EP1913354A1 - Procede de determination de caracteristiques de rotation propres aux cylindres, d'un arbre d'un moteur a combustion interne - Google Patents

Procede de determination de caracteristiques de rotation propres aux cylindres, d'un arbre d'un moteur a combustion interne

Info

Publication number
EP1913354A1
EP1913354A1 EP06777659A EP06777659A EP1913354A1 EP 1913354 A1 EP1913354 A1 EP 1913354A1 EP 06777659 A EP06777659 A EP 06777659A EP 06777659 A EP06777659 A EP 06777659A EP 1913354 A1 EP1913354 A1 EP 1913354A1
Authority
EP
European Patent Office
Prior art keywords
rotational
cylinder
kww
characteristic
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06777659A
Other languages
German (de)
English (en)
Inventor
Manfred Birk
Peter Skala
Joachim Palmer
Wolfram Gerwing
Ruediger Fehrmann
Michael Kessler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1913354A1 publication Critical patent/EP1913354A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
    • G01L3/242Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity by measuring and simultaneously multiplying torque and velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually

Definitions

  • the invention relates to a method for operating an internal combustion engine, in which a first rotational characteristic is measured at a first location along a shaft of the internal combustion engine and cylinder-specific rotational characteristics are determined using the first rotational parameter.
  • the invention further relates to a control unit, the cylinder-specific rotational characteristics of a wave of a
  • a rotational parameter is understood to mean an angular position, an angular velocity or a torque value at a section of the shaft.
  • the first location is preferably a first end of the shaft.
  • Control unit stored characteristic field which was previously created by means of load tests at different speeds and loads, determines an effective torque acting on a driven side of the shaft. Using the effective torque, a gas torque curve is modeled and cylinder-specific rotational characteristics are determined from the gas torque curve.
  • the method according to the invention differs from this prior art in that a second rotational characteristic is measured at a second location along the shaft and the cylinder-specific rotational characteristics are determined using the first rotational characteristic and the second rotational characteristic.
  • control unit determines the cylinder-specific rotational characteristics using the signal of the first Drehkennakin- sensor and a signal of a second Drehkennakin- sensor that detects a second rotational characteristic at a second location along the shaft.
  • the second location is preferably a second end of the crankshaft.
  • control methods for internal combustion engines are directed to torsionally rigid crankshaft systems in which a single crank angle describes the position of all crankcases. Differences in the crank angle between individual cylinders, as they actually occur with torsionally soft crankshaft, worsen the quality of control and regulation. Estimation methods for determining the output torque are also adversely affected by a torsionally soft crankshaft. Output torques on both sides of the crankshaft are not measurable, size and time course of these unknown output torques affect the quality of the control and regulation methods.
  • the invention allows in this environment a more accurate determination of cylinder-specific speeds, crank angles and torques of a torsional wave taking into account an estimated output torque, the two-sided metrological detection of the rotational characteristics allows metrological detection of the torsion of the shaft and a continuous adjustment of the determination of individual cylinder rotational characteristics.
  • This adaptation makes possible a more precise control and regulation of the internal combustion engine compared with the prior art.
  • the invention fertil also allows observation of output torques, so that their effect can be taken into account in the control or regulation of the internal combustion engine.
  • the first and the second rotational characteristic is determined in each case as angular velocity.
  • Angular velocities can be easily and accurately determined using conventional rotary angle sensors.
  • An additional advantage is that a rotation angle sensor is usually already present in order to be able to control, for example, injections and / or ignition synchronously with the rotation of the crankshaft.
  • a third rotary characteristic characteristic of the entire internal combustion engine is determined, and the cylinder-individual
  • Rotational characteristics are determined from a model representing the internal combustion engine, wherein inputs of the model based on the first rotational characteristic, the second rotational characteristic and the third rotational characteristic.
  • the third rotational characteristic is determined as the torque value of the entire internal combustion engine.
  • This torque value results in the real internal combustion engine as the sum of the cylinder-individual torque values. From the sum, it is possible to deduce to some extent the individual summands, ie the cylinder-individual torque values, so that the value of the sum represents a suitable output variable for modeling the cylinder-specific torque values.
  • the cylinder-specific rotational characteristics are determined as cylinder-specific angular velocities and / or as cylinder-specific torque values. In these values, unevenness in combustion between the cylinders is particularly pronounced, so that these values are of particular interest for control and / or control methods.
  • a further refinement is characterized in that the model for an n-cylinder internal combustion engine has a model of its crankshaft with n + 2 sections, wherein a first section represents the first end of the crankshaft, further sections each individually represent a cylinder-specific section, and the remaining n + 2-th section represents the second end of the crankshaft, wherein each section is associated with a moment of inertia, and a friction torque, each sections are interconnected by torsionally flexible couplings, each torsionally flexible coupling is assigned a torsional, and each cylinder individual Section has a derived from the third rotational characteristic cylinder-individual torque value.
  • This model takes into account all relevant influencing factors and thus allows, for example, an exact modeling of the cylinder-specific variables.
  • a torque value associated with the first portion is formed as a rotational characteristic from a deviation of the first rotational characteristic from an estimated value of the first rotational parameter, and a torque value associated with the remaining n + 2-th segment from a deviation of the second rotational parameter from an estimated value for the second rotational parameter is formed.
  • control device it is preferred that it carries out at least one of the above-mentioned embodiments of the method, which leads to respectively corresponding advantages.
  • Fig. 1 is a block diagram illustrating a method according to the invention
  • Fig. 2 is a physical equivalent circuit diagram of a real internal combustion engine as used in embodiments of the invention.
  • Fig. 3 is a calculation structure, as used in embodiments of the invention for modeling the internal combustion engine. The procedure is described below using the example of the crankshaft of the internal combustion engine. However, the procedure is applicable to any drive shaft of an internal combustion engine. In particular, this also applies to the camshaft.
  • FIG. 1 shows an internal combustion engine 10 with a crankshaft 12, cylinder-individual actuators 14, 16, angle sensors 18, 20 and a control unit 22.
  • the cylinder-individual actuators 14, 16 are each assigned individually to a cylinder or a group of cylinders of the internal combustion engine 10. Examples of such actuators 14, 16 are fuel injectors, actuators for gas exchange valves, which control a change of combustion chamber fillings, throttle valves or ignition coils, this list has no final character.
  • a first angle sensor 18 is disposed at a first end 24 of the crankshaft 12 and a second angle sensor 20 is disposed at a second end 26 of the crankshaft 12.
  • the first end 24 corresponds to the end on which ancillaries such as generators, water pumps, power steering pumps, and / or air compressors are driven while the second end 26 is the actual output side to which, for example, a powertrain of a motor vehicle is driven via a clutch.
  • the angle sensors 18, 20 detect the
  • Angular speeds wl and w2 at both ends 24, 26 of the crankshaft 12 by known methods.
  • angle sensors 18, 20 are used, the ferromagnetic Inductively indent markings on encoder wheels connected to the ends 24, 26 of the crankshaft 12 in a rotationally fixed manner.
  • Such a sampling corresponds to a method in which the first and second rotational characteristics are determined in each case as angular velocity w1, w2.
  • the control unit 22 is divided in the illustration of FIG. 1 in different functional blocks.
  • a first functional block 28 and a second functional block 30 each represent an integrator which integrates the measured angular velocities w1, w2 into corresponding crankshaft angles KWW1, KWW2.
  • a third function block 32 represents an estimation method which determines from the angular speeds w1, w2 and / or the crankshaft angles KWW1, KWW2 an average engine torque M3 as a characteristic rotational characteristic that is characteristic of the entire internal combustion engine 10.
  • the average engine torque M3 can be derived from one or both measured angular speeds w1, w2.
  • an effective torque proportional to the average engine torque M3 is derived from the signal of a single angle sensor.
  • the average engine torque M3 can be estimated from a dynamic torsion of the crankshaft 12.
  • one or more frequency components contained in the crankshaft angle values KWW1, KWW2 or the angular speeds w1, w2 are analyzed in terms of magnitude and phase, for example by a bandpass filter or by means of a discrete Fourier transformation (DFT).
  • DFT discrete Fourier transformation
  • the frequency of the filtered-out vibration should be as close as possible to one of the torsional natural frequencies of the crankshaft 12.
  • the magnitude and / or the phase of this oscillation and a mean angular velocity are used as the input of a map whose output forms the average engine torque M3.
  • a fourth function block 34 represents a motor model which supplies the desired cylinder-individual rotational characteristics DKG1,..., DKGn and further estimated values ws1, ws2 for the angular speeds of the two ends 24, 26 of the crankshaft 12.
  • the rotational characteristics DKG1,..., DKGn are, for example, cylinder-individual torque contributions and / or angular velocities and / or cylinder-individual crankshaft angles, so that the index n in the case of the conjunction "and” runs from 1 to a corresponding multiple of the number of cylinders and Case of disjunction "or" the cylinders numbered.
  • the estimated values ws1, ws2 for the angular velocities w1, w2 are subtracted from the associated angular velocities w1, w2 by difference formations 36, 38, so that the differences formed are a measure of the deviation of the values supplied by the motor model 34
  • Estimates wsl, ws2 represent the actual values wl, w2.
  • Integrators 40, 42 process the deviations into estimated values MS24, MS26 for torques acting on the ends 24, 26 of the crankshaft 12, which serve as input variables of the engine model 34 in addition to the mean torque M3.
  • the cylinder-specific rotational parameters DKG1,..., DKGn supplied by the engine model 34 are processed by control methods 44, which are known per se, into manipulated variables with which the cylinder-specific actuators 14, 16 already mentioned are actuated.
  • the internal combustion engine 10 has a number of cylinders Z1, Z2,..., Zk, each having an associated crankshaft section 12.1, 12.2,.
  • Each crankshaft section 12.1, 12.2,..., 12. k is a flywheel or moment of inertia J1, J2,..., Jk, a damper element d1, d2, ...., dk, which represents the friction, and a torsion spring Fed constant cl, c2, ...., ck assigned, which describes a coupling to the neighboring cylinder, or to the adjacent crankshaft section.
  • the FZ1, FZ2, FZk designate gas forces acting in the cylinders Z1, Z2,..., ZK.
  • the first end 24 of the crankshaft 12 consists of the flywheel J24 a pulley, a damper element d24, and a torsion spring with spring constant c24. On the pulley with the flywheel J24 is the first
  • the second end 26 of the crankshaft 12 consists of a flywheel J26, to which the second angle sensor 20 for
  • FIG. 3 describes the engine model 34 in more detail:
  • Each cylinder Z1,..., Zk is assigned an equivalent circuit diagram, as will be explained below with reference to the cylinder Z1:
  • the equivalent circuit diagram has a first one
  • Integrator 46 Integrator 46, a second integrator 48, a third
  • Integrator 50 a block 52, which provides a cylinder-individual moment contribution, a
  • Proportional member 54 a summer 56 and a
  • summer 56 provides a free moment MF1 of cylinder Z1 to the first one
  • Integrator 46 The first integrator 46 integrates the free moment MFl taking into account the known flywheel mass Jl for the cylinder-individual
  • Integrator 48 integrates the angular velocity wZl to the cylinder-specific crankshaft angle KWWZl and thus provides an angle information to the block 52, this for the assignment of an angle-dependent torque component M KWWZl the cylinder Zl used to the mean torque M3 of the internal combustion engine 10.
  • the third integrator 50 integrates a difference of angular velocities wZ1, wZ2 formed by the subtractor 59 with that at the transition to the adjacent portion of the crankshaft
  • the block 52 calculates the moment contribution M KWWZl of the cylinder Z1 from the average engine torque M3 supplied by the estimation method 32 and the estimated crank angle KWWZl of the second integrator 48. This can be done, for example, via a map access, wherein the map is represented by values of the average engine torque M3 and the estimated crank angle KWWZl is addressed.
  • a cylinder-individual torque contribution varies known as the crank angle, the cylinder-individual torque contribution in the power stroke a positive and at least in the intake stroke and the compression stroke a negative contribution to the total average torque M3 of the engine 10 delivers.
  • the positive contribution is dependent on the total average torque M3 of the internal combustion engine 10. Cylinder-individual torque values M KWWZl, whose addressing variables lie between map points, are determined by interpolation.
  • the proportional element 54 calculates the for
  • Summer 56 calculates that to first integrator 46 supplied free torque MFl from the torque contribution M KWWZl of the cylinder Zl, the difference between the supplied via the crankshaft 12 moments MZl and MZ2 and the velocity-proportional friction torque MRl, so that the free moment MFl of the cylinder Z to
  • the pulley at the clutch distal, first end 24 of the crankshaft 12 is represented by two integrators 60 and 62, a proportional member 64 and a differential former 66. These elements 60, 62, 64, 66 correspond in importance to the blocks 46, 50, 54, 59 of the cylinder model.
  • the flywheel at the clutch-side, second end 26 of the crankshaft 12 is described by an integrator 68, a proportional member 70 and a summer 72 in analogy to the blocks 46, 54, 56 of the cylinder model.
  • Angular velocity values as well as torque values are each cylinder-specific as internal values of the model 34, which are calculated in the control unit 30, therefore present in the control unit 30 and can be considered in the formation of cylinder-individual control variables for the actuators 14, 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner un moteur à combustion interne (10), procédé consistant à mesurer une première caractéristique de rotation (wl) à une première extrémité (24) d'un arbre (12) du moteur à combustion interne (10) et à déterminer, par utilisation de ladite première caractéristique de rotation (wl), des caractéristiques de rotation propres aux cylindres (MFl, wZl, KWW_Z1, MRl, ...., MFn, wZn, KWW_Zn, MRn). Le procédé est caractérisé en ce qu'une seconde caractéristique de rotation (w2) est mesurée à une seconde extrémité (26) de l'arbre (12), et en ce que les caractéristiques de rotation propres aux cylindres (MFl, wZl, KWW_Z1, MRl, ...., MFn, wZn, KWW Zn, MRn) sont déterminées en utilisant les premières caractéristiques de rotation (wl) et les secondes caractéristiques de rotation (w2). L'invention concerne en outre un appareil de commande (22) utilisé pour la commande du procédé précité.
EP06777659A 2005-07-28 2006-07-07 Procede de determination de caracteristiques de rotation propres aux cylindres, d'un arbre d'un moteur a combustion interne Withdrawn EP1913354A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005035408A DE102005035408A1 (de) 2005-07-28 2005-07-28 Verfahren zur Ermittlung zylinderindividueller Drehkenngrößen einer Welle eines Verbrennungsmotors
PCT/EP2006/064029 WO2007012555A1 (fr) 2005-07-28 2006-07-07 Procede de determination de caracteristiques de rotation propres aux cylindres, d'un arbre d'un moteur a combustion interne

Publications (1)

Publication Number Publication Date
EP1913354A1 true EP1913354A1 (fr) 2008-04-23

Family

ID=36940099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06777659A Withdrawn EP1913354A1 (fr) 2005-07-28 2006-07-07 Procede de determination de caracteristiques de rotation propres aux cylindres, d'un arbre d'un moteur a combustion interne

Country Status (6)

Country Link
US (1) US20090183559A1 (fr)
EP (1) EP1913354A1 (fr)
JP (1) JP2009503478A (fr)
CN (1) CN101233398A (fr)
DE (1) DE102005035408A1 (fr)
WO (1) WO2007012555A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019279B4 (de) * 2007-04-24 2017-07-27 Robert Bosch Gmbh Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine
ATE528190T1 (de) * 2008-05-26 2011-10-15 Fiat Ricerche Steuersystem für ein mit einem halbautomatischen getriebe mit getrennten übersetzungen ausgestattetes fahrzeug
EP2128497B1 (fr) * 2008-05-28 2012-04-18 C.R.F. Società Consortile per Azioni Procédé pour la surveillance du changement de vitesses dans un véhicule à moteur doté d'une transmission à embrayage double
DE102008038746A1 (de) * 2008-08-12 2010-02-18 Bayerische Motoren Werke Aktiengesellschaft Tankentlüftungssystem für Brennkraftmaschinen in Kraftfahrzeugen
JP5622050B2 (ja) * 2011-04-18 2014-11-12 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
AT509381B1 (de) * 2011-05-09 2012-04-15 Avl List Gmbh Prüfstand für dynamische prüfaufgaben an verbrennungskraftmaschinen, sowie verfahren zum betreiben eines derartigen prüfstandes
DE102012209375A1 (de) * 2012-06-04 2013-12-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln einer physikalischen Größe in einem Stellgebersystem
US9677492B2 (en) * 2012-08-10 2017-06-13 Ford Global Technologies, Llc System and method for controlling a vehicle powertrain
SE538734C2 (sv) * 2014-05-30 2016-11-08 Scania Cv Ab Reglering av ett från en motor begärt moment
AT516669B1 (de) * 2014-11-24 2016-08-15 Ge Jenbacher Gmbh & Co Og Verfahren zur Steuerung einer Brennkraftmaschine
AT520536B1 (de) * 2017-12-29 2019-05-15 Avl List Gmbh Verfahren zum Schätzen eines inneren effektiven Drehmoments eines Drehmomentenerzeugers
DE102018115082A1 (de) * 2018-06-22 2019-12-24 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Kolbenmaschine und eine Kolbenmaschine
DE102019105055B4 (de) * 2019-02-28 2021-07-15 Mtu Friedrichshafen Gmbh Motorwellenanordnung, Brennkraftmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178628A (ja) * 1985-02-05 1986-08-11 Furuno Electric Co Ltd 軸馬力計
JPH02157457A (ja) * 1988-12-09 1990-06-18 Hitachi Ltd 内燃機関の気筒別トルク制御装置
US5182943A (en) * 1989-11-24 1993-02-02 Mitsubishi Denki K.K. Cylinder identification apparatus
JPH0868346A (ja) * 1994-08-26 1996-03-12 Yamaha Motor Co Ltd エンジンの角度センサ装置
NO300940B1 (no) 1994-09-26 1997-08-18 Frantz Karsten Smith Anordning for maling av torsjon pa roterende akslinger
DE4445684C2 (de) 1994-12-21 2000-06-21 Fraunhofer Ges Forschung Verfahren zur Ermittlung von Drehmomenten, Arbeiten und Leistungen an Verbrennungskraftmaschinen
JP3246328B2 (ja) * 1996-04-22 2002-01-15 トヨタ自動車株式会社 内燃機関における検出方法
JPH1151816A (ja) * 1997-08-01 1999-02-26 Ono Sokki Co Ltd エンジンの簡易状態モニタ装置
JP2000213408A (ja) * 1999-01-20 2000-08-02 Denso Corp 内燃機関の失火検出装置
JP2001003783A (ja) * 1999-06-22 2001-01-09 Mitsubishi Heavy Ind Ltd 内燃機関の燃料供給量制御システム、及び、内燃機関の燃料供給量制御方法
JP4135504B2 (ja) * 2003-01-08 2008-08-20 トヨタ自動車株式会社 内燃機関の制御装置
JP2004340878A (ja) * 2003-05-19 2004-12-02 Yamakatsu Electronics Industry Co Ltd エンジンの出力同定装置
US7954466B2 (en) * 2004-11-16 2011-06-07 Schaeffler Kg Process for adjusting the angular position of the camshaft of a reciprocating internal combustion engine relative to the crankshaft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007012555A1 *

Also Published As

Publication number Publication date
DE102005035408A1 (de) 2007-02-01
JP2009503478A (ja) 2009-01-29
WO2007012555A1 (fr) 2007-02-01
US20090183559A1 (en) 2009-07-23
CN101233398A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
EP1913354A1 (fr) Procede de determination de caracteristiques de rotation propres aux cylindres, d'un arbre d'un moteur a combustion interne
DE69617513T2 (de) Nichtlineare dynamische Transformation zur Korrektur einer torsionsschwingungsbehafteten Kurbelwellenbeschleunigung
DE102015209665B4 (de) Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
DE112014007304B3 (de) Fehlzündungs-Detektionssystem
DE4407167C2 (de) Verfahren zur Bestimmung von Betriebsparametern einer Brennkraftmaschine durch Auswerten der Drehzahlinformation
DE10257686A1 (de) Verfahren zum Anpassen der Charakteristik eines Einspritzventils
DE102006006303B3 (de) Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge
AT514725B1 (de) Verfahren und eine Vorrichtung zur Ermittlung des Vortriebsmoments
DE19859018A1 (de) Verfahren und Vorrichtung zur Zylindergleichstellung bei Brennkraftmaschinen
EP0763725A2 (fr) Procédé de détermination des différences entre les couples non-uniformes de cylindres dans un moteur à combustion à combustion interne et application du procédé
DE19733958A1 (de) Verfahren und Vorrichtung zur Korrektur von Toleranzen eines Geberrades
DE102016200190A1 (de) Verfahren und Funktionsüberwachungsvorrichtung zur Funktionsüberwachung einer Vorrichtung zur variablen Einstellung einer Zylinderverdichtung bei einem Hubkolben-Verbrennungsmotor
DE102009027822A1 (de) Verfahren zur Bestimmung einer Zylindervertrimmung
WO2001023735A1 (fr) Procede de reconnaissance de rates de combustion
DE102009013409A1 (de) Antriebsstrang
DE102007015654B4 (de) Verfahren und Vorrichtung zum Abgleichen eines Einspritzsystems einer Brennkraftmaschine
EP1574835B1 (fr) Méthode et dispositif de contrôle pour conditionner un signal de vitesse de rotation
DE102007019279B4 (de) Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19627540B4 (de) Verbrennungsaussetzererkennungsverfahren
DE602004009400T2 (de) Verfahren zur Bestimmung von Drehzahlschwankungen eines Motors
AT516669B1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102011007563A1 (de) Verfahren und Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems eines Kraftfahrzeugs
EP1058108B1 (fr) Méthode et appareil pour le diagnositic et la commande d'un moteur à combustion interne
DE3917905A1 (de) Verfahren zum optimieren des betriebs einer fremdgezuendeten kolbenbrennkraftmaschine, insbesondere eines otto-motors
DE102009015149A1 (de) Antriebsstrang und Verfahren zur Steuerung eines Antriebsstrangs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20091026

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111228