EP1909569A2 - Desinfektionsmittel enthaltend eine kombination biozider und ein keratolytikum - Google Patents

Desinfektionsmittel enthaltend eine kombination biozider und ein keratolytikum

Info

Publication number
EP1909569A2
EP1909569A2 EP06762454A EP06762454A EP1909569A2 EP 1909569 A2 EP1909569 A2 EP 1909569A2 EP 06762454 A EP06762454 A EP 06762454A EP 06762454 A EP06762454 A EP 06762454A EP 1909569 A2 EP1909569 A2 EP 1909569A2
Authority
EP
European Patent Office
Prior art keywords
chlorinated
chloro
biocidal
phenol
oocysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06762454A
Other languages
English (en)
French (fr)
Inventor
Gisela Greif
Robrecht Froyman
Claudio Ortiz
Gerd-Friedrich Renner
Otto Exner
Dietmar Schlegel
Rolf Matysiak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Bayer Healthcare AG
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare AG, Lanxess Deutschland GmbH filed Critical Bayer Healthcare AG
Publication of EP1909569A2 publication Critical patent/EP1909569A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/14Ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/02Local antiseptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the invention relates to a disinfectant containing a special combination of biocidal phenols and optionally phenol derivatives and a keratolytic.
  • the disinfectant is particularly suitable for controlling parasitic protozoa including their permanent forms.
  • Such disinfectants have e.g. particular importance in the control of coccidiosis in farm animals.
  • Eimeria tenella is the protozoan agent of poultry coccidiosis, a disease that has become an economically significant problem with the intensive keeping of chicks and chickens.
  • the infection of the animals begins after the uptake of sporulated OO cysts, which are carriers of the infectious unicellular sporozoites.
  • the sporozoites colonize intestinal cells in the protection of millions of times the multiplication of parasite stages takes place.
  • the pathology of a coccidiosis disease includes bloody diarrhea, which can cause great economic damage through reduced food intake and weight loss of chickens.
  • the chemotherapeutic treatment is carried out since 1970, especially with the polyether ionophores monensin, narasin, salinomycin and lasalocid.
  • the emergence of drug resistance is considered the biggest problem of the chemotherapeutic treatment.
  • the first sign of a resistance development is often the renewed increase in oocyst excretion.
  • Eimeria permanent stages the so-called oocysts, deposited with the feces of the animals and can persist along with fecal residues and feed components of floor coverings, wall surfaces, in wall cracks and holding devices and trigger new infections in animals used for a long period of time as a constant source of infection.
  • Eimeria oocysts can be infectious for up to one year after excretion. During this period, the carryover of oocysts by persons or animals into neighboring poultry houses is an additional burden.
  • Eimeria tenella oocysts have a size of 24.5-18.3 ⁇ m and are formed millions of times in the intestinal cells of infected animals following the asexual multiplication cycles.
  • a female Macrogamont is fertilized by a male microgamete and forms the zygote, which surrounds itself with two typical layers: a smooth outer layer, which forms after fusion of the WFI ("wall forming body I) and an inner layer, which after fusion of the Forming body WFII ("wall forming body II) is created.
  • WFI wall forming body I
  • WFII wall forming body II
  • sporulation begins: from the undifferentiated sporonts, four sporocysts, each containing two sporozoites, are formed via a reduction division. The sporulation lasts for Eimeria tenel- Ia usually 2-3 days. Only after graduation is the oocyst infectious.
  • both oocyst walls are of a marked biochemical-physiological resistance and provide an effective protective barrier to the survival of parasitic germs outdoors.
  • the outer oocyst wall is composed of phospholipids, long-chain alcohols and triglicerides
  • the inner layer consists of glycoproteins, which are stabilized by disulfide bridges.
  • the major 12-14 kDa oocyst wall protein contains serine, tyrosine and threonine amino acids and is linked to carbohydrates. These proteins give the oocyst great structural stability against heat or cold.
  • the lipids of the outer layer cause the high chemical resistance.
  • oocysts are killed in the laboratory at temperatures of 60-100 0 C in a few minutes, but the disinfecting effect of hot water under practical conditions in the barn is usually low because the water on the stable floor cools down too quickly. Even with high-pressure cleaning only a partial disinfection is achieved at low exposure times. Even against cold, the oocysts have a considerable resistance. Even after freezing at -25 ° C for 14 days, Eimeria oocysts survive and remain infectious. Drying achieves some degree of damage, but the method of disinfection has proven to be less reliable.
  • Eimeria oocysts are 100 times more resistant than bacteria. Even with con- concentrations of> 5% and an exposure time of 120 min, the infectivity of the oocysts is not lost. Occasionally ammonia (NH 3 ) is successfully used in Eastern European countries with a contact time of 24 hours, but at the same time the odor nuisance of an ammonia-saturated atmosphere is very high.
  • NH 3 ammonia
  • Ethanol (70-90%) and formaldehyde have no practical effect on the resistant oocysts of Eimeria species.
  • WO 94/17661 describes a disinfectant with parasiticidal activity which contains one or more phenols in combination with keratolytically active organic acids, ethylene glycol dialkyl ethers and sodium or potassium alkyl sulfonates or sulfates.
  • Antiparasitic disinfectants are administered in Germany according to the guidelines of the German Veterinary Society (DVG) on oocysts of Eimeria tenella in the suspension process. - A - such (lysis test) and in the infection test on chicken chicks tested for efficacy. Eimeria tenella oocysts, strain "Houghton", are considered to be particularly resistant and therefore recommended as test organisms.
  • DVG German Veterinary Society
  • the invention therefore relates to:
  • Biocidal phenols are understood as meaning those phenol compounds which carry a free OH group and have a biocidal action. These phenols can carry further ring substituents, such as, for example, halogens, in particular chlorine, C]. 6- alkyl, C 3 ⁇ -cycloalkyl, phenyl, chlorophenyl, benzyl and / or chlorobenzyl.
  • Non-chlorinated biocidal phenols are, for example: 2-methylphenol, 3-methylphenol, 4-methylphenol, A-ethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 2,6-dimethylphenol, 4-n -Propylphenol, 4-n-butylphenol, 4-n-amylphenol, 4-n-hexylphenol, thymol (5-methyl-2-isopropylphenol), 2-phenylphenol, 4-phenylphenol, 2-benzylphenol.
  • the non-chlorinated biocidal phenol used is preferably 2-phenylphenol.
  • Chlorinated biocidal phenols are, for example, 4-chloro-3-methylphenol (PCMC, p-chloro-m-cresol), 4-chloro-3-ethylphenol, 2-n-amyl-4-chlorophenol, 2-n-hexyl-4 chlorophenol, 2-cyclohexyl-4-chlorophenol, A-chloro-3,5-xylenol (PCMX, p-chloro-m-xylenol), 2,4-dichloro-3,5-xylenol (DCMX, dichloro-p- xylenol), 4-chloro-2-phenylphenol, 2-benzyl-4-chlorophenol, benzyl-4-chloro-m-cresol, 4-chlorobenzyl-dichloro-m-cresol.
  • PCMC 4-chloro-3-methylphenol
  • 2-n-amyl-4-chlorophenol 2-n-hexyl-4 chlorophenol
  • Preferred chlorinated biocidal phenols are 2-benzyl-4-chlorophenol, 4-chloro-3,5-xylenol, 2,4-dichloro-3,5-xylenol and in particular 4-chloro-3-methylphenol.
  • Phenol derivatives are understood to mean phenol-derived compounds whose OH group is derivatized such that they contain no free OH group. These are preferably phenol ethers, in particular with aliphatic alcohols having 1 to 6 carbon atoms. A preferred example is phenoxyethanol.
  • a non-chlorinated phenol can be combined with two chlorinated phenols as biocidal active ingredients.
  • a preferred example is the combination of 4-chloro-3-methylphenol, 2-phenylphenol and 2-benzyl-4-chlorophenol.
  • a chlorinated phenol a non-chlorinated phenol and a non-chlorinated phenol derivative, in particular phenoxyethanol.
  • two different chlorinated phenols and a non-chlorinated phenol derivative, in particular phenoxyethanol, can be used as biocidal active substances.
  • biocidal active substances are two different chlorinated phenols, a non-chlorinated phenol and a non-chlorinated phenol derivative, in particular phenoxyethanol.
  • a particularly preferred example is the combination of 4-chloro-3-methylphenol, 2-phenylphenol, 2-benzyl-4-chlorophenol and phenoxyethanol.
  • Keratolytics are substances that affect keratins and in extreme cases can denature or decompose.
  • suitable keratolytic agents are: organic acids, such as citric acid, formic acid and salicylic acid; furthermore urea, resorcinol, thioglycolic acid, sulfides, urea, 5-fluorouracil.
  • salicylic acid is preferred.
  • the phenolic active substances and the keratolytic can be formulated in various ways into a disinfectant, solid or liquid formulations being suitable.
  • Solid formulations can be used, for example, in the form of powders, dusts, granules, etc. These usually contain carriers and / or auxiliaries.
  • the active compounds can be mixed with or applied to the carriers and / or excipients.
  • liquid formulations e.g. in the form of emulsions, suspensions or in particular solutions.
  • Liquid formulations can be used directly, preferably concentrates, which are usually diluted with water to the appropriate concentration before use.
  • Emulsions are either water-in-oil type or oil-in-water type. They are prepared by dissolving the active ingredients either in the hydrophobic or in the hydrophilic phase and homogenized them with the aid of suitable emulsifiers and optionally further auxiliaries such as dyes, preservatives, antioxidants, light stabilizers, viscosity-increasing substances with the solvent of the other phase.
  • hydrophobic phase paraffin oils, silicone oils, natural vegetable oils such as sesame oil, almond oil, castor oil, synthetic triglycerides such as caprylic / capric acid biglyceride, triglyceride mixture with chain-length vegetable fatty acids or other specially selected natural fatty acids, Partialglyceridgemische saturated or unsaturated, possibly also hydroxyl-containing fatty acids, mono- and diglycerides of Cg / Cio fatty acids.
  • Fatty acid esters such as ethyl stearate, di-n-butyryl adipate, lauric acid hexyl ester, dipropylene glycol pelargonate, esters of a branched fatty acid of medium chain length with saturated fatty alcohols of chain length Ci 6 -C 8 , isopropyl myristate, isopropyl palmitate, caprylic / capric acid esters of saturated fatty alcohols of chain length Cj 2 -Ci 8 , Isopropyl stearate, oleyl oleate, oleic acid ethyl ester, ethyl oleate, ethyl lactate, waxy fatty acid esters such as dibutyl phthalate, adipic acid diisopropyl ester, the latter related ester mixtures, inter alia fatty alcohols such as isotridecyl alcohol, 2-octyldodecanol, cet
  • hydrophilic phase may be mentioned: water, alcohols such as e.g. Propylene glycol, glycerol, sorbitol, ethanol, 1-propanol, 2-propanol, n-butanol and mixtures of these solvents.
  • alcohols such as e.g. Propylene glycol, glycerol, sorbitol, ethanol, 1-propanol, 2-propanol, n-butanol and mixtures of these solvents.
  • nonionic surfactants e.g. polyoxyethylated castor oil, polyoxyethylated sorbitan monooleate, sorbitan monostearate, glycerol monostearate, polyoxyethyl stearate, alkylphenol polyglycol ethers;
  • ampholytic surfactants such as di-Na-N-lauryl- ⁇ -iminodipropionate or lecithin; anionic surfactants, such as fatty alcohol ether sulfates, C 9-18 alkyl sulfonates or sulfates, such as sodium lauryl sulfate or secondary alkyl sulfonates (Mersolate®, preferably having an average alkyl chain length of 15 carbon atoms), mono / dialkyl polyglycol ether orthophosphoric acid ester monoethanolamine salt;
  • anionic surfactants such as fatty alcohol ether sulfates, C 9-18 alkyl sulfonates or sulfates, such as sodium lauryl sulfate or secondary alkyl sulfonates (Mersolate®, preferably having an average alkyl chain length of 15 carbon atoms), mono / dialkyl polyglycol ether orthophosphoric acid ester monoethanolamine salt;
  • cationic surfactants such as cetyltrimethylammonium chloride.
  • auxiliaries which may be mentioned are: viscosity-increasing and emulsion-stabilizing substances such as carboxymethylcellulose, methylcellulose and other cellulose and starch derivatives, polyacrylates, alginates, polyvinylpyrrolidone, polyvinyl alcohol, copolymers of methyl vinyl ether and maleic anhydride, polyethylene glycols, waxes, colloidal silica or mixtures of listed substances.
  • viscosity-increasing and emulsion-stabilizing substances such as carboxymethylcellulose, methylcellulose and other cellulose and starch derivatives, polyacrylates, alginates, polyvinylpyrrolidone, polyvinyl alcohol, copolymers of methyl vinyl ether and maleic anhydride, polyethylene glycols, waxes, colloidal silica or mixtures of listed substances.
  • Suspensions are prepared by suspending the active ingredient in a carrier liquid optionally with the addition of further auxiliaries, such as wetting agents, dyes, preservatives, antioxidants, light stabilizers.
  • Suitable carrier liquids are all solvents and homogeneous solvent mixtures mentioned here.
  • Suitable wetting agents are the surfactants specified above.
  • Solutions are prepared by dissolving the active ingredient in a suitable solvent and optionally adding additives such as surfactants, solubilizers, acids, bases, buffer salts, antioxidants, preservatives.
  • solvents water, alcohols, such as alkanols having 1 to 4 carbon atoms (for example, ethanol, 1-propanol, 2-propanol, n-butanol), aromatic-substituted alcohols, such as benzyl alcohol, phenylethanol; Glycerol, glycols, propylene glycol, polyethylene glycols, polypropylene glycols, esters such as ethyl acetate, butyl acetate, benzyl benzoate; Ethers, such as alkylene glycol alkyl ethers, such as dipropylene glycol monomethyl ether, diethylene glycol mono-butyl ether; Ketones such as acetone, methyl ethyl ketone, aromatic and / or aliphatic hydrocarbons, vegetable or synthetic oils, dimethylformamide (DMF), dimethylacetamide, N-methylpyrrolidone, 2-dimethyl-4-oxy-methylene-1,3-
  • alcohols such as
  • Surfactants for use in the solutions may be the surfactants listed above in the emulsions, preference is given to anionic surfactants, in particular C 8-1 8-alkyl sulfonates or sulfates, for example secondary alkyl sulfonates (Mersolate®), preferably having an average alkyl chain length of 15 carbon atoms , AIs solubilizers may be mentioned: solvents which require the solution of the active ingredient in the main solvent or prevent its precipitation. Examples are polyvinylpyrrolidone, polyoxyethylated castor oil, polyoxyethylated sorbitan esters.
  • the disinfectants according to the invention may also contain hardeners and / or corrosion inhibitors.
  • additives known per se, for example, from water treatment are suitable, e.g. Phosphonic acids, chain polyphosphates or low molecular weight polycarboxylic acids.
  • the ingredients are usually present in the following concentrations:
  • the biocidal phenols and optionally phenol derivatives are normally contained in a total concentration of 10 to 90% by weight, preferably 10 to 50% by weight, more preferably 15 to 40% by weight, based on the disinfectant.
  • the ratio of chlorinated biocidal phenols to non-chlorinated biocidal phenols or phenol derivatives is in the range from 40:60 to 90:10, preferably 50:50 to 85:15, particularly preferably 65:35 to 82:18 (weight ratios based on the total weight of the biocidal phenols or phenol derivatives contained, hereinafter collectively referred to as phenolic biocides).
  • phenolic biocides weight ratios based on the total weight of the biocidal phenols or phenol derivatives contained, hereinafter collectively referred to as phenolic biocides.
  • preferred concentration ranges for preferred phenolic biocides stated in each case being percent by weight, based on the total weight of all phenolic biocides present in the respective agent:
  • 4-Chloro-3-methylphenol 30 to 80, preferably 40 to 70, more preferably 45 to 60%.
  • 2-Benzyl-4-chlorophenol 5 to 50, preferably 10 to 40, particularly preferably 15 to 30%.
  • 2-phenylphenol 5 to 60, preferably 10 to 50, particularly preferably 13 to 45%.
  • Phenoxyethanol 3 to 30, preferably 5 to 25, particularly preferably 10 to 20%.
  • the disinfectant according to the invention contains, as biocidal phenols, a combination of 4-chloro-3-methylphenol, 2-benzyl-4-chlorophenol and 2-phenylphenol, which may optionally and particularly preferably also contain phenoxyethanol.
  • the drug concentrations are then in the above ranges.
  • the keratolytic is generally employed in the disinfectants of the invention in a weight ratio to the phenolic biocides of from 50:50 to 10:90, preferably 40:60 to 15:85, more preferably 30:70 to 20:80 used. Based on the finished disinfectant (usually concentrate), the concentrations of keratolytic are generally from 1 to 30 wt .-%, preferably 3 to 20 wt .-%, particularly preferably 5 to 18 wt .-%.
  • the disinfectants according to the invention preferably contain surfactants, and usually in concentrations of from 3 to 20% by weight, preferably from 5 to 20% by weight, particularly preferably from 5 to 15% by weight.
  • the nonaqueous solvents preferably the alkanols having 1 to 4 carbon atoms (for example, ethanol, 1-propanol, 2-propanol, n-butanol) given above, are usually present in amounts of from 15 to 65% by weight, preferably from 20 to 60 wt .-%, particularly preferably 30 to 50 wt% used.
  • the agents preferably contain water, usually 0 to 30 wt .-%, preferably 5 to 25 wt .-%, more preferably 5 to 20 wt .-%.
  • the disinfectants described in more detail above are concentrates, which are usually diluted with water for use. Ready-to-use solutions usually contain from 0.5 to 20% by volume, preferably from 1 to 10% by volume, more preferably from 1 to 5% by volume, of disinfectant concentrate.
  • concentration used can be varied depending on the application. For example, with higher concentrated agents, the exposure times required for a satisfactory effect are shorter.
  • Typical exposure times are, for example, 0.5 to 5 hours, preferably 1 to 4 hours.
  • the disinfectants according to the invention are suitable for controlling parasitic protozoa and helminths which occur in livestock and livestock breeding in livestock, breeding, zoo, laboratory, experimental and hobby animals. They are especially effective against the permanent stages (extracellular cyst stages).
  • the parasitic protozoa include:
  • Sarcomastigophora such as Entamoebidae e.g. Entamoeba histolytica, Hartmanellidae e.g. Acanthamoeba sp., Hartmanella sp.
  • Apicomplexa (Sporozoa), in particular coccidia, such as Eimera acervulina Eimeraides, E. adenoides, E. alabahmensis, E. anatis, E. anseris, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis, E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. deblieki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. flavescens, E.
  • coccidia such as Eimera acervulina Eimeraides, E. adenoides, E. alabahmensis, E. anatis, E. anseris, E. arloingi, E. ashata
  • Mastigophora (Flagellata), e.g. Giardia lamblia, G. canis.
  • the helminths include trematodes, tapeworms and nematodes.
  • the trematodes include e.g. Pathogens of the families / genera: Fasciola, Paramphistomum, Dicrocoelium, Opisthorchis;
  • the tapeworms include e.g. Pathogen of the families / genera Moniezia, Anoplocephala, Diphyllobothrium, Taenia, Echinococcus, Dipylidium, Raillietina, Choanotaenia, Echinuria,
  • the nematodes include e.g. Pathogens of the families / genera: Strongyloides, Haemonchus, Ostertagia, Trichostrongylus, Cooperia, Nematodirus, Trichuris, Oesophagostomum, Chabertia, Bunostomum, Toxocara vitulorum, Ascaris, Parascaris, Oxyuris, Oesophagostumum, Globocephalus, Hyostrongylus, Spirocerca, Toxascaris, Toxocara, Ancylostoma , Uncinaria, Capillaria, Prosthogonimus, Amidostomum, Capillaria, Ascaridia, Heterakis, Syngamus, Acanthocephalen.
  • Pathogens of the families / genera Strongyloides, Haemonchus, Ostertagia, Trichostrongylus, Cooperia, Nematodirus, Trichuris, Oes
  • Bacteria e.g. Clostridia, Escherichia coli, Salmonella spec. Pseudomonas spec. Staphylococcus spec., Mycobacterium tuberculosis and von
  • Yeasts such as e.g. Candida albicans and fungal infections
  • the disinfectants of the invention can also be used for controlling viruses, such as influenza viruses.
  • Influenza viruses of type A and type B are known.
  • avian influenza viruses belonging to type A are of particular importance for birds.
  • avian influenza viruses of subtype H5N1 may be mentioned.
  • the useful and breeding animals include mammals such as cattle, horses, sheep, pigs, goats, camels, water buffalo, donkeys, mules, zebras, rabbits, fallow deer, reindeer, fur animals such as mink, chinchilla, raccoon, birds such as chickens, Geese, turkeys, ducks, pigeons, pheasants and bird species for home and zoo keeping.
  • Laboratory and experimental animals include mice, rats, guinea pigs, golden hamsters, dogs and cats.
  • the disinfectants according to the invention are particularly suitable for use in mass animal husbandry, in particular, for example, in poultry farming (for example in chickens), calf or pig husbandry.
  • the phenols are dissolved in the alcohol or alcohol mixture with stirring.
  • Water, optionally phenoxyethanol, salicylic acid and alkanesulfonate (Mersolat® W93) are added to the resulting alcoholic solution and dissolved with constant stirring.
  • the "Houghton" strain of Eimeria tenella Institute for Animal Health, Compton Laboratories, Near Newbury, Berks, RG 16 ONN, UK was used.
  • the animals were delivered to the animal center as day-old chicks and kept coccidally free with chick rearing feed without coccidiostats and water ad libitum until the start of the test at the animal center.
  • the animals were inoculated with 13,000 oocysts by gavage individually in 0.2 ml of water.
  • the animals were sacrificed with carbon dioxide without pain, the oocysts isolated from the caeca and placed in 2% potassium dichromate solution for 4 days for sporulation.
  • the chimeric dichromate was washed from the oocyst suspension by centrifugation, 3 times for 5 min each at 2000 rpm and resuspension of the pellet in water. After the third centrifugation, the oocyst suspension was adjusted to a concentration of 25,000 oocysts per ml of stock solution using a Bürker chamber.
  • the disinfectants to be tested were applied in double use concentration in water (aqua bidest) immediately before each test run. Starting from the stock solution, 1%, 2% and 4% solutions were used:
  • 0.5 ml of the disinfectant solution were placed in two 25 ml glass beakers per batch.
  • KI in-trial untreated control
  • 0.5 ml of water was added with 0.5 ml of oocyst suspension.
  • the suspensions were kept on a shaker in a slow motion.
  • the entire contents of the beakers were transferred into a 2000 ml Erlenmeyer flask.
  • the beakers were rinsed with water and the Erlenmeyer flask filled with the rinse water to 1500 ml.
  • the contents of the flask were mixed and the supernatant decanted after a 24 hour sedimentation time at room temperature to 100 ml.
  • the sediment was transferred to a 200 ml centrifuge tube and made up to 200 ml with water and allowed to stand overnight.
  • the supernatant was aspirated to about 30 ml, the sediment was transferred to a 50 ml centrifuge tube and made up to 50 ml with water.
  • the application volume per chick was 0.5 ml.
  • an infection control from the original oocyst suspension was adjusted to 2000 oocysts / ml in a volume of 0.3 ml.
  • the animals were sacrificed with carbon dioxide without pain.
  • Test results with formulations according to the invention are listed by way of example in the following table.
  • the improved efficacy of the new formulations in comparison to a comparative formulation not according to the invention is particularly evident in the reduction of oocysteine secretion.
  • Example 1 formulation Example no.
  • the column “Tot” indicates the number of animals died / animals used in the experiment
  • the column “Weight% of non-infective control” gives the ratio of the weight of the treated animals to the weight of the uninfected control group.
  • Diarrhea indicates the number of animals died / animals used in the experiment
  • Lesions indicates the number of animals died / animals used in the experiment
  • Olecysts gives the ratio of the weight of the treated animals to the weight of the uninfected control group.
  • % effectiveness the overall rating is scored, 0% means no effect, 100% means full effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft ein Desinfektionsmittel enthaltend eine spezielle Kombination biozider Phenole und gegebenenfalls Phenolderivate sowie ein Keratolytikum. Das Desinfektionsmittel eignet sich insbesondere zur Bekämpfung von parasitären Protozoen einschließlich deren Dauerformen.

Description

Desinfektionsmittel
Die Erfindung betrifft ein Desinfektionsmittel enthaltend eine spezielle Kombination biozider Phenole und gegebenenfalls Phenolderivate sowie ein Keratolytikum. Das Desinfektionsmittel eignet sich insbesondere zur Bekämpfung von parasitären Protozoen einschließlich deren Dauer- formen.
Solche Desinfektionsmittel haben z.B. besondere Bedeutung in der Bekämpfung von Kokzidiosen bei Nutztieren. Eimeria tenella ist der Protozoen-Erreger der Geflügelkokzidiose, einer Erkrankung, die mit der intensiven Bodenhaltung von Küken und Hühnern zu einem ökonomisch bedeutsamen Problem wurde. Die Infektion der Tiere beginnt nach der Aufnahme von sporulierten Oo- Cysten, die Träger der infektiösen einzelligen Sporozoiten sind. Die Sporozoiten besiedeln Darmzellen in deren Schutz die millionenfache Vermehrung der Parasitenstadien erfolgt. Zur Pathologie einer Kokzidiose-Erkrankung gehören blutige Durchfalle, die durch eine verminderte Nahrungsaufnahme und einen Gewichtsverlust der Hühner große wirtschaftliche Schäden verursachen kann.
Zur Prophylaxe dieser Erkrankung werden derzeit Antikokzidia im Wert von jährlich mindestens 350 Mio. US-Dollar aufgewendet. Die chemotherapeutische Behandlung wird seit 1970 vor allem mit den Polyether-Ionophoren Monensin, Narasin, Salinomycin und Lasalocid durchgeführt. Neben der schwerwiegenden Medikamentenbelastung des Huhns gilt die Entstehung von Medikamen- ten-Resistenzen als größtes Problem der chemotherapeutischen Behandlung. Erstes Anzeichen einer Resistenzentwicklung ist oft das erneute Ansteigen der Oocystenausscheidung.
Eine Alternative zur chemotherapeutischen Behandlung der Kokzidiose wäre die frühe Desinfektion der Geflügelstallungen. Hier werden Eimeria-Dauerstadien, die sogenannten Oocysten, mit dem Kot der Tiere abgesetzt und können zusammen mit Kotresten und Futterbestandteilen an Bodenbelägen, Wandflächen, in Mauerritzen und an Haltungseinrichtungen persistieren und als ständige Infektionsquelle Neuerkrankungen bei eingesetzten Tieren über einen langen Zeitraum auslösen. Eimeria Oocysten können noch bis zu einem Jahr nach der Ausscheidung infektiös sein. In diesem Zeitraum ist die Verschleppung von Oocysten durch Personen oder Tiere in benachbarte Geflügelstallungen eine zusätzliche Belastung.
Eimeria tenella Oocysten haben eine Größe von 24.5-18.3 μm und werden im Anschluss an die ungeschlechtlichen Vermehrungszyklen in Darmzellen infizierter Tiere millionenfach gebildet. Ein weiblicher Macrogamont wird durch einen männlichen Microgameten befruchtet und formt die Zygote, die sich mit zwei typischen Schichten umgibt: einer glatten äußern Schicht, die nach Fusion der Hüllbildungskörper WFI („wall forming body I) entsteht und einer inneren Schicht, die nach Fusion der Hüllbildungskörper WFII („wall forming body II) entsteht. Bis zur Fertigstellung beider Schichten verbleibt die reifende Oocyste in der parasitophoren Vakuole infizierter Darmzellen und wird erst danach mit dem Kot ausgeschieden. In Gegenwart von Sauerstoff beginnt die sogenannte Sporulation: aus dem undifferenzierten Sporonten entstehen über eine Reduktionsteilung vier Sporocysten, die je zwei Sporozoiten enthalten. Die Sporulation dauert für Eimeria tenel- Ia in der Regel 2-3 Tage. Erst nach ihrem Abschluss ist die Oocyste infektiös.
Bau und Zusammensetzung beider Oocystenwände sind von einer ausgeprägten biochemischphysiologischen Widerstandsfähigkeit und stellen eine effektive Schutzbarriere für das Überleben der Parasitenkeime im Freien dar. Während die äußere Oocystenwand aus Phospholipiden, lang- kettigen Alkoholen und Triglizeriden aufgebaut wird, besteht die innere Schicht aus Glykoprotei- nen, welche durch Disulfidbrücken stabilisiert werden. Das Haupt-Oocysten- Wand-Protein von 12-14 kDa enthält Serin, Tyrosin und Threonin Aminosäuren und ist an Kohlenhydrate gebunden. Diese Proteine verleihen der Oocyste eine große strukturelle Stabilität gegen Hitze oder Kälte. Die Lipide der äußeren Schicht bedingen die hohe Chemikalien-Resistenz.
Einfache physikalische Desinfektionsmaßnahmen über Hitze, Kälte, Trocknung oder Bestrahlung sind nur sehr begrenzt einsetzbar: So werden Oocysten im Labor bei Temperaturen von 60-1000C in wenigen Minuten abgetötet, doch ist die Desinfektionswirkung von heißem Wasser unter Praxisbedingungen im Stall meist gering, da das Wasser auf dem Stallboden zu rasch abkühlt. Auch bei Hochdruckreinigungen wird bei geringen Einwirkzeiten nur eine partielle Desinfektion erreicht. Auch gegenüber Kälte weisen die Oocysten eine beachtliche Widerstandskraft auf. Selbst bei Tiefgefrierung von -25°C über 14 Tage überleben Eimeria Oocysten und bleiben infektiös. Trocknung erzielt einen gewissen Grad an Schädigung, doch zeigte sich das Verfahren zur Desinfektion als wenig verlässlich.
Gamma- und Elektronenstrahlen führen ab 3,5-4,0 kGy zum Verlust der Sporulationsfähigkeit von Oocysten, doch ist ihr Einsatz wegen der hohen Anschaffungskosten der erforderlichen Geräte für den Landwirt nicht praktikabel.
Die meisten gegen Bakterien und Viren wirksamen chemischen Desinfektionsmittel sind gegen Eimeria Oocysten unwirksam weil deren Hüllen chemisch komplexer aufgebaut sind und das Eindringen von Chemikalien erschweren. Ein parasitenspezifϊsches Desinfektionsmittel muss zunächst die lipidhaltigen äußeren Hüllen der Oocyste durchdringen und danach die stabilen Glykoproteine der inneren Hüllen angreifen bevor es membranhaltige Sporocysten und Sporozoiten schädigen kann.
Gegenüber aggressiven anorganischen Substanzen wie Natronlauge (NaOH) oder Natriumhypochlorit (NaOCl) sind Eimeria Oocysten lOOOfach widerstandsfähiger als Bakterien. Selbst bei Kon- zentrationen >5% und einer Einwirkzeit von 120 min geht die Infektiosität der Oocysten nicht verloren. In osteuropäischen Ländern wird gelegentlich Ammoniak (NH3) bei einer Einwirkzeit von 24 Stunden erfolgreich eingesetzt, doch ist gleichzeitig die Geruchsbelästigung einer Ammo- nika-gesättigten Atmosphäre sehr hoch.
Ethanol (70-90%) und Formaldehyd haben keine für die Praxis ausreichende Wirkung auf die widerstandsfähigen Oocysten von Eimeria Arten.
Einzig Derivate des Phenols, insbesondere das p-Chlor-m-Kresol, sind als alleinige organische Wirkstoffe in einigen Handelspräparaten enthalten (Tabelle 1), daneben auch in Kombination mit Schwefelkohlenstoff und Chloroform (Tabelle 1). Sie werden in der Praxis zur Bekämpfung der Kokzidiose des Geflügels in leeren Stallungen eingesetzt.
Tabelle 1 : Zugelassene Desinfektionsmittel mit Wirksamkeit gegen Eimeria Oocysten
(Böhm 2000)
Handelsname Wirkstoffe Anwendung (%, h)
Calgonit sterizid P24 Kresole 4%, 2h
Dessau DES SPEZIAL N Kresole 4%, 2h
ENDOSANFORTE S Neu Kresole 4%, 2h
JEME®-OKOK 5 Phenolverbindungen 5%, 2h Schwefelkohlenstoff Chloroform
LOMASEPT® L 20 Phenolverbindungen 5%, 2h Schwefelkohlenstoff Chloroform
NEOPREDISAN 135-1 Kresole 4%, 2h
NOACK-DES ENDO Kresole 4%, 2h
WO 94/17661 beschreibt ein Desinfektionsmittel mit parasitizider Wirksamkeit, das ein oder meh- rere Phenole in Kombination mit keratolytisch wirksamen organischen Säuren, Ethylenglykoldial- kylether sowie Natrium- oder Kalium-Alkylsulfonate oder -sulfate enthält.
Antiparasitäre Desinfektionsmittel werden in Deutschland nach den Richtlinien der Deutschen Veterinärmedizinischen Gesellschaft (DVG) an Oocysten von Eimeria tenella im Suspens ionsver- - A - such (Lysistest) sowie im Infektionstest an Hühnerküken auf Wirksamkeit geprüft. Eimeria tenella Oocysten, Stamm „Houghton", werden als besonders widerstandsfähig eingestuft und daher als Testorganismen empfohlen.
In der Praxis ist vor allem die Bekämpfung von Oocysten der Eimeria Arten ein Problem. Aller- dings ist der Aufbau der Cystenwand bei anderen Protozoen, insbesondere Kokzidien, und auch bei Würmern ähnlich. Die vorstehende Darstellung am Beispiel von Eimeria Arten lässt sich daher auf diese Organismen übertragen.
Bei der Anwendung dieser Testsysteme haben wir nun überraschend gefunden, dass Mittel enthaltend eine Kombination verschiedener biozider Phenole bzw. Phenolderivate bei gleichzeitiger An- wendung von Keratolytika die desinfizierende Wirksamkeit bestehender Desinfektionsmittel deutlich übersteigt.
Die Erfindung betrifft daher:
Desinfektionsmittel enthaltend
(a) ein chloriertes biozides Phenol
(b) ein weiteres chloriertes oder nicht chloriertes biozides Phenol
(c) ein weiteres nicht chloriertes biozides Phenol und/oder ein Phenolderivat.
(d) ein Keratolytikum
Unter bioziden Phenolen werden solche Phenolverbindungen verstanden die eine freie OH-Gruppe tragen und eine biozide Wirkung aufweisen. Diese Phenole können weitere Ringsubstituenten tra- gen, wie z.B. Halogene, insbesondere Chlor, C].6-Alkyl, C3^-Cycloalkyl, Phenyl, Chlorphenyl, Benzyl und/oder Chlorbenzyl.
Nicht chlorierte biozide Phenole sind z.B.: 2-Methylphenol, 3-Methylphenol, 4-Methylphenol, A- Ethylphenol, 2,4-Dimethylphenol, 2,5-Dimethylphenol, 3,4-Dimethylphenol, 2,6-Dimethylphenol, 4-n-Propylphenol, 4-n-Butylphenol, 4-n-Amylphenol, 4-n-Hexylphenol, Thymol (5-Methyl-2- Isopropylphenol), 2-Phenylphenol, 4-Phenylphenol, 2-Benzylphenol. Bevorzugt als nicht chloriertes biozides Phenol eingesetzt wird 2-PhenylphenoI.
Chlorierte biozide Phenole sind z.B. 4-Chlor-3-methylphenol (PCMC, p-Chlor-m-kresol), 4-Chlor- 3-ethylphenol, 2-n-Amyl-4-chlorphenol, 2-n-Hexyl-4-chlorphenol, 2-Cyclohexyl-4-chlorphenol, A- Chlor-3,5-xylenol (PCMX, p-Chlor-m-xylenol), 2,4-Dichlor-3,5-xylenol (DCMX, Dichlor-p- xylenol), 4-Chlor-2-phenylphenol, 2-Benzyl-4-chlorphenol, Benzyl-4-chlor-m-kresol, 4- Chlorbenzyl-dichlor-m-kresol. Bevorzugte chlorierte biozide Phenole sind 2-Benzyl-4-chlorphenol, 4-Chlor-3,5-xylenol, 2,4-Dichlor-3,5-xylenol sowie insbesondere 4-Chlor-3-methylphenol.
Unter Phenolderivaten werden hier solche vom Phenol abgeleitete Verbindungen verstanden, deren OH-Gruppe derivatisiert ist, sodass sie keine freie OH-Gruppe enthalten. Bevorzugt sind dies Phe- nolether, insbesondere mit aliphatischen Alkoholen mit 1 bis 6 Kohlenstoffatomen. Als bevorzugtes Beispiel sei Phenoxyethanol genannt.
Gemäß einer erfindungsgemäßen Ausführungsform können als biozide Wirkstoffe ein nicht chloriertes Phenol mit zwei chlorierten Phenolen kombiniert werden. Ein bevorzugtes Beispiel ist die Kombination von 4-Chlor-3-methylphenol, 2-Phenylphenol und 2-Benzyl-4-chlorphenol.
Es hat sich jedoch gezeigt, dass gerade die Verwendung von nicht chlorierten Phenolderivaten, insbesondere Phenoxyethanol, zusammen mit bioziden Phenolen in der Regel nochmal zu einer Wirkungsverbesserung führt.
Gemäß einer bevorzugten Ausführungsform können als biozide Wirkstoffe ein chloriertes Phenol, ein nicht chloriertes Phenol und ein nicht chloriertes Phenolderivat, insbesondere Phenoxyethanol, eingesetzt werden.
Gemäß einer weiteren bevorzugten Ausführungsform können als biozide Wirkstoffe zwei unterschiedliche chlorierte Phenole und ein nicht chloriertes Phenolderivat, insbesondere Phenoxyethanol, eingesetzt werden.
Besonders bevorzugt werden als biozide Wirkstoffe zwei unterschiedliche chlorierte Phenole, ein nicht chloriertes Phenol und ein nicht chloriertes Phenolderivat, insbesondere Phenoxyethanol, eingesetzt. Ein insbesondere bevorzugtes Beispiel ist die Kombination von 4-Chlor-3-methyl- phenol, 2-Phenylphenol, 2-Benzyl-4-chlorphenol und Phenoxyethanol.
Keratolytika sind Stoffe, die Keratine beeinflussen und im Extremfall denaturieren oder zersetzen können. Für die erfindungsgemäßen Mittel kommen als Keratolytika in Frage: Organische Säuren, wie Citronensäure, Ameisensäure und Salicylsäure; weiterhin Harnstoff, Resorcin, Thioglykolsäu- re, Sulfide, Harnstoff, 5-Fluorouracil. Erfϊndungsgemäß ist Salicylsäure bevorzugt.
Die phenolischen Wirkstoffe und das Keratolytikum können in verschiedener Weise zu einem Desinfektionsmittel formuliert werden, wobei feste oder flüssige Formulierungen in Frage kom- men. Feste Formulierungen können z.B. in Form von Pulvern, Stäuben, Granulaten etc. eingesetzt werden. Diese enthalten üblicherweise Träger- und/oder Hilfsstoffe. Die Wirkstoffe können mit den Träger- und/oder Hilfsstoffen vermischt oder auf diese aufgezogen werden.
Bevorzugt sind jedoch flüssige Formulierungen z.B. in Form von Emulsionen, Suspensionen oder insbesondere Lösungen. Flüssige Formulierungen können direkt angewendet werden, bevorzugt handelt es sich um Konzentrate, die vor der Anwendung in der Regel mit Wasser auf die geeignete Konzentration verdünnt werden.
Emulsionen sind entweder vom Typ Wasser in Öl oder vom Typ Öl in Wasser. Sie werden hergestellt, indem man die Wirkstoffe entweder in der hydrophoben oder in der hydrophilen Phase löst und diese unter Zuhilfenahme geeigneter Emulgatoren und gegebenenfalls weiterer Hilfsstoffe wie Farbstoffe, Konservierungsstoffe, Antioxidantien, Lichtschutzmittel, viskositätserhöhende Stoffe, mit dem Lösungsmittel der anderen Phase homogenisiert.
Als hydrophobe Phase (Öle) seien genannt: Paraffinöle, Silikonöle, natürliche Pflanzenöle wie Sesamöl, Mandelöl, Rizinusöl, synthetische Triglyceride wie Capryl/Caprinsäure-biglycerid, Triglyceridgemisch mit Pflanzenfettsäuren der Kettenlänge oder anderen speziell ausgewählten natürlichen Fettsäuren, Partialglyceridgemische gesättigter oder ungesättigter, eventuell auch hydroxylgruppenhaltiger Fettsäuren, Mono- und Diglyceride der Cg/Cio-Fettsäuren. Fettsäureester wie Ethylstearat, Di-n-butyryl-adipat, Laurinsäurehexylester, Dipropylenglykolpelargonat, Ester einer verzweigten Fettsäure mittlerer Kettenlänge mit gesättigten Fettalkoholen der Kettenlänge Ci6-Ci8, Isopropylmyristat, Isopropylpalmitat, Capryl/Caprinsäureester von gesättigten Fettalkoholen der Kettenlänge Cj2-Ci8, Isopropylstearat, Ölsäureoleylester, Ölsäuredecylester, Ethyloleat, Milchsäureethylester, wachsartige Fettsäureester wie Dibutylphthalat, Adipinsäurediisopropy- lester, letzterem verwandte Estergemische u.a. Fettalkohole wie Isotridecylalkohol, 2-Octyldode- canol, Cetylstearylalkohol, Oleylalkohol; Fettsäuren wie z.B. Ölsäure und ihre Gemische.
Als hydrophile Phase seien genannt: Wasser, Alkohole wie z.B. Propylenglycol, Glycerin, Sorbi- tol, Ethanol, 1-Propanol, 2-Propanol, n-Butanol sowie Gemische dieser Lösungsmittel.
Als Emulgatoren seien genannt:
nichtionogene Tenside, z.B. polyoxyethyliertes Rizinusöl, polyoxyethyliertes Sorbitan-monooleat, Sorbitanmonostearat, Glycerinmonostearat, Polyoxyethylstearat, Alkylphenolpolyglykolether;
ampholytische Tenside wie Di-Na-N-lauryl-ß-iminodipropionat oder Lecithin; anionaktive Tenside, wie Fettalkoholethersulfate, Cg.ig-Alkylsulfonate oder -sulfate wie Na- Laurylsulfat oder sekundäre Alkylsulfonate (Mersolate®, vorzugsweise mit einer mittleren Alkyl- kettenlänge von 15 Kohlenstoffatomen), Mono/Dialkylpolyglykoletherorthophosphorsäureester- monoethanolaminsalz;
kationaktive Tenside wie Cetyltrimethylammoniumchlorid.
Als weitere Hilfsstoffe seien genannt: Viskositätserhöhende und die Emulsion stabilisierende Stoffe wie Carboxymethylcellulose, Methylcellulose und andere Cellulose- und Stärke-Derivate, PoIy- acrylate, Alginate, Polyvinylpyrrolidon, Polyvinylalkohol, Copolymere aus Methylvinylether und Maleinsäureanhydrid, Polyethylenglykole, Wachse, kolloidale Kieselsäure oder Gemische der aufgeführten Stoffe.
Suspensionen werden hergestellt, indem man den Wirkstoff in einer Trägerflüssigkeit gegebenenfalls unter Zusatz weiterer Hilfsstoffe wie Netzmittel, Farbstoffe, Konservierungsstoffe, Antioxi- dantien, Lichtschutzmittel suspendiert.
Als Trägerflüssigkeiten kommen alle hier genannten Lösungsmittel und homogenen Lösungsmit- telgemische in Frage.
Als Netzmittel (Dispergiermittel) seien die weiter oben angegebenen Tenside genannt.
Lösungen werden hergestellt, indem der Wirkstoff in einem geeigneten Lösungsmittel gelöst wird und eventuell Zusätze wie Tenside, Lösungsvermittler, Säuren, Basen, Puffersalze, Antioxidantien, Konservierungsmittel zugefügt werden.
Als Lösungsmittel seien genannt: Wasser, Alkohole wie Alkanole mit 1 bis 4 Kohlenstoffatomen (z.B. Ethanol, 1-Propanol, 2-Propanol, n-Butanol), aromatisch substituierte Alkohole wie Benzy- lalkohol, Phenylethanol; Glycerin, Glykole, Propylenglykol, Polyethylenglykole, Polypropylengly- kole, Ester wie Essigsäureethylester, Butylacetat, Benzylbenzoat; Ether wie Alkylenglykolalky- lether wie Dipropylenglykolmonomethylether, Diethylenglykolmono-butylether; Ketone wie Ace- ton, Methylethylketon, aromatische und/oder aliphatische Kohlenwasserstoffe, pflanzliche oder synthetische Öle, Dimethylformamid (DMF), Dimethylacetamid, N-Methylpyrrolidon, 2- Dimethyl-4-oxy-methylen-l,3-dioxolan sowie Gemische derselben.
Tenside zum Einsatz in den Lösungen können die oben bei den Emulsionen aufgeführten Tenside sein, bevorzugt sind es anionische Tenside, insbesondere C8-18-Alkylsulfonate oder -sulfate, z.B. sekundäre Alkylsulfonate (Mersolate®), vorzugsweise mit einer mittleren Alkylkettenlänge von 15 Kohlenstoffatomen. AIs Lösungsvermittler seien genannt: Lösungsmittel, die die Lösung des Wirkstoffs im Hauptlösungsmittel fordern oder sein Ausfallen verhindern. Beispiele sind Polyvinylpyrrolidon, polyoxye- thyliertes Rhizinusöl, polyoxyethylierte Sorbitanester.
Als weitere Hilfs- oder Zusatzstoffe können die erfindungsgemäßen Desinfektionsmittel noch Ent- härter und/oder Korrosionsinhibitoren enthalten.
Als Enthärter kommen an sich beispielsweise aus der Wasserbehandlung bekannte Zusätze in Frage, z.B. Phosphonsäuren, kettenförmige Polyphosphate oder niedermolekular Polycarbonsäuren.
In den Fällen, in denen die erfindungsgemäßen Desinfektionsmittel für die Anwendung noch verdünnt werden sollten, liegen die Inhaltsstoffe üblicherweise in den folgenden Konzentrationen vor:
Die bioziden Phenole und ggf. Phenolderivate sind normalerweise in einer Gesamtkonzentration von 10 bis 90 Gew.-%, bevorzugt 10 bis 50 Gew.-%,'besonders bevorzugt 15 bis 40 Gew.-% bezogen auf das Desinfektionsmittel enthalten.
Vorzugsweise liegt das Verhältnis von chlorierten bioziden Phenolen zu nicht chlorierten bioziden Phenolen bzw. Phenolderivaten im Bereich von 40:60 bis 90 :10, bevorzugt 50:50 bis 85:15, be- sonders bevorzugt 65:35 bis 82:18 (Gewichtsverhältnisse bezogen auf das Gesamtgewicht der enthaltenen bioziden Phenole bzw. Phenolderivate, im Folgenden zusammenfassend als phenolische Biozide bezeichnet). Beispielhaft seien hier für bevorzugte phenolische Biozide bevorzugte Konzentrationsbereiche angegeben (angegeben sind jeweils Gewichtsprozent bezogen auf das Gesamtgewicht aller im betreffenden Mittel enthaltenen phenolischen Biozide):
4-Chlor-3-methylphenol: 30 bis 80, bevozugt 40 bis 70, besonders bevorzugt 45 bis 60 %.
2-Benzyl-4-chlorphenol: 5 bis 50, bevorzugt 10 bis 40, besonders bevorzugt 15 bis 30 %.
2-Phenylphenol: 5 bis 60, bevorzugt 10 bis 50, besonders bevorzugt 13 bis 45 %.
Phenoxyethanol: 3 bis 30, bevorzugt 5 bis 25, besonders bevorzugt 10 bis 20 %.
Gemäß einer besonders bevorzugten Ausführungsform enthält das erfindungsgemäße Desinfekti- onsmittel als biozide Phenole eine Kombination von 4-Chlor-3-methylphenol, 2-Benzyl-4-chlor- phenol und 2-Phenylphenol, die gegebenenfalls und insbesondere bevorzugt noch Phenoxyethanol enthalten kann. Die Wirkstoffkonzentrationen liegen dann in den vorstehend genannten Bereichen.
Das Keratolytikum wird im Allgemeinen in den erfindungsgemäßen Desinfektionsmitteln in in einem Gewichtsverhältnis zu den phenolischen Bioziden von 50:50 bis 10:90, bevorzugt 40:60 bis 15:85, besonders bevorzugt 30:70 bis 20:80 eingesetzt. Bezogen auf das fertige Desinfektionsmittel (üblicherweise Konzentrat) liegen die Konzentrationen an Keratolytikum in der Regel bei 1 bis 30 Gew.-%, bevorzugt 3 bis 20 Gew.-%, besonders bevorzugt 5 bis 18 Gew.-%.
Die erfindungsgemäßen Desinfektionsmittel enthalten vorzugsweise Tenside, und zwar üblicher- weise in Konzentrationen von 3 bis 20 Gew.-%, bevorzugt 5 bis 20 Gew.-%, besonders bevorzugt 5 bis l5 Gew.-%.
Der Lösungsmittelanteil kann in weiten Grenzen variiert werden. Bei Konzentraten werden die nicht wässrigen Lösungsmittel, bevorzugt die weiter oben angegebenen Alkanole mit 1 bis 4 Kohlenstoffatomen (z.B. Ethanol, 1-Propanol, 2-Propanol, n-Butanol) üblicherweise in Mengen von 15 bis 65 Gew.-%, bevorzugt 20 bis 60 Gew.-%, besonders bevorzugt 30 bis 50 Gew-% eingesetzt. Weiterhin enhalten die Mittel vorzugsweise Wasser, und zwar üblicherweise 0 bis 30 Gew.-%, bevorzugt 5 bis 25 Gew.-%, besonders bevozugt 5 bis 20 Gew.-%.
Die vorstehend näher beschriebenen Desinfektionsmittel sind Konzentrate, die zur Anwendung in der Regel mit Wasser verdünnt werden. Anwendungsfertige Lösungen enthalten üblicherweise 0,5 bis 20 Vol-%, bevorzugt 1 bis 10 Vol-%, besonders bevorzugt 1 bis 5 Vol-% Desinfektionsmittelkonzentrat. Die eingesetzte Konzentration kann je nach Anwendungszweck variiert werden. Beispielsweise sind bei höher konzentrierten Mitteln die für eine zufrieden stellende Wirkung erforderlichen Einwirkzeiten kürzer.
Typische Einwirkzeiten liegen beispielsweise bei 0,5 bis 5 Stunden, bevorzugt 1 bis 4 Stunden.
Die erfindungsgemäßen Desinfektionsmittel eignen sich zur Bekämpfung von parasitischen Protozoen und Helminthen, die in der Tierhaltung und Tierzucht bei Nutz-, Zucht-, Zoo-, Labor-, Versuchs- und Hobbytieren vorkommen. Sie sind dabei vor allem gegen die Dauerstadien (extrazelluläre Cystenstadien) wirksam.
Zu den parasitischen Protozoen zählen:
Sarcomastigophora (Rhizopoda) wie Entamoebidae z.B. Entamoeba histolytica, Hartmanellidae z.B. Acanthamoeba sp., Hartmanella sp.
Apicomplexa (Sporozoa), insbesondere Kokzidien, wie Eimeridae z.B. Eimeria acervulina, E. adenoides, E. alabahmensis, E. anatis, E. anseris, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E. canis, E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. deblie- cki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. flavescens, E. gallopavonis, E. hagani, E. intestinalis, E. iroquoina, E. irresidua, E. Iabbeana,E. leucarti, E. magna, E. maxima, E. media, E. meleagridis, E. meleagrimitis, E. mitis, E. necatrix, E. ninakohlyakimovae, E. ovis, E. parva,E. pavonis, E. perforans, E. phasani, E. piriformis, E. praecox, E. residua, E. scabra, E. spec, E. stie- dai, E. suis, E. tenella, E. truncata, E. truttae, E. zuernii, Globidium spec, Isospora belli, I. canis, I. felis, I. ohioensis, I. rivolta, I. spec, I. suis, Neospara caninum, Cystisospora spec, Cryptosporidi- um spec. wie Toxoplasmadidae z.B. Toxoplasma gondii, wie Sarcocystidae z.B. Sarcocystis bovi- canis, S. bovihominis, S. ovicanis, S. ovifelis, S. spec. und S. suihominis .
Mastigophora (Flagellata) wie z.B. Giardia lamblia, G. canis.
Ferner Myxospora und Microspora z.B. Glugea spec Nosema spec.
Zu den Helminthen zählen Trematoden, Bandwürmer und Nematoden.
Zu den Trematoden gehören z.B. Erreger der Familien/Gattungen: Fasciola, Paramphistomum, Dicrocoelium, Opisthorchis;
zu den Bandwürmern gehören z.B. Erreger der Familien/Gattungen Moniezia, Anoplocephala, Diphyllobothrium, Taenia, Echinococcus, Dipylidium, Raillietina, Choanotaenia, Echinuria,
zu den Nematoden gehören z.B. Erreger der Familien/Gattungen: Strongyloides, Haemonchus, Ostertagia, Trichostrongylus, Cooperia, Nematodirus, Trichuris, Oesophagostomum, Chabertia, Bunostomum, Toxocara vitulorum, Ascaris, Parascaris, Oxyuris, Oesophagostumum, Globocepha- lus, Hyostrongylus, Spirocerca, Toxascaris, Toxocara, Ancylostoma, Uncinaria, Capillaria, Prosthogonimus, Amidostomum, Capillaria, Ascaridia, Heterakis, Syngamus, Acanthocephalen.
Abgesehen von dem Einsatz gegen Protozoen und Helminthen können die erfindungsgemäßen Desinfektionsmittel beispielsweise auch zur Bekämpfung von
Bakterien wie z.B. Clostridien, Escherichia coli, Salmonella spec. Pseudomonas spec. Staphylo- coccus spec, Mycobacterium Tuberculosis und von
Hefen wie z.B. Candida albicans und Pilzinfektionen
eingesetzt werden.
Weiterhin können die erfindungsgemäßen Desinfektionsmittel auch zur Bekämpfung von Viren, wie z.B. Influenzaviren, eingesetzt werden. Bekannt sind Influenzaviren vom Typ A und Typ B. So sind beispielsweise für Vögel aviäre Influenzaviren von besonderer Bedeutung, die zum Typ A gehören. Als Beispiel seien aviäre Influenzaviren vom Subtyp H5N1 genannt. Zu den Nutz- und Zuchttieren gehören Säugetiere wie z.B. Rinder, Pferde, Schafe, Schweine, Ziegen, Kamele, Wasserbüffel, Esel, Maultiere, Zebras, Kaninchen, Damwild, Rentiere, Pelztiere wie z.B. Nerze, Chinchilla, Waschbär, Vögel wie z.B. Hühner, Gänse, Puten, Enten, Tauben, Fasane sowie Vogelarten für Heim- und Zoohaltung.
Zu Labor- und Versuchstieren gehören Mäuse, Ratten, Meerschweinchen, Goldhamster, Hunde und Katzen.
Zu den Hobbytieren gehören Hunde und Katzen.
Die erfindungsgemäßen Desinfektionsmittel eignen sich vor allem für den Einsatz in der Massentierhaltung, insbesondere zum Beispiel in der Geflügelzucht (beispielsweise in der Hühnerhal- tung), der Kälber- oder Schweinehaltung.
Beispiele
I. Formulierungsbeispiele
Allgemeine Herstellungsvorschrift
Die Phenole werden in dem Alkohol bzw. Alkoholgemisch unter Rühren gelöst. Zu der erhaltenen alkoholischen Lösung werden Wasser, ggf. Phenoxyethanol, Salicylsäure und Alkansulfonat (Mer- solat® W93) gegeben und unter ständigem Rühren gelöst.
Material und Methoden für die biologischen Testverfahren
Die Prüfung der Desinfektions-Formulierungen orientierte sich an den Richtlinien für die Prüfung Chemischer Desinfektionsmittel der Deutschen Veterinärmedizinischen Gesellschaft sowie an den publizierten Methoden Daugschies et al. (2002).
1. Gewinnung der Oocysten
Für die Testung wurde der "Houghton"-Stamm von Eimeria tenella (Institute for Animal Health, Compton Laboratories, Near Newbury, Berks. RG 16 ONN, UK) verwendet. Für die Vermehrung und Gewinung der Oocysten wurden 14 Tage alte männliche Legetypküken (Stamm LSL) der Fa. Brinkschulte verwendet. Die Tiere wurden als Eintagesküken ins Tierzentrum angeliefert und kok- zidienfrei mit Kükenaufzuchtfutter ohne Kokzidiostatika und Wasser ad libitum bis zum Versuchsbeginn im Tierzentrum gehalten. Für die Infektion wurden die Tiere mit 13.000 Oocysten per Schlundsonde individuell in 0,2 ml Wasser inokuliert. Am 7. Tag nach der Infektion wurden die Tiere mit Kohlendioxid schmerzlos abgetötet, die Oocysten aus den Blinddärmen isoliert und in 2% Kaliumdichromatlösung 4 Tage zur Sporulation aufgestellt. Am Versuchstag wurde das KaIi- umdichromat aus der Oocystensuspension durch Zentrifugation gewaschen, 3-mal jeweils 5 min bei 2000 Upm und Resuspension des pellets in Wasser. Nach der 3. Zentrifugation wurde die Oocystensuspension mittels Bürker-Kammer auf eine Konzentration von 25.000 Oocysten pro ml Stammlösung eingestellt.
2. Desinfektion der Oocysten (Lysistest)
Die zu prüfenden Desinfektionsmittel wurden unmittelbar vor jedem Testdurchgang in doppelter Anwendungskonzentration in Wasser (aqua bidest) angesetzt. Ausgehend von der Stammlösung wurden 1%, 2% und 4%ige Lösungen angesetzt:
100 μl Stammlösung + 4900 μl Aqua dest (= 1 %, doppeltkonzentriert !)
200 μl Stammlösung + 4800 μl Aqua dest (= 2%, doppeltkonzentriert !)
400 μl Stammlösung + 4600 μl Aqua dest (= 4%, doppeltkonzentriert !)
Jede Formulierung wurde in jedem Versuch als Doppelbestimmung angelegt. Pro Ansatz wurden je 0,5 ml Oocystensuspension (=12.500 Oocysten = 100%) und 0,5 ml der Desinfektionslösung in zwei 25 ml Bechergläsern aus Glas angesetzt. Für die versuchinterne nichtbehandelte Kontrolle (KI) wurden 0,5 ml Wasser mit 0,5 ml Oocystensuspension angesetzt. Während der Einwirkzeit (Ih, 2h, oder 3 h) wurden die Suspensionen auf einer Schüttelmaschine in schwacher Bewegung gehalten.
Nach Ablauf der jeweiligen Einwirkzeit wurde der gesamte Inhalt der Bechergläser in jeweils ei- nen 2000ml Erlenmeyerkolben überführt. Die Bechergläser wurden mit Wasser nachgespült und der Erlenmeyerkolben mit dem Spülwasser auf 1500 ml aufgefüllt. Die Kolbeninhalte wurden gemischt und der Überstand nach einer 24 stündigen Sedimentationszeit bei Raumtemperatur bis auf 100 ml abgegossen. Das Sediment wurde in ein 200 ml Zentrifugenröhrchen überführt und mit Wasser auf 200 ml aufgefüllt und über Nacht stehen gelassen. Am nächsten Tag wurde der Über- stand bis auf ca. 30 ml abgesaugt, das Sediment in ein 50 ml Zentrifugenröhrchen überführt und mit Wasser auf 50 ml aufgefüllt. Nach Mischung durch Inversion wurden pro Desinfektionsansatz je 6 x 200 μl in 6 well einer 96 well Microtiterplatte pipettiert. Die Platten wurden bis zur mikro- skopischen Auswertung bei 40C im Kühlschrank gelagert. Die Auszählung vorhandener Oocysten erfolgte unter einem Inversmikroskop bei 200 facher Vergrößerung. Es wurden nur intakte Oocysten ohne erkennbare Veränderung der äußeren Hülle gezählt.
3. Berechnung der „Lysisrate" Grundlage für die Berechnung der Lysisrate waren die arithmetischen Mittelwerte der Zahl der wieder gefundenen Oocysten aus zwei Microtiterplatten (Platte 1, Platte 2, Doppelbestimung) pro Desinfektionsansatz. Dabei wurde die Wiederfϊndungsrate (WR) der einzelnen Ansätze der Desinfektionsmittel zur Wiederfmdungsrate der nichtbehandelten Kontrolle (KI) in Relation gesetzt (rel. WR): rel. WR [%] = WR desinfizierter Oocysten x 100/WR Kontrolle (KI) [%]. die Wirksamkeit der Desinfektionsformulierungen drückte sich in der „Lysisrate" der Oocysten aus und ergab sich aus der Differenz zu 100: Lysisrate [%] = 100-rel. WR [%].
4. Hauptprüfung in vivo (Infektionstest mit Hühnerküken).
Um festzustellen, ob desinfizierte Oocysten wirklich abgetötet sind und ihre Infektiosität verloren haben, ist nach Richtlinien der Deutschen Veterinär Gesellschaft DVG auch ein Infektionstest desinfizierter Oocysten an Hühnerküken erforderlich.
In unseren Versuchen wurden ca. 14 Tage alte LSL-Legetypküken mit desinfizierten Oocysten infiziert, die Dichte der nach Desinfektion und Stoppen der Reaktion erhaltenen Oocystensuspen- sion wurde hierfür mit dem für die entsprechenden Kontrollen ermittelten Verdünnungsfaktor auf eine theoretische Dosis von 2000/ml verdünnt. Dazu wurden die Werte der Auszählung der 96 well Microtiterplatten aus dem Lysistest in vitro herangezogen um zu ermitteln, wie viel ml Suspension aus dem 50 ml Röhrchen der KI 2000 sporulierte Oocysten enthalten. Das hierbei ermittelte Volumen wurde auch allen anderen Desinfektionsansätzen für die Infektion entnommen, unabhängig von der Anzahl der darin vorkommenden Oocysten. Das Applikationsvolumen pro Küken betrug 0,5 ml. Zusätzlich zur internen Versuchskontrolle wurde eine Infektionskontrolle aus der ursprüng- liehen Oocystensuspension auf 2000 Oocysten/ml in einem Volumen von 0,3 ml eingestellt. Am Tag 7 nach der Infektion wurden die Tiere schmerzlos mit Kohlendioxid abgetötet.
Für die Beurteilung der Wirksamkeit wurden die folgenden Kriterien berücksichtigt: Gewichtszunahme von Versuchsbeginn bis Versuchsende, Infektionsbedingte Sterberate, makroskopische Beurteilung der Faeces hinsichtlich Durchfall und Blutauscheidung an den Tagen 5 und 7 p.i. (Bewertung 0 bis 6), makroskopische Beurteilung der Darmschleimhaut auf Läsionen, insbesondere der Blinddärme (Bewertung 0 bis 6) und die Oocystenausscheidung. Die Zahl der Oocysten im Kot wurde mit Hilfe der McMaster-Zählkammer bestimmt. Die einzelnen Befunde wurden in ReIa- tion zu den unbehandelten nicht infizierten Kontroll-Gruppen gesetzt und eine Gesamtbewertung errechnet (Haberkorn und Greif 1999).
Versuchsergebnisse mit erfindungsgemäßen Formulierungen sind in der folgenden Tabelle beispielhaft aufgeführt. Die verbesserte Wirksamkeit der neuen Formulierungen im Vergleich zu einer nicht erfindungsgemäßen Vergleichsformulierung wird besonders an der Reduktion der Oocyste- nausscheidung ersichtlich.
In den Tabellen der Beispiele B, E, F, H bedeutet in Spalte „Behandlung" die Angabe
nicht inf. Kontrolle = nicht infizierte Kontrollgruppe
inf. Kontrolle = infizierte Kontrollgruppe
Bsp. 1 = Formulierung Beispiel Nr.
In Spalte „Tot" wird die Anzahl der gestorbenen Tiere/ im Versuch eingesetzten Tiere angegeben. In der Spalte „Gewicht in % der nicht inf. Kontrolle" wird das Verhältnis des Gewichtes der behandelten Tiere zum Gewicht der nicht infizierten Kontrollgruppe angegeben. In den Spalten „Durchfall", „Läsionen" und „Oocysten" werden Einzelangaben zur Wirkung gemacht. In der Spalte „% Wirksamkeit wird die Gesamtbewertung bonitiert; 0% bedeutet keine Wirkung, 100% bedeutet volle Wirkung.
Ergebnisse der biologischen Testverfahren
Biologisches Beispiel A
Prüfung verschiedener Desinfektions-Formulierungen (4%) gegen Eimeria tenella Oocysten in vitro
nach einer Einwirkzeit von 3 Stunden
Biologisches Beispiel B:
Prüfung verschiedener Desinfektions-Formulierungen (AVo) gegen Eimeria tenella an Hühnerküken in vivo nach einer Einwirkzeit von 3 Stunden
* nicht erfindungsgemäß ** Handelsprodukt
Biologisches Beispiel C:
Prüfung verschiedener Desinfektions-Formulierungen (1%, 2%, 4%) gegen Eimeria tenella Oo- Cysten in vitro nach einer Einwirkzeit von 3 Stunden
Biologisches Beispiel P:
Prüfung verschiedener Desinfektions-Formulierungen (4%) gegen Eimeria tenella Oocysten in vitro, nach einer Einwirkzeit von 1 , 2 und 3 Stunden
Biologisches Beispiel E:
Prüfung verschiedener Desinfektions-Formulierungen (4%) gegen Eimeria tenella an Hühnerküken in vivo nach einer Einwirkzeit von 3 Stunden
Biologisches Beispiel F:
Prüfung verschiedener Desinfektions-Formulierungen (4%) gegen Eimeria tenella Oocysten an Hühnerküken in vivo nach einer Einwirkzeit von 1 Stunde
Biologisches Beispiel G:
Prüfung von Desinfektions-Formulierung Bsp. 6 (1%) gegen Eimeria tenella Oocysten in vitro, im Vergleich zu Neopredisan (1%) nach Einwirkzeiten von 1, 2 und 3 Stunden
Biologisches Beispiel H
Prüfung von Desinfektions-Formulierung Bsp. 6 (1%, 4%) im Vergleich zu Neopredisan® (1%, 4%) gegen Eimeria tenella Oocysten an Hühnerküken in vivo nach einer Einwirkzeit von 1 Stunde
REFERENZEN
Böhm, R. (2000): Liste der nach den Richtlinien der DVG geprüften und als wirksam befundenen Desinfektionsmittel für die Tierhaltung (Handelspräparate). Deutsches Tierärtzteblatt 9/2000.
Daugschies, A., Böse, R., Marx, J., Teich, K., Friedhoff, KT (2002): Development and application of a standardized assay for chemical disinfection of coccidia oocysts. Vet. Parasitol. 103(4):299- 308.
Mouafo, A.N., Richard, F., Entzeroth, R. (2000): Observation of sutures in the oocyst wall of Ei- meria tenella (Apicomplexa). Parasitol. Res. 86:1015-1017.
Eckert, J. (2000): Parasitenstadien als umwelthygienisches Problem. In: Veterinärmedizinische Parasitologie 94-119. Ed.: Rommel, Eckert, Kutzer, Körting, Schnieder. Parey Buchverlag Berlin.
Haberkorn, A., Greif, G. (1999): Animal Models of Coccidia Infection. In: Handbook of Animal Models of Infection, chapter 99. Academic Press

Claims

Patentansprüchc
1. Desinfektionsmittel enthaltend
(a) ein chloriertes biozides Phenol
(b) ein weiteres chloriertes oder nicht chloriertes biozides Phenol
(c) ein nicht chloriertes biozides Phenol und/oder Phenolderivat.
(d) ein Keratolytikum
2. Desinfektionsmittel gemäß Anspruch 1 enthaltend zwei verschiedene chlorierte biozide Phenole und ein nicht chloriertes biozides Phenol.
3. Desinfektionsmittel gemäß Anspruch 1 oder 2 enthaltend ein nicht chloriertes biozides Phenolderivat.
4. Desinfektionsmittel gemäß einem der vorstehenden Ansprüche, in dem das oder die chlorierten bioziden Phenole ausgewählt sind aus der Gruppe: 4-Chlor-3-methylphenol (PCMC, p-Chlor-m-kresol), 4-Chlor-3-ethylphenol, 2-n-Amyl-4-chlorphenol, 2-n-Hexyl-4- chlorphenol, 2-Cyclohexyl-4-chlorphenol, 4-Chlor-3,5-xylenol (PCMX, p-Chlor-m- xylenol), 2,4-Dichlor-3,5-xylenol (DCMX, Dichlor-p-xylenol), 4-Chlor-2-phenylphenol, 2-
Benzyl-4-chlorphenoI, Benzyl-4-chlor-m-kresol, 4-Chlorbenzyl-dichlor-m-kresol.
5. Desinfektionsmittel gemäß einem der vorstehenden Ansprüche, in dem das oder die nicht chlorierten bioziden Phenole ausgewählt sind aus der Gruppe: 2-Methylphenol, 3-Methyl- phenol, 4-Methylphenol, 4-Ethylphenol, 2,4-Dimethylphenol, 2,5-Dimethylphenol, 3,4- Dimethylphenol, 2,6-Dimethylphenol, 4-n-Propylphenol, 4-n-Butylphenol, 4-n-Amyl- phenol, 4-n-Hexylphenol, Thymol (5-Methyl-2-Isopropylphenol), 2-Phenylphenol, 4- Phenylphenol, 2-Benzylphenol.
6. Desinfektionsmittel gemäß einem der vorstehenden Ansprüche, in dem das nicht chlorierte biozide Phenolderivat ein Phenolether, insbesondere Phenoxyethanol, ist.
7. Desinfektionsmittel gemäß einem der vorstehenden Ansprüche, in dem das Keratolytikum ausgewählt ist aus der Gruppe: Organische Säuren, wie Citronensäure, Ameisensäure und Salicylsäure; Harnstoff, Resorcin, Thioglykolsäure, Sulfide, 5-Fluorouracil.
8. Desinfektionsmittel gemäß Anspruch 7, in dem das Keratolytikum Salicylsäure ist.
9. Verwendung des Desinfektionsmittels gemäß einem der vorstehenden Ansprüche zur Bekämpfung von parasitischen Protozoen, Helminthen, Bakterien und/oder Hefen.
10. Verwendung gemäß Anspruch 9 zur Bekämpfung von Dauerstadien parasitischer Protozoen und/oder Helminthen.
EP06762454A 2005-07-19 2006-07-06 Desinfektionsmittel enthaltend eine kombination biozider und ein keratolytikum Withdrawn EP1909569A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005033496A DE102005033496A1 (de) 2005-07-19 2005-07-19 Desinfektionsmittel
PCT/EP2006/006599 WO2007009606A2 (de) 2005-07-19 2006-07-06 Desinfektionsmittel enthaltend eine kombination biozider und ein keratolytikum

Publications (1)

Publication Number Publication Date
EP1909569A2 true EP1909569A2 (de) 2008-04-16

Family

ID=37012143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06762454A Withdrawn EP1909569A2 (de) 2005-07-19 2006-07-06 Desinfektionsmittel enthaltend eine kombination biozider und ein keratolytikum

Country Status (23)

Country Link
US (2) US20080221222A1 (de)
EP (1) EP1909569A2 (de)
JP (2) JP2009501738A (de)
KR (1) KR20080033989A (de)
CN (1) CN101267734B (de)
AR (1) AR054288A1 (de)
AU (1) AU2006272087A1 (de)
BR (1) BRPI0613682B1 (de)
CA (1) CA2615540C (de)
CR (1) CR9675A (de)
DE (1) DE102005033496A1 (de)
EC (1) ECSP088117A (de)
GT (1) GT200600319A (de)
IL (1) IL188776A0 (de)
MX (1) MX2008000778A (de)
MY (1) MY157990A (de)
PE (1) PE20070472A1 (de)
RU (1) RU2419287C2 (de)
TW (1) TW200744448A (de)
UA (1) UA92178C2 (de)
UY (1) UY29677A1 (de)
WO (1) WO2007009606A2 (de)
ZA (1) ZA200800468B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640500C1 (ru) * 2017-06-30 2018-01-09 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт фундаментальной и прикладной паразитологии животных и растений имени К.И. Скрябина (ФГБНУ "ВНИИП им. К.И. Скрябина") Способ дезинвазии против ооцист кокцидий птиц

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2632561C (en) * 2005-12-19 2015-01-27 The University Of Liverpool Substituted propofol derivatives as analgesics
JP5651009B2 (ja) * 2007-05-09 2015-01-07 ソウッド ヘルスケア エルエルシー 治療用化合物
KR20100017435A (ko) * 2007-05-09 2010-02-16 파마코포어, 인크. 치료 화합물
DE102008031284A1 (de) 2008-07-02 2010-01-07 Bayer Schering Pharma Aktiengesellschaft Neue Bekämpfungsmöglichkeit der Giardiose
CN103998011B (zh) 2011-11-03 2016-11-23 荷兰联合利华有限公司 个人清洁组合物
IN2014MN01034A (de) 2011-12-06 2015-05-29 Unilever Plc
MX341614B (es) * 2011-12-22 2016-08-26 Unilever Nv Metodo y composicion antibacterianos.
CN105821666A (zh) * 2015-12-28 2016-08-03 福建恒安集团有限公司 一种多功能es纤维
CN105821665A (zh) * 2015-12-28 2016-08-03 福建恒安集团有限公司 一种多功能es纤维纺丝油剂
CN107593719A (zh) * 2017-10-17 2018-01-19 赖丰光 含银果与氟环唑的农药组合物
RU2687487C1 (ru) * 2018-05-30 2019-05-14 Федеральное государственное бюджетное научное учреждение "Федеральный научный центр - "Всероссийский научно-исследовательский институт экспериментальной ветеринарии имени К.И. Скрябина и Я.Р. Коваленко Российской академии наук" (ФГБНУ ФНЦ ВИЭВ РАН) Способ дезинвазии против ооцист кокцидий лисиц и песцов

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE649172C (de) * 1934-09-15 1937-08-21 Emil Klarmann Dr Desinfektionsmittel
LU34050A1 (de) * 1955-02-26
GB872900A (en) * 1959-01-29 1961-07-12 William Pearson Ltd Disinfectant compositions
DE1202443B (de) * 1965-01-18 1965-10-07 Chem Fab Marienfelde G M B H Desinfektionsmittel
JPS6345217A (ja) * 1986-07-23 1988-02-26 チバ−ガイギ アクチエンゲゼルシヤフト 殺菌剤組成物
WO1994017661A1 (de) * 1993-02-11 1994-08-18 Menno-Chemie-Vertrieb Gmbh Desinfektionsmittel mit parasitizider wirksamkeit
TWI245763B (en) * 1998-04-02 2005-12-21 Janssen Pharmaceutica Nv Biocidal benzylbiphenyl derivatives
DE10222455A1 (de) * 2002-05-22 2003-12-11 Ewabo Chemikalien Gmbh Desinfektionsmittel
WO2004021786A1 (de) * 2002-09-05 2004-03-18 Menno Chemie-Vertrieb Gmbh Mittel zur inaktivierung pathogener erreger auf flächen, instrumenten und in kontaminierten flüssigkeiten

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHLÁDKOVÁ K ET AL: "Effect of biocides on S. cerevisiae: relationship between short-term membrane affliction and long-term cell killing", FOLIA MICROBIOLOGICA, PRAQUE, CZ, vol. 49, no. 6, 1 January 2004 (2004-01-01), pages 718 - 724, XP008083740, ISSN: 0015-5632 *
LUCCHINI J J ET AL: "Antibacterial activity of phenolic compounds and aromatic alcohols", RESEARCH IN MICROBIOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 141, no. 4, 1 January 1990 (1990-01-01), pages 499 - 510, XP023924910, ISSN: 0923-2508, [retrieved on 19900101], DOI: 10.1016/0923-2508(90)90075-2 *
RUSSELL A D: "Similarities and differences in the responses of microorganisms to biocides", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, OXFORD UNIVERSITY PRESS, GB, vol. 52, no. 5, 1 November 2003 (2003-11-01), pages 750 - 763, XP002362469, ISSN: 0305-7453, DOI: 10.1093/JAC/DKG422 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640500C1 (ru) * 2017-06-30 2018-01-09 Федеральное государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт фундаментальной и прикладной паразитологии животных и растений имени К.И. Скрябина (ФГБНУ "ВНИИП им. К.И. Скрябина") Способ дезинвазии против ооцист кокцидий птиц

Also Published As

Publication number Publication date
BRPI0613682B1 (pt) 2018-05-22
CA2615540C (en) 2013-09-03
CR9675A (es) 2008-06-09
CN101267734A (zh) 2008-09-17
CN101267734B (zh) 2012-05-30
JP2009501738A (ja) 2009-01-22
JP2013056897A (ja) 2013-03-28
AR054288A1 (es) 2007-06-13
US20110086823A1 (en) 2011-04-14
DE102005033496A1 (de) 2007-01-25
US20080221222A1 (en) 2008-09-11
GT200600319A (es) 2007-09-21
TW200744448A (en) 2007-12-16
PE20070472A1 (es) 2007-06-29
BRPI0613682A2 (pt) 2011-01-25
MY157990A (en) 2016-08-30
CA2615540A1 (en) 2007-01-25
WO2007009606A2 (de) 2007-01-25
UY29677A1 (es) 2007-02-28
UA92178C2 (ru) 2010-10-11
ZA200800468B (en) 2009-07-29
ECSP088117A (es) 2008-03-26
RU2008105608A (ru) 2009-08-27
IL188776A0 (en) 2008-08-07
MX2008000778A (es) 2008-03-06
KR20080033989A (ko) 2008-04-17
RU2419287C2 (ru) 2011-05-27
WO2007009606A3 (de) 2007-05-24
AU2006272087A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
WO2007009606A2 (de) Desinfektionsmittel enthaltend eine kombination biozider und ein keratolytikum
EP0946099B1 (de) Endo-ekto-parasitizide mittel
Jacobs et al. A review on the effect of macrocyclic lactones on dung-dwelling insects: Toxicity of macrocyclic lactones to dung beetles
EP2164496B1 (de) Formulierungen enthaltend triazinone und eisen
EP2054064A2 (de) Transdermale anwendung von triazinen zur bekämpfung von coccidien-infektionen
EP0683628B1 (de) Desinfektionsmittel mit parasitizider wirksamkeit
EP0828487A1 (de) Mittel gegen parasitäre protozoen
EP0265825B1 (de) Verwendung von Desinfectionsmitteln zur Bekämpfung und Abtötung von parasitären Dauerformen
DE60100666T2 (de) Tierärztliche zusammensetzungen zur behandlung von parasiterkrankungen
AU2012241180B2 (en) Disinfecting agent containing a combination of biocidal phenols and a keratolytic
US20110250295A1 (en) Aqueous composition for inactivating sporulated and/or non-sporulated coccidian parasites
EP1380208B1 (de) Desinfektionsmittel mit antiparasitärer Wirkung
CZ292166B6 (cs) Kompozice pro ošetření steliva drůbeže
US20120196821A1 (en) Method and formulation for the control of parasites
A Seddiek et al. EFFECT OF NEEM EXTRACT AND IVERMECTIN ON MITE (SARCOPTES SCABIEI) IN EXPERIMENTALLY INFECTED RABBITS
ABD EL-HAFEZ et al. Effect of some vegetable oils in enhancing the potency of bioinsecticides against the cotton leafworm
DE102004042958A1 (de) Neue antiparasitäre Kombination von Wirkstoffen
EP0339448A1 (de) Parasitenabtötende Desinfektionsmittel
WO2011042086A1 (de) Verwendung von heterocyclisch substituierten 1,2,4-triazindionen
Groza et al. Advocate–therapeutical solution in parasitical Infestation in frillneck lizard (Chlamydosaurus kingii) and bearded dragon (Pogona vitticeps)
WO2011023304A2 (de) Neue antiparasitäre kombination von wirkstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080219

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

Owner name: BAYER ANIMAL HEALTH GMBH

17Q First examination report despatched

Effective date: 20100218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

RAX Requested extension states of the european patent have changed

Extension state: HR

Payment date: 20080219

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

INTG Intention to grant announced

Effective date: 20171115

18W Application withdrawn

Effective date: 20171206