EP1911015A1 - Matrice active pour un dispositif d'affichage a cristal liquide - Google Patents

Matrice active pour un dispositif d'affichage a cristal liquide

Info

Publication number
EP1911015A1
EP1911015A1 EP06778108A EP06778108A EP1911015A1 EP 1911015 A1 EP1911015 A1 EP 1911015A1 EP 06778108 A EP06778108 A EP 06778108A EP 06778108 A EP06778108 A EP 06778108A EP 1911015 A1 EP1911015 A1 EP 1911015A1
Authority
EP
European Patent Office
Prior art keywords
line
pixel electrode
active matrix
electrode
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778108A
Other languages
German (de)
English (en)
Inventor
Hugues Lebrun
Thierry Kretz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1911015A1 publication Critical patent/EP1911015A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/062Waveforms for resetting a plurality of scan lines at a time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/065Waveforms comprising zero voltage phase or pause
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation

Definitions

  • the present invention relates to an active matrix for liquid crystal display devices.
  • bistable nematic liquid crystal display devices usually called BiNem® devices.
  • BiNem® devices bistable nematic liquid crystal display devices
  • the bistable nematic displays are used in various applications, and more particularly in nomadic applications.
  • mobile phones or handheld computers such as organizers, generally designated by the acronym PDA for Personal Digital Assistant, or the "electronic readers” French translation devoted to the Anglo-Saxon term e -book, more commonly used.
  • bistable nematic displays have the particularly interesting property of not requiring image refresh, which is very favorable for all these nomadic applications, for which we seek to minimize consumption. They offer a high image quality independent of the number of lines.
  • bistable nematic displays are mainly so-called passive matrix: each pixel is controlled directly by a line signal and a column signal.
  • the disadvantage of passive matrices is that the pixel of a column "sees" all the signals applied to each of the pixels of the column during the display time of an image. This makes the use of this technology problematic for large screens. In addition, switching is slow, rendering this technology unusable for video applications.
  • passive matrix displays are more particularly suitable for applications where the image changes little or slowly, and small sizes, typically for e-book type applications.
  • active matrix is meant a matrix structure of pixel electrodes, in which the addressing goes through a switching device associated with each pixel electrode. When a pixel is not addressed, the associated switching device isolates the pixel electrode line and column signals (to coupling problems with near parasitic capacitances).
  • the switching device may be a diode or a transistor.
  • This is advantageously a standard transistor type TFT (Thin Film Transistor), which uses a thin layer of amorphous silicon (a-Si).
  • a-Si amorphous silicon
  • these transistors have the advantage over the polycrystalline silicon transistor of having a zero or very low leakage current, which is a very important feature for maintaining the information on the TN-type pixels.
  • the active matrix comprising the pixel electrodes, the switching devices, the row and column conductors, is formed on a first substrate.
  • the display comprises in addition to the active matrix, a second substrate which forms the other pixel electrode, common to all the pixels and still called counter-electrode.
  • the second substrate is arranged so that a cavity is formed between the top of the active matrix and the second substrate.
  • the cavity is filled with liquid crystal with a composition and orientation of the molecules depending on the technology envisaged.
  • the pixel electrode and the counter-electrode then form the two frames of the pixel capacitance, and the bistable material which makes it possible to memorize the information is between the two plates.
  • FIG. 1 An active matrix structure for a bistable nematic display as described in the above-mentioned application is schematically illustrated in FIG.
  • the structure M of the active matrix conventionally comprises rn * p couples (pixel electrode 1, transistor 2) arranged in an array of m rows ri, ⁇ 2 , ... r m , and p columns coh, C0I 2 , ... p .
  • the transistor 2 associated with each pixel electrode 1 makes it possible to individually address a corresponding pixel of the screen by a line conductor and a column conductor.
  • the transistor 2 associated with each electrode 1 acts as a switching element. When it is controlled in the on state, it allows the application of a determined voltage level on the pixel electrode, allowing the display of a corresponding gray level on the pixel of the screen. When it is controlled in a non-on or off state, it isolates the pixel electrode from the rest of the array (at near parasitic capacitance couplings).
  • the transistor comprises two conduction electrodes, called drain d and source s, and a gate electrode g, by which the "on" or "off” state of the transistor is controlled.
  • the transistor is generally connected in the matrix structure as follows: a conduction electrode, for example the drain d, is connected to the pixel electrode.
  • the gate g of the transistor is controlled by the line selection signal applied to the associated line.
  • the other conduction electrode of the transistor, in the example the source s, is connected to the associated column.
  • the gates of all the transistors of the same line are all connected to this line, while the sources of all the transistors of the same column are all connected to this column.
  • a transistor When a transistor is set "on”, it switches the voltage applied by the column associated with its source s, on the drain d: thus the pixel electrode 1 is charged to a voltage level corresponding to a video data (gray level ) to display.
  • the pixel electrodes 1 are each controlled, via their associated transistor 2, by peripheral addressing circuits.
  • These addressing circuits typically comprise a line control circuit 3, more simply called line driver in the following, and a column control circuit 4 more simply called column driver in the following.
  • the line control circuit 3 applies voltage levels successively to the lines, in order to select them sequentially over a frame time.
  • circuit 4 of Column control applies appropriate voltage levels to the columns, in order to display a given gray level on each pixel of the selected line.
  • the control of the pixels of a bistable nematic screen assumes the use of high voltages if it is desired that the switching between the two stable states of the pixel is rapid.
  • These two stable states correspond to two different textures, a uniform texture and a twisted texture. They result from a judicious composition of the liquid crystal associated with orientation layers of different molecules on each side of the substrates (or plates) forming the cavity filled with liquid crystal.
  • the uniform texture is defined by a low angle of twist, close to 0 °, in the thickness of the pixel.
  • the twisted texture is defined by a strong twist angle close to 180 ° in the thickness of the pixel.
  • the shape of the electric field applied to the terminals of the pixel makes it possible to choose one or other of the two textures after a step of breaking the anchoring at a high electric field value, equivalent to a "reset" phase.
  • texture This reset phase is characterized by a determined breaking voltage level, and a duration of application.
  • one or the other texture is obtained according to the shape of the electric pulse applied.
  • the switching in one or the other stable state can be obtained by the shape of the falling edge of the electric pulse.
  • the uniform texture U can be obtained by slow-falling edge switching, for example by a step-like shape or by an analog downward voltage ramp from the breaking voltage level, which favors an elastic relaxation behavior. This elastic relaxation process causes the molecules to be all parallel without any twist angle, leading to the uniform texture U.
  • the pixel appears black on the display.
  • the twisted texture T can be obtained by a steep falling edge switching, from the breaking voltage level, which favors a dynamic process for modifying the orientation of the molecules, known by the Anglo-Saxon term "backflow".
  • the strong hydrodynamic flow of the liquid crystal molecules of the pixel results in a weak breakage of the molecules and an organization of the molecules with a twist angle of around 180 °. The pixel appears white on the display.
  • a display signal SD display (PI, P2) of a gray level on a bistable nematic display is illustrated in Figure 2.
  • PI a gray level on a bistable nematic display
  • P1 and P2 applied to the columns of the matrix during each line time.
  • the first level P1 corresponds to the breaking phase of the anchor. It is characterized by a duration ⁇ 1 and a determined voltage level VP1. This voltage level is in practice chosen greater than or equal to a break voltage defined for the technology, as a function of the application time ⁇ 1.
  • the second stage P2 corresponds to the phase of display (or writing) of the new texture. It is characterized by a duration ⁇ 2 and a voltage level VP2 lower than the voltage VP1 of anchor breaking.
  • the shape of the signal Sc is a function of the data to be displayed.
  • the sum ⁇ 1 plus ⁇ 2 gives the line time of the display, ie the time required to display the new display data on the pixels of a selected line of the matrix.
  • the difference (or height) of operation between the first bearing P1 and the second bearing P2 is a function of the texture that is to be obtained.
  • the slow falling edge necessary to obtain the uniform texture U is thus obtained by choosing a second bearing P2 lower, but not too distant from the first bearing.
  • the steep descending front needed to obtain the twisted texture T is obtained by choosing a second step P2 further away, therefore lower than in the previous case.
  • VP1 the voltage level of the first stage P1 and VP2, the variable voltage level of the second stage P2 of duration ⁇ 2, depending on the texture to be obtained.
  • VP2 is equal to VU ⁇ VP1, to control a uniform texture U (black display);
  • VP2 is equal to VT ⁇ VU ⁇ VP1, to control a twisted texture T (white display); and
  • VP2 is equal to an intermediate value VM, between VT and Vu (VT ⁇ VMj ⁇ Vu ⁇ VP1) for controlling a mixed texture M (U 1 TX in which the two textures U and T coexist (display of a level of Grey).
  • the voltage VP2 can thus take any value between the values Vu and VT, which are characteristics of the technology.
  • Vu and VT are characteristics of the technology.
  • VP2 VM- I
  • there appears a portion of twisted texture T in the uniform texture U: there is a mixed texture M (U, T) - ⁇ , corresponding to a determined gray level.
  • M (U, T) - ⁇ there is a mixed texture M (U, T) - ⁇ , corresponding to a determined gray level.
  • the intermediate gray levels are obtained by varying the voltage level VP2 of the second level between the extreme values Vu and VT.
  • Vu -VT ⁇ 3 volts the order of 3 volts between Vu and VT.
  • the double arrow going from the left to the right in FIG. 2 illustrates the increasing direction of this effect as a function of the voltage of the second stage.
  • the level of the anchoring breaking voltage VP1 is of the order of 15 to 18 volts for fairly long line times.
  • the display control signal SD (PI, P2) which has just been described in relation to FIG. 2 is applied to the columns, whereas a line selection signal is applied successively to each row of the matrix. , during the line time.
  • the display control signal has two distinct, successive signal components: a reset signal and a video signal.
  • the reset signal corresponds to the initial phase, anchoring break.
  • the video signal corresponds to a writing phase, or programming a new texture. These two signals have different voltage levels.
  • the addressing of a row of the matrix for displaying new data is as follows: the line is selected by applying a selection signal in the form of a voltage pulse, during the line time. This pulse is in fact applied to the gate g of each of the transistors of the line ( Figure 1). This pulse has a voltage level sufficient to put each of the transistors 2 of the line in the "on" state.
  • a display control signal is applied to each of the columns of the matrix, and thus to the source s of the transistors.
  • the gate voltage applied to the transistors of the selected line must be at least equal to the voltage applied to the columns increased by the threshold voltage Vth of the transistors (ie the minimum voltage applied between gate and drain, or gate and source, for that the transistor is conductive), to obtain that each transistor of the selected line switches almost without loss the display signal Sc on the associated pixel electrode.
  • Active matrices according to the state of the art have been developed more particularly for TN type liquid crystal displays, for “Twisted Nematics", or of the IPS type, for “In Play Switching", with line drivers and standard columns designed to support control voltage levels.
  • These row or column drivers are preferably integrated into the active matrix. They can be made on an external circuit. They receive the analog power supplies necessary to ensure the display of the video data they receive.
  • the line driver ensures the scanning of the lines, sequentially and the column driver ensures for each line, the application on the columns of the voltage levels to be applied to the pixel electrode to ensure the display of a corresponding data (gray level ) on each pixel of the line.
  • the high voltage column drivers are designed to deliver 13 volts, making it possible to obtain about 6 volts rms on the liquid crystal (alternating positive and negative).
  • the maximum voltage is 16.5 volts.
  • Standard line drivers are capable of outputting voltage levels from -10 volts to 30 volts, for example.
  • the range of voltages needed to control bistable nematic displays is compatible with the drivers of standard active matrices of the state of the art, TN or IPS.
  • bistable nematic displays with active matrix for video applications in particular.
  • the line time must be shorter, requiring to reduce the switching time of the pixels. This is to make the reset phase as short as possible.
  • the shorter the anchoring break phase the higher the breaking tension required. This is explained in particular in the aforementioned publication (see ⁇ 3.4 and FIG. 5 in particular) and in a more recent publication by Ivan Dozov et al. Recent Symposium Digest 32, 224 (2001).
  • the breaking voltage is then greater than 20 volts with the bistable nematic displays current.
  • a problem which then arises in the use of a standard active matrix, in combination with bistable nematic displays is that there is no compatibility of the range of voltages necessary to control these displays with the standard technology of the devices. column drivers active matrices.
  • the level of the breaking voltage is applied to the columns of the matrix, by the column driver 4 ( Figure 1). It has also been seen that the state-of-the-art line drivers are designed to apply amplitude gate voltage levels of up to 40 volts. On the other hand, the column drivers can not apply voltages of more than 16, 5 volts in the best case (standard IPS) on the drains (or sources) of the transistors of the matrix. It is therefore not possible to control voltages higher than 13 volts (TN drivers) or 16.5 volts (IPS drivers) on the columns of the matrix. These levels are insufficient to allow the anchor break on a sufficiently low line time, compatible with video applications.
  • the TFT transistors associated with the pixel electrodes are capable of supporting and switching a voltage greater than 20 volts, it is not possible to apply such voltages using standard state-of-the-art drivers. .
  • the voltages to be applied to the gates of the transistors, and the range [Vu, VT] of the voltage levels of the video signal to be applied be between 10 and 13 volts in practice, respectively corresponding to the twisted texture T and the uniform texture U , they do not fit in the standard specifications of the drivers of these matrices, it is not the same for the initialization component (bearing P1) of the display control signal SD (PI, P2) applied to the columns: it is indeed not possible to apply a breaking voltage of 20 volts and more by means of standard column drivers of the state of the art.
  • An object of the invention is to solve this technical problem.
  • An object of the invention is to provide an active matrix bistable nematic display structure that can be used with standard drivers (integrated or external) to apply high voltage levels to the pixel electrodes.
  • An object of the invention is to propose such an active matrix at a lower cost.
  • An object of the invention is to obtain an active matrix for a bistable nematic display device, essentially by modifying the drawings of the masks used for the manufacture of a standard active matrix for TN or IPS displays.
  • An idea underlying the invention is to start from a standard active matrix, and to modify the structure so that standard drivers can be used, and to apply the necessary control voltage levels to the pixel electrodes. , without degrading neither the reliability of the matrix nor that of the drivers.
  • the switching device associated with each pixel electrode comprises another switching element, for example another transistor, whose function is to ensure the breaking of the anchor point of the pixel.
  • This other switching element can be controlled by the line driver, which supports high voltages of the order of 40 volts, and connected to a specific power bus, to switch a breaking voltage of the order of 20 volts or more.
  • This breaking voltage is applied by the specific power bus and no longer by the column driver, which then exclusively serves to control the voltage levels corresponding to the video to be displayed, as for standard matrices TN or IPS.
  • the specific supply bus can be made by conductors which are added in the matrix structure, on the levels of conductive layers, or by functional conductive layers already provided in the matrix, but whose function can be deflected. , for the purposes of applying the level of breakage voltage.
  • These are typically the conductive functional layers provided in the active matrix structures as storage capacity. These layers can be diverted from their original function because the pixels of the bistable nematic displays do not require storage capacity to maintain the voltage level on the pixel electrode. Indeed, once the new texture is "written" in the pixel, it remains there indefinitely, as long as one does not break an anchor point.
  • it is possible to divert functional layers provided in the TN or IPS active matrices of the state of the art to achieve a specific power bus, for the breaking voltage, and at lower development cost.
  • the invention therefore relates to an active matrix for a liquid crystal display device, comprising pixel electrodes arranged in a crossed network of rows and columns, and associated with each pixel electrode, an electronic control device comprising a first switching element. connected between said pixel electrode and an associated column, a control electrode of said first switching element being connected to an associated line, characterized in that said control device comprises an initialization circuit of said pixel electrode comprising an initialization bus and a second switching element, connected between said pixel electrode and said initialization bus, and having a control electrode connected to a previous line of the network.
  • the invention applies to liquid crystal displays comprising such an active matrix, and in particular to a bistable nematic display.
  • FIG. 1 already described represents an active matrix structure for bistable nematic displays, according to the state of the art
  • FIG. 2 already described illustrates the display control of a pixel of a bistable nematic display
  • FIG. 3a illustrates a first embodiment of an active matrix according to the invention, with an initialization phase for each row of the matrix, corresponding to the breaking of the anchoring, performed on the addressing time of the previous line
  • FIG. 3b illustrates forms of electrical signals on the various conductors of the matrix of FIG. 3a
  • FIGS. 1 already described represents an active matrix structure for bistable nematic displays, according to the state of the art
  • FIG. 2 already described illustrates the display control of a pixel of a bistable nematic display
  • FIG. 3a illustrates a first embodiment of an active matrix according to the invention, with an initialization phase for each row of the matrix, corresponding to the breaking of the anchoring, performed on the addressing time of the previous line
  • FIG. 3b illustrates forms of electrical signals on
  • FIG. 3c and 3d each represent an alternative embodiment of an active matrix according to the invention
  • FIG. 4a illustrates another embodiment of an active matrix according to the invention
  • FIG. 4b represents corresponding electrical signals on the rows or columns of the matrix
  • FIG. 5 illustrates an active matrix of the state of the art, comprising a storage capacity bus under each row of pixel electrodes, and which can be used in the invention
  • FIG. 6a illustrates a first embodiment of an improvement of an active matrix according to the invention
  • Figure 6b shows corresponding electrical signals on the rows and columns of the matrix
  • Figures 6c and 6d each illustrate an alternative embodiment of the improvement
  • FIG. 7 illustrates another embodiment of the improvement of an active matrix according to the invention
  • FIG. 8 illustrates a variant of the control mode of a matrix structure according to FIG. 3a.
  • FIG. 3a illustrates a first example of an active matrix structure with standard transistors according to the invention, able to allow the application of very high voltage levels on the pixel electrodes without risk of breakdown of the transistors used.
  • Such a matrix structure used in a bistable nematic display then allows the use of the display in video applications, with line times less than 40 microseconds, which offers interesting prospects of opening the market of these displays.
  • a pixel electrode EPg associated in the matrix at line r, and column CoI j comprises an associated control device.
  • This device comprises, in the usual way, a switching element T connected between the column CoI j and the pixel electrode EP, j .
  • the control electrode g of this switching element T is connected to the line ⁇ .
  • the switching element is typically a transistor, of which a conduction electrode, the source s for example, is connected to the column, and whose other conduction electrode, the drain d for example, is connected to the pixel electrode .
  • the control device of each pixel electrode further comprises an initialization circuit of the pixel electrode on the previous line time.
  • this initialization circuit is a transistor-type switching element, T '.
  • This initialization transistor T ' is connected between a conductor connected to a specific Reset power bus, and the pixel electrode.
  • the source s' of the transistor T ' is connected to the pixel electrode EPg and the drain d 1 of the transistor T' is connected to the reset bus.
  • the gate g 1 of this initialization transistor is connected to a previous line, ⁇ . 1 in the example.
  • a corresponding pixel is formed between the pixel electrode EP g and a counter-electrode CE.
  • the selection of a line results in the application by the line driver 3 of a voltage level Vg 0n applied to this line.
  • the transistors, whose gate is connected to this line are then in the "on” state, equivalent to a short circuit.
  • the deselection of this line results in a Vg Off voltage level applied on this line.
  • the transistors of a deselected line are then in the off state "off", equivalent to an open circuit.
  • the transistors T 'associated with the pixel electrodes EPi j of the line ⁇ , and whose gates are connected to the previous line r h1 , are set to "on" on the previous line time tl h1 , c is when the line ⁇ .i is selected. They are in the "off” state otherwise, in particular, they are in the "off” state on the line time.
  • the transistors T are the ones in the "on” on the line time tl ,, and "off 1 on the other line time.
  • the Reset bus is raised to a Vreset DC voltage level greater than or equal to the anchor breaking voltage of the liquid crystal molecules.
  • the transistor T goes to the "on" state, it transfers the level of voltage Vreset on the pixel electrode EP, tJ on the line time N 1- - I 1 at Vg on -Vth which must be greater than the breaking voltage.
  • line time is meant the addressing time of a line, during which the line driver applies a selection signal on this line, which has the effect of making all the switching elements T this line. All other lines are deselected during this line time.
  • the line driver applies on the line time t1, of the line ⁇ , a voltage level Vg 0n which passes all the transistors T of this line.
  • the line driver applies a voltage level Vg Off , so that all transistors are off or off.
  • the transistor T then switches the voltage VD, applied to its source, by the associated column CoI j . is without losses because VD is at most equal to the voltage level for a uniform texture, or 13 volts in the state of the art, while the gate voltage Vg 0n is much higher, of the order of 20 volts and more.
  • the pixel electrode EP g connected to a transistor T of the selected line r therefore charges substantially at the voltage level VD, which is applied to the corresponding column CoI j on the line time t1.
  • This voltage level typically corresponds to the data to be displayed.
  • the Vreset initialization voltage was of the order of 20 volts or greater than 20 volts, for line times compatible with video applications.
  • this voltage is applied by a specific bus, directly on the drain of the transistor T of the matrix, while the gate g 1 controlled by the line driver receives a higher voltage Vg 0n at the voltage Vreset of at least the threshold voltage Vth of the transistor T '.
  • the threshold voltage Vg 0n remains below 30 volts: it is therefore compatible with the gate control voltage range of the standard line drivers.
  • the video voltage levels applied by the column driver to the sources or drains of the transistors T vary between 13 volts, to control a uniform texture U, and 10 volts, to control a twisted texture T. These voltage levels are included in FIG. the range of control voltages provided by standard column drivers.
  • An active matrix as illustrated in FIG. 3a used with standard row and column drivers, integrated into the matrix or not, in a bistable nematic display, is thus able to allow the anchoring break and the display of the new video data for each of the pixels of a line r ,, on two separate line times: the anchoring break on the previous line time, tl, .i and the display of the new video data on the line time tl ,.
  • the control device of each pixel electrode comprising a transistor T and an initialisation circuit T "according to the invention thus makes it possible to simply obtain a two-stage signal form on the pixel electrode, as illustrated in FIG. the pixel electrodes EP U and EP, + i j .
  • This signal is compatible with the control of the pixels of a bistable nematic display. This is achieved by using a standard active matrix, with standard row and column drivers, for TN or IPS displays, by simply adding a transistor to the array. This is achieved simply by modifying the designs of the masks, without having to modify the steps of the standard manufacturing process. For a bistable nematic display, the addition of a transistor per pixel is not detrimental in terms of OAR, because ultra-portable devices that use such displays usually operate in reflective mode.
  • transistors T and T ' are each used in usual ranges of voltage.
  • the separation of anchoring break functions, and video display by different switching means, activated on different line times allows to apply voltage levels compatible with the technology, and with video applications.
  • the specific supply reset bus which brings the initialization voltage Vreset, to the drains or sources of the matrix initialization transistors, comprises a plurality of conductors arranged parallel to the columns. . In practice these conductors are made on the same level as the columns of the matrix, or on a separate level.
  • the conductors of the Reset supply bus are arranged parallel to the lines of the matrix. This is the variant shown in Figure 3c. It should be noted in this respect that there exist in the state of the art matrices which comprise for each pixel, a column, an address line and a storage capacity line. It is then easy to use these matrices of the state of the art by modifying the function of these storage lines, into a function of supplying a Vreset initialization voltage to the drains (or sources) of the transistors initialization T ', providing suitable connections between these lines and these drains (or sources).
  • the Reset supply bus is formed by a conductive functional layer F of a standard matrix, such as the buried ground plane 'Ground plane') usually used to form a storage capacity with each pixel electrode, in standard TN matrices in particular.
  • a functional layer is formed on a separate level of the pixel electrodes by at least one insulator layer, to form a parallel storage capacitance on the Cpixel pixel capacitance.
  • This functional layer may also be a layer of the "Light Shield” type, ie a screen which is commonly used in standard TN matrices in particular, to mask the light leaks due to the structure-induced field lines. .
  • It is generally a conductive and opaque layer, made of titanium in the form of a grid, and which can be either disposed under the active matrix (that is to say under the transistors) or between the level of the lines / columns (forming the drains / sources of the transistors) and the pixel electrodes.
  • This conductive layer is usually formed on a separate level of the pixel electrodes by at least one insulator layer and thus serves in these storage capacity structures for each pixel electrode. For the same reasons as above, this layer can therefore be advantageously used as a supply bus for supplying the initialization voltage Vreset to the drain (or the source) of each initialization transistor T '.
  • FIG. 4a Another embodiment of an initialization circuit according to the invention is shown in FIG. 4a.
  • the initialization circuit of the control device of a pixel electrode of a line r then comprises a diode D connected between the pixel electrode EP, j and the preceding line r, _i.
  • the diode D can be obtained typically by a transistor whose drain of (or source) and the gate g 1 are connected together, to the previous line r h1 .
  • the other conduction electrode of the transistor, the source s' in the example, is connected to the pixel electrode EP ,, j .
  • FIG. 4b shows the shape of the signal that can be obtained on the pixel electrode EP 1J , according to the signals applied to the rows and columns of the matrix during the different line times U 1 - I, t 1, t 1, + 1 , ... It is substantially identical to that illustrated in Figure 3b.
  • FIG. 5 illustrates an example of an active matrix described in the French patent application entitled "Active matrix structure for a display screen and screen comprising such a matrix” and recorded under the number 02 15484.
  • a matrix describes parallel buses. to the lines, and arranged under each row of pixel electrodes, and used as storage capacity.
  • Such a matrix can still be used to produce a matrix according to the invention.
  • Such a matrix is illustrated in FIG. 5. It includes storage capacity buses provided under each pixel electrode row.
  • Each pixel electrode EP 1 covers a large part of the surface framed by two lines and two successive columns. In the figure, the row R of pixel electrodes is flanked by the associated selection line, r h, and by the selection line r i of the immediately preceding row.
  • a bus of associated storage capacity B is provided below the row, of substantially the same width.
  • This bus B 1 is arranged in parallel, between the two selection lines r, and ⁇ .-i. It is connected to the selection line r, .i of the previous row. In the example shown, it is connected to this line, outside the active zone of the matrix, ZA, by its two ends.
  • This bus B forms a storage capacitor Cst with each pixel electrode EPi J of the row R 1.
  • this storage capacitance formed by the bus B 1 which is large, and which is connected to the preceding selection line r, i, is advantageously used to charge the pixel electrodes EPg of the line ⁇ , to the desired initialization voltage, typically at the Vreset initialization voltage. This is obtained by sizing the storage capacity (facing surface between the storage capacitor plane and the pixel electrode, the dielectric used and the dielectric thickness) so that the coupling offset is greater than the initialization voltage. sought.
  • the switching element T 'connected to the pixel electrode EP U of FIG. 3a is here replaced in an equivalent manner by the bus B 1 .
  • this bus forms a storage capacitor with this electrode EP 1J , a terminal of this capacitance being connected to the pixel electrode, the other terminal of the capacitor being formed by the conductive bus itself and connected to the preceding line ⁇ .i.
  • Switching the voltage Vg O ff to the voltage Vg 0n on the line rg causes the switching on the other terminal of the storage capacitor of a voltage equal to the coupling offset, of the order of the Vreset tension.
  • the previous line r, .i is at a level Vg 0n chosen greater than the initialization voltage Vreset.
  • the initialization circuit associated with each pixel electrode thus comprises the bus forming storage capacity with said electrode.
  • the matrix comprises for each line ⁇ , a conductive bus B 1 buried under the row of pixel electrodes of said line, and connected to the previous line r, .i .
  • This bus forms a storage capacity with each of the pixel electrodes of said line of rank i.
  • This storage capacity is sized to exceed a coupling offset higher than the Vreset initialization voltage.
  • the initialization circuit associated with each pixel electrode then comprises the bus forming storage capacity with said electrode.
  • each pixel electrode a form of two-level electrical signal: an initialization stage, allowing the break, a write stage of the new video data.
  • the pixel electrode remains at the second level until the next line time of the new video frame.
  • An improvement of the invention comprises a circuit for grounding the pixel electrodes of each line at the end of the line.
  • FIG. 6a A first embodiment of a matrix according to the invention comprising such a grounding circuit is shown in FIG. 6a.
  • the grounding circuit is another switching element, typically a transistor T ", connected between the pixel electrode EP U and a ground plane GP ground of the matrix, and activated on the time line following tl + i. to this end, the gate g "of the last transistor to ground T" is connected to the next line r, + i.
  • the voltage level of the pixel electrode EPi j is drawn on the line time t1, + i, from the video level VD, charged on the line time t1, towards the electrical ground (0 volts ).
  • the line time tl corresponds to a display cycle ⁇ v of the new video on these pixel electrodes.
  • the line time tl, + i corresponds to a grounding cycle ⁇ m of these pixel electrodes. From line to line, the three cycles ⁇ c , ⁇ v, ⁇ m succeed each other over three successive line times: the line time of the preceding line, the line time of the current line, the line time of the following line.
  • time lines are in the example immediately successive, choice that facilitates the design, but it is quite possible that these times lines are separated by several times lines.
  • FIG. 6a there is a control device with three transistors: the transistor T for charging the video, the initialization transistor T 'and the grounding transistor T.
  • the switching transistor to earth is connected to a ground plane GP
  • the initialization transistor T ' is connected to a bus or a different conductive plane, which is brought to the voltage Vreset.
  • Vreset is thus brought by a supply reset bus, comprising conductors parallel to the columns (which corresponds to the embodiment of FIG. 3a).
  • the Vreset voltage is brought by a screen-type conductive plane ( "Light Shield") LS (which corresponds to the embodiment explained in relation to FIG. 3d).
  • the grounding transistor T is connected to a conductive functional layer F of the matrix, which is grounded. by the parasitic capacitance line / pixel C p ⁇ xe ⁇ / ⁇ r, illustrated in Figure 4a. in order to ensure the discharge of the pixel electrode, the value of the capacitance is adapted to ensure at least the passage under the torsional threshold voltage from the pixel to the deselection of the line.
  • the grounding can be obtained by the natural clearance of the leakage currents of the first switching element (T) and / or the second switching element of the control device of each pixel electrode, when these transistors are polycrystalline, monocrystalline, polymorphic or organic.
  • FIG. 7 illustrates another embodiment of a circuit for grounding in a matrix according to the invention, according to which a current of leakage of the spacers e is used which is usually used in the cavity comprising the liquid crystals of a display .
  • one or more spacers are arranged on each electrode. These spacers are in contact with the pixel electrode and the counter electrode CE. Then there is a leakage current in each spacer that will draw the pixel electrode to the potential of the counter-electrode (typically the mass).
  • These spacers are in a chosen material with a conductivity determined sufficiently high not to disturb the charge of the pixel but low enough to obtain the discharge after a few times line.
  • FIG. 8 illustrates yet another embodiment of the circuit for grounding in a matrix according to the invention, with a matrix according to any of the embodiments illustrated in FIGS. 3a, 3b, 3c, 3d, 4a, or 5 , or a variant that follows, in combination with an appropriate command of the power supplies on the column driver 4 at the end of each line time, that is to say just before the end of the line time, because it is necessary here that the line is still selected.
  • the grounding of the pixel electrodes of a line is thus obtained by controlling on the columns, a return to zero at the end of each line time.
  • a return to zero at the end of each line time For example on the line time tl h on each column, for example on the col column, first the video voltage level to be displayed VD 1 , then the level 0. This is good.
  • This is obtained by providing at the level of the control circuit of the columns (column driver), or via an independent circuit controlled appropriately, a grounding of the analog voltages just before the end of each line time. (the line must still be selected).
  • the transistors of the matrix T and T '(or D), or T, T' and T "according to the variant embodiments, may be TFT transistors, whose channel is made of silicon amorphous, and which have the advantage of not being the seat of leakage currents. This is an important parameter for TN or IPS displays.
  • a bistable nematic display comprising an active matrix according to the invention with row or column drivers, integrated or not, standard, can thus be controlled with line times less than 40 microseconds, which makes it usable for many applications, with all the advantages offered by bistable nematic technology at a lower cost.
  • the pixel electrode and the counterelectrode form the two frames of the pixel capacitance, and the bistable material which stores the information is between the two frames.
  • the invention that has just been described applies by equivalence to matrix memory devices, to at least two stable states, such as memories of ROM, RAM, CCD .... type, in which the bistable material is included. between the two frames of information storage capacity.
  • the pixel electrode is to be understood as an armature of this capacitance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

Une matrice active pour un dispositif d'affichage à cristal liquide, comprend des électrodes pixels arrangées selon un réseau croisé de lignes et colonnes. Associé à chaque électrode pixel, un dispositif électronique de commande est prévu comprenant un premier élément de commutation (T) connecté entre ladite électrode pixel (Ep<SUB>i,j</SUB>) et une colonne (col<SUB>j</SUB>) associée, une électrode de commande (g) dudit premier élément de commutation (T) étant connectée à une ligne (r<SUB>i</SUB>) associée. Le dispositif de commande comprend un circuit d'initialisation de ladite électrode pixel comprenant un deuxième élément de commutation (T'), connecté à ladite électrode pixel (EP<SUB>i,j</SUB>), et dont une électrode de commande (g') est connectée à une ligne précédente (r<SUB>i-1</SUB>) du réseau. Application aux afficheurs nématiques bistable à matrice active.

Description

MATRICE ACTIVE POUR UN DISPOSITIF D'AFFICHAGE À CRISTAL LIQUIDE
La présente invention concerne une matrice active pour des dispositifs d'affichage à cristal liquide.
L'invention s'applique en particulier à des dispositifs d'affichage à cristal liquide nématique bistable, dénommés habituellement dispositifs BiNem®. Dans la suite nous parlerons d'afficheur nématique bistable. Les afficheurs nématiques bistables sont utilisés dans diverses applications, et plus particulièrement dans les applications dites nomades. On peut citer entre autres exemples, les téléphones portables ou les ordinateurs de poche tels que les organiseurs, généralement désignés par l'acronyme anglais PDA pour Personal Digital Assistant, ou encore les "liseurs électroniques" traduction française consacrée pour le terme anglo-saxon e-book, plus couramment employé.
Ces afficheurs nématiques bistables ont en effet la propriété particulièrement intéressante de ne pas nécessiter de rafraîchissement d'image, ce qui est très favorable pour toutes ces applications nomades, pour lesquelles on cherche à réduire au minimum la consommation. Ils offrent une grande qualité d'image indépendante du nombre de lignes.
Ces afficheurs nématiques bistables sont principalement à matrice dite passive : chaque pixel est commandé directement par un signal ligne et un signal colonne. L'inconvénient des matrices passives est que le pixel d'une colonne "voit" tous les signaux appliqués à chacun des pixels de la colonne, pendant le temps d'affichage d'une image. Ceci rend problématique l'utilisation de cette technologie pour des grands écrans. En outre, la commutation est lente, ce qui rend cette technologie inutilisable pour des applications vidéo.
Ainsi, ces afficheurs à matrice passive sont-ils plus particulièrement adaptés à des applications où l'image change peu ou lentement, et des petites tailles, typiquement pour des applications de type e-book.
Pour ces différentes raisons, on a cherché à utiliser des matrices actives avec de tels afficheurs. On entend par matrice active une structure matricielle d'électrodes pixel, dans laquelle l'adressage passe par un dispositif de commutation associé à chaque électrode pixel. Lorsqu'un pixel n'est pas adressé, le dispositif de commutation associé isole l'électrode pixel des signaux lignes et colonnes (aux problèmes de couplage par capacités parasites près).
Le dispositif de commutation peut-être une diode ou un transistor. Il s'agit de façon avantageuse d'un transistor standard de type TFT (Thin Film Transistor), qui utilise une couche mince de silicium amorphe (a-Si). En effet, ces transistors ont comme avantage par rapport au transistor en silicium polycristallin, d'avoir un courant de fuite nul ou très faible, ce qui est une caractéristique très importante pour maintenir l'information sur les pixels de type TN. La matrice active comprenant les électrodes pixel, les dispositifs de commutation, les conducteurs lignes et colonnes, est réalisée sur un premier substrat.
L'afficheur comprend en plus de la matrice active, un deuxième substrat qui forme l'autre électrode pixel, commune à tous les pixels et encore appelée contre-électrode. Le deuxième substrat est disposé en sorte qu'une cavité est formée entre le dessus de la matrice active et le deuxième substrat. La cavité est remplie de cristal liquide avec une composition et une orientation des molécules fonction de la technologie envisagée. L'électrode pixel et la contre-électrode forment alors les deux armatures de la capacité pixel, et le matériau bistable qui permet de mémoriser l'information est entre les deux armatures.
Un afficheur à cristaux liquides du type nématique bistable et à matrice active est décrit dans la demande de brevet français ayant pour titre :
"Procédé et dispositif perfectionnés d'affichage à cristal liquide nématique bistable", enregistrée sous le n° 02 14806 et déposée par la société
Nemoptic. On obtient un afficheur (écran) du type AMLCD (Active Matrix
Liquid Crystal Display).
Une structure de matrice active pour afficheur nématique bistable tel que décrit dans la demande précitée, est illustrée schématiquement sur la figure 1.
La structure M de la matrice active comprend de manière habituelle rn*p couples (électrode pixel 1 , transistor 2) arrangés en un réseau de m lignes r-i, \2, ... rm, et de p colonnes coh, C0I2, ...colp. Le transistor 2 associé à chaque électrode pixel 1 permet d'adresser individuellement un pixel correspondant de l'écran par un conducteur ligne et un conducteur colonne.
Dans la suite on entend par "ligne" ou "colonne" indifféremment le conducteur, au sens électrique, ou la ligne ou la colonne au sens arrangement matriciel.
Le transistor 2 associé à chaque électrode 1 agit comme un élément de commutation. Quand il est commandé à l'état passant, il permet l'application d'un niveau de tension déterminé sur l'électrode pixel, permettant l'affichage d'un niveau de gris correspondant sur le pixel de l'écran. Quand il est commandé à l'état non passant ou bloqué, il isole l'électrode pixel du reste de la matrice (aux couplages par capacités parasites près). Le transistor comprend deux électrodes de conduction, appelées drain d et source s, et une électrode de grille g, par laquelle on commande l'état "on" ou "off" du transistor.
Plus précisément, le transistor est généralement connecté dans la structure matricielle de la façon suivante : une électrode de conduction, par exemple le drain d, est connectée à l'électrode pixel. La grille g du transistor est commandée par le signal de sélection de ligne appliqué sur la ligne associée. L'autre électrode de conduction du transistor, dans l'exemple la source s, est connectée à la colonne associée.
Ainsi, les grilles de tous les transistors d'une même ligne sont toutes connectées à cette ligne, tandis que les sources de tous les transistors d'une même colonne sont toutes connectées à cette colonne. Quand un transistor est mis "on", il commute la tension appliquée par la colonne associée à sa source s, sur le drain d : on charge ainsi l'électrode pixel 1 à un niveau de tension correspondant à une donnée vidéo (niveau de gris) à afficher.
Les électrodes pixels 1 sont chacune commandées, via leur transistor 2 associé, par des circuits d'adressage périphériques. Ces circuits d'adressage comprennent typiquement un circuit 3 de commande ligne, appelé plus simplement driver ligne dans la suite, et un circuit 4 de commande colonne appelé plus simplement driver colonne dans la suite. Le circuit 3 de commande ligne applique des niveaux de tension successivement sur les lignes, dans le but de les sélectionner séquentiellement sur un temps trame. Sur chaque temps ligne, le circuit 4 de commande des colonnes applique des niveaux de tension appropriés sur les colonnes, dans le but d'afficher un niveau de gris donné sur chaque pixel de la ligne sélectionnée.
La commande des pixels d'un écran nématique bistable suppose l'utilisation de tensions élevées si on veut que la commutation entre les deux états stables du pixel soit rapide. Ces deux états stables, correspondent à deux textures différentes, une texture uniforme et une texture tordue. Elles résultent d'une composition judicieuse du cristal liquide associée à des couches d'orientation des molécules différentes sur chaque face des substrats (ou plaques) formant la cavité remplie de cristal liquide.
La texture uniforme se définit par un faible angle de twist, proche de 0°, dans l'épaisseur du pixel. La texture tordue se définit par un fort angle de twist proche de 180° dans l'épaisseur du pixel.
Ces deux textures sont caractérisées par l'existence de deux points d'ancrage des molécules, un ancrage sur chacune des plaques formant la cavité contenant le cristal liquide, chacune étant revêtue à cet effet d'une couche d'orientation différente appropriée. Un point d'ancrage est très fort, et peu perturbé par l'application d'un champ électrique. L'autre point d'ancrage est faible. Cet ancrage faible peut être rompu quand un fort champ électrique est appliqué. Ainsi la seule façon de passer d'un état stable à un autre, est d'apporter de l'énergie sous forme d'une impulsion électrique, qui a pour effet de casser le point d'ancrage faible. Ensuite, selon la forme de l'impulsion, les molécules s'organisent dans l'épaisseur du pixel dans l'un des deux états stables. On trouvera de plus amples détails sur cette technologie et ses principes dans les publications suivantes de Ivan N. Dozov et al, "Fast bistable nematic display from coupled surface anchoring breaking", SPIE Proceedings Vol.3015, pp.61-69 (0-8194-2426-9, 214 pages Published 1997) et "Ultra low power bright reflective displays using Binem® technology fabricated by standard manufacturing equipmenf, SID Symposium Digest of Technical Papers - May 2002 -- Volume 33, Issue 1 , pp. 30-33.
Ainsi, la forme du champ électrique appliqué aux bornes du pixel permet de choisir l'une ou l'autre des deux textures après une étape de cassure de l'ancrage à une valeur de champ électrique élevée, équivalente à une phase de "reset" de la texture. Cette phase de reset se caractérise par un niveau de tension de cassure déterminé, et une durée d'application. Dans la phase suivante d'écriture, on obtient l'une ou l'autre texture selon la forme de l'impulsion électrique appliquée. En effet, la commutation dans l'un ou l'autre état stable peut être obtenue par la forme du front descendant de l'impulsion électrique. -la texture uniforme U peut être obtenue par une commutation à front descendant lent, par exemple par une forme à paliers ou par une rampe analogique de tension descendante depuis le niveau de tension de cassure, qui favorise un comportement de relaxation élastique. Ce processus de relaxation élastique entraîne les molécules à se mettre toutes parallèles sans aucun angle de twist, conduisant à la texture uniforme U. Le pixel apparaît noir sur l'afficheur.
-la texture tordue T peut être obtenue par une commutation à front descendant raide, depuis le niveau de tension de cassure, qui favorise un processus dynamique de modification de l'orientation des molécules, connu sous le terme anglo-saxon de "backflow". Le fort flux hydrodynamique des molécules à cristaux liquides du pixel entraîne une cassure de l'ancrage faible des molécules et une organisation des molécules avec un angle de twist de l'ordre de 180°. Le pixel apparaît blanc sur l'afficheur.
Selon l'état de l'art, on sait aussi afficher un niveau de gris, correspondant à une texture mixte, par une commutation à front intermédiaire, qui conduit à une coexistence des deux textures dans l'épaisseur du pixel, dans une proportion variable, en fonction du niveau de gris à afficher.
Un signal de commande d'affichage SD(PI ,P2) d'un niveau de gris sur un afficheur nématique bistable est illustré sur la figure 2. Un tel signal est notamment décrit dans la demande de brevet français précitée (FR 02 14806). C'est un signal à deux paliers, P1 et P2, appliqué sur les colonnes de la matrice pendant chaque temps ligne. Le premier palier P1 correspond à la phase de cassure de l'ancrage. Elle est caractérisée par une durée τ1 et un niveau de tension VP1 déterminé. Ce niveau de tension est en pratique choisi supérieur ou égal à une tension de cassure définie pour la technologie, en fonction du temps d'application τ1.
Le deuxième palier P2 correspond à la phase d'affichage (ou d'écriture) de la nouvelle texture. Elle est caractérisée par une durée τ2 et un niveau de tension VP2 inférieur à la tension VP1 de cassure d'ancrage. Ainsi, sur chaque colonne, la forme du signal Sc est fonction de la donnée à afficher.
La somme τ1 plus τ2 donne le temps ligne de l'afficheur, c'est à dire le temps nécessaire pour afficher les nouvelles données d'affichage sur les pixels d'une ligne sélectionnée de la matrice.
La différence (ou hauteur) de marche entre le premier palier P1 et le deuxième palier P2 est fonction de la texture que l'on veut obtenir.
Le front descendant lent nécessaire pour obtenir la texture uniforme U est ainsi obtenu en choisissant un deuxième palier P2 plus bas, mais pas trop distant du premier palier.
Le front descendant raide nécessaire pour obtenir la texture tordue T est obtenu en choisissant un deuxième palier P2 plus éloigné, donc plus bas que dans le cas précédent.
On note VP1 , le niveau de tension du premier palier P1 et VP2, le niveau de tension variable du second palier P2 de durée τ2, fonction de la texture à obtenir. VP2 est égal à VU<VP1 , pour commander une texture uniforme U (affichage du noir); VP2 est égal à VT < VU < VP1 , pour commander une texture tordue T (affichage du blanc); et VP2 est égal à une valeur intermédiaire VM, comprise entre VT et Vu (VT < VMj < Vu < VP1 ) pour commander une texture mixte M(U1TX dans laquelle les deux textures U et T coexistent (affichage d'un niveau de gris).
La tension VP2 peut ainsi prendre toute valeur comprise entre les valeurs Vu et VT, qui sont des caractéristiques de la technologie. Dans l'exemple illustré, pour VP2= VM-I , apparaît une portion de texture tordue T, dans la texture uniforme U : on a une texture mixte M(U, T)-ι, correspondant à un niveau de gris déterminé. Pour VP2=VM2<VMI , la portion de texture tordue T devient plus importante : on a une texture mixte M(U1T)2, correspondant à un niveau de gris déterminé, plus clair que le précédent.
Ainsi, les niveaux de gris intermédiaires sont obtenus en variant le niveau de tension VP2 du deuxième palier entre les valeurs extrêmes Vu et VT. Dans un exemple pratique, pour une technologie donnée de l'état de l'art, on dispose ainsi d'une plage de variation de l'ordre de 3 volts entre Vu et VT (Vu -VT ≈ 3 volts). Plus le niveau de tension du palier P2 devient proche de VT, plus l'effet "backflow" est important. La double flèche allant de la gauche vers la droite sur la figure 2 illustre le sens croissant de cet effet en fonction de la tension du deuxième palier.
Dans un exemple pratique, le niveau de la tension de cassure d'ancrage VP1 est de l'ordre de 15 à 18 volts pour des temps lignes assez longs.
Dans le cas d'une matrice active, ces tensions doivent être appliquées sur l'électrode pixel, via le transistor de commutation.
Le signal de commande d'affichage SD(PI , P2) que l'on vient de décrire en relation avec la figure 2 est appliqué sur les colonnes, tandis qu'un signal de sélection de ligne est appliqué successivement sur chaque ligne de la matrice, pendant le temps ligne. Le signal de commande d'affichage a deux composantes signal distinctes, successives : un signal de reset et un signal vidéo. Le signal de reset correspond à la phase initiale, de cassure d'ancrage. Le signal vidéo correspond à une phase d'écriture, ou de programmation d'une nouvelle texture. Ces deux signaux ont des niveaux de tension différents.
En pratique, l'adressage d'une ligne de la matrice en vue de l'affichage de nouvelles données se déroule comme suit : la ligne est sélectionnée par application d'un signal de sélection qui a la forme d'une impulsion de tension, pendant le temps ligne. Cette impulsion est en fait appliquée sur la grille g de chacun des transistors de la ligne (Figure 1). Cette impulsion a un niveau de tension suffisant à mettre chacun des transistors 2 de la ligne à l'état "on".
Un signal de commande d'affichage est appliqué sur chacune des colonnes de la matrice, et donc sur la source s des transistors.
La tension de grille appliquée sur les transistors de la ligne sélectionnée doit être au moins égale à la tension appliquée sur les colonnes augmentée de la tension de seuil Vth des transistors (ie la tension minimale appliquée entre grille et drain, ou grille et source, pour que le transistor soit conducteur), pour obtenir que chaque transistor de la ligne sélectionnée commute quasiment sans pertes le signal d'affichage Sc sur l'électrode pixel associée.
Les matrices actives selon l'état de l'art ont été plus particulièrement développées pour les écrans à cristaux liquide du type TN, pour "Twisted Nematics", ou du type IPS, pour "In Play Switching", avec des drivers lignes et colonnes standards conçus pour supporter les niveaux de tension de commande. Ces drivers ligne ou colonne sont de préférence intégrés à la matrice active. Ils peuvent être réalisés sur un circuit externe. Ils reçoivent les alimentations analogiques nécessaires à assurer l'affichage des données vidéo qu'ils reçoivent. Le driver ligne assure le balayage des lignes, séquentiellement et le driver colonne assure pour chaque ligne, l'application sur les colonnes des niveaux de tension à appliquer sur l'électrode pixel pour assurer l'affichage d'une donnée correspondante (niveau de gris) sur chaque pixel de la ligne. Dans le cas du standard TN, les drivers colonne haute tension sont prévus pour délivrer 13 volts, permettant d'obtenir environ 6 volts rms sur le cristal liquide (alternance positives et négatives). Pour une matrice active au standard IPS, la tension maximum atteint 16,5 volts. Les drivers lignes standards sont capables de délivrer en sortie des niveaux de tension de - 10 volts à 30 volts, par exemple.
Ainsi pour des temps lignes relativement longs, la gamme des tensions nécessaires pour commander des afficheurs nématiques bistables est compatible avec les drivers des matrices actives standard de l'état de l'art, TN ou IPS.
Dans l'invention, on s'intéresse à des afficheurs nématiques bistables à matrice active, pour des applications vidéo notamment. Pour ces applications vidéo, le temps ligne doit être plus court, nécessitant de réduire le temps de commutation des pixels. Il s'agit ainsi de rendre la phase de reset la plus courte possible. Or plus la phase de cassure d'ancrage est courte, plus la tension de cassure nécessaire doit être élevée. Ceci est notamment expliqué dans la publication précitée (voir §3.4 et figure 5 notamment) et dans une publication plus récente de Ivan Dozov et al "Récent improvements of bistable nematic displays switch by anchoring breaking" SID Symposium Digest 32, 224 (2001 ). Pour avoir un temps de commutation compatible avec un temps ligne de 50 microsecondes, ou moins (pour des applications vidéo, les temps lignes doivent être de 40 microsecondes ou moins), la tension de cassure est alors supérieure à 20 volts avec les afficheurs nématiques bistables actuels. Un problème qui se pose alors dans l'utilisation d'une matrice active standard, en combinaison avec des afficheurs nématiques bistables, est qu'il n'y a plus compatibilité de la gamme des tensions nécessaires pour commander ces afficheurs avec la technologie standard des drivers colonne des matrices actives.
En effet, on a vu que dans l'état de l'art, le niveau de la tension de cassure est appliqué sur les colonnes de la matrice, par le driver colonne 4 (figure 1). On a aussi vu que les drivers ligne de l'état de l'art sont conçus pour appliquer des niveaux de tension de grille d'amplitude pouvant aller jusqu'à 40 volts. Par contre, les drivers colonnes ne peuvent pas appliquer des tensions de plus de 16, 5 volts dans le meilleur cas (standard IPS) sur les drains (ou sources) des transistors de la matrice. Il n'est donc pas possible de commander des tensions supérieures à 13 volts (drivers TN) ou 16,5 volts (drivers IPS) sur les colonnes de la matrice. Ces niveaux sont insuffisants à permettre la cassure d'ancrage sur un temps ligne suffisamment faible, compatible avec des applications vidéo.
Ainsi, même si les transistors TFT associés aux électrodes pixel sont capables de supporter et de commuter une tension supérieure à 20 volts, il n'est pas possible d'appliquer de telles tensions en utilisant les drivers standards de l'état de l'art.
Si les tensions à appliquer sur les grilles des transistors, et la plage [Vu, VT] des niveaux de tension du signal vidéo à appliquer, soit entre 10 et 13 volts en pratique, correspondant respectivement à la texture tordue T et la texture uniforme U, entrent bien dans les spécifications standards des drivers de ces matrices, il n'en va pas de même pour la composante d'initialisation (palier P1 ) du signal de commande d'affichage SD(PI , P2) appliquée sur les colonnes : il n'est en effet pas possible d'appliquer une tension de cassure de 20 volts et plus au moyen de drivers colonne standards de l'état de l'art.
Or développer de nouveaux drivers spécifiques est toujours une opération longue et coûteuse.
Un objet de l'invention est de résoudre ce problème technique.
Un objet de l'invention est d'offrir une structure d'afficheur nématique bistable à matrice active utilisable avec des drivers standards (en intégré ou en externe) pour appliquer des niveaux de tension élevés sur les électrodes pixel. Un objet de l'invention est de proposer une telle matrice active à moindre coût.
Un objet de l'invention est d'obtenir une matrice active pour un dispositif d'affichage nématique bistable, essentiellement par modification des dessins des masques utilisés pour la fabrication d'une matrice active standard pour afficheurs TN ou IPS.
Une idée à la base de l'invention est de partir d'une matrice active standard, et d'en modifier la structure de manière à pouvoir utiliser des drivers standards, et d'appliquer les niveaux de tension de commande nécessaires sur les électrodes pixel, sans dégrader ni la fiabilité de la matrice, ni celle des drivers.
Selon l'invention, on prévoit que le dispositif de commutation associé à chaque électrode pixel, comprend un autre élément de commutation, par exemple un autre transistor, dont la fonction est d'assurer la cassure du point d'ancrage du pixel. Ainsi, on sépare dans le dispositif de commutation, la fonction reset et la fonction écriture d'une nouvelle texture. Cet autre élément de commutation peut être commandé par le driver ligne, qui supporte des hautes tensions de l'ordre de 40 volts, et connecté à un bus d'alimentation spécifique, pour commuter une tension de cassure de l'ordre de 20 volts ou plus. Cette tension de cassure est appliquée par le bus d'alimentation spécifique et non plus par le driver colonne qui sert alors exclusivement à commander les niveaux de tension correspondant à la vidéo à afficher, comme pour les matrices standards TN ou IPS.
Le bus d'alimentation spécifique peut être réalisé par des conducteurs que l'on ajoute dans la structure de la matrice, sur les niveaux de couches conductrices, ou par des couches conductrices fonctionnelles déjà prévues dans la matrice, mais dont on peut détourner la fonction, aux fins d'y appliquer le niveau de tension de cassure. Il s'agit typiquement des couches fonctionnelles conductrices prévues dans les structures de matrice active comme capacité de stockage. On peut détourner ces couches de leur fonction d'origine, car les pixels des afficheurs nématiques bistables ne nécessitent pas de capacité de stockage, pour maintenir le niveau de tension sur l'électrode pixel. En effet, une fois que la nouvelle texture est "écrite" dans le pixel, elle y reste indéfiniment, tant que l'on ne casse pas un point d'ancrage. On peut aussi utiliser l'écran de lumière de type "light shield" habituellement utilisé pour améliorer le taux d'ouverture OAR "Open Aperture Ratio". En effet, cet écran est généralement conducteur, pour améliorer la capacité de stockage. Ainsi, il est possible de détourner des couches fonctionnelles prévues dans les matrices actives TN ou IPS de l'état de l'art pour réaliser un bus d'alimentation spécifique, pour la tension de cassure, et ce à moindre coût de développement.
L'invention concerne donc une matrice active pour un dispositif d'affichage à cristal liquide, comprenant des électrodes pixels arrangées selon un réseau croisé de lignes et colonnes, et associé à chaque électrode pixel, un dispositif électronique de commande comprenant un premier élément de commutation connecté entre ladite électrode pixel et une colonne associée, une électrode de commande dudit premier élément de commutation étant connectée à une ligne associée, caractérisée en ce que ledit dispositif de commande comprend un circuit d'initialisation de ladite électrode pixel comprenant un bus d'initialisation et un deuxième élément de commutation, connecté entre ladite électrode pixel et ledit bus d'initialisation, et dont une électrode de commande est connectée à une ligne précédente du réseau.
L'invention s'applique à des afficheurs à cristaux liquides comportant une telle matrice active, et notamment à un afficheur de type nématique bistable.
D'autres avantages et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite à titre indicatif et non limitatif de l'invention et en référence aux dessins annexés, dans lesquels : la figure 1 déjà décrite, représente une structure de matrice active pour afficheur nématique bistable, suivant l'état de l'art; la figure 2 déjà décrite illustre la commande d'affichage d'un pixel d'un afficheur nématique bistable; la figure 3a illustre un premier mode de réalisation d'une matrice active selon l'invention, avec une phase d'initialisation pour chaque ligne de la matrice, correspondant à la cassure de l'ancrage, réalisée sur le temps d'adressage de la ligne précédente; la figure 3b illustre des formes de signaux électriques sur les différents conducteurs de la matrice de la figure 3a; les figures 3c et 3d représentent chacune une variante de réalisation d'une matrice active selon l'invention; la figure 4a illustre un autre mode de réalisation d'une matrice active selon l'invention ; la figure 4b représente des signaux électriques correspondant sur les lignes ou colonnes de la matrice; - la figure 5 illustre une matrice active de l'état de l'art, comprenant un bus de capacité de stockage sous chaque rangée d'électrodes pixel, et qui peut être utilisée dans l'invention ; la figure 6a illustre un premier mode de réalisation d'un perfectionnement d'une matrice active selon l'invention; la figure 6b représente des signaux électriques correspondant sur les lignes et colonnes de la matrice; les figures 6c et 6d illustrent chacune une variante de réalisation du perfectionnement; - la figure 7 illustre un autre mode de réalisation du perfectionnement d'une matrice active selon l'invention; et la figure 8 illustre une variante du mode de commande d'une structure de matrice suivant la figure 3a.
La figure 3a illustre un premier exemple d'une structure de matrice active à transistors standards selon l'invention, apte à permettre l'application de très hauts niveaux de tension sur les électrodes pixel, sans risque de claquage des transistors utilisés. Une telle structure de matrice utilisée dans un afficheur nématique bistable, permet alors l'utilisation de l'afficheur dans des applications vidéo, avec des temps ligne inférieurs à 40 microsecondes, ce qui offre des perspectives intéressantes d'ouverture du marché de ces afficheurs.
Une électrode pixel EPg associée dans la matrice à la ligne r, et à la colonne CoIj, comprend un dispositif de commande associé. Ce dispositif comprend de façon habituelle un élément de commutation T connecté entre la colonne CoIj et l'électrode pixel EP,j. L'électrode de commande g de cet élément de commutation T est connectée à la ligne η. L'élément de commutation est typiquement un transistor, dont une électrode de conduction, la source s par exemple, est connectée à la colonne, et dont l'autre électrode de conduction, le drain d par exemple, est connectée à l'électrode pixel.
Selon l'invention, le dispositif de commande de chaque électrode pixel comprend en outre un circuit d'initialisation de l'électrode pixel sur le temps ligne précédent. Dans le mode de réalisation représenté, ce circuit d'initialisation est un élément de commutation de type transistor, T'.
Ce transistor d'initialisation T' est connecté entre un conducteur relié à un bus d'alimentation spécifique Reset, et l'électrode pixel. Par exemple la source s' du transistor T' est connectée à l'électrode pixel EPg et le drain d1 du transistor T' est connecté au bus Reset. La grille g1 de ce transistor d'initialisation est connectée à une ligne précédente, η.1 dans l'exemple.
Si on considère un afficheur à cristal liquide utilisant une telle matrice, un pixel correspondant est formé entre l'électrode pixel EPg et une contre- électrode CE. Comme illustré sur la figure 3b, la sélection d'une ligne, par exemple la ligne η, se traduit par l'application par le driver ligne 3 d'un niveau de tension Vg0n appliqué sur cette ligne. Les transistors, dont la grille est connectée à cette ligne, sont alors à l'état passant "on", équivalent à un court-circuit. La désélection de cette ligne se traduit par un niveau de tension VgOff appliqué sur cette ligne. Les transistors d'une ligne désélectionnée, sont alors à l'état bloqué "off", équivalent à un circuit ouvert.
On comprend ainsi que les transistors T' associés aux électrodes pixels EPij de la ligne η, et dont les grilles sont connectées à la ligne précédente rh1, sont mis à l'état "on" sur le temps ligne précédent tlh1, c'est à dire quand la ligne η.i est sélectionnée. Ils sont à l'état "off' sinon. En particulier, ils sont à l'état "off sur le temps ligne tl,. Les transistors T sont eux à l'état "on" sur le temps ligne tl,, et "off1 sur les autres temps ligne.
Le bus Reset est porté à un niveau Vreset continu de tension supérieur ou égal à la tension de cassure d'ancrage des molécules de cristal liquide. Lorsque le transistor T passe à l'état "on", il transfère le niveau de tension Vreset sur l'électrode pixel EP,tJ sur le temps ligne N1--I 1 à hauteur de Vgon-Vth qui doit être supérieure à la tension de cassure.
Lorsque la ligne r, est ensuite sélectionnée, sur le temps ligne tlh le transistor T passe à l'état "off" (ligne r,_i désélectionnée) et le transistor T à l'état "on". L'électrode pixel EPy se charge par le transistor T au niveau de tension VD, appliqué dans le même temps tl, sur la colonne associée CoIj.
On entend par temps ligne, le temps d'adressage d'une ligne, pendant lequel le circuit de commande ligne (driver ligne) applique un signal de sélection sur cette ligne, qui a pour effet de rendre passant tous les éléments de commutation T de cette ligne. Toutes les autres lignes sont désélectionnées pendant ce temps ligne.
Ainsi, comme représenté sur la figure 3b, le driver ligne applique sur le temps ligne tl, de la ligne η, un niveau de tension Vg0n qui rend passants tous les transistors T de cette ligne. Sur les autres lignes, le driver ligne applique un niveau de tension VgOff, en sorte que tous les transistors soient non passants ou "off". VgOff est en pratique inférieur à la tension de seuil du transistor T. On peut avoir Vg0(T=O volt. Le transistor T commute alors la tension VD, appliquée sur sa source, par la colonne CoIj associée. Cette commutation se fait sans pertes car VD, est au maximum égal au niveau de tension pour une texture uniforme, soit 13 volts dans l'état de l'art, alors que la tension de grille Vg0n est bien supérieure, de l'ordre de 20 volts et plus.
L'électrode pixel EPg connectée à un transistor T de la ligne r, sélectionnée se charge donc sensiblement au niveau de tension VD, qui est appliqué sur la colonne CoIj correspondante sur le temps ligne tl,. Ce niveau de tension correspond typiquement à la donnée à afficher.
On retrouve sur l'électrode pixel EP1J une forme de signal à deux paliers s'étalant sur les temps lignes tl,.i et tl, _ Le premier palier correspond à une phase τc de cassure d'ancrage, et le second palier à une phase d'écriture τv de la nouvelle donnée vidéo. Une telle matrice selon l'invention commandée comme décrit en relation avec la figure 3b, et utilisée dans un afficheur nématique bistable permet donc la commande appropriée des pixels pour afficher les différents niveaux de gris, avec une commutation suffisamment rapide permettant d'envisager des applications vidéo, car la phase de cassure τc est réalisée sur un temps ligne précédent, et que les niveaux de tension appliqués sont compatibles avec la technologie standard TN ou IPS.
En effet, on a vu en relation avec la description d'un afficheur nématique bistable que la tension d'initialisation Vreset était de l'ordre de 20 volts ou supérieure à 20 volts, pour des temps ligne compatibles avec des applications vidéo. Dans l'invention telle qu'illustrée sur la figure 3a, cette tension est appliquée par un bus spécifique, directement sur le drain du transistor T de la matrice, alors que la grille g1 commandée par le driver ligne reçoit une tension Vg0n supérieure à la tension Vreset d'au moins la tension de seuil Vth du transistor T'. La tension de seuil Vg0n reste inférieure à 30 volts : elle est donc compatible avec la gamme de tension de commande de grille des drivers lignes standards.
Les niveaux de tension vidéo appliqués par le driver colonne sur les sources ou drains des transistors T, varient eux entre 13 volts, pour commander une texture uniforme U, et 10 volts, pour commander une texture tordue T. Ces niveaux de tension sont compris dans la gamme de tensions de commande fournies par les drivers colonne standard.
Une matrice active telle qu'illustrée sur la figure 3a utilisée avec des drivers ligne et colonne standards, intégrés à la matrice ou non, dans un afficheur nématique bistable, est ainsi apte à permettre la cassure d'ancrage et l'affichage de la nouvelle donnée vidéo pour chacun des pixels d'une ligne r,, sur deux temps ligne séparés : la cassure d'ancrage sur le temps ligne précédent, tl,.i et l'affichage de la nouvelle donnée vidéo sur le temps ligne tl,. Le dispositif de commande de chaque électrode pixel comprenant un transistor T et un circuit d'initialisation T" selon l'invention permet ainsi d'obtenir simplement une forme de signal à deux paliers sur l'électrode pixel, comme illustré sur la figure 3b pour les électrodes pixels EPU et EP,+ij.
Ce signal est compatible avec la commande des pixels d'un afficheur nématique bistable. Ceci est obtenu en utilisant une matrice active standard, avec des drivers ligne et colonne standards, pour afficheurs TN ou IPS, en ajoutant simplement un transistor dans la matrice. Ceci est obtenu simplement en modifiant les dessins des masques, sans avoir à modifier les étapes du procédé de fabrication standard. Pour un afficheur nématique bistable, l'ajout d'un transistor par pixel n'est pas préjudiciable en terme d'OAR, car les dispositifs ultra portatifs qui utilisent de tels afficheurs fonctionnent généralement en mode réflectif.
Par ailleurs, les transistors T et T' sont chacun utilisés dans des gammes habituelles de tension.
Ainsi, la séparation des fonctions de cassure d'ancrage, et d'affichage vidéo par des moyens de commutation différents, activés sur des temps lignes différents, permet d'appliquer des niveaux de tension compatibles avec la technologie, et avec des applications vidéo. Dans l'exemple représenté sur la figure 3a, le bus Reset d'alimentation spécifique, qui amène la tension d'initialisation Vreset, sur les drains ou sources des transistors d'initialisation de la matrice, comprend une pluralité de conducteurs disposés parallèlement aux colonnes. En pratique ces conducteurs sont réalisés sur le même niveau que les colonnes de la matrice, ou sur un niveau séparé.
On peut de manière similaire prévoir que les conducteurs du bus d'alimentation Reset sont disposés parallèlement aux lignes de la matrice. C'est la variante représentée sur la figure 3c. On notera à cet égard qu'il existe dans l'état de l'art des matrices qui comprennent pour chaque pixel, une colonne, une ligne d'adressage et une ligne de capacité de stockage. Il est alors facile d'utiliser ces matrices de l'état de l'art en modifiant la fonction de ces lignes de stockage, en une fonction d'amenée d'une tension d'initialisation Vreset sur les drains (ou sources) des transistors d'initialisation T', en prévoyant des connexions adaptées entre ces lignes et ces drains (ou sources).
Dans une autre variante de réalisation d'une matrice selon l'invention, comme illustré sur la figure 3d, le bus d'alimentation Reset est formé par une couche fonctionnelle conductrice F d'une matrice standard, tel que le plan de masse enterré Ç'Ground plane') habituellement utilisé pour former une capacité de stockage avec chaque électrode pixel, dans les matrices TN standards notamment. Une telle couche fonctionnelle est formée sur un niveau séparé des électrodes pixel par au moins une couche d'isolant, pour former une capacité de stockage en parallèle sur la capacité pixel Cpixel.
En effet, comme on l'a déjà expliqué, une telle capacité de stockage n'a pas d'utilité dans les afficheurs nématiques bistables, puisque les molécules, une fois orientées selon le mode texture uniforme ou tordue, restent dans cet état indéfiniment tant que l'ancrage faible n'est pas cassé.
Cette couche fonctionnelle peut encore être une couche de type "Light Shield", c'est à dire un écran qui est utilisé de façon courante dans les matrices standard TN notamment, pour masquer les fuites de lumière dues aux lignes de champ induites par la structure. C'est généralement une couche conductrice et opaque, en titane en forme de grille, et qui peut être soit disposée sous la matrice active (c'est à dire sous les transistors) ou entre le niveau des lignes/colonnes (formant les drains/sources des transistors) et les électrodes pixel. Cette couche conductrice est habituellement formée sur un niveau séparé des électrodes pixel par au moins une couche d'isolant et sert ainsi dans ces structures de capacité de stockage pour chaque électrode pixel. Pour les mêmes raisons que précédemment, on peut donc sans inconvénient utiliser cette couche, comme bus d'amenée de la tension d'initialisation Vreset sur le drain (ou la source) de chaque transistor d'initialisation T'.
Un autre mode de réalisation d'un circuit d'initialisation selon l'invention est représenté sur la figure 4a. Le circuit d'initialisation du dispositif de commande d'une électrode pixel d'une ligne r, comprend alors une diode D connectée entre l'électrode pixel EP,j et la ligne précédente r,_i .
La diode D peut être obtenue typiquement par un transistor dont le drain d' (ou la source) et la grille g1 sont connectés ensemble, à la ligne précédente rh1. L'autre électrode de conduction du transistor, la source s' dans l'exemple, est reliée à l'électrode pixel EP,,j. La figure 4b montre la forme du signal qui peut être obtenue sur l'électrode pixel EP1J, selon les signaux appliqués sur les lignes et colonnes de la matrice pendant les différents temps lignes U1--I , tl,, tl,+i, ... Elle est sensiblement identique à celle illustrée sur la figure 3b.
La figure 5 illustre un exemple de matrice active décrite dans la demande de brevet français ayant pour titre " Structure de matrice active pour écran de visualisation et écran comportant une telle matrice" et enregistrée sous le numéro 02 15484. Une telle matrice décrit des bus parallèles aux lignes, et disposés sous chaque rangée d'électrodes pixels, et utilisés comme capacité de stockage. Une telle matrice peut encore être utilisée pour réaliser une matrice selon l'invention. Une telle matrice est illustrée sur la figure 5. Elle comprend des bus de capacité de stockage prévus sous chaque rangée d'électrode pixel. Chaque électrode pixel EP1, couvre une grande partie de la surface encadrée par deux lignes et deux colonnes successives. Sur la figure, la rangée R, d'électrodes pixel est encadrée par la ligne de sélection associée, rh et par la ligne de sélection r,_i de la rangée immédiatement précédente.
Pour chaque rangée R, d'électrode pixel, un bus de capacité de stockage associé B, est prévu sous la rangée, sensiblement de même largeur. Ce bus B1 est disposé parallèlement, entre les deux lignes de sélection r, et η.-i. Il est connecté à la ligne de sélection r,.i de la rangée précédente. Dans l'exemple représenté, il est connecté à cette ligne, à l'extérieur de la zone active de la matrice, ZA, par ses deux extrémités.
Ce bus B, forme une capacité de stockage Cst avec chaque électrode pixel EPiJ de la rangée R,. Dans l'invention, on utilise avantageusement cette capacité de stockage formée par le bus B1, qui est grande, et qui est connectée à la ligne de sélection précédente r,.i, pour charger les électrodes pixel EPg de la ligne η, à la tension d'initialisation recherchée, typiquement à la tension d'initialisation Vreset. Ceci est obtenu en dimensionnant la capacité de stockage (surface en regard entre le plan de la capacité de stockage et l'électrode pixel, diélectrique utilisé et épaisseur du diélectrique) en sorte que l'offset de couplage soit supérieur à la tension d'initialisation recherchée.
Ainsi l'élément de commutation T' connecté à l'électrode pixel EPU de la figure 3a est ici remplacé de façon équivalente par le bus B1. En effet ce bus forme une capacité de stockage avec cette électrode EP1J, une borne de cette capacité étant connectée à l'électrode pixel, l'autre borne de la capacité étant formée par le bus conducteur lui même et connecté à la ligne précédente η.i. La commutation sur la ligne r,_-i de la tension VgOff à la tension Vg0n entraîne la commutation sur l'autre borne de la capacité de stockage d'une tension égale à l'offset de couplage, de l'ordre de la tension Vreset.
Ainsi, si on reprend la figure 3b, sur le temps ligne précédent tl,_-ι , la ligne précédente r,.i est à un niveau Vg0n choisi supérieur à la tension d'initialisation Vreset. Par couplage via le bus B1 qui est connecté à la rangée précédente r,_i, toutes les électrodes pixel de la rangée r, sont amenées à la tension d'initialisation Vreset. Le circuit d'initialisation associé à chaque électrode pixel, comprend ainsi le bus formant capacité de stockage avec ladite électrode.
Ainsi, plus généralement, selon un mode de réalisation de l'invention, la matrice comprend pour chaque ligne η, un bus conducteur B1 enterré sous la rangée d'électrodes pixel de ladite ligne, et connecté à la ligne précédente r,.i. Ce bus forme une capacité de stockage avec chacune des électrodes pixel de ladite ligne de rang i. Cette capacité de stockage est dimensionnée pour dépasser un offset de couplage supérieur à la tension d'initialisation Vreset. Le circuit d'initialisation associé à chaque électrode pixel, comprend alors le bus formant capacité de stockage avec ladite électrode.
L'invention qui vient d'être décrite permet d'appliquer sur chaque électrode pixel une forme de signal électrique à deux paliers : un palier d'initialisation, permettant la cassure, un palier d'écriture de la nouvelle donnée vidéo. L'électrode pixel reste au niveau du deuxième palier jusqu'au temps ligne suivant de la nouvelle trame vidéo.
Un perfectionnement de l'invention comprend un circuit de mise à la masse des électrodes pixel de chaque ligne en fin de temps ligne.
On a alors une forme de signal sur l'électrode pixel à trois paliers : le palier correspondant à la cassure d'ancrage, le palier correspondant à l'affichage de la nouvelle donnée vidéo (niveau de gris) et le palier de retour à la masse. Selon le brevet de la société Nemoptic précité, un tel mode de commande des électrodes pixel offre de meilleures performances.
Un premier mode de réalisation d'une matrice selon l'invention comprenant un tel circuit de mise la masse est représenté sur la figure 6a.
Dans ce mode de réalisation, le circuit de mise à la masse est un autre élément de commutation, typiquement un transistor T", connecté entre l'électrode pixel EPU et un plan de masse "ground plane" GP de la matrice, et activé sur le temps ligne suivant tl,+i. A cet effet, la grille g" de ce transistor de mise à la masse T" est connectée à la ligne suivante r,+i.
Comme illustré sur la figure 6b, le niveau de tension de l'électrode pixel EPij est tiré sur le temps ligne tl,+i, depuis le niveau vidéo VD, chargé sur le temps ligne t|, vers la masse électrique (0 volt). On a un fonctionnement en trois temps lignes, correspondant aux trois paliers de tension du signal commandé sur l'électrode pixel EP1J de la ligne r,
-Le temps ligne tl,.i, correspond à un cycle d'initialisation τc de ces électrodes pixels (qui permet la cassure d'ancrage)
-Le temps ligne tl,, correspond à un cycle d'affichage τv de la nouvelle vidéo sur ces électrodes pixels.
-Le temps ligne tl,+i, correspond à un cycle de mise à la masse τm de ces électrodes pixels. De ligne en ligne, se succèdent ainsi les trois cycles τc, τv, τm , sur trois temps lignes successifs : le temps ligne de la ligne précédente, le temps ligne de la ligne courante, le temps ligne de la ligne suivante.
Ces temps lignes sont dans l'exemple immédiatement successifs, choix qui facilite la conception, mais il est tout à fait possible que ces temps lignes soient séparés de plusieurs temps lignes.
Sur la figure 6a, on a un dispositif de commande à trois transistors : le transistor T pour charger la vidéo, le transistor T' d'initialisation et le transistor T" de mise à la masse. Dans l'exemple, le transistor de mise à la masse est connecté à un plan de masse enterré GP. Ceci suppose que le transistor d'initialisation T' soit connecté à un bus ou un plan conducteur différent, qui est lui porté à la tension Vreset. Sur la figure 6a, la tension Vreset est ainsi amenée par un bus Reset d'alimentation, comprenant des conducteurs parallèles aux colonnes (ce qui correspond au mode de réalisation de la figure 3a). Sur la figure 6c, la tension Vreset est amenée par un plan conducteur de type écran ("Light Shield") LS (ce qui correspond au mode de réalisation expliqué en relation avec la figure 3d).
Plus généralement, et comme illustré sur la figure 6d, le transistor T" de mise à la masse est connecté à une couche fonctionnelle conductrice F de la matrice, qui est portée à la masse. Le circuit de mise à la masse peut encore être réalisé par la capacité parasite ligne/pixel Cpιxeι/rι, illustrée sur la figure 4a. Pour assurer la décharge de l'électrode pixel, la valeur de la capacité est adaptée pour assurer au moins le passage sous la tension de seuil de torsion du pixel à la désélection de la ligne. Selon une autre réalisation, la mise à la masse peut être obtenue par le jeu naturel des courants de fuite du premier élément de commutation (T) et/ou du deuxième élément de commutation du dispositif de commande de chaque électrode pixel, quand ces transistors sont polycristallin, monocristallin, polymorphe ou organique.
La figure 7 illustre un autre mode de réalisation d'un circuit de mise à la masse dans une matrice selon l'invention, selon lequel on utilise un courant de fuite des espaceurs e habituellement utilisés dans la cavité comprenant les cristaux liquides d'un afficheur. Selon l'invention, on dispose un ou des espaceurs, sur chaque électrode. Ces espaceurs sont en contact avec l'électrode pixel et la contre-électrode CE. On a alors un courant de fuite dans chaque espaceur qui va tirer l'électrode pixel vers le potentiel de contre-électrode (typiquement la masse). Ces espaceurs sont dans un matériau choisi avec une conductivité déterminée suffisamment élevée pour ne pas perturber la charge du pixel mais suffisamment faible pour obtenir la décharge au bout de quelques temps ligne.
La figure 8 illustre encore un autre mode de réalisation du circuit de mise à la masse dans une matrice selon l'invention, avec une matrice selon l'une quelconque des réalisations illustrées aux figures 3a, 3b, 3c, 3d, 4a, ou 5, ou une variante qui en découle, en combinaison avec une commande appropriée des alimentations sur le driver colonne 4 en fin de chaque temps ligne, c'est à dire juste avant la fin du temps ligne, car il faut ici que la ligne soit encore sélectionnée.
La mise à la masse des électrodes pixels d'une ligne est ainsi obtenue en commandant sur les colonnes, un retour à zéro en fin de chaque temps ligne. Ainsi, sur chaque temps ligne, par exemple sur le temps ligne tlh on a sur chaque colonne, par exemple sur la colonne col,, d'abord le niveau de tension vidéo à afficher VD1, puis le niveau 0. Ceci est bien visible sur la figure 8. Ceci est obtenu en prévoyant au niveau du circuit de commande des colonnes (driver colonne), ou via un circuit indépendant commandé de façon appropriée, une mise à la masse des tensions analogiques juste avant la fin de chaque temps ligne (il faut que la ligne soit encore sélectionnée).
En pratique, dans l'invention qui vient d'être décrite, les transistors de la matrice T et T' (ou D), ou T, T' et T" selon les variantes de réalisation, peuvent être des transistors TFT, dont le canal est réalisé en silicium amorphe, et qui ont comme avantage de ne pas être le siège de courants de fuite. Ceci est un paramètre important pour les afficheurs TN ou IPS.
Pour des afficheurs nématiques bistables, où l'on n'est pas gêné par des courants de fuites, puisque le pixel garde l'information indéfiniment une fois la texture "écrite", on peut avantageusement utiliser des transistors de type polycristallin, microcristallin, polymorphe, voire organique. Dans ce cas, on a vu que la mise à la masse peut encore être obtenue simplement par le jeu des courants de fuite des transistors T et/ou T'qui vont décharger l'électrode pixel.
Les différents modes de réalisation vus pour le circuit d'initialisation et le circuit de mise à la masse se combinent entre eux. Les figures montrent certaines de ces combinaisons à titre d'exemples illustrant l'invention. L'invention ne se limite pas à ces seules combinaisons illustrées mais couvre toutes les variantes qui en découlent pour l'homme de l'art par application de ces connaissances normales.
Un afficheur nématique bistable comprenant une matrice active selon l'invention avec des drivers ligne ou colonne, intégrés ou non, standards, peut ainsi être piloté avec des temps lignes inférieurs à 40 microsecondes, ce qui le rend utilisable pour de nombreuses applications, avec tous les avantages qu'offrent la technologie nématique bistable, et ce à moindre coût. Dans un afficheur à cristal liquide, l'électrode pixel et la contre- électrode forment les deux armatures de la capacité pixel, et le matériau bistable qui permet de mémoriser l'information est entre les deux armatures. L'invention qui vient d'être décrite s'applique par équivalence à des dispositifs mémoire matriciels, à au moins deux états stables, tels que des mémoires de type ROM, RAM, CCD...., dans lesquels le matériau bistable est compris entre les deux armatures de la capacité de stockage de l'information. Dans ce contexte, l'électrode pixel est à comprendre comme une armature de cette capacité.

Claims

REVENDICATIONS
1. Matrice active pour un dispositif d'affichage à cristal liquide, comprenant des électrodes pixels arrangées selon un réseau croisé de lignes et colonnes, et associé à chaque électrode pixel, un dispositif électronique de commande comprenant un premier élément de commutation (T) connecté entre ladite électrode pixel (EP1 J) et une colonne (CoI1) associée, une électrode de commande (g) dudit premier élément de commutation (T) étant connectée à une ligne (r,) associée, caractérisée en ce que ledit dispositif de commande comprend un circuit d'initialisation de ladite électrode pixel comprenant un bus d'initialisation et un deuxième élément de commutation (T'), connecté entre ladite électrode pixel (EP,j) et ledit bus d'initialisation, et dont une électrode de commande (g1) est connectée à une ligne précédente (r,_i) du réseau.
2. Matrice active selon la revendication 1 , dans laquelle lesdits premier et deuxième éléments de commutation du dispositif électronique de commande sont des transistors.
3. Matrice active selon la revendication 1 ou 2, caractérisée en ce que ledit bus d'initialisation est un bus d'alimentation spécifique (Reset).
4. Matrice active selon la revendication 3, caractérisée en ce que ledit bus d'alimentation comprend une pluralité de conducteurs disposés parallèlement aux colonnes ou disposés parallèlement aux lignes.
5. Matrice active selon la revendication 3, caractérisée en ce que ledit bus d'alimentation est une couche fonctionnelle conductrice (F) transparente ou opaque de la matrice, formée sur un niveau séparé des électrodes pixel par au moins une couche d'isolant.
6. Matrice active selon la revendication 1 , du type comprenant pour chaque ligne (η) de rang i de la matrice, un bus conducteur (B,) enterré sous la rangée (R,) d'électrodes pixel de ladite ligne, et connecté à une ligne précédente (η.-i), ledit bus formant une capacité de stockage avec chacune des électrodes pixel de ladite ligne de rang i, caractérisée en ce que ledit bus conducteur (B,) forme le bus d'initialisation et ledit deuxième élément de commutation (T') du circuit d'initialisation associé à chaque électrode pixel (EPy), comprend le bus conducteur (B,) formant capacité de stockage avec ladite électrode, une borne de ladite capacité étant connectée à la dite électrode pixel, l'autre borne de la capacité étant formée par ledit bus conducteur, et connecté à ladite ligne précédente.
7. Matrice active selon la revendication 1 , caractérisée en ce que ledit deuxième élément de commutation est une diode (D).
8. Matrice active selon la revendication 7, caractérisée en ce que ladite diode est formée par un transistor, dont une électrode de conduction, drain (d1) ou source (s1), est connectée à la grille (g1), l'autre électrode de conduction étant connectée à l'électrode pixel (EP,j).
9. Matrice active selon l'une quelconque des revendications précédentes, comprenant en outre un circuit de mise à la masse de chaque électrode pixel (EP,j) .
10. Matrice active selon la revendication 9 du type comprenant une couche fonctionnelle conductrice (F), caractérisée en ce que ledit circuit de mise à la masse comprend un élément de commutation (T") connecté entre ladite électrode pixel (EPU) et ladite couche fonctionnelle, et dont une électrode de commande (g") est connectée à une ligne suivante (r,+i) dans la matrice, ladite couche fonctionnelle étant portée à la masse.
11. Matrice active selon la revendication 9, caractérisée en ce que ledit circuit de mise à la masse est formé par une capacité parasite de couplage (Cp,xeι/r,) entre chaque électrode pixel (EpM) et la ligne associée (r,), apte à assurer une décharge de ladite électrode pixel quand ladite ligne est désélectionnée.
12. Matrice active selon la revendication 9, caractérisée en ce que le premier élément de commutation (T) et/ou le deuxième élément de commutation (T') du dispositif de commande de chaque électrode pixel est un transistor polycristallin, monocristallin, polymorphe ou organique.
13. Afficheur à cristal liquide comprenant une matrice active selon la revendication 9, caractérisé en ce que ledit circuit de mise à la masse comprend des espaceurs (e) dans la cavité contenant les cristaux liquides, lesdits espaceurs (e) étant placés sur chaque électrode pixel, entre chaque électrode pixel et une contre-électrode CE, et ayant un courant de fuite apte à décharger l'électrode pixel sur quelques temps lignes.
14. Afficheur à cristal liquide comprenant une matrice active selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend un driver ligne (3) et un driver colonne (4) aptes à commander ledit circuit de commande associé à chaque électrode pixel (EP,j), ledit premier élément de commutation (T) étant activé par le driver ligne sur un temps d'adressage (tl,) de ladite ligne (r,), pour appliquer un niveau de tension (VD,) correspondant à un niveau de gris à afficher sur la dite électrode pixel (EPy)1 ledit niveau de tension étant appliqué sur la colonne associée sur ledit temps d'adressage (tl,) par le driver colonne (4), ledit deuxième élément de commutation (T') étant activé par le driver ligne sur un temps d'adressage (tl,.i) d'une ligne précédente (r,_i), pour appliquer un niveau de tension d'initialisation (Vreset).
15. Afficheur à cristal liquide comprenant une matrice active selon l'une quelconque 1 à 8, en combinaison avec la revendication 9, caractérisé en ce qu'il comprend un driver ligne (3) et un driver colonne (4) aptes à commander ledit circuit de commande associé à chaque électrode pixel (EP,j), ledit premier élément de commutation étant activé par le driver ligne sur un temps d'adressage (tl,) de ladite ligne (η), pour appliquer un niveau de tension (VD1) correspondant à un niveau de gris à afficher sur la dite électrode pixel (EPg), ledit niveau de tension étant appliqué sur la colonne associée sur ledit temps d'adressage (tl,) par le driver colonne (4), ledit deuxième élément de commutation étant activé par le driver ligne sur un temps d'adressage (tl,_i) d'une ligne précédente (ΓM), pour appliquer un niveau de tension d'initialisation (Vreset), et en ce que le driver colonne (4) tire toutes les colonnes à la masse en fin de chaque temps d'adressage d'une ligne, ladite ligne étant encore sélectionnée.
16. Afficheur selon la revendication 14, comprenant une matrice active selon l'une quelconque des revendications 9 à 12.
17. Afficheur selon l'une quelconque des revendications 13 à 16, de type nématique bistable.
EP06778108A 2005-08-02 2006-08-01 Matrice active pour un dispositif d'affichage a cristal liquide Withdrawn EP1911015A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508259A FR2889615B1 (fr) 2005-08-02 2005-08-02 Matrice active pour un dispositif d'affichage a cristal liquide
PCT/EP2006/064913 WO2007014953A1 (fr) 2005-08-02 2006-08-01 Matrice active pour un dispositif d'affichage a cristal liquide

Publications (1)

Publication Number Publication Date
EP1911015A1 true EP1911015A1 (fr) 2008-04-16

Family

ID=35965946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778108A Withdrawn EP1911015A1 (fr) 2005-08-02 2006-08-01 Matrice active pour un dispositif d'affichage a cristal liquide

Country Status (7)

Country Link
US (1) US20080158123A1 (fr)
EP (1) EP1911015A1 (fr)
JP (1) JP2009503595A (fr)
KR (1) KR20080032248A (fr)
FR (1) FR2889615B1 (fr)
TW (1) TW200720802A (fr)
WO (1) WO2007014953A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934919B1 (fr) * 2008-08-08 2012-08-17 Thales Sa Registre a decalage a transistors a effet de champ.
US20110164068A1 (en) * 2010-01-06 2011-07-07 Qualcomm Mems Technologies, Inc. Reordering display line updates
US8988409B2 (en) * 2011-07-22 2015-03-24 Qualcomm Mems Technologies, Inc. Methods and devices for voltage reduction for active matrix displays using variability of pixel device capacitance
KR102063130B1 (ko) 2013-04-16 2020-01-08 삼성디스플레이 주식회사 유기 발광 표시 장치
WO2018145123A1 (fr) * 2017-02-06 2018-08-09 Chromera, Inc. Affichages électro-optiques polymorphes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3581498D1 (de) * 1984-11-16 1991-02-28 Matsushita Electric Ind Co Ltd Aktive matrixschaltung fuer fluessigkristallanzeigen.
US4961630A (en) * 1989-03-15 1990-10-09 Ovonic Imaging Systems, Inc. Liquid crystal display with auxiliary pixel capacitance interconnected through substrate
JP3511409B2 (ja) * 1994-10-27 2004-03-29 株式会社半導体エネルギー研究所 アクティブマトリクス型液晶表示装置およびその駆動方法
FR2743658B1 (fr) * 1996-01-11 1998-02-13 Thomson Lcd Procede d'adressage d'un ecran plat utilisant une precharge des pixels circuit de commande permettant la mise en oeuvre du procede et son application aux ecrans de grandes dimensions
JP2001091975A (ja) * 1999-09-27 2001-04-06 Casio Comput Co Ltd 液晶表示素子及び液晶表示素子の駆動方法
JP2001166280A (ja) * 1999-12-10 2001-06-22 Nec Corp 液晶表示装置の駆動方法
FR2826766B1 (fr) * 2001-06-29 2003-10-31 Thales Avionics Lcd Matrice active de transistors en couches minces ou tft pour capteur optique ou ecran de visualisation
FR2848011B1 (fr) * 2002-12-03 2005-12-30 Thales Sa Structure de matrice active pour ecran de visualisation et ecran comportant une telle matrice
FR2849220B1 (fr) * 2002-12-20 2005-03-11 Thales Sa Procede de fabrication de cellules a cristaux liquides sur substrat silicium, et cellules correspondantes
FR2873227B1 (fr) * 2004-07-13 2006-09-15 Thales Sa Afficheur matriciel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007014953A1 *

Also Published As

Publication number Publication date
KR20080032248A (ko) 2008-04-14
FR2889615B1 (fr) 2008-06-06
JP2009503595A (ja) 2009-01-29
WO2007014953A1 (fr) 2007-02-08
US20080158123A1 (en) 2008-07-03
FR2889615A1 (fr) 2007-02-09
TW200720802A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
EP2013863B1 (fr) Ecran electroluminescent organique
EP1922584B1 (fr) Afficheur matriciel a cristaux liquides du type a matrice active
EP2439583B1 (fr) Afficheur a cristal liquide de type transmissif en technologie CMOS avec capacité de stockage auxiliaire
JP5031086B2 (ja) 液晶表示装置の駆動方法
EP2186081A1 (fr) Registre a decalage pour un ecran plat a matrice active
EP2721598B1 (fr) Afficheur a cristal liquide a electrodes d&#39;effacement
WO1997025716A1 (fr) Perfectionnement aux registres a decalage utilisant des transistors &#39;mis&#39; de meme polarite
EP0815552A1 (fr) Procede d&#39;adressage d&#39;un ecran plat utilisant une precharge des pixels, circuit de commande permettant la mise en oeuvre du procede et son application aux ecrans de grandes dimensions
FR2585167A1 (fr) Structures conductrices redondantes pour affichages a cristaux liquides commandes par des transistors a effet de champ en couche mince
FR2895804A1 (fr) Dispositif d&#39;affichage a cristaux liquides transflectif et son procede de fabrication.
EP1911015A1 (fr) Matrice active pour un dispositif d&#39;affichage a cristal liquide
WO2010015621A1 (fr) Registre a decalage a transistors a effet de champ
FR2863758A1 (fr) Cellule de commande electronique pour diode electroluminescente organique d&#39;afficheur a matrice active, procedes de fonctionnement et afficheur
EP0689721A1 (fr) Procede de fabrication de transistors a couches minces etages directs
EP0506528B1 (fr) Structure de commande matricielle pour écran de visualisation
FR2599171A1 (fr) Ecran de visualisation electrooptique et procede de realisation
EP0558418A1 (fr) Cellule mémoire non volatile du type métal-ferroélectrique semi-conducteur
FR2669759A1 (fr) Ecran plat a matrice active.
EP1567911B1 (fr) Structure de matrice active pour ecran de visualisation et ecran comportant une telle matrice
FR2615993A1 (fr) Procede et dispositif d&#39;elimination de couplage dans des ecrans a cristaux liquides a transistors en couches minces adresses matriciellement
US8665385B2 (en) Capacitive coupled non-volatile electronic display
FR2916295A1 (fr) Procede d&#39;adressage d&#39;un ecran matriciel a cristal liquide et dispositif appliquant ce procede
FR2532116A1 (fr) Transistor a couche mince et dispositif d&#39;affichage a cristaux liquides utilisant ce transistor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20090831

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

DAX Request for extension of the european patent (deleted)
18D Application deemed to be withdrawn

Effective date: 20120301