer from a heated or cooled pipe wall and the flowing fluid.
  • the device with mixing elements disclosed in said documents has the disadvantages that it allows only an inverting mixing, and that the mixing elements are made very vulnerable, so that they are easily damaged can be. Particularly disadvantageous is the fact that a long-term reliable operation for a mixer with a plurality of successively arranged mixing elements is not guaranteed, especially if high pressure drops result from the fluid to be mixed in the axial direction.
  • This object is achieved with a mixing element having the features according to claim 1.
  • the dependent claims 2 to 10 concerning further, advantageously designed mixing elements.
  • the object is further achieved with a kit with mixing elements having the features of claim 11.
  • the dependent claims 12 to 13 relate to further advantageous kits.
  • the object is further achieved with a mixer having the features of claim 14.
  • the subclaims 15 to 19 relate to further, advantageous mixers, in particular dynamic mixer.
  • a mixing element for inverting and mixing flowing substances in a flow channel comprising an axially symmetric base body with a longitudinal axis, wherein the base body has a surface facing outwards with respect to the longitudinal axis and an end face at each end of the longitudinal axis, and comprising a plurality of baffles, which on the surface over a Base surface are fixedly connected to the base body, wherein the guide elements extend obliquely to the longitudinal axis, so that each guide element with respect to the longitudinal axis inwardly facing guide surface and with respect to the longitudinal axis outwardly facing guide surface, and wherein a plurality of guide elements in the circumferential direction of the longitudinal axis successively following are arranged.
  • the end faces of the mixing elements are configured such that at least two mixing elements in the direction of the longitudinal axis can be arranged in succession such that they touch each other on the end face.
  • the mixing elements on connecting means to mutually connect two mixing elements, and to keep advantageously in a defined, mutual position.
  • the mixing elements have adjacently arranged guide elements in the circumferential direction, which alternately extend at an acute and an obtuse angle to the longitudinal axis, with two circumferentially adjacent guide elements spaced in the direction of the longitudinal axis Foot surfaces have. Between these foot surfaces results in a transverse opening, which causes a transverse flow in the circumferential direction to the longitudinal axis, so that the fluid flowing at least at this point has a cross flow, which generates a further mixing effect.
  • This inventive mixing element thus has at least two different mixing effects, a mixing in the circumferential direction to the longitudinal axis, and, due to the inclined running mixing elements, a mixing in the radial direction to the longitudinal axis.
  • the mixing elements can be produced in a variety of geometric embodiments, and differently configured, for example, in terms of diameter, number of guide elements, width of the guide elements, or pitch angle of the guide elements.
  • a kit comprising a plurality of mixing elements designed in this way and comprising a flow channel or a plurality of differently configured flow channels, a large number of different mixers with a wide variety of mixing properties can be assembled. This allows a flexible assembling of mixers, which, depending on the fluid used and the desired mixing behavior, can be assembled differently and thereby optimally adapted to the mixing task to be solved.
  • Under fluid or flowing substances here are liquids, gases or free-flowing solids, as well as single- or multiphase mixtures liquid with the same or strong different viscosities, gaseous and / or solid constituents understood.
  • a plurality of mixing elements on a common carrier arranged.
  • the static mixer comprises mixing elements which are fixedly and immovably arranged in the mixer.
  • the dynamic mixer comprises mixing elements which are movably arranged in the mixer.
  • the mixing elements are mounted within a dynamic mixer about a common axis, in particular rotatable about the longitudinal axis. This rotation causes an additional stretching of the fluid in the circumferential direction or in the direction of rotation of the longitudinal axis.
  • Fig. 1a shows a view of the front of a mixing element 1, as in FIG. 1b represented, viewing direction B.
  • the mixing element 1 consists of a respect to an axis A axisymmetric base body 1a, which in the illustrated embodiment is cylindrical and thus rotationally symmetrical.
  • axis A axisymmetric base body 1a which in the illustrated embodiment is cylindrical and thus rotationally symmetrical.
  • nine guide elements 1b are arranged evenly spaced and firmly connected to the base 1a.
  • the distance between two guide elements 1b is the angle ⁇
  • the width of a guide element 1b is one Angle ⁇ , wherein the angle ⁇ is half the angle ⁇ .
  • the main body 1a has a flat, perpendicular to the axis A extending end face 1m, wherein above three connecting means 1n are arranged, of which the left and right arranged connecting means 1n are designed as a cylindrical bore, and the middle connecting element 1n as a cylindrical protruding part. At the rear end face 1m are below three dashed lines connecting means In arranged.
  • FIG. 1b shows a longitudinal section through the mixing element 1 along the section line AA, which, as in FIG. 1a shown, also through the cylindrical bore 1n runs.
  • the guide elements 1 b On the surface A 1 facing outwards with respect to the axis A, the guide elements 1 b extending obliquely to the axis A are arranged in the upward direction.
  • the guide elements 1b extend with respect to the axis A at an angle ⁇ .
  • the guide elements 1b thus have a guide surface 1d facing inwards with respect to the axis A and a guide surface 1c pointing outwards relative to the axis A.
  • the connecting means In are shown, wherein on the left both the protruding cylindrical connecting means 1n and the cylindrical bore 1n are visible.
  • Figure 1c shows a view of the back of the mixing element 1, as in FIG. 1b shown, viewing direction C.
  • Figure 1d shows a perspective view of the back of the mixing element 1
  • Figure 1e a perspective view of the front of the mixing element 1.
  • the cylindrical base body 1a shown, with the axis A, and arranged on the surface 1k of the base body 1a in the circumferential direction A1 spaced Guide elements 1b.
  • the connecting means In can be seen.
  • Several mixing elements 1 can be arranged successively in the axial direction A with abutting end faces 1m, such that the connecting means In interlock, so that the mutual position of the individual mixing elements 1 in the circumferential direction A1 is defined.
  • FIG. 2a shows a view of the back of another embodiment of a mixing element 1.
  • mixing element 1 has the in FIG. 2a illustrated mixing element 1 an annular support structure 1o, which is fixedly connected to the outer ends of the guide elements 1b.
  • FIG. 2b shows a longitudinal section through the mixing element 1 according FIG. 2a along the section line DD.
  • the guide element 1b has with respect to the axis A an inclined ⁇ at an angle course, wherein the ends of the guide element 1b open either in the main body 1a or in the support structure 1o.
  • 1m connecting means are arranged In.
  • mixing elements 1 can be seen in the fact that a plurality of such mixing elements 1 in the direction of the axis A lying side by side and can be arranged touching each other, so that a tubular mixer is formed, wherein the support structure 1o forms the outer boundary.
  • the support structure 1o could have ring-shaped sealing means on its end faces 1m, so that two mixing elements 1 arranged adjacently in the direction of the axis A are sealed radially to the axis A in the region of the support structure 10.
  • the mixing elements 1 can also be installed without special sealing in a flow channel, for example a pipe, wherein between the inner wall of the flow channel and the outer diameter of the mixing element 1 is preferably only a small gap.
  • a flow channel for example a pipe
  • FIGS. 2a and 2b illustrated mixing element has the advantage that each individual guide element 1b is connected at both ends with a support structure, namely in each case both with the base body 1a and with the annular support structure 1o.
  • This arrangement thus has the property that the forces acting on the guide element 1b during mixing forces are distributed to two discharge points, inside the base 1a and the outside of the support structure 1o.
  • the individual guide elements 1b can be loaded higher without any deformation or even destruction occurring.
  • Such arranged guide elements 1b can thus withstand greater forces acting, both axially in the direction of the longitudinal axis A and radially to this. Thus, a larger pressure drop of the fluid in the axial direction is possible without there being a risk of destruction for the guide elements 1b.
  • Such arranged guide elements 1 b can also be configured with reduced wall thickness, which either reduces the resulting pressure drop at a constant fluid throughput, or allows a higher fluid throughput at the same pressure drop.
  • FIG. 3a shows a perspective view of another embodiment of a mixing element 1.
  • a plurality of guide elements 1b are arranged, wherein in the circumferential direction A1 adjacent guide elements 1b alternately at an acute and an obtuse angle go to the axis A.
  • the guide elements 1b in turn have with respect to the axis A outwardly facing guide surfaces 1c and with respect to the axis A inwardly facing guide surfaces 1d.
  • the guide elements 1b also have an outer edge 1i.
  • the general flow direction S of the fluid in the direction of the axis A so that designated 1c and 1d surfaces of the guide elements 1b are assigned to the upstream side, whereas the other, non-visible surface of these guide elements 1b are assigned to the downstream side.
  • the assignment to inflow side and outflow side of course depends on the flow direction S.
  • FIG. 3e shows a plan view of a development of the surface 1k, wherein the guide elements 1b are cut in the region of the foot surfaces 11.
  • the foot surfaces 11 of guide elements 1 b arranged adjacent in the circumferential direction A1 are arranged at a distance in the direction of the axis A, so that a transverse opening 1e extending transversely to the axis A is formed between adjacently arranged guide elements 1b.
  • the guide element 1b arranged at the top also has a triangular flow divider 1f projecting counter to the flow direction S, so that the guide element 1b is flowed around on both sides by the fluid flowing in the direction S, which, with respect to the axis A, effects thorough mixing of the fluid in its circumferential direction ,
  • FIG. 3b shows a view of the front of the in FIG. 3a 1.
  • the guide elements 1b have side edges running radially to the axis A, wherein each guide element 1b has an angular width ⁇ of 30 °, so that these side edges appear to lie next to one another in this view.
  • the in this View of an inwardly directed guide surface 1d having guide elements 1b also have the visible flow parts 1f on.
  • the other guide elements 1b, which in the illustrated view have no flow divider 1f, have an outwardly oriented guide surface 1c.
  • adjacent guide elements 1b have, as in FIGS. 3a and 3e represented, in the direction of the axis A spaced feet 11, so that between two adjacent guide elements 1b, the transverse opening 1e results.
  • Figure 3c shows a side view of the mixing element 1 according FIG. 3a ,
  • the total length L2 of the mixing element 1 is several times longer than the total length L1 of the part provided with baffles 1b.
  • the mixing element 1 has an outer diameter D2.
  • the main body 1a has an outer diameter D1.
  • FIG. 3d figure shows a longitudinal section through the in Figure 3c illustrated mixing element 1 along the section line EE.
  • adjacently arranged guide elements 1b are firmly connected to one another via a web at the contact point 1h, so that a transverse opening 1e defined by the two adjacent guide elements 1b and the surface 1k of the main body 1a forms between the surface 1k and the contact point 1h.
  • Two adjacent guide elements 1b could also touch each other only at the contact point 1h without mutually fixed connection.
  • the guide elements 1b could also be made narrower in the circumferential direction A1, so that adjacent guide elements 1b do not touch, but at the point with the smallest mutual distance form a point 1h.
  • FIG. 4a shows a further mixing element 1, which, in contrast to the embodiment according to FIG. 3a , Has a hollow cylindrical body 1a.
  • the inner surface of the hollow cylindrical base body 1a could also have a toothing, for example a groove lq arranged on the inner surface, which allows the mixing element 1 to be firmly connected, for example, to a stationary or driven shaft with external toothing.
  • a plurality of mixing elements 1 are successively arranged on such a shaft in the longitudinal direction, wherein their mutual position, in particular of adjacent mixing elements, can be determined exactly.
  • Such a shaft equipped with mixing elements 1 can be used for example as a worm shaft of an extruder.
  • FIG. 4b shows a side view of the in FIG. 4a shown mixing element 1
  • Figure 4c shows a longitudinal section through the mixing element 1 along the cutting plane FF.
  • FIG. 5 shows a longitudinal section along the sectional plane FF by a further embodiment of a mixing element 1.
  • a mixing element 1 By an appropriate choice of inner and outer diameter D1, D2 and the lengths L1, L2, the inclination angle ⁇ between axis A and direction of the guide element 1b as required in a Range between 10 ° and 85 ° be selected.
  • FIG. 6a shows a perspective view of a bearing part or expansion part 2 consisting of a hollow cylindrical bearing 2a, and a plurality of extending in the radial direction support arms 2b, the cross-sectional shape may be arbitrary, and which may act as expansion elements at the same time.
  • FIG. 6b shows a front view of the bearing part or expander 2, and FIG. 6c a section along the Section plane GG.
  • the bearing part 2 can be fixedly arranged in a flow channel 5a, and preferably serve as a bearing for a rotatable shaft.
  • the part 2 can also be firmly connected to a rotatable shaft, so that this part 2 is rotatably disposed within the flow channel 5a, and by this rotation causes a stretching of the fluid in the circumferential direction to the axis A, which is why this part is also referred to as a stretch part 2 ,
  • the course of the axis A corresponds to the course of the rotatable shaft.
  • FIG. 7 shows a longitudinal section of a dynamic mixer 5, comprising a cylindrical flow channel 5a, a plurality of spaced apart in the direction of the axis A and with the flow channel 5a via fastening means 2c connected bearing parts 2, in which a plurality of in the direction of the axis A juxtaposed mixing elements 1 are rotatably mounted at bearings 1p.
  • the mixing elements 1 are mutually fixedly connected to one another via connection means 1n which are visible in the light, and thus form an assembled mixing element 3.
  • the assembled mixing element 3 comprises on both sides a conical cover 3a, between which the individual mixing elements 1 are clamped.
  • the assembled mixing element 3 also comprises on one side a projecting, rotatable shaft 4, which can be set in rotation from the outside.
  • the in FIG. 7 shown mixer is particularly suitable as a so-called dynamic inline mixer, especially for fluids with different viscosities, from gaseous to highly viscous fluids.
  • the mixer is suitable, for example, for mixing reactive resin / hardener systems, for mixing components of polyurethane systems, for food preparation, for dispersing liquids with strong differences in viscosity, such as additives in plastic melts, or for dispersing gases in liquids.
  • FIG. 8 shows in a longitudinal section a further embodiment of a dynamic mixer 5, wherein, in contrast to the embodiment according to FIG. 7 , the bearing parts 2 also as mixing elements 1, for example as in FIG. 4a are shown, are configured, these mixing elements 1 are connected via fastening means 2c fixed to the outer wall of the mixer 5, and wherein the assembled mixing element 3 is rotatably mounted in these fixedly arranged mixing elements 1.
  • FIG. 9 shows in a longitudinal section a static mixer 5 with a tubular flow channel 5a, in the interior of an assembled mixing element 3 is fixedly arranged.
  • the mixing element 3 is fixedly connected to the outer wall or the flow channel 5a via fastening means, not shown, 2c.
  • An advantage of the mixing elements 1 according to the invention lies in the fact that they can be assembled in a very wide variety of ways, wherein preferably also spacer elements 7 can be used, for example, which are cylindrical in shape and have the same connection points in as the mixing elements 1.
  • spacer elements 7 can be used, for example, which are cylindrical in shape and have the same connection points in as the mixing elements 1.
  • Such mixing elements 1 are particularly suitable for use as a kit in order to produce mixers 5 with differently configured, assembled mixing elements 3.
  • FIG. 9 shows on the basis of several arrangement examples, how a mixing element 3 can be assembled by different combination of mixing elements 1 and possibly using spacers 7.
  • each mixing element 6 has guide elements 1 b which have an angular width ⁇ of 30 ° each, with adjacent guide elements 1 b being offset by 30 ° in the circumferential direction A1.
  • the two mixing elements 1 are arranged offset in the circumferential direction A1, that the guide elements 1b, similar to in FIG. 3b are arranged shown.
  • a spacer element 7 is arranged between the mixing elements 1.
  • the mixing elements 1 could also, as shown in section 5c, without the use of a spacer element 7 mutually adjoining the end faces 1m be arranged, the guide elements 1b of a mixing element 1 come to lie in the interstices of the other mixing element 1, if the main body 1a, as shown, are designed according to short.
  • the mixing element 1 arranged in section 5c could also be made in one piece, as in FIG FIG. 3a represented, be configured.
  • the guide elements 1b could also have parallel side ends, as in the section according to FIG. 11 is shown, in this embodiment, all the guide elements 1b of both mixing elements 1 in the circumferential direction A1 have the same width.
  • mixing elements 1 can be combined in any way in section 5b.
  • this is a mixing element 1 as in FIG. 10 illustrated configured, whereas the other mixing element 1 as in FIG. 11 is shown configured so that their arrangement in section 5b according to FIG. 12 shown sectional view shows.
  • Two mixing elements 1, in particular two identical mixing elements 1, could also be arranged mutually offset in the circumferential direction A1, as in the sectional view according to FIG. 13 is shown in which the in FIG. 10 shown two mixing elements 1 are mutually rotated in the direction A1, for example, such that the left in section 5b shown mixing element 1 with vanes 9 retains its position, whereas the mixing element 1 shown in section 5b right with guide element 8 is rotated in the direction A1, so that from the perspective of the sectional plane HH, a part of the guide element 8 comes to lie behind the guide element 9.
  • Figure 14a shows in a longitudinal section a mixer 5 with a cylindrical flow channel 5a wherein two mixing elements 1 are arranged on the rotatable shaft 4, and the rotatable shaft 4 is rotatably supported via a bearing part 2 or expansion part 2.
  • the bearing part 2 or expansion part 2 with the aid of a fastening means 2 c, for example a screw, fixed to the Flow channel 5a connected.
  • a fastening means 2 c for example a screw
  • the support arms 2b of the bearing part 2 can also be pressed against the inner surface of the flow channel 5a and held so firmly.
  • the bearing parts 2 are designed as mixing elements 1, for example as in Figure 4a or 4c shown. These bearing parts 2 or 2 stretched parts are connected via fastening means 2c fixed to the flow channel 5a.
  • FIGS. 15a to 15e show longitudinal sections of mixers 5 with rotatably mounted mixing elements 1.
  • Die FIGS. 15a to 15d show in the interior of the flow channel 5a projecting expansion elements 10, which are configured, for example, cylindrical or rhombic.
  • the expansion elements 10 may be configured in various ways, for example, as in FIG. 15e illustrated, also in such a way that the expansion element 10 has an outer circumferential ring on which inwardly projecting guide elements 10a are arranged.
  • the guide elements 10a could, as in FIG. 15e shown, crossed.
  • FIG. 16a shows the back of another embodiment of a mixing element 1 with respect to an axis A axisymmetric base body 1a and projecting guide elements.
  • FIG. 16b shows in a side view from direction I the in FIG. 16a illustrated mixing element. 1
  • FIG. 17 shows the back of another mixing elements 1 with hexagonal base 1a and three protruding guide elements 1b.
  • FIG. 18 shows a cross section through a mixer 5 with rectangular flow channel 5a.
  • three mixing elements 1 are arranged parallel and next to each other. Behind the visible mixing elements 1, a plurality of further mixing elements 1 could be arranged perpendicular to the plane of representation.
  • FIGS. 19a to 19c show cross sections through guide elements 1b.
  • the guide elements 1b can be configured with a wide variety of cross-sectional shapes.
  • the illustrated mixing elements 1 and mixer 5 are suitable for mixing, homogenizing and dispersing a variety of fluids, in particular for melt homogenization in injection molding or extrusion.
  • the mixing elements 1 and mixer 5 are thus also suitable for use as mixing parts on screws of extruders, e.g. for the processing of plastics or food, or for injection molding machines.
  • the mixing elements 1 and mixer 5 could also be installed in the backstops of injection molding machines and complement the function of this machine part by the mixing function.
  • the mixers 5 according to the invention can also be used when the fluid to be mixed is subject to greater alternating loads, since larger forces can be transmitted to one another between the individual mixing elements 1, via their end faces 1m.
  • the pressure drop across a mixing element 1 can in particular also be influenced by the angle of inclination ⁇ of the guide element 1b.
  • the inclination angle ⁇ is chosen to be smaller. Accordingly a larger inclination angle ⁇ leads to a larger pressure drop.
  • the pressure drop can also be influenced by an appropriate choice of the length of the mixing element 1 in the axial direction A or by an appropriate choice of the shape of the guide elements 1 b or a corresponding width ⁇ of the guide elements 1 b.
  • the mixing elements 1 can be made of a wide variety of materials, such as metal or plastic. They can be produced or assembled by means of suitable casting processes, of solid material by means of chip removal processes, by means of electro-erosion or laser cutting processes, by reshaping or by assembly from individual shaped parts which are produced by welding, soldering, gluing, gearing or other suitable joining processes. Due to the modular design of the mixers of individual mixing elements, these can be easily disassembled if necessary, eg for cleaning or for inspection.
  • the mixer according to the invention allows a static or, in the case of the use of movable, rotatable parts, a dynamic mixing.
  • static mixing the mixing process is carried out by continuously dividing the fluid stream into substreams which are rearranged and reassembled. The rearrangement can take place, essentially, radially to the axis A or in the circumferential direction to the axis A.
  • a distributive mixing process There are limits to this mixing process, for example in the case of dispersing tasks, in which the necessary energy input increases sharply when fine dispersions are to be produced.
  • it is more advantageous to use a mixing method use which is based on the principle of stretching a fluid flow, which allows a much better mixing with less energy.
  • the example in the FIGS. 7 and 8th described dynamic mixer combines the two mixing principles splitting (and stretching in an ideal way.
  • the flowing substance is distributed with a static mixing element with respect to the longitudinal axis A both in the radial direction and in the circumferential direction, and the flowing substance with a dynamic mixing element 2, which is rotated about the longitudinal axis A, stretched in the circumferential direction.
  • the dynamic mixing element will distribute the flowing substance with respect to the longitudinal axis (A) at least in one of the two directions: radial direction and circumferential direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

  • Die Erfindung betrifft ein Mischelement gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter einen Bausatz mit Mischelementen gemäss dem Oberbegriff von Anspruch 11. Die Erfindung betrifft weiter einen Mischer gemäss dem Oberbegriff von Anspruch 14.
  • Die Dokumente EP 0063729 und WO 99/00180 offenbaren eine Vorrichtung zum Invertieren und Mischen von strömenden Stoffen in einem Rohr mit mindestens einem Mischelement. Das Mischelement besteht aus Leitflächen, welche derart ausgestaltet sind, dass im Rohrzentrum strömende Fluidelemente nach aussen, und aussen strömende Fluidelemente nach innen transportiert werden, was auch als eine Strömungsinvertierung oder kurz ein Invertieren bezeichnet wird. Dieses Invertieren erlaubt eine intensive Durchmischung über den gesamten Rohrquerschnitt, und verbessert, falls erforderlich, zudem den Wärmeübergang von einer beheizten oder gekühlten Rohrwand und dem strömenden Fluid. Die in den genannten Dokumenten offenbarte Vorrichtung mit Mischelementen weist die Nachteile auf, dass diese nur ein invertierendes Mischen erlaubt, und dass die Mischelemente sehr verletzlich ausgestaltet sind, sodass diese leicht beschädigt werden können. Besonders nachteilig ist die Tatsache, dass ein langfristig zuverlässiger Betrieb für einen Mischer mit mehreren, nacheinander angeordneten Mischelementen nicht gewährleistet ist, insbesondere wenn durch das zu mischende Fluid in axialer Richtung hohe Druckabfälle resultieren.
  • Es ist Aufgabe der vorliegenden Erfindung vorteilhaftere Mischelemente, einen vorteilhafteren Mischer sowie ein vorteilhafteres Mischverfahren vorzuschlagen.
  • Diese Aufgabe wird gelöst mit einem Mischelement aufweisend die Merkmale gemäss Anspruch 1. Die Unteransprüche 2 bis 10 betreffend weitere, vorteilhaft ausgestaltete Mischelemente. Die Aufgabe wird weiter gelöst mit einem Bausatz mit Mischelementen aufweisend die Merkmale von Anspruch 11. Die Unteransprüche 12 bis 13 betreffen weitere, vorteilhafte Bausätze. Die Aufgabe wird weiter gelöst mit einem Mischer aufweisend die Merkmale von Anspruch 14. Die Unteransprüche 15 bis 19 betreffen weitere, vorteilhafte Mischer, insbesondere auch dynamische Mischer.
  • Die Aufgabe wird insbesondere gelöst mit einem Mischelement zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, umfassend einen axialsymmetrischen Grundkörper mit einer Längsachse, wobei der Grundkörper eine bezüglich der Längsachse nach aussen weisende Oberfläche sowie an jedem Ende der Längsachse eine Stirnfläche aufweist, sowie umfassend eine Mehrzahl von Leitelementen, welche an der Oberfläche über eine Fussfläche fest mit dem Grundkörper verbunden sind, wobei die Leitelemente schräg zur Längsachse verlaufen, sodass jedes Leitelement eine bezüglich der Längsachse nach innen weisende Leitfläche und eine bezüglich der Längsachse nach aussen weisende Leitfläche aufweisen, und wobei eine Mehrzahl von Leitelementen in Umfangsrichtung der Längsachse nacheinander folgend angeordnet sind. Je nach Neigungsrichtung der Leitelemente bezüglich der Längsachse wird der strömende Stoff von der Aussenwand radial nach innen zur Längsachse hin, oder von innen radial zur Aussenwand hin geleitet, und dabei der Stoff- bzw. der Fluidstrom in radialer Richtung durchmischt. Eine weiter Durchmischung erfolgt hinter jedem Steg durch den sich zwischen der Anström- und der Abströmseite jedes Leitelements ergebenden Druckunterschiedes, der im turbulenten Strömungsfall zu Wirbelbildung und im laminaren Strömungsfall zu einer Querströmung entlang der Rückseite bzw. der Abströmseite des Leitelementes führt.
  • Die Stirnflächen der Mischelemente sind derart ausgestaltet, dass zumindest zwei Mischelemente in Verlaufsrichtung der Längsachse derart nacheinander geordnet werden können, dass sie sich an der Stirnfläche gegenseitig berühren. Vorteilhafterweise weisen die Mischelemente Verbindungsmittel auf, um je zwei Mischelemente gegenseitig zu verbinden, und vorteilhafterweise in einer definierten, gegenseitigen Lage zu halten.
  • In einer vorteilhaften Ausgestaltung weisen die Mischelemente in Umfangsrichtung benachbart angeordnete Leitelemente auf, welche abwechslungsweise unter einem spitzen und einem stumpfen Winkel zur Längsachse verlaufen, wobei jeweils zwei in Umfangsrichtung benachbarte Leitelemente in Richtung der Längsachse beabstandete Fussflächen aufweisen. Zwischen diesen Fussflächen ergibt sich eine Queröffnung, was eine Querströmung in Umfangsrichtung zur Längsachse bewirkt, sodass das fliessende Fluid zumindest an dieser Stelle eine Querströmung aufweist, die einen weiteren Mischeffekt erzeugt. Dieses erfindungsgemässe Mischelement weist somit zumindest zwei unterschiedliche Mischwirkungen auf, ein Mischen in Umfangsrichtung zur Längsachse, sowie, bedingt durch die geneigt verlaufenden Mischelemente, ein Mischen in zur Längsachse radialer Richtung.
  • Die Mischelemente können in einer Vielzahl von geometrischen Ausführungsformen hergestellt werden, und sich beispielsweise bezüglich Durchmesser, Anzahl der Leitelemente, Breite der Leitelemente, oder Steigungswinkel der Leitelemente unterschiedlich ausgestaltbar. Mit einem Bausatz umfassend eine Mehrzahl derartig ausgestalteter Mischelemente sowie umfassend einen Strömungskanal oder eine Mehrzahl unterschiedlich ausgestalteter Strömungskanäle können eine Vielzahl unterschiedlicher Mischer mit unterschiedlichsten Mischeigenschaften zusammengestellt werden. Dies ermöglicht ein flexibles Zusammenstellen von Mischern, welche, je nach verwendetem Fluid und angestrebtem Mischverhalten, unterschiedlich zusammengebaut werden können und dadurch jeweils optimal auf die zu lösende Mischaufgabe angepasst werden. Unter Fluid beziehungsweise strömenden Stoffen werden hierbei Flüssigkeiten, Gase oder rieselfähige Feststoffe, sowie ein- oder mehrphasige Mischungen flüssiger mit gleichen oder starke unterschiedlichen Viskositäten, gasförmiger und/oder fester Bestandteile verstanden.
  • In einer vorteilhaften Ausgestaltung ist eine Mehrzahl von Mischelementen auf einem gemeinsamen Träger, angeordnet.
  • Es kann zwischen einem statischen und einem dynamischen Mischer unterschieden werden. Der statische Mischer umfasst Mischelemente, welche fest und unbeweglich im Mischer angeordnet sind. Der dynamische Mischer umfasst Mischelemente, welche beweglich im Mischer angeordnet sind. In einer vorteilhaften Ausgestaltung sind die Mischelemente innerhalb eines dynamischen Mischers um eine gemeinsame Achse, insbesondere um die Längsachse drehbar gelagert. Dieses Drehen bewirkt ein zusätzliches Dehnen des Fluides in Umfangsrichtung bzw. in Drehrichtung der Längsachse.
  • Die Erfindung wird nachfolgend an Hand mehrerer Ausführungsbeispiele, welche lediglich eine Auswahl aus einer Vielzahl möglicher Ausführungsbeispiele darstellen, im Detail beschrieben. Es zeigen:
  • Fig. 1a
    eine Ansicht der Vorderseite eines Mischelementes aus Blickrichtung B;
    Fig. 1b
    einen Längsschnitt durch das Mischelement gemäss Fig. 1a entlang der Schnittlinie A-A;
    Fig. 1c
    eine Ansicht der Rückseite des Mischelementes aus Blickrichtung C;
    Fig. 1d
    eine perspektivische Ansicht der Rückseite;
    Fig. 1e
    eine perspektivische Ansicht der Vorderseite;
    Fig. 2a
    eine Ansicht der Vorderseite eines weiteren Mischelementes mit Verstärkungsring auf der Aussenseite;
    Fig. 2b
    einen Schnitt durch das in Fig. 2a dargestellte Mischelemente entlang der Schnittlinie D-D;
    Fig. 3a
    eine perspektivische Ansicht eines weiteren Mischelementes;
    Fig. 3b
    eine Ansicht der Vorderseite des Mischelementes gemäss Fig. 3a;
    Fig. 3c
    eine Seitenansicht des Mischelementes gemäss Fig. 3a;
    Fig. 3d
    einen Schnitt durch das in Fig. 3a dargestellte Mischelement entlang der Schnittlinie E-E;
    Fig. 3e
    eine Draufsicht auf die Oberfläche des Mischelementes gemäss Fig. 3a;
    Fig. 4a
    eine perspektivische Ansicht eines weiteren Mischelementes;
    Fig. 4b
    eine Seitenansicht des Mischelementes gemäss Fig. 4a;
    Fig. 4c
    einen Längsschnitt durch das Mischelement gemäss Fig. 4a entlang der Schnittlinie F-F;
    Fig. 5
    einen Schnitt durch ein weiteres Ausführungsbeispiel eines Mischelementes;
    Fig. 6a
    eine perspektivische Ansicht eines Lagerteil bzw. eines Dehnelementes;
    Fig. 6b
    eine Seitenansicht des Lagerteils bzw. Dehnelementes;
    Fig. 6c
    einen Längsschnitt durch das Lagerteil bzw. Dehnelementes gemäss Fig. 6b entlang der Schnittlinie G-G;
    Fig. 7
    einen Längsschnitt durch einen dynamischen Mischer;
    Fig. 8
    einen Längsschnitt durch ein weiteres Ausführungsbeispiel eines dynamischen Mischers;
    Fig. 9
    einen Längsschnitt durch ein weiteres Ausführungsbeispiel eines Mischers;
    Fig. 10 bis 13
    je einen Querschnitt durch den Mischer gemäss Fig. 9 entlang der Schnittlinie H-H mit Ausführungsbeispielen von Mischelementen;
    Fig. 14a bis 14c
    je einen Abschnitt eines Längsschnittes durch einen dynamischen Mischer mit drehbarem Mischelement und statischem Lager- bzw. Dehnelement;
    Fig. 15a bis 15e
    je einen Abschnitt eines Längsschnittes durch einen dynamischen Mischer mit drehbarem Mischelement und feststehenden Dehnelementen;
    Fig. 16a
    eine Ansicht der Vorderseite eines weiteren Mischelementes;
    Fig. 16b
    eine Seitenansicht des Mischelementes gemäss Fig. 16a;
    Fig. 16c
    eine Ansicht der Vorderseite eines Mischers umfassend eine Mehrzahl der in Figur 16a dargestellten Mischelemente;
    Fig. 17
    eine Ansicht der Vorderseite eines weiteren Mischelementes;
    Fig. 18
    eine Anordnung von Mischelementen in einem rechteckigen Strömungskanal;
    Fig. 19a bis 19c
    Querschnitte durch unterschiedliche Leitelemente.
  • Fig. 1a zeigt eine Ansicht der Vorderseite eines Mischelementes 1 aus, wie in Figur 1b dargestellt, Blickrichtung B. Das Mischelement 1 besteht aus einem bezüglich einer Achse A axialsymmetrischen Grundkörper 1a, welcher im dargestellten Ausführungsbeispiel zylinderförmig und somit rotationssymmetrisch ausgestaltet ist. In Umfangsrichtung A1 zur Achse A sind neun Leitelemente 1b gleichmässig beabstandet angeordnet und mit dem Grundkörper 1a fest verbunden. Der Abstand zwischen zwei Leitelementen 1b beträgt den Winkel γ, und die Breite eines Leitelementes 1b beträgt einen Winkel β, wobei der Winkel β die Hälfte des Winkels γ beträgt. Der Grundkörper 1a weist eine ebene, senkrecht zur Achse A verlaufende Stirnfläche 1m auf, wobei oben drei Verbindungsmittel 1n angeordnet sind, von welchen das links und rechts angeordnete Verbindungsmittel 1n als zylinderförmige Bohrung, und das mittlere Verbindungselement 1n als zylinderförmig vorstehendes Teil ausgestaltet sind. An der rückseitigen Stirnfläche 1m sind unten drei strichliert dargestellte Verbindungsmittel In angeordnet.
  • Figur 1b zeigt einen Längsschnitt durch das Mischelement 1 entlang der Schnittlinie A-A, welche, wie in Figur 1a dargestellt, auch durch die zylinderförmige Bohrung 1n verläuft. An der bezüglich der Achse A nach aussen weisenden Oberfläche 1k sind die schräg zur Achse A verlaufenden Leitelemente 1b vorstehend angeordnet. Die Leitelemente 1b verlaufen bezüglich der Achse A unter einem Winkel α. Die Leitelemente 1b weisen somit eine bezüglich der Achse A nach innen weisende Leitfläche 1d, sowie eine bezüglich der Achse A nach aussen weisende Leitfläche 1c auf. Zudem sind an den beiden gegenüberliegenden Stirnflächen 1m die Verbindungsmittel In dargestellt, wobei links sowohl das vorstehende zylinderförmige Verbindungsmittel 1n als auch die zylinderförmige Bohrung 1n sichtbar sind.
  • Figur 1c zeigt eine Ansicht der Rückseite des Mischelementes 1 aus, wie in Figur 1b dargestellt, Betrachtungsrichtung C. Figur 1d zeigt eine perspektivische Ansicht der Rückseite des Mischelementes 1, und Figur 1e eine perspektivische Ansicht der Vorderseite des Mischelementes 1. Es ist wiederum der zylinderförmige Grundkörper 1a dargestellt, mit Achse A, sowie an der Oberfläche 1k des Grundkörpers 1a in Umfangsrichtung A1 beabstandet angeordneten Leitelementen 1b. An beiden Stirnseiten 1m sind die Verbindungsmittel In erkennbar. Mehrere Mischelemente 1 können in axialer Richtung A mit aneinander liegenden Stirnflächen 1m nacheinander angeordnet werden, derart, dass die Verbindungsmittel In ineinander greifen, sodass die gegenseitige Lage der einzelnen Mischelemente 1 in Umfangsrichtung A1 definiert ist.
  • Figur 2a zeigt eine Ansicht der Rückseite eines weiteren Ausführungsbeispieles eines Mischelementes 1. Im Unterschied zu dem in Figur 1a dargestellten Mischelement 1 weist das in Figur 2a dargestellte Mischelement 1 eine ringförmige Stützstruktur 1o auf, welche mit den äusseren Enden der Leitelemente 1b fest verbunden ist. Figur 2b zeigt einen Längsschnitt durch das Mischelement 1 gemäss Figur 2a entlang der Schnittlinie D-D. Das Leitelement 1b weist bezüglich der Achse A einen um einen Winkel α geneigten Verlauf auf, wobei die Enden des Leitelementes 1b entweder in den Grundkörper 1a oder in die Stützstruktur 1o münden. An den beiden gegenüberliegenden Stirnseiten 1m sind Verbindungsmittel In angeordnet. Ein Vorteil des in den Figuren 2a und 2b dargestellten Mischelemente 1 ist darin zu sehen, dass eine Vielzahl von derartigen Mischelementen 1 in Verlaufsrichtung der Achse A nebeneinander liegend und sich gegenseitig berührend angeordnet werden können, sodass ein rohrförmiger Mischer entsteht, wobei die Stützstruktur 1o die Aussenabgrenzung bildet. Die Stützstruktur 1o könnte an deren Stirnseiten 1m ringförmig verlaufende Dichtmittel aufweisen, sodass zwei in Richtung der Achse A benachbart angeordnete Mischelementen 1, radial zur Achse A im Bereich der Stützstruktur 1o dicht sind.
  • Die Mischelemente 1 können auch ohne spezielle Abdichtung in einen Strömungskanal, beispielsweise ein Rohr, eingebaut werden, wobei zwischen der Innenwand des Strömungskanals und dem Aussendurchmesser des Mischelementes 1 vorzugsweise nur ein geringer Spalt besteht. Das in Figur 2a und 2b dargestellte Mischelement weist den Vorteil auf, dass jedes einzelne Leitelement 1b an beiden Enden mit einer Stützstruktur verbunden ist, nämlich jeweils sowohl mit dem Grundkörper 1a als auch mit der ringförmigen Stützstruktur 1o. Diese Anordnung weist somit die Eigenschaft auf, dass die während dem Mischen am Leitelement 1b angreifenden Kräfte auf zwei Ableitungspunkte, innen am Grundkörper 1a und aussen an der Stützstruktur 1o, verteilt werden. Dadurch können die einzelnen Leitelemente 1b höher belastet werden ohne dass eine Deformation oder gar eine Zerstörung auftritt. Derartig angeordnete Leitelemente 1b können somit grösseren angreifenden Kräften standhalten, sowohl axial in Richtung der Längsachse A als auch radial zu dieser. Somit ist auch ein grösserer Druckabfall des Fluides in axialer Richtung möglich, ohne dass für die Leitelemente 1b eine Zerstörungsgefahr besteht. Derartig angeordnete Leitelemente 1b können auch mit reduzierter Wandstärke ausgestaltet sein, was entweder bei gleich bleibendem Fluid-Durchsatz den resultierenden Druckabfall reduziert, oder bei gleichem Druckabfall einen höheren Fluid-Durchsatz ermöglicht.
  • Figur 3a zeigt in einer perspektivischen Ansicht ein weiteres Ausführungsbeispiel eines Mischelementes 1. Am zylinderförmigen Grundkörper 1a mit Achse A sind wiederum in Umfangsrichtung 1a eine Mehrzahl von Leitelementen 1b angeordnet, wobei in Umfangsrichtung A1 benachbarte Leitelemente 1b abwechslungsweise unter einem spitzen und einem stumpfen Winkel zur Achse A verlaufen. Die Leitelemente 1b weisen wiederum bezüglich der Achse A nach aussen weisenden Leitflächen 1c und bezüglich der Achse A nach innen weisende Leitflächen 1d auf. Die Leitelemente 1b weisen zudem eine Aussenkante 1i auf. Im dargestellten Ausführungsbeispiel verläuft die allgemeine Strömungsrichtung S des Fluides in Richtung der Achse A, sodass die mit 1c und 1d bezeichneten Flächen der Leitelemente 1b der Anströmseite zugeordnet sind, wogegen die andere, nicht sichtbare Fläche dieser Leitelemente 1b der Abströmseite zugeordnet sind. Die Zuordnung nach Anströmseite und Abströmseite hängt natürlich von der Strömungsrichtung S ab.
  • Figur 3e zeigt in einer Draufsicht eine Abwicklung der Oberfläche 1k, wobei die Leitelemente 1b im Bereich deren Fussflächen 11 geschnitten sind. Die Fussflächen 11 von in Umfangsrichtung A1 benachbart angeordneten Leitelementen 1b sind in Richtung der Achse A beabstandet angeordnet, sodass zwischen benachbart angeordneten Leitelementen 1b eine quer zur Achse A verlaufende Queröffnung 1e ausgebildet wird. Das oben angeordnete Leitelement 1b weist zudem einen entgegen der Strömungsrichtung S vorstehenden, dreieckförmigen Strömungsteiler 1f auf, sodass das Leitelement 1b vom in Richtung S strömenden Fluid wie dargestellt beidseitig umströmt wird, was, bezüglich der Achse A, eine Durchmischung des Fluides in deren Umfangsrichtung bewirkt.
  • Figur 3b zeigt eine Ansicht der Vorderseite des in Figur 3a dargestellten Mischelementes 1. Die Leitelemente 1b weisen radial zur Achse A verlaufende Seitenkanten auf, wobei jedes Leitelement 1b eine Winkelbreite β von 30° aufweist, sodass diese Seitenkanten in dieser Ansicht nebeneinander zu liegen scheinen. Die in dieser Ansicht eine nach innen ausgerichtete Leitfläche 1d aufweisenden Leitelemente 1b weisen zudem den sichtbaren Strömungsteile 1f auf. Die übrigen Leitelement 1b, welche in der dargestellten Ansicht keinen Strömungsteiler 1f aufweisen, weisen eine nach aussen ausgerichtete Leitfläche 1c auf. In Umfangsrichtung A1 benachbarte Leitelemente 1b weisen, wie in Figur 3a und 3e dargestellt, in Richtung der Achse A beabstandete Fusspunkte 11 auf, sodass sich zwischen zwei benachbarten Leitelementen 1b die Queröffnung 1e ergibt.
  • Figur 3c zeigt eine Seitenansicht des Mischelementes 1 gemäss Figur 3a. Die Gesamtlänge L2 des Mischelementes 1 ist etliches länger als die Gesamtlänge L1 des mit Leitflächen 1b versehenen Teil. Das Mischelement 1 weist einen Aussendurchmesser D2 auf. Der Grundkörper 1a weist einen Ausendurchmesser D1 auf.
  • Figur 3d zeigt einen Längsschnitt durch das in Figur 3c dargestellte Mischelement 1 entlang der Schnittlinie E-E. In diesem Ausführungsbeispiel sind benachbart angeordnete Leitelemente 1b im Berührungspunkt 1h über einen Steg fest miteinander verbunden, sodass sich zwischen der Oberfläche 1k und dem Berührungspunkt 1h eine durch die beiden benachbarten Leitelemente 1b und die Oberfläche 1k des Grundkörpers 1a begrenzte Queröffnung 1e ausbildet. Zwei benachbarte Leitelemente 1b könnten sich im Berührungspunkt 1h auch nur gegenseitig berühren, ohne gegenseitig feste Verbindung. Die Leitelemente 1b könnten in Umfangsrichtung A1 auch schmaler ausgestaltet sein, sodass sich benachbarte Leitelemente 1b nicht berühren, aber an der Stelle mit kleinstem gegenseitigem Abstand einen Punkt 1h bilden.
  • Figur 4a zeigt ein weiteres Mischelement 1, welches, im Unterschied zur Ausführungsform gemäss Figur 3a, einen hohlzylinderförmigen Grundkörper 1a aufweist. Die Innenfläche des hohlzylinderförmigen Grundkörpers 1a könnte auch eine Verzahnung aufweisen, beispielsweise eine an der Innenfläche angeordnete Nut lq, die es erlaubt, das Mischelement 1 z.B. auf eine stillstehenden oder angetriebenen Welle mit Aussenverzahnung fest zu verbinden. Vorzugsweise werden eine Mehrzahl von Mischelementen 1 auf einer derartigen Welle in Längsrichtung nacheinander folgend angeordnet, wobei deren gegenseitige Stellung, insbesondere von benachbarten Mischelementen, genau bestimmt werden kann. Eine derartige mit Mischelementen 1 bestückte Welle kann beispielsweise als Schneckenwelle eines Extruders verwendet werden. Figur 4b zeigt eine Seitenansicht des in Figur 4a dargestellten Mischelementes 1, und Figur 4c zeigt einen Längsschnitt durch das Mischelement 1 entlang der Schnittebene F-F.
  • Figur 5 zeigt einen Längsschnitt entlang der Schnittebene F-F durch ein weiteres Ausführungsbeispiel eines Mischelementes 1. Durch eine entsprechende Wahl von Innen- und Aussendurchmesser D1, D2 sowie der Längen L1, L2 kann der Neigungswinkel α zwischen Achse A und Verlaufsrichtung des Leitelementes 1b je nach Erfordernis in einem Bereich zwischen 10° und 85° gewählt sein.
  • Figur 6a zeigt in einer perspektivischen Ansicht ein Lagerteil oder Dehnteil 2 bestehend aus einem hohlzylinderförmigen Lager 2a, und eine Mehrzahl von in radialer Richtung verlaufenden Stützarmen 2b, deren Querschnittsform beliebig sein kann, und welche zugleich als Dehnelemente wirken können. Figur 6b zeigt eine Frontansicht des Lagerteils oder Dehnteils 2, und Figur 6c einen Schnitt entlang der Schnittebene G-G. Das Lagerteil 2 kann fest in einem Strömungskanal 5a angeordnet sein, und vorzugsweise als Lager für eine drehbare Welle dienen. Das Teil 2 kann jedoch auch fest mit einer drehbaren Welle verbunden sein, sodass dieses Teil 2 innerhalb des Strömungskanals 5a drehbar angeordnet ist, und durch dieses Drehen ein Dehnen der Fluides in Umfangsrichtung zur Achse A bewirkt, weshalb dieses Teil auch als Dehnteil 2 bezeichnet wird. Der Verlauf der Achse A entspricht dem Verlauf der drehbaren Welle.
  • Figur 7 zeigt einen Längsschnitt eines dynamischen Mischers 5, umfassend einen zylinderförmigen Strömungskanal 5a, eine Mehrzahl von in Richtung der Achse A beabstandet angeordneten und mit dem Strömungskanal 5a über Befestigungsmittel 2c fest verbundenen Lagerteile 2, in welchen eine Mehrzahl von in Richtung der Achse A nebeneinander angeordneten Mischelemente 1 an Lagerstellen 1p drehbar gelagert sind. Die Mischelemente 1 sind über licht sichtbare Verbindungsmittel 1n gegenseitig fest miteinander verbunden, und bilden somit ein zusammengebautes Mischelement 3 aus. Das zusammengebaute Mischelement 3 umfasst beidseitig eine kegelförmige Abdeckung 3a, zwischen welchen die einzelnen Mischelemente 1 eingespannt sind. Das zusammengebaute Mischelement 3 umfasst zudem an einer Seite eine vorstehende, drehbare Welle 4, welche von aussen in Rotation versetzt werden kann. Zwei Einlasse 6a, 6b sind dem Mischer 5 zugeführt, sodass das durch diese Einlasse 6a, 6b einströmende Fluid den Mischer 5 durchströmt und danach dem Auslass 6c zugeführt wird. In Figur 7 ist nur der obere Teil des zusammengebauten Mischelementes 3 geschnitten dargestellt. Die drehenden Mischelemente 1 bewirken insbesondere eine Rotation des Fluides in Umfangsrichtung zur Achse A, wobei die Lagerteile 2 fest angeordnet sind, und somit auf das rotierende Fluid eine dehnende Wirkung in Umfangsrichtung ausüben.
  • Der in Figur 7 dargestellte Mischer eignet sich insbesondere als so genannter dynamische Inline-Mischer, insbesondere für Fluide mit unterschiedlichsten Viskositäten, von gasförmig bis zu hochviskosen Fluiden. Der Mischer ist z.B. für das Vermischen von reaktiven Harz/Härter-Systemen, für das Mischen von Komponenten von Polyurethansystemen, zur Lebensmittelaufbereitung, zum Dispergieren von Flüssigkeiten mit starken Viskositätsunterschieden wie Additive in Kunststoffschmelzen, oder zum Eindispergieren von Gasen in Flüssigkeiten geeignet.
  • Figur 8 zeigt in einem Längsschnitt ein weiteres Ausführungsbeispiel eines dynamischen Mischers 5, wobei, um Unterschied zum Ausführungsbeispiel gemäss Figur 7, die Lagerteile 2 ebenfalls als Mischelemente 1, beispielsweise wie in Figur 4a dargestellt, ausgestaltet sind, wobei diese Mischelemente 1 über Befestigungsmittel 2c fest mit der Aussenwand des Mischers 5 verbunden sind, und wobei das zusammengebaute Mischelement 3 drehbar in diesen fest angeordneten Mischelementen 1 gelagert ist.
  • Figur 9 zeigt in einem Längsschnitt einen statische Mischer 5 mit einem rohrförmigen Strömungskanal 5a, in dessen Innenraum ein zusammengebautes Mischelement 3 fest angeordnet ist. Das Mischelement 3 ist über nicht dargestellte Befestigungsmittel 2c fest mit der Aussenwand beziehungsweise dem Strömungskanal 5a verbunden. Ein Vorteil der erfindungsgemässen Mischelemente 1 liegt darin, dass diese auf unterschiedlichste Weise zusammengebaut werden können, wobei bevorzug zudem noch Distanzelemente 7 verwendet werden, welche beispielsweise zylinderförmig ausgestaltet sind und dieselben Verbindungsstellen In wie die Mischelemente 1 aufweisen. Derartige Mischelemente 1 eignen sich insbesondere zur Verwendung als Bausatz, um Mischer 5 mit unterschiedlichst ausgestalteten, zusammengebauten Mischelementen 3 herzustellen. Figur 9 zeigt an Hand mehrerer Anordnungsbeispiele, wie ein Mischelement 3 durch unterschiedliches Kombinieren von Mischelementen 1 und eventuell unter Verwendung von Distanzelementen 7 zusammengebaut werden kann.
  • Die Figuren 10 bis 13 zeigen den Abschnitt 5b aus einer Sicht in Richtung der Schnittebene H-H. Je nach Ausgestaltung der innerhalb des Abschnittes 5b links und rechts angeordneten Mischelemente 1 ergeben sich unterschiedliche Querschnitte. In Figur 10 weist jedes Mischelement 6 Leitelemente 1b auf, welche eine Winkelbreite β von je 30° aufweisen, wobei in Umfangsrichtung A1 benachbarte Leitelemente 1b um 30° versetzt angeordnet sind. Die beiden Mischelemente 1 sind derart in Umfangsrichtung A1 versetzt angeordnet, dass die Leitelemente 1b, ähnlich wie in Figur 3b dargestellt angeordnet sind. Im Abschnitt 5b ist zwischen den Mischelementen 1 ein Distanzelement 7 angeordnet. Die Mischelemente 1 könnten auch, wie im Abschnitt 5c dargestellt, ohne Verwendung eines Distanzelementes 7 gegenseitig an deren Stirnseiten 1m anliegend angeordnet sein, wobei die Leitelemente 1b des einen Mischelementes 1 in die Zwischenräume des anderen Mischelementes 1 zu liegen kommen, falls die Grundkörper 1a, wie dargestellt, entsprechend kurz ausgestaltet sind. Das im Abschnitt 5c angeordnete Mischelement 1 könnte auch einstückig, wie in Figur 3a dargestellt, ausgestaltet sein.
  • Die Leitelemente 1b könnten auch parallel verlaufende Seitenenden aufweisen, wie dies im Schnitt gemäss Figur 11 dargestellt ist, wobei in diesem Ausführungsbeispiel alle Leitelemente 1b beider Mischelemente 1 in Umfangsrichtung A1 dieselbe Breite aufweisen.
  • Unterschiedlich ausgestaltete Mischelemente 1 lassen sich im Abschnitt 5b beliebig kombinieren. Im Schnitt gemäss Figur 12 ist das eine Mischelement 1 wie in Figur 10 dargestellt ausgestaltet, wogegen das andere Mischelement 1 wie in Figur 11 dargestellt ausgestaltet ist, sodass deren Anordnung im Abschnitt 5b die gemäss Figur 12 dargestellte Schnittansicht ergibt.
  • Zwei Mischelemente 1, insbesondere zwei identische Mischelemente 1, könnten auch im Umfangsrichtung A1 gegenseitig versetzt angeordnet sein, wie dies in der Schnittansicht gemäss Figur 13 dargestellt ist, in dem die in Figur 10 dargestellten zwei Mischelemente 1 gegenseitig in Richtung A1 verdreht werden, beispielsweise derart, dass das im Abschnitt 5b links dargestellte Mischelement 1 mit Leitelementen 9 seine Position behält, wogegen das im Abschnitt 5b rechts dargestellte Mischelement 1 mit Leitelement 8 in Richtung A1 verdreht wird, sodass, aus Sicht der Schnittebene H-H, ein Teil des Leitelementes 8 hinter das Leitelement 9 zu liegen kommt.
  • Figur 14a zeigt in einem Längsschnitt einen Mischer 5 mit zylinderförmigem Strömungskanal 5a wobei zwei Mischelemente 1 auf der drehbare Welle 4 angeordnet sind, und die drehbare Welle 4 über ein Lagerteil 2 beziehungsweise Dehnteil 2 drehbar gelagert ist. Das Lagerteil 2 oder Dehnteil 2 kann mit Hilfe eines Befestigungsmittels 2c, z.B. einer Schraube, fest mit dem Strömungskanal 5a verbunden. Die Stützarme 2b des Lagerteils 2 können jedoch auch gegen die Innenfläche des Strömungskanals 5a gepresst und derart fest gehalten sein. In den Längsschnitten gemäss den Figuren 14b und 14c sind die Lagerteile 2 als Mischelemente 1 ausgestaltet, beispielsweise wie in Figur 4a oder 4c dargestellt. Diese Lagerteile 2 oder Dehnteile 2 sind über Befestigungsmittel 2c fest mit dem Strömungskanal 5a verbunden.
  • Die Figuren 15a bis 15e zeigen Längsschnitte von Mischern 5 mit drehbar gelagerten Mischelementen 1. Die Figuren 15a bis 15d zeigen in den Innenraum des Strömungskanals 5a vorstehende Dehnelemente 10, welche beispielsweise zylinderförmig oder rhombenförmig ausgestaltet sind. Die Dehnelemente 10 können auf unterschiedlichste Weise ausgestaltet sein, beispielsweise, wie in Figur 15e dargestellt, auch derart, dass das Dehnelement 10 einen aussen umlaufenden Ring aufweist, an welchem nach innen vorstehende Leitelemente 10a angeordnet sind. Die Leitelemente 10a könnten, wie in Figur 15e dargestellt, gekreuzt verlaufen.
  • Figur 16a zeigt die Rückseite eines weiteren Ausführungsbeispieles eines Mischelementes 1 mit bezüglich einer Achse A axialsymmetrischem Grundkörper 1a und vorstehenden Leitelemente. Figur 16b zeigt in einer Seitenansicht aus Richtung I das in Figur 16a dargestellte Mischelement 1.
  • Figur 17 zeigt die Rückseite eines weiteren Mischelemente 1 mit sechskantigem Grundkörper 1a und drei vorstehenden Leitelementen 1b.
  • Figur 18 zeigt einen Querschnitt durch einen Mischer 5 mit rechteckigem Strömungskanal 5a. Im Strömungskanal 5a sind drei Mischelemente 1 parallel und nebeneinander liegend angeordnet. Hinter den sichtbaren Mischelementen 1 könnten senkrecht zur Darstellungsebene eine Mehrzahl weiterer Mischelemente 1 angeordnet sind.
  • Die Figuren 19a bis 19c zeigen Querschnitte durch Leitelemente 1b. Die Leitelemente 1b können mit unterschiedlichsten Querschnittsformen ausgestaltet sein.
  • Die dargestellten Mischelemente 1 und Mischer 5 sind zum Mischen, Homogenisieren und Dispergieren einer Vielzahl von Fluiden geeignet, insbesondere auch zur Schmelzhomogenisierung bei Spritzguss oder Extrusion. Die Mischelemente 1 und Mischer 5 sind somit auch zur Anwendung als Mischteile auf Schnecken von Extrudern, z.B. für die Verarbeitung von Kunststoffen oder von Lebensmitteln, oder für Spritzgussmaschinen geeignet. Die Mischelemente 1 und Mischer 5 könnten auch in die Rücklaufsperren von Spritzgussmaschinen eingebaut werden und die Funktion dieses Maschinenteiles durch die Mischfunktion ergänzen. Die erfindungsgemässen Mischer 5 können auch eingesetzt werden, wenn das zu mischende Fluid grösseren Wechsellasten unterliegt, da zwischen den einzelnen Mischelementen 1, über deren Stirnflächen 1m, grössere Kräfte gegenseitig übertragen werden können.
  • Der Druckabfall über einem Mischelement 1 kann insbesondere auch durch den Neigungswinkel α des Leitelements 1b beeinflusst werden. Um einen geringeren Druckabfall zu erlangen wird der Neigungswinkel α entsprechend kleiner gewählt. Dementsprechend führt ein grösserer Neigungswinkel α zu einem grösseren Druckabfall. Der Druckabfall kann auch durch eine entsprechende Wahl der Länge des Mischelementes 1 in axialer Richtung A oder durch eine entsprechende Wahl der Form der Leitelemente 1b oder eine entsprechende Breite β der Leitelemente 1b beeinflusst werden.
  • Die Mischelemente 1 können aus unterschiedlichsten Materialien gefertigt sein, beispielsweise aus Metall oder Kunststoff. Sie können mittels geeigneter Gussverfahren, aus Vollmaterial mittels spanabtragenden Verfahren, mittels Elektro-Errosions oder Laserschneidverfahren, durch Umformen oder durch Aufbau aus einzelnen Formteilen, die durch Schweissen, Löten, Kleben, durch Verzahnen oder anderen geeigneten Fügeverfahren hergestellt oder zusammengestellt werden.
    Durch den modularen Aufbau der Mischer aus einzelnen Mischelementen können diese bei Bedarf einfach zerlegt werden, z.B. zur Reinigung oder zur Inspektion.
  • Der erfindungsgemässe Mischer ermöglicht abhängig von dessen Ausgestaltung ein statisches oder, bei der Verwendung von beweglichen, rotierbaren Teilen, ein dynamisches Mischen. Beim statischen Mischen erfolgt der Mischprozess durch fortlaufendes Aufteilen des Fluidstromes in Teilströme, die umgelagert und wieder zusammengefügt werden. Die Umlagerung kann dabei, im Wesentlichen, radial zur Achse A oder in Umfangsrichtung zur Achse A erfolgen. Ein distributiver Mischprozess. Diesem Mischprozess sind Grenzen gesetzt, z.B. bei Dispergieraufgaben, bei welchen der notwendige Energieeintrag stark ansteigt, wenn feine Dispersionen zu erzeugen sind. Für solche Anwendungsfälle ist es vorteilhafter eine Mischmethode zu verwenden, welche auf dem Prinzip des Dehnens eines Fluidstromes basiert, was ein wesentlich besseres Mischen bei kleinerem Energieaufwand ermöglicht. Der beispielsweise in den Figuren 7 und 8 beschriebene dynamische Mischer vereinigt die beiden Mischprinzipien Aufteilen (und Dehnen in idealer Weise.
  • In einem vorteilhaften Verfahren zum Mischen eines strömenden Stoffes in einem Strömungskanal aufweisend eine Längsachse A, wird der strömende Stoff mit einem statischen Mischelement bezüglich der Längsachse A sowohl in radialer Richtung als auch in Umfangsrichtung verteilt, und wird der strömende Stoff mit einem dynamischen Mischelement 2, welches um die Längsachse A rotiert wird, in Umfangsrichtung gedehnt. In einem weiteren vorteilhaften Verfahrensschritt wird das dynamische Mischelement den strömenden Stoff bezüglich der Längsachse (A) zumindest in eine der beiden Richtungen: radiale Richtung und Umfangsrichtung verteilen.
  • Je nach Schwierigkeitsgrad der Mischaufgabe und den Anforderungen an den zu erzielenden Homogenitätsgrad der Mischung sind zwischen 1 bis 100 hintereinander angeordneter Mischelemente erforderlich, gegebenenfalls noch mehr.

Claims (19)

  1. Mischelement (1) zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, umfassend einen Grundkörper (1a) mit einer Längsachse (A), sowie umfassend eine Mehrzahl von Leitelementen (1b), welche fest mit dem Grundkörper (1a) verbunden sind, wobei die Leitelemente (1b) schräg zur Längsachse (A) verlaufen, sodass jedes Leitelement (1b) eine bezüglich der Längsachse (A) nach innen weisende Leitfläche (1d) und eine bezüglich der Längsachse (A) nach aussen weisende Leitfläche (1c) aufweisen, und wobei eine Mehrzahl von Leitelementen (1b) in Umfangsrichtung (A1) der Längsachse (A) nacheinander folgend angeordnet sind, dadurch gekennzeichnet, dass der Grundkörper (1a) axialsymmetrisch ausgestaltet ist, sich in Richtung der Längsachse (A) erstreckt, und beidseits mit einer senkrecht zur Längsachse (A) verlaufenden Stirnfläche (1m) endet, dass der Grundkörper (1a) eine bezüglich der Längsachse (A) nach aussen weisende Oberfläche (1k) aufweist, und dass die Leitelemente (1b) über eine Fussfläche (11) fest mit der Oberfläche(1k) verbunden sind, und dass der Grundkörper (1a) in Richtung der Längsachse (A) eine derartige Länge aufweist, dass zumindest zwei Mischelemente in Verlaufsrichtung der Längsachse (A) derart nacheinander geordnet werden können, dass sie sich an deren Stirnflächen (1m) gegenseitig berühren.
  2. Mischelement nach Anspruch 1, dadurch gekennzeichnet, dass die Leitelemente (1b) gleichmässig in Umfangsrichtung (A1) beabstandet sind, und dass der Zwischenraum zwischen zwei Leitelementen (1b) zumindest der Breite eines Leitelementes in Umfangsrichtung (A1) entspricht.
  3. Mischelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stirnflächen (1m) Verbindungsmittel (In) aufweisen, um in Richtung der Längsachse (A) benachbart angeordnete Mischelemente (1) zu verbinden.
  4. Mischelement nach Anspruch 3, dadurch gekennzeichnet, dass die Verbindungsmittel (In) eine Mehrzahl von in Umfangsrichtung (A1) beabstandeten Eingriffspositionen aufweisen.
  5. Mischelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leitelemente (1b) zwei seitliche Enden aufweisen, welche radial zur Längsachse (A) verlaufen.
  6. Mischelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leitelemente (1b) zwei seitliche Enden aufweisen, welche parallel verlaufen.
  7. Mischelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die äusseren Enden der Leitelemente (1b) mit einer gemeinsamen Stützstruktur (1o) verbunden sind.
  8. Mischelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Umfangsrichtung (A1) benachbarte Leitelemente (1b) abwechslungsweise unter einem spitzen und einem stumpfen Winkel zur Längsachse (A) verlaufen, wobei jeweils zwei in Umfangsrichtung (A1) benachbarte Leitelemente (1b) in Richtung der Längsachse (A) beabstandete Fussflächen (11) aufweisen.
  9. Mischelement nach Anspruch 8, dadurch gekennzeichnet, dass jeweils zwei in Umfangsrichtung (A1) benachbarte Leitelemente (1b) oberhalb der Oberfläche (1k) des Grundkörpers (1a) einen Berührungspunkt (1h) bilden, sodass sich zwischen der Oberfläche (1k) und dem Berührungspunkt (1h) eine durch die beiden benachbarten Leitelemente (1b) und die Oberfläche (1k) des Grundkörpers (1a) begrenzte Queröffnung (1e) bildet, wobei in Umfangsrichtung (A1) ein geradzahliges Vielfach von Leitelementen (1b) angeordnet sind.
  10. Mischelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Grundkörper (1a) zylinderförmig ausgestaltet ist.
  11. Bausatz umfassend eine Mehrzahl von Mischelementen (1) nach einem der vorhergehenden Ansprüche.
  12. Bausatz nach Anspruch 11, umfassend Distanzelemente (7), welche einen axialsymmetrischen Grundkörper (1a) mit Stirnflächen (1m) jedoch keine Leitelemente (1b) aufweisen, wobei die Distanzelemente (7) zur Anordnung zwischen Mischelementen (1) bestimmt sind.
  13. Bausatz nach einem der Ansprüche 11 oder 12, umfassend Mischelemente (1) und/oder Distanzelemente (7), welche eine im Querschnitt kreisförmige Lagerstelle (1p) ausbilden.
  14. Mischer (5) umfassend einen Strömungskanal (5a) sowie Mischelemente (1) gemäss einem der Ansprüche 1 bis 10, oder umfassend einen Strömungskanal (5a) und einen Bausatz gemäss einem der Ansprüche 11 oder 13.
  15. Mischer (5) umfassend einen Strömungskanal (5a) sowie eine Mehrzahl von darin auf einem gemeinsamen Träger angeordneten Mischelementen (1) gemäss einem der Ansprüche 1 bis 10.
  16. Mischer nach Anspruch 15, dadurch gekennzeichnet, dass die Mischelemente (1) um die Längsachse (A) drehbar gelagert sind.
  17. Mischer nach Anspruch 16, dadurch gekennzeichnet, dass Lagerteile (2) fest mit dem Strömungskanal (5a) verbunden und mit Mischelementen (1) ein Drehlager bilden.
  18. Mischer nach Anspruch 17, dadurch gekennzeichnet, dass die Lagerteile (2) eine Mehrzahl von in radialer Richtung verlaufende Stützarme (2b) aufweisen, welche fest mit dem Strömungskanal (5a) verbunden sind, oder dass die Lagerteile (2) fest mit dem gemeinsamen Träger verbunden sind, und zusammen mit den Stützarmen (2b) ein Dehnelement (2) ausbilden.
  19. Mischer nach Anspruch 17, dadurch gekennzeichnet, dass die Lagerteile (2) als Mischelemente (1) ausgebildet sind, mit einer Mehrzahl von in Umfangsrichtung (A1) verteilt angeordneten Leitelementen (1b).
EP06777833A 2005-08-18 2006-07-18 Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente Not-in-force EP1924346B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06777833A EP1924346B1 (de) 2005-08-18 2006-07-18 Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05107611A EP1754530A1 (de) 2005-08-18 2005-08-18 Mischelement zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, Bausatz und Mischer enthaltend dergestalte Mischelemente, sowie Verfahren zum Mischen eines strömenden Stoffes in einem Strömungskanal
PCT/EP2006/064374 WO2007020149A2 (de) 2005-08-18 2006-07-18 Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, bausatz und mischer enthaltend dergestalte mischelement, sowie verfahren zum mischen eines strömenden stoffes in einem strömungskanal
EP06777833A EP1924346B1 (de) 2005-08-18 2006-07-18 Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente

Publications (2)

Publication Number Publication Date
EP1924346A2 EP1924346A2 (de) 2008-05-28
EP1924346B1 true EP1924346B1 (de) 2010-03-03

Family

ID=35520937

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05107611A Withdrawn EP1754530A1 (de) 2005-08-18 2005-08-18 Mischelement zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, Bausatz und Mischer enthaltend dergestalte Mischelemente, sowie Verfahren zum Mischen eines strömenden Stoffes in einem Strömungskanal
EP06777833A Not-in-force EP1924346B1 (de) 2005-08-18 2006-07-18 Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05107611A Withdrawn EP1754530A1 (de) 2005-08-18 2005-08-18 Mischelement zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, Bausatz und Mischer enthaltend dergestalte Mischelemente, sowie Verfahren zum Mischen eines strömenden Stoffes in einem Strömungskanal

Country Status (5)

Country Link
US (1) US20080232190A1 (de)
EP (2) EP1754530A1 (de)
AT (1) ATE459412T1 (de)
DE (1) DE502006006350D1 (de)
WO (1) WO2007020149A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010007466U1 (de) 2010-06-01 2011-09-28 Wegener International Gmbh Handschweißgerät

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754530A1 (de) * 2005-08-18 2007-02-21 StaMixCo Technology AG Mischelement zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, Bausatz und Mischer enthaltend dergestalte Mischelemente, sowie Verfahren zum Mischen eines strömenden Stoffes in einem Strömungskanal
WO2012050858A1 (en) * 2010-09-28 2012-04-19 Dow Global Technologies Llc Reactive flow static mixer with cross-flow obstructions
US8826649B2 (en) 2011-10-18 2014-09-09 GM Global Technology Operations LLC Assembly for mixing liquid within gas flow
FR2992574B1 (fr) * 2012-06-29 2014-08-08 Commissariat Energie Atomique Separateur centrifuge a flux laminaire
DE102012019927A1 (de) * 2012-10-11 2014-04-17 Udo Tartler Mischereinsatz
JP6108461B2 (ja) 2013-10-09 2017-04-05 ヤンマー株式会社 排気浄化装置
KR101481940B1 (ko) * 2014-04-09 2015-01-13 김기도 산소용해장치
DE102014215083B4 (de) * 2014-07-31 2023-11-02 Purem GmbH Mischer und Mischeinrichtung für eine Abgasanlage
US10619797B2 (en) * 2016-12-12 2020-04-14 Canada Pipeline Accessories, Co., Ltd. Static mixer for fluid flow in a pipeline
US11746960B2 (en) 2018-05-07 2023-09-05 Canada Pipeline Accessories Co., Ltd. Pipe assembly with static mixer and flow conditioner
US20220379273A1 (en) * 2019-10-25 2022-12-01 Re Mixers, Inc Static mixer
CN111391233A (zh) * 2019-12-25 2020-07-10 江苏东弘塑业有限公司 一种注塑机
USD976384S1 (en) 2020-01-13 2023-01-24 Canada Pipeline Accessories Co., Ltd. Static mixer for fluid flow
CN112944085B (zh) * 2021-02-04 2022-12-06 西安交通大学 一种改善枝型通道内热分层现象的结构及方法
WO2024069350A1 (en) * 2022-09-30 2024-04-04 Sravathi Advance Process Technologies Private Limited Method and apparatus for passive mixing of multiphase flow

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1689446A (en) * 1921-12-05 1928-10-30 William H Miller Mixing device
CA432239A (en) * 1943-06-28 1946-01-01 A. F. Presser Eric Double acting kneader
US2964301A (en) * 1957-06-05 1960-12-13 Du Pont Mixing apparatus
US2977091A (en) * 1957-06-11 1961-03-28 Technica Ets Bucket wheel
US3297305A (en) * 1957-08-14 1967-01-10 Willie W Walden Fluid mixing apparatus
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3904179A (en) * 1972-07-19 1975-09-09 Desider G Csongor Method and apparatus for extruding melted plastic mixtures
US3836127A (en) * 1972-07-19 1974-09-17 D Csongor Apparatus for extruding melted plastic mixtures
US3942773A (en) * 1972-07-19 1976-03-09 Csongor Desider G Method and apparatus for extruding melted plastic mixtures
US3923288A (en) * 1973-12-27 1975-12-02 Komax Systems Inc Material mixing apparatus
PL101135B1 (pl) * 1976-03-31 1978-12-30 Osrodek Badawczorozwojowy Przemyslu Budowy Urzadzen Chemiczynch "Cebea" Te Krakow Polen Element wypelniajacy
GB1601403A (en) * 1977-03-21 1981-10-28 Gen Signal Corp In-line mixers
US4259021A (en) * 1978-04-19 1981-03-31 Paul R. Goudy, Jr. Fluid mixing apparatus and method
US4258782A (en) * 1979-06-28 1981-03-31 Modine Manufacturing Company Heat exchanger having liquid turbulator
HU179455B (en) * 1979-07-16 1982-10-28 Energiagazdalkodasi Intezet Ribbed device improving the heat transfer composed from sheet strips
DE3116557A1 (de) 1981-04-25 1982-11-11 Basf Ag, 6700 Ludwigshafen Vorrichtung zur invertierung und mischung von stroemenden stoffen
US4749279A (en) * 1981-08-31 1988-06-07 Northern Lights Trust Of February 14, 1978 Modular mixing apparatus for extruded material including rotary for processing modules having variable speed independent drive means
US4697928A (en) * 1981-08-31 1987-10-06 Northern Lights Trust Of February 14, 1978 Modular mixing apparatus including interchangeable fluid processing means
US4447156A (en) * 1981-08-31 1984-05-08 Northern Lights Trust Modular mixing apparatus including interchangeable fluid processing means
US4600544A (en) * 1982-11-29 1986-07-15 Merix Corporation Packing unit and method of making
US4552463A (en) * 1984-03-15 1985-11-12 Harry Hodson Method and apparatus for producing a colloidal mixture
US4878624A (en) * 1985-09-19 1989-11-07 Hydro Energy Systems, Ltd. Process for conditioning liquid petroleum
US4826089A (en) * 1985-09-19 1989-05-02 Columbia Chase Corporation Treating asphaltene bearing fuels
GB8617569D0 (en) * 1986-07-18 1986-08-28 Davidson J F Impellers
US4752135A (en) * 1986-12-01 1988-06-21 Baker Perkins, Inc. Mixing apparatus and methods
US4848920A (en) * 1988-02-26 1989-07-18 Husky Injection Molding Systems Ltd. Static mixer
NL8801156A (nl) * 1988-05-03 1989-12-01 Univ Twente Menginrichting met distributiemengwerking, voor een extruder, een spuitgietmachine en dergelijke.
DE3843576A1 (de) * 1988-12-23 1990-07-12 Jv Kunststoffwerk Verfahren und vorrichtung zur herstellung von kunststoffformteilen
US5588987A (en) * 1994-10-14 1996-12-31 Huston; Paul O. Discharge stream conditioner and method
WO1999000180A1 (en) * 1997-06-26 1999-01-07 Robbins & Myers, Inc. Multi-component static mixer and method of operation
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
US6027241A (en) * 1999-04-30 2000-02-22 Komax Systems, Inc. Multi viscosity mixing apparatus
DE19938840A1 (de) * 1999-08-17 2001-03-15 Emitec Emissionstechnologie Mischelement für ein in einem Rohr geführtes Fluid
DE60135116D1 (de) * 2000-06-06 2008-09-11 Trojan Techn Inc Mischvorrichtung für fluide
EP1413412B1 (de) * 2002-10-21 2007-03-21 Basf Aktiengesellschaft Mischvorrichtung
CN1204945C (zh) * 2003-09-05 2005-06-08 刘兆彦 一种管、筒或塔内构件立交盘
US7246936B2 (en) * 2004-06-04 2007-07-24 Certainteed Corp. Dynamic mixer screw tip
EP1754530A1 (de) * 2005-08-18 2007-02-21 StaMixCo Technology AG Mischelement zum Invertieren und Mischen von strömenden Stoffen in einem Strömungskanal, Bausatz und Mischer enthaltend dergestalte Mischelemente, sowie Verfahren zum Mischen eines strömenden Stoffes in einem Strömungskanal
KR20120104176A (ko) * 2009-09-04 2012-09-20 이 아이 듀폰 디 네모아 앤드 캄파니 플러싱 없이 cfc 및 hcfc 냉매를 대체하기 위한 냉매 및 윤활제를 포함하는 조성물 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010007466U1 (de) 2010-06-01 2011-09-28 Wegener International Gmbh Handschweißgerät
EP2392445A2 (de) 2010-06-01 2011-12-07 Wegener International GmbH Handschweißgerät

Also Published As

Publication number Publication date
DE502006006350D1 (de) 2010-04-15
EP1924346A2 (de) 2008-05-28
US20080232190A1 (en) 2008-09-25
EP1754530A1 (de) 2007-02-21
ATE459412T1 (de) 2010-03-15
WO2007020149A3 (de) 2007-05-18
WO2007020149A2 (de) 2007-02-22

Similar Documents

Publication Publication Date Title
EP1924346B1 (de) Mischelement zum invertieren und mischen von strömenden stoffen in einem strömungskanal, sowie bausatz und mischer enthaltend dergestalte mischelemente
DE1236479B (de) Vorrichtung zum Mischen stroemender Medien, mit stillstehenden Leitelementen
DE60025887T2 (de) Statischer Mischer
EP0856353B1 (de) Modul zu einer statischen Mischeinrichtung für ein verweilzeitkritisches, plastisch fliessfähiges Mischgut
DE102005037026B4 (de) Kavitationsmischer
DE102008037008B3 (de) Mischvorrichtung für die Flüssigkeitschromatographie
DE1557118B2 (de)
DE10233213B4 (de) Extruder
DE1502335B2 (de) Schneckenstrangprese fuer die verarbeitung von kunststoff
EP2001580B1 (de) Statischer mischer und verfahren zur herstellung eines solchen
EP0090257B1 (de) Mischvorrichtung für die Herstellung eines chemisch reaktionsfähigen Gemisches aus mindestens zwei flüssigen Kunststoffkomponenten
EP2527029A2 (de) Statischer Mischer
EP2272651B1 (de) Schneckenmaschine mit Dehn-Knetelement
EP2135667B1 (de) Kavitator
AT408860B (de) Verfahren zum durchmischen eines schmelzenstromes aus kunststoff
WO2006024181A1 (de) Verfahren und vorrichtung zur zyklischen überführung heisser kunststoffschmelze
EP3645149B1 (de) Verteiler für ein fluid
DE102018006234A1 (de) Einschnecke mit Mischfunktion
EP1837070A1 (de) Statischer Mischer und Verfahren zur Herstellung desselben
DE2307616B2 (de) Ein- oder mehrgängige Extruderschnecke zur Verarbeitung von thermoplastischen Kunststoffen oder kautschukartigen Stoffen
DE3539426A1 (de) Statische mischvorrichtung fuer nieder- und hochviskose stoffe
DD146024A5 (de) Extruder zur bearbeitung thermoplastischer materialien
EP3338882A1 (de) Mischelement mit hoher festigkeit und mischwirkung
DE102021115905B4 (de) Mehrwegeventileinheit für Kunststoffschmelzen und andere mittel- bis hochviskose Flüssigkeiten
EP1669131A1 (de) Dynamischer Mischer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080317

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: MIXING ELEMENT FOR THE INVERSION AND MIXTURE OF FLOWING MATERIALS IN A FLOW CHANNEL, AS WELL AS KIT AND MIXER COMPRISING SUCH MIXING ELEMENTS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STAMIXCO AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006006350

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF & PARTNER INTELLECTUAL PROPERTY

Ref country code: CH

Ref legal event code: PFA

Owner name: STAMIXCO AG

Free format text: STAMIXCO AG#EBNETSTRASSE 8#8474 DINHARD (DE) -TRANSFER TO- STAMIXCO AG#EBNETSTRASSE 8#8474 DINHARD (DE)

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100303

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STAMIXCO AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100604

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100614

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100603

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: STAMIXCO A.G.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

26N No opposition filed

Effective date: 20101206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100904

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160721

Year of fee payment: 11

Ref country code: IT

Payment date: 20160725

Year of fee payment: 11

Ref country code: DE

Payment date: 20160722

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160721

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006006350

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 459412

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718