EP1903132A2 - Electropolishing method for cobalt and cobalt alloys - Google Patents

Electropolishing method for cobalt and cobalt alloys Download PDF

Info

Publication number
EP1903132A2
EP1903132A2 EP07018326A EP07018326A EP1903132A2 EP 1903132 A2 EP1903132 A2 EP 1903132A2 EP 07018326 A EP07018326 A EP 07018326A EP 07018326 A EP07018326 A EP 07018326A EP 1903132 A2 EP1903132 A2 EP 1903132A2
Authority
EP
European Patent Office
Prior art keywords
cobalt
electrolyte
acid
alloys
electropolishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07018326A
Other languages
German (de)
French (fr)
Other versions
EP1903132A3 (en
EP1903132B1 (en
Inventor
Siegfried Piesslinger-Schweiger
Olaf BÖHME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat GmbH
Original Assignee
Poligrat GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poligrat GmbH filed Critical Poligrat GmbH
Publication of EP1903132A2 publication Critical patent/EP1903132A2/en
Publication of EP1903132A3 publication Critical patent/EP1903132A3/en
Application granted granted Critical
Publication of EP1903132B1 publication Critical patent/EP1903132B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals

Definitions

  • the present invention relates to a method of electrochemically polishing cobalt or cobalt alloy surfaces, and to an electrolyte for electrochemically polishing such surfaces.
  • the electrolyte comprises glycolic acid and at least one alkanesulfonic acid.
  • cobalt alloys consisting of cobalt or cobalt alloys, or having surfaces of cobalt or cobalt alloys, are becoming increasingly important.
  • cobalt alloys are used in various fields because of their high resistance to corrosion and wear.
  • Applications include areas as diverse as mechanical engineering, where cobalt alloys are used to protect against wear, and medical technology, where cobalt alloys are used for implants because of their high corrosion resistance, strength, and absence of nickel.
  • US 6,679,980 B1 describes an electropolishing process that can be used to electropolish stents that may be cobalt-chromium-tungsten.
  • the electrolyte used contains concentrated hydrochloric acid and concentrated sulfuric acid.
  • An electrolyte containing sulfuric acid and hydrochloric acid, which also contains glycol, is also available in Automated Design of Fuzzy Systems ", H. Surmann, VDI Verlag, Erasmus 8, Nr. 452 described.
  • the methods described in these documents focus primarily on special equipment and controls of the electropolishing process. This is not surprising since with the electrolytes described therein under conventional electropolishing conditions smoothing or deburring of the desired quality surfaces is frequently not possible is. This too can be attributed to the carbides contained in the structure of the workpieces, since these are not removed to the same extent as the metal or the metallic alloy and can thus in some cases even lead to an increase in the roughness of the surfaces.
  • cobalt alloys are becoming increasingly important in the field of medical technology.
  • One of the reasons for this is that an increasing proportion of the population suffers from allergies to nickel. For this reason, efforts are increasingly being made to restrict the use of nickel-containing stainless steels for medical implants.
  • cobalt-chromium alloys are considered as a substitute for this.
  • implant alloys cobalt-chromium alloys
  • the surfaces of these workpieces must be polished to a high quality.
  • chromium-nickel steels this is done mainly by electrochemical polishing, since this method gives the best results.
  • cobalt-chromium alloys so far no comparable suitable electropolishing available.
  • Cobalt-based hard metals are also frequently used in mechanical and plant engineering, as their hardness and high wear resistance significantly exceed those of other materials.
  • the surfaces of pumps, valves, bearings, and other components, which are particularly at risk from wear are often armored with the cobalt alloy Stellite.
  • the mechanical polish of stellite often creates stresses that are at the expense of the corrosion resistance of the workpieces.
  • Subsequent heat treatment of the surfaces to relieve these stresses is cumbersome and often not possible to the extent that would be required due to the nature of the machine parts. Because of these drawbacks, there has long been a need for electropolishing methods that enable smoothing and deburring of surfaces of cobalt or cobalt alloy workpieces of comparable quality as can be achieved in electropolishing stainless steel surfaces.
  • the subject of the present invention is a novel electrolyte which enables the production of shiny, smooth and deburred surfaces of cobalt or cobalt alloys.
  • This electrolyte comprises at least one alkanesulfonic acid having an alkyl radical having 1, 2 or 3 carbon atoms and glycolic acid.
  • the at least one alkanesulfonic acid comprises methanesulfonic acid.
  • Elek trolyte may for example consist of glycolic acid, methanesulfonic acid and water.
  • an electrolyte consisting of a mixture of alkanesulfonic acid (or more alkanesulfonic acids) having an alkyl group of 1 to 3 carbon atoms and glycolic acid is capable of smoothing cobalt-based surfaces to an unprecedented extent was completely surprising and unexpected .
  • this mixture as electrolyte, cobalt and cobalt alloys, including alloys such as stellite, can be electropolished without any appreciable grain boundary attack.
  • Such an electropolishing process makes it possible to routinely obtain surfaces of cobalt-containing workpieces in a previously unattained gloss and smoothness grade.
  • the electrolyte according to the invention has a ratio of alkanesulfonic acid to glycolic acid in the range from 30:70 to 80:20, based on the pure substances. Further preferred is a mixture having a ratio of alkanesulfonic acid to glycolic acid in the range of 60:40 to 70:30, based on the pure substances.
  • the active substances alkanesulfonic acid and glycolic acid are present in the electrolyte in high concentration. So contains the Electrolyte in one embodiment, a maximum of 35 wt .-% water. Preferably, the electrolyte contains a maximum of 25 wt .-% water.
  • the active substances either as pure substance or as concentrated solutions.
  • the glycolic acid is suitably used as a concentrated aqueous solution containing 60-80% by weight of glycolic acid, preferably ⁇ 70% by weight.
  • Such solutions are commercially available.
  • alkanesulfonic acid or alkanesulfonic acids are preferably used in highly concentrated form.
  • methanesulfonic acid can be used as about 85% or as ⁇ 99% solution as it is commercially available.
  • the electrolyte according to the invention contains no explosive substances, in particular no perchloric acid or salts of perchloric acid.
  • Another aspect of the invention are methods for electrochemically polishing cobalt-containing surfaces using the electrolytes described above. These electropolishing methods of the present invention are useful for producing high-quality, micro-smooth surfaces of cobalt or cobalt alloy workpieces.
  • Such a process may be carried out under any conditions known in the art and known to those skilled in the art.
  • Process temperatures in the range between 40 ° C and 70 ° C have proven particularly suitable.
  • the regulation and monitoring of the temperature may be carried out in any manner known to those skilled in the art.
  • the process is performed at an anodic current density that is between 5 and 25 A / dm 2 .
  • the anodic current density is about 10 A / dm 2 .
  • the duration of the electropolishing process depends on the roughness of the workpiece to be polished and the desired smoothing.
  • the optimum exposure time the expert in the context of routine experiments depending on determine the current density used, the temperature, the composition of the electrolyte and the electropolishing apparatus in routine experiments.
  • the treated workpiece is removed from the polishing bath and typically rinsed with demineralized water and optionally dried.
  • inventive methods are particularly suitable for the electrochemical polishing of workpieces with a surface consisting of a cobalt-chromium alloy.
  • cobalt-chromium alloys may contain other constituents in addition to the elements cobalt and chromium.
  • Such cobalt-chrome alloy surfaces smoothed and deburred by methods of the present invention may be used as medical implants because of their high compatibility with human or general biological tissue.
  • the cobalt-chromium alloy stellite which consists of about 50-60% cobalt, 30-40% chromium and 8-20% tungsten, but may also contain smaller amounts of other elements, can be with the methods described herein in a hitherto Smooth and deburr unrecognized quality.
  • the electropolishing methods described here for workpieces made of cobalt alloys, such as stellite can be used in particular in nuclear technology both in the manufacture of new components prior to their use, as well as for cleaning and decontamination of cobalt-containing components that are already in use or in use to allow a safer repair or disposal of these components.
  • the electropolishing method according to the invention is also suitable for producing high-quality smooth wear protection layers based on cobalt or cobalt alloy, which are applied to workpieces made of other materials.
  • the treatment was carried out at a current density of 10 A / dm 2 and temperatures between 40 ° C and 70 ° C in an electrolyte consisting of a mixture of ⁇ 99% methanesulfonic acid and ⁇ 70% glycolic acid (in water) in a mixing ratio from 55:45. This corresponds to a ratio of the pure substances of about 65:35 and a water content of less than 15%.

Abstract

For electro-chemical polishing of cobalt and cobalt alloy surfaces, an electrolyte is used containing glycolic acid and at least one alkane sulfonic acid with an alkyl residue containing 1-3 carbon atoms. The alkane sulfonic acid includes methane sulfonic acid. The electro-chemical polishing is at a temperature of 40-70[deg] C with an anode current density of 5-25 A/dm 2>.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum elektrochemischen Polieren von Oberflächen aus Kobalt oder Kobaltlegierungen, sowie einen Elektrolyten zum elektrochemischen Polieren solcher Oberflächen. Der Elektrolyt umfasst dabei Glykolsäure und mindestens eine Alkansulfonsäure.The present invention relates to a method of electrochemically polishing cobalt or cobalt alloy surfaces, and to an electrolyte for electrochemically polishing such surfaces. The electrolyte comprises glycolic acid and at least one alkanesulfonic acid.

Werkstücke, die aus Kobalt oder Kobaltlegierungen bestehen, bzw. die Oberflächen aus Kobalt oder Kobaltlegierungen aufweisen, gewinnen zunehmend an Bedeutung. So werden Kobaltlegierungen aufgrund ihrer hohen Widerstandsfähigkeit gegen Korrosion und Verschleiß auf verschiedenen Gebieten eingesetzt. Die Anwendungsgebiete erstrecken sich dabei über so unterschiedliche Bereiche wie den Maschinen-und Anlagebau, wo Kobaltlegierungen zum Schutz vor Verschleiß eingesetzt werden, und die Medizintechnik, wo Kobaltlegierungen aufgrund ihrer hohen Korrosionsbeständigkeit, ihrer Festigkeit und der Abwesenheit von Nickel für Implantate verwendet werden.Workpieces consisting of cobalt or cobalt alloys, or having surfaces of cobalt or cobalt alloys, are becoming increasingly important. Thus, cobalt alloys are used in various fields because of their high resistance to corrosion and wear. Applications include areas as diverse as mechanical engineering, where cobalt alloys are used to protect against wear, and medical technology, where cobalt alloys are used for implants because of their high corrosion resistance, strength, and absence of nickel.

Ein wesentliches Hemmnis bei der Verwendung von kobalthaltigen Werkstücken besteht jedoch in der schwierigen Glättung und Entgratung ihrer Oberflächen. Ursache hierfür sind die in Kobalt und Kobaltlegierungen enthaltenen harten und sehr widerstandsfähigen Carbide. Eine mechanische Politur solcher Oberflächen ist aufwendig und verursacht häufig Spannungen im oberflächennahen Gefüge des Werkstücks, welche sich nachteilig auf die Korrosionsbeständigkeit der Werkstücke auswirken können.However, a major obstacle to the use of cobalt-containing workpieces is the difficulty of smoothing and deburring their surfaces. This is due to the hard and highly resistant carbides contained in cobalt and cobalt alloys. A mechanical polishing of such surfaces is expensive and often causes tensions in the near-surface structure of the workpiece, which can adversely affect the corrosion resistance of the workpieces.

Eine Alternative besteht im elektrochemischen Polieren solcher Oberflächen. US 6,679,980 B1 beschreibt ein Elektropolierverfahren, das zum Elektropolieren von Stents verwendet werden kann, die aus Kobalt-Chrom-Wolfram bestehen können. Der dabei eingesetzte Elektrolyt enthält konzentrierte Salzsäure und konzentrierte Schwefelsäure. Ein Schwefelsäure- und Salzsäure-haltiger Elektrolyt, der darüber hinaus Glykol enthält, ist auch in " Automatisierter Entwurf von Fuzzy Systemen", H. Surmann, VDI Verlag, Reihe 8, Nr. 452 beschrieben. Die in diesen Dokumenten beschriebenen Verfahren konzentrieren sich in erster Linie auf spezielle Apparaturen und Steuerungen des Elektropolierprozesses. Dies ist nicht verwunderlich, da mit den darin beschriebenen Elektrolyten unter herkömmlichen Elektropolierbedingungen ein Glätten bzw. Entgraten der Oberflächen in erwünschter Qualität häufig nicht möglich ist. Auch dies ist auf die im Gefüge der Werkstücke enthaltenen Carbide zurückzuführen, da diese nicht in gleichem Maße wie das Metall bzw. die metallische Legierung abgetragen werden und somit teilweise sogar zu einer Erhöhung der Rauheit der Oberflächen führen können.An alternative is the electrochemical polishing of such surfaces. US 6,679,980 B1 describes an electropolishing process that can be used to electropolish stents that may be cobalt-chromium-tungsten. The electrolyte used contains concentrated hydrochloric acid and concentrated sulfuric acid. An electrolyte containing sulfuric acid and hydrochloric acid, which also contains glycol, is also available in Automated Design of Fuzzy Systems ", H. Surmann, VDI Verlag, Reihe 8, Nr. 452 described. The methods described in these documents focus primarily on special equipment and controls of the electropolishing process. This is not surprising since with the electrolytes described therein under conventional electropolishing conditions smoothing or deburring of the desired quality surfaces is frequently not possible is. This too can be attributed to the carbides contained in the structure of the workpieces, since these are not removed to the same extent as the metal or the metallic alloy and can thus in some cases even lead to an increase in the roughness of the surfaces.

Auch in der Literatur beschriebene Elektrolyte aus Perchlorsäure und Essigsäure liefern oftmals keine zufriedenstellenden Ergebnisse. Darüber hinaus ist die in diesen Verfahren verwendete Perchlorsäure explosiv und brandfördernd, weshalb erhebliche Gefahren und mit deren Vermeidung verbundene Kosten mit der Verwendung solcher Perchlorsäure-haltigen Elektrolyte einhergehen.Also described in the literature electrolytes from perchloric acid and acetic acid often do not provide satisfactory results. In addition, the perchloric acid used in these processes is explosive and fire-promoting, which is why considerable risks and costs associated with their avoidance are associated with the use of such perchloric acid-containing electrolytes.

Wie erwähnt, gewinnen Kobaltlegierungen gerade auf dem Gebiet der Medizintechnik zunehmend an Bedeutung. Eine Ursache hierfür liegt unter anderem darin, dass ein zunehmender Anteil der Bevölkerung unter Allergien gegen Nickel leidet. Aus diesem Grunde ist man in verstärktem Maße bestrebt, die Anwendung von nickelhaltigen Edelstählen für medizinische Implantate einzuschränken. Als Ersatz hierfür kommen neben Titan vor allem Kobalt-Chrom-Legierungen (sogenannte Implantat-Legierungen) in Betracht. Damit die Implantate eine ausreichende Korrosionsbeständigkeit und Biokompatibilität aufweisen, müssen die Oberflächen dieser Werkstücke jedoch hochwertig poliert sein. Bei den herkömmlich verwendeten Chrom-Nickel-Stählen geschieht dies überwiegend durch elektrochemisches Polieren, da dieses Verfahren die besten Ergebnisse liefert. Für Kobalt-Chrom-Legierungen stehen jedoch bisher keine vergleichbar geeigneten Elektropolierverfahren zur Verfügung.As mentioned, cobalt alloys are becoming increasingly important in the field of medical technology. One of the reasons for this is that an increasing proportion of the population suffers from allergies to nickel. For this reason, efforts are increasingly being made to restrict the use of nickel-containing stainless steels for medical implants. In addition to titanium, especially cobalt-chromium alloys (so-called implant alloys) are considered as a substitute for this. In order for the implants to have sufficient corrosion resistance and biocompatibility, however, the surfaces of these workpieces must be polished to a high quality. In the conventionally used chromium-nickel steels this is done mainly by electrochemical polishing, since this method gives the best results. For cobalt-chromium alloys, however, so far no comparable suitable electropolishing available.

Hartmetalle auf Kobaltbasis werden auch häufig im Maschinen- und Anlagebau eingesetzt, da ihre Härte und hohe Verschleißfestigkeit die anderer Materialien merklich übertreffen. So werden beispielsweise in Kernkraftwerken die Oberflächen von Pumpen, Ventilen, Lagern und anderen Bauteilen, die besonders durch Verschleiß gefährdet sind, häufig mit der Kobaltlegierung Stellit gepanzert. Die mechanische Politur von Stellit erzeugt aber häufig Spannungen, die zu Lasten der Korrosionsbeständigkeit der Werkstücke gehen. Eine anschließende Wärmebehandlung der Oberflächen zum Abbau dieser Spannungen ist jedoch aufwändig und aufgrund der Art der Maschinenteile häufig nicht in dem Umfang möglich, wie es erforderlich wäre. Aufgrund dieser Nachteile besteht seit längerer Zeit ein Bedarf an Elektropolierverfahren, mit denen ein Glätten und Entgraten von Oberflächen von Werkstücken aus Kobalt oder Kobaltlegierungen in vergleichbarer Qualität ermöglicht wird, wie sie beim Elektropolieren von Edelstahl-Oberflächen erzielt werden kann.Cobalt-based hard metals are also frequently used in mechanical and plant engineering, as their hardness and high wear resistance significantly exceed those of other materials. For example, in nuclear power plants, the surfaces of pumps, valves, bearings, and other components, which are particularly at risk from wear, are often armored with the cobalt alloy Stellite. However, the mechanical polish of stellite often creates stresses that are at the expense of the corrosion resistance of the workpieces. Subsequent heat treatment of the surfaces to relieve these stresses, however, is cumbersome and often not possible to the extent that would be required due to the nature of the machine parts. Because of these drawbacks, there has long been a need for electropolishing methods that enable smoothing and deburring of surfaces of cobalt or cobalt alloy workpieces of comparable quality as can be achieved in electropolishing stainless steel surfaces.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Gegenstand der vorliegenden Erfindung ist ein neuartiger Elektrolyt, der die Erzeugung von glänzenden, glatten und entgrateten Oberflächen aus Kobalt oder Kobaltlegierungen ermöglicht. Dieser Elektrolyt umfasst mindestens eine Alkansulfonsäure mit einem Alkylrest, der 1, 2 oder 3 Kohlenstoffatome aufweist, sowie Glykolsäure. In einer Ausführungsform umfasst die mindestens eine Alkansulfonsäure Methansulfonsäure. Ein solcher Elek-trolyt kann etwa aus Glykolsäure, Methansulfonsäure und Wasser bestehen.The subject of the present invention is a novel electrolyte which enables the production of shiny, smooth and deburred surfaces of cobalt or cobalt alloys. This electrolyte comprises at least one alkanesulfonic acid having an alkyl radical having 1, 2 or 3 carbon atoms and glycolic acid. In one embodiment, the at least one alkanesulfonic acid comprises methanesulfonic acid. Such Elek trolyte may for example consist of glycolic acid, methanesulfonic acid and water.

Dass ein Elektrolyt, bestehend aus einem Gemisch von Alkansulfonsäure (oder mehreren Alkansulfonsäuren), die einen Alkylrest aus 1 bis 3 Kohlenstoffatomen aufweisen, und Glykolsäure in der Lage ist, Oberflächen auf Kobaltbasis in einem bisher nicht erreichten Ausmaß zu glätten, war völlig überraschend und unerwartet. Mit diesem Gemisch als Elektrolyten können Kobalt und Kobaltlegierungen, darunter auch Legierungen wie Stellit, elektropoliert werden, ohne dass dabei ein nennenswerter Korngrenzenangriff erfolgt. Ein solches Elektropolierverfahren ermöglicht es, Oberflächen kobalthaltiger Werkstücke in einer bisher nicht erreichten Güte bezüglich Glanz und Glätte routinemäßig zu erhalten. Mit diesem Verfahren können Unebenheiten ebenso abgetragen werden wie spannungsbelastete und geschädigte Werkstoffschichten, und kobalthaltige Werkstücke mit einer hochwertig polierten, spannungsfreien Oberfläche können auf diese Weise erhalten werden. Diese Oberflächen weisen im Vergleich zu Oberflächen, die mechanisch poliert wurden, bzw. die mit einem Elektrolyten gemäß dem bisherigen Stand der Technik elektropoliert wurden, außerdem eine wesentlich höhere Korrosionsbeständigkeit auf.That an electrolyte consisting of a mixture of alkanesulfonic acid (or more alkanesulfonic acids) having an alkyl group of 1 to 3 carbon atoms and glycolic acid is capable of smoothing cobalt-based surfaces to an unprecedented extent was completely surprising and unexpected , With this mixture as electrolyte, cobalt and cobalt alloys, including alloys such as stellite, can be electropolished without any appreciable grain boundary attack. Such an electropolishing process makes it possible to routinely obtain surfaces of cobalt-containing workpieces in a previously unattained gloss and smoothness grade. With this method, unevenness can be removed as well as stress-loaded and damaged material layers, and cobalt-containing workpieces with a high-quality, stress-free surface can be obtained in this way. These surfaces also have a much higher corrosion resistance compared to surfaces which have been mechanically polished or which have been electropolished with a prior art electrolyte.

In einer bevorzugten Ausführungsform weist der Elektrolyt gemäß der Erfindung ein Verhältnis von Alkansulfonsäure zu Glykolsäure im Bereich von 30:70 bis 80:20, bezogen auf die Reinsubstanzen, auf. Weiter bevorzugt wird ein Gemisch, das ein Verhältnis von Alkansulfonsäure zu Glykolsäure im Bereich von 60:40 bis 70:30, bezogen auf die Reinsubstanzen, aufweist. Diese Mengenangaben beziehen sich wie alle anderen in der vorliegenden Anmeldung angegeben Mengenangaben, relativen Verhältnisse und Prozentangaben auf das Gewicht der jeweiligen Substanzen, Komponenten und Lösungen soweit nichts Gegenteiliges angegeben ist.In a preferred embodiment, the electrolyte according to the invention has a ratio of alkanesulfonic acid to glycolic acid in the range from 30:70 to 80:20, based on the pure substances. Further preferred is a mixture having a ratio of alkanesulfonic acid to glycolic acid in the range of 60:40 to 70:30, based on the pure substances. These quantities are like all other quantities given in the present application, relative ratios and percentages based on the weight of the respective substances, components and solutions unless otherwise specified.

In einer weiteren bevorzugten Ausführungsform liegen die Wirksubstanzen Alkansulfonsäure und Glykolsäure im Elektrolyten in hoher Konzentration vor. So enthält der Elektrolyt in einer Ausführungsform maximal 35 Gew.-% Wasser. Vorzugsweise enthält der Elektrolyt maximal 25 Gew.-% Wasser.In a further preferred embodiment, the active substances alkanesulfonic acid and glycolic acid are present in the electrolyte in high concentration. So contains the Electrolyte in one embodiment, a maximum of 35 wt .-% water. Preferably, the electrolyte contains a maximum of 25 wt .-% water.

Bei der Herstellung des Elektrolyten gemäß der vorliegenden Erfindung wird daher bevorzugt, die Wirksubstanzen entweder als Reinsubstanz oder als konzentrierte Lösungen einzusetzen. So wird die Glykolsäure in geeigneter Weise als konzentrierte wässrige Lösung, die 60-80 Gew.-% Glykolsäure, vorzugsweise ≥ 70 Gew.-% aufweist, eingesetzt. Solche Lösungen sind kommerziell erhältlich. Es können aber ebenfalls die Reinsubstanz, bzw. selbst erzeugte Lösungen von Glykolsäure in Wasser verwendet werden.In the preparation of the electrolyte according to the present invention, it is therefore preferred to use the active substances either as pure substance or as concentrated solutions. Thus, the glycolic acid is suitably used as a concentrated aqueous solution containing 60-80% by weight of glycolic acid, preferably ≥70% by weight. Such solutions are commercially available. However, it is also possible to use the pure substance or self-produced solutions of glycolic acid in water.

Auch die Alkansulfonsäure oder Alkansulfonsäuren werden vorzugsweise in hochkonzentrierter Form eingesetzt. So kann beispielsweise Methansulfonsäure als etwa 85%ige oder als ≥ 99%ige Lösung, wie sie kommerziell erhältlich ist, eingesetzt werden.The alkanesulfonic acid or alkanesulfonic acids are preferably used in highly concentrated form. For example, methanesulfonic acid can be used as about 85% or as ≥99% solution as it is commercially available.

In einer bevorzugten Ausführungsform enthält der Elektrolyt gemäß der Erfindung keine explosiven Substanzen, insbesondere keine Perchlorsäure oder Salze der Perchlorsäure.In a preferred embodiment, the electrolyte according to the invention contains no explosive substances, in particular no perchloric acid or salts of perchloric acid.

Einen weiteren Aspekt der Erfindung stellen Verfahren zum elektrochemischen Polieren von kobalthaltigen Oberflächen unter Verwendung der zuvor beschriebenen Elektrolyten dar. Diese erfindungsgemäßen Elektropolierverfahren eignen sich zur Herstellung hochwertiger, mikroglatter Oberflächen von Werkstücken aus Kobalt oder Kobaltlegierungen.Another aspect of the invention are methods for electrochemically polishing cobalt-containing surfaces using the electrolytes described above. These electropolishing methods of the present invention are useful for producing high-quality, micro-smooth surfaces of cobalt or cobalt alloy workpieces.

Ein solches Verfahren kann unter sämtlichen auf dem Gebiet üblichen und dem Fachmann bekannten Bedingungen durchgeführt werden. Als besonders geeignet haben sich Verfahrenstemperaturen im Bereich zwischen 40°C und 70°C herausgestellt. Die Regulierung und Überwachung der Temperatur kann auf jede, dem Fachmann bekannte Art und Weise erfolgen. In einer bevorzugten Ausführungsform wird das Verfahren bei einer anodischen Stromdichte durchgeführt, die zwischen 5 und 25 A/dm2 liegt. In einer weiteren Ausführungsform der Erfindung liegt die anodische Stromdichte bei etwa 10 A/dm2.Such a process may be carried out under any conditions known in the art and known to those skilled in the art. Process temperatures in the range between 40 ° C and 70 ° C have proven particularly suitable. The regulation and monitoring of the temperature may be carried out in any manner known to those skilled in the art. In a preferred embodiment, the process is performed at an anodic current density that is between 5 and 25 A / dm 2 . In a further embodiment of the invention, the anodic current density is about 10 A / dm 2 .

Die Dauer des Elektropoliervorgangs richtet sich natürlich jeweils nach der Rauheit des zu polierenden Werkstücks und der gewünschten Glättung. Die optimale Einwirkzeit kann der Fachmann im Rahmen von Routineexperimenten in Abhängigkeit von der verwendeten Stromdichte, der Temperatur, der Zusammensetzung des Elektrolyten und der Elektropolierapparatur in Routineexperimenten ermitteln.Of course, the duration of the electropolishing process depends on the roughness of the workpiece to be polished and the desired smoothing. The optimum exposure time, the expert in the context of routine experiments depending on determine the current density used, the temperature, the composition of the electrolyte and the electropolishing apparatus in routine experiments.

Im Anschluss an das Elektropolieren wird das behandelte Werkstück aus dem Polierbad entfernt und üblicherweise mit entmineralisiertem Wasser gespült und gegebenenfalls getrocknet.Following electropolishing, the treated workpiece is removed from the polishing bath and typically rinsed with demineralized water and optionally dried.

Die erfindungsgemäßen Verfahren eignen sich besonders auch zur elektrochemischen Politur von Werkstücken mit einer Oberfläche, die aus einer Kobalt-Chrom-Legierung besteht. Diese Kobalt-Chrom-Legierungen können neben den Elementen Kobalt und Chrom auch weitere Bestandteile enthalten. Solche durch Verfahren gemäß der vorliegenden Erfindung geglätteten und entgrateten Werkstücke mit Oberflächen aus Kobalt-Chrom-Legierungen können aufgrund ihrer hohen Verträglichkeit mit menschlichem bzw. allgemein biologischem Gewebe als medizinische Implantate verwendet werden.The inventive methods are particularly suitable for the electrochemical polishing of workpieces with a surface consisting of a cobalt-chromium alloy. These cobalt-chromium alloys may contain other constituents in addition to the elements cobalt and chromium. Such cobalt-chrome alloy surfaces smoothed and deburred by methods of the present invention may be used as medical implants because of their high compatibility with human or general biological tissue.

Auch die Kobalt-Chrom-Legierung Stellit, die aus etwa 50-60% Kobalt, 30-40% Chrom und 8-20% Wolfram besteht, aber auch geringere Mengen anderer Elemente enthalten kann, lässt sich mit den hier beschriebenen Verfahren in einer bisher nicht gekannten Güte glätten und entgraten. Die hier beschriebenen Elektropolierverfahren für Werkstücke aus Kobaltlegierungen, etwa aus Stellit, können insbesondere auch in der Kerntechnik sowohl bei der Herstellung neuer Bauteile vor deren Einsatz verwendet werden, als auch zur Reinigung und Dekontamination von kobalthaltigen Bauteilen, die sich bereits im Einsatz befinden oder im Einsatz befunden haben, um eine gefahrlosere Reparatur bzw. Entsorgung dieser Bauteile zu ermöglichen. Darüber hinaus eignet sich das erfindungsgemäße Elektropolierverfahren auch zur Erzeugung hochwertiger glatter Verschleißschutzschichten auf Kobalt- bzw. Kobaltlegierungsbasis, welche auf Werkstücken aus anderen Materialien aufgebracht werden.The cobalt-chromium alloy stellite, which consists of about 50-60% cobalt, 30-40% chromium and 8-20% tungsten, but may also contain smaller amounts of other elements, can be with the methods described herein in a hitherto Smooth and deburr unrecognized quality. The electropolishing methods described here for workpieces made of cobalt alloys, such as stellite, can be used in particular in nuclear technology both in the manufacture of new components prior to their use, as well as for cleaning and decontamination of cobalt-containing components that are already in use or in use to allow a safer repair or disposal of these components. In addition, the electropolishing method according to the invention is also suitable for producing high-quality smooth wear protection layers based on cobalt or cobalt alloy, which are applied to workpieces made of other materials.

Die Erfindung wird in den folgenden Beispielen näher erläutert. Diese Beispiele stellen nur mögliche Ausführungsformen des hier beschriebenen Elektropolierverfahrens dar und sollen in keiner Weise eine Beschränkung auf die hier verwendeten Bedingungen implizieren.The invention is explained in more detail in the following examples. These examples are only possible embodiments of the electropolishing process described herein and are not intended to imply any limitation to the conditions used herein.

BeispieleExamples

Elektropoliert wurden

  • Implantate aus einer Kobalt-Chrom-Molybdän-Legierung,
  • Werkzeuge aus einer Kobalt-Chrom-Wolfram-Legierung,
  • Werkzeuge aus massivem Stellit, sowie
  • Werkzeuge aus nichtrostendem Stahl mit einer aufgeschweißten Panzerung.
Were electropolished
  • Implants of a cobalt-chromium-molybdenum alloy,
  • Tools made of a cobalt-chromium-tungsten alloy,
  • Tools made of solid stellite, as well
  • Tools made of stainless steel with a welded-on armor.

Die Bearbeitung erfolgte bei einer Stromdichte von 10 A/dm2 und Temperaturen zwischen 40°C und 70°C.in einem Elektrolyten, bestehend aus einem Gemisch von ≥ 99%iger Methansulfonsäure und ≥ 70%iger Glykolsäure (in Wasser) in einem Mischungsverhältnis von 55:45. Dies entspricht einem Verhältnis der Reinsubstanzen von etwa 65:35 und einem Wassergehalt von weniger als 15 %.The treatment was carried out at a current density of 10 A / dm 2 and temperatures between 40 ° C and 70 ° C in an electrolyte consisting of a mixture of ≥ 99% methanesulfonic acid and ≥ 70% glycolic acid (in water) in a mixing ratio from 55:45. This corresponds to a ratio of the pure substances of about 65:35 and a water content of less than 15%.

Die Ergebnisse zeigten für alle Werkstücke hochglänzende, glatte Oberflächen ohne dass ein selektiver Angriff auf Korngrenzen beobachtet werden konnte.The results showed high-gloss, smooth surfaces for all workpieces without a selective attack on grain boundaries could be observed.

Claims (14)

Elektrolyt, umfassend mindestens eine Alkansulfonsäure mit einem Alkylrest, der 1, 2 oder 3 Kohlenstoffatome aufweist, und Glykolsäure, zum Elektropolieren von Oberflächen aus Kobalt oder Kobaltlegierungen.An electrolyte comprising at least one alkanesulfonic acid having an alkyl radical having 1, 2 or 3 carbon atoms and glycolic acid for electropolishing surfaces of cobalt or cobalt alloys. Elektrolyt gemäß Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Alkansulfonsäure Methansulfonsäure umfasst.Electrolyte according to claim 1, characterized in that the at least one alkanesulfonic acid comprises methanesulfonic acid. Elektrolyt gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis von Alkansulfonsäure zu Glykolsäure im Bereich von 30:70 bis 80:20 liegt, bezogen auf das Gewicht der Reinsubstanzen.An electrolyte according to claim 1 or 2, characterized in that the ratio of alkanesulfonic acid to glycolic acid is in the range from 30:70 to 80:20, based on the weight of the pure substances. Elektrolyt gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis von Alkansulfonsäure zu Glykolsäure im Bereich von 60:40 bis 70:30 liegt, bezogen auf das Gewicht der Reinsubstanzen.An electrolyte according to claim 1 or 2, characterized in that the ratio of alkanesulfonic acid to glycolic acid is in the range of 60:40 to 70:30, based on the weight of the pure substances. Elektrolyt gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektrolyt maximal 35 Gew.-% Wasser enthält.Electrolyte according to one of the preceding claims, characterized in that the electrolyte contains a maximum of 35 wt .-% water. Elektrolyt gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Elektrolyt maximal 25 Gew.-% Wasser enthält.Electrolyte according to one of claims 1 to 4, characterized in that the electrolyte contains a maximum of 25 wt .-% water. Elektrolyt gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektrolyt keine Perchlorsäure oder Perchlorate enthält.Electrolyte according to one of the preceding claims, characterized in that the electrolyte contains no perchloric acid or perchlorates. Verfahren zum Elektropolieren von Oberflächen aus Kobalt oder Kobaltlegierungen mit einem Elektrolyten gemäß einem der Ansprüche 1 bis 7.Process for electropolishing surfaces of cobalt or cobalt alloys with an electrolyte according to one of claims 1 to 7. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass das Verfahren bei einer Temperatur zwischen 40°C und 70°C durchgeführt wird.A method according to claim 8, characterized in that the method is carried out at a temperature between 40 ° C and 70 ° C. Verfahren gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Verfahren bei einer anodischen Stromdichte von 5 bis 25 A/dm2 durchgeführt wird.A method according to claim 8 or 9, characterized in that the method is carried out at an anodic current density of 5 to 25 A / dm 2 . Verfahren gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Verfahren bei einer anodischen Stromdichte von etwa 10 A/dm2 durchgeführt wird.A method according to claim 8 or 9, characterized in that the method is carried out at an anodic current density of about 10 A / dm 2 . Verfahren gemäß einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Oberfläche aus einer Kobalt-Chrom-Legierung besteht.A method according to any one of claims 8 to 11, characterized in that the surface consists of a cobalt-chromium alloy. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass die Oberfläche eine Oberfläche eines medizinischen Implantats ist.A method according to claim 12, characterized in that the surface is a surface of a medical implant. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass die Kobalt-Chrom-Legierung Stellit ist.A method according to claim 12, characterized in that the cobalt-chromium alloy is stellite.
EP07018326A 2006-09-25 2007-09-18 Electropolishing method for cobalt and cobalt alloys Active EP1903132B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006045221A DE102006045221B3 (en) 2006-09-25 2006-09-25 Electropolishing process for cobalt and cobalt alloys and electrolyte

Publications (3)

Publication Number Publication Date
EP1903132A2 true EP1903132A2 (en) 2008-03-26
EP1903132A3 EP1903132A3 (en) 2010-08-25
EP1903132B1 EP1903132B1 (en) 2011-11-02

Family

ID=38616337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07018326A Active EP1903132B1 (en) 2006-09-25 2007-09-18 Electropolishing method for cobalt and cobalt alloys

Country Status (7)

Country Link
US (1) US8080148B2 (en)
EP (1) EP1903132B1 (en)
JP (1) JP2008121110A (en)
AT (1) ATE531836T1 (en)
CA (1) CA2604387C (en)
DE (1) DE102006045221B3 (en)
ES (1) ES2374310T3 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039887B2 (en) * 2012-05-14 2015-05-26 United Technologies Corporation Component finishing method and assembly
US10399166B2 (en) 2015-10-30 2019-09-03 General Electric Company System and method for machining workpiece of lattice structure and article machined therefrom
EP3551786B1 (en) 2016-12-09 2021-04-07 RENA Technologies Austria GmbH Electropolishing method and electrolyte for same
AT520365B1 (en) * 2017-08-29 2019-10-15 Hirtenberger Eng Surfaces Gmbh ELECTROLYTE FOR ELECTROPOLISHING METAL SURFACES
CN109778297B (en) * 2019-03-25 2020-12-15 山东吉威医疗制品有限公司 Electrochemical polishing solution for Co-Cr alloy bracket and polishing method thereof
CN110724999B (en) * 2019-10-23 2021-09-28 沈阳航空航天大学 Electrolyte for CoCrNi multi-principal-element alloy with high Cr content and corrosion process
CN112710529B (en) * 2020-12-18 2022-09-20 国电浙江北仑第三发电有限公司 Preparation method of sample simultaneously used for observation of HR3C precipitate after service and EBSD characterization
CN113481583B (en) * 2021-07-30 2022-07-12 南京铖联激光科技有限公司 Electrolyte solution and electrolysis method for cobalt-chromium alloy electrolytic corrosion for 3D printing
CN114908411A (en) * 2022-05-18 2022-08-16 潍坊赛宝工业技术研究院有限公司 Electrolytic polishing treatment material for surfaces of cobalt-chromium alloy precision parts and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2645611A (en) * 1948-09-20 1953-07-14 Shwayder Bros Inc Method of and bath for electrolytic polishing
US2928777A (en) * 1950-12-16 1960-03-15 Electro Process Inc Electrolytic polishing of metals
JPS56152999A (en) * 1980-04-25 1981-11-26 Kinki Yakuhin Kogyo Kk Electrolytic polishing liqid of co-cr-type alloy
DE19640201A1 (en) * 1996-09-30 1998-04-02 Henkel Ecolab Gmbh & Co Ohg Surface cleaning agents
EP1894656A2 (en) * 2006-09-04 2008-03-05 Ebara Corporation Electrolytic liquid for electrolytic polishing and electrolytic polishing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT54186B (en) 1911-03-06 1912-07-10 Wenzel Jirasko Card index box.
US2378002A (en) * 1940-12-20 1945-06-12 Himmel Brothers Company Electrolytic apparatus
US4678552A (en) * 1986-04-22 1987-07-07 Pennwalt Corporation Selective electrolytic stripping of metal coatings from base metal substrates
US7128825B2 (en) * 2001-03-14 2006-10-31 Applied Materials, Inc. Method and composition for polishing a substrate
US6679980B1 (en) 2001-06-13 2004-01-20 Advanced Cardiovascular Systems, Inc. Apparatus for electropolishing a stent
WO2004072332A1 (en) * 2003-02-12 2004-08-26 Ebara Corporation Polishing fluid, method of polishing, and polishing apparatus
DE102004045297A1 (en) * 2004-09-16 2006-03-23 Basf Ag A method of treating metallic surfaces using low methane sulfonic acid based formulations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2645611A (en) * 1948-09-20 1953-07-14 Shwayder Bros Inc Method of and bath for electrolytic polishing
US2928777A (en) * 1950-12-16 1960-03-15 Electro Process Inc Electrolytic polishing of metals
JPS56152999A (en) * 1980-04-25 1981-11-26 Kinki Yakuhin Kogyo Kk Electrolytic polishing liqid of co-cr-type alloy
DE19640201A1 (en) * 1996-09-30 1998-04-02 Henkel Ecolab Gmbh & Co Ohg Surface cleaning agents
EP1894656A2 (en) * 2006-09-04 2008-03-05 Ebara Corporation Electrolytic liquid for electrolytic polishing and electrolytic polishing method

Also Published As

Publication number Publication date
DE102006045221B3 (en) 2008-04-03
US8080148B2 (en) 2011-12-20
JP2008121110A (en) 2008-05-29
CA2604387C (en) 2012-07-03
US20080289970A1 (en) 2008-11-27
CA2604387A1 (en) 2008-03-25
EP1903132A3 (en) 2010-08-25
ATE531836T1 (en) 2011-11-15
EP1903132B1 (en) 2011-11-02
ES2374310T3 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
EP1903132B1 (en) Electropolishing method for cobalt and cobalt alloys
EP1972322B1 (en) Method for polishing metallic dental reconstructions
DE2907875C2 (en) Process for the electrolytic removal of tungsten carbide coatings on workpieces made of titanium or titanium alloys
DE2644035C3 (en) Process for the electrodeposition of a dispersion layer
EP1911862B1 (en) Electropolishing method for niobium and tantalum
EP0249650A1 (en) Electrolyte for electrochemically polishing metal surfaces
EP0136997B1 (en) Use of a steel containing chromium
EP1213372B1 (en) Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process
EP1641500B1 (en) Cementable endoprostheses
DE2322159C3 (en) Process for producing a molten treatment bath for producing a layer of vanadium, niobium or tantalum carbide on the surface of workpieces made of iron, iron alloys or cemented carbide and containing at least 0.05 percent by weight of carbon
DE10037337A1 (en) Electropolishing of titanium alloy and nickel-titanium alloy articles, especially Nitinol stents, is carried out in anhydrous electrolyte, preferably sulfamic acid in formamide, with article as anode
WO2018197554A1 (en) Martensitic chromium steel, steel foil, perforated and/or pierced components made of a steel foil, wire, rolling bodies of a needle bearing, and method for producing a steel foil, wire, or rolling body of a needle bearing
AT15652U1 (en) Permanent cathode and method for surface treatment of a permanent cathode
DE808519C (en) Process for polishing and deburring high or low carbon steels and low alloy steels by electrolytic means
DE10016920A1 (en) Plating of a tubular workpiece with a netting structure for medical implants maintains a constant gap between the head end of the workpiece as an anode and the electrode within the electrolyte bath
DE102006050317B3 (en) Electrolyte, useful for electro-polishing surfaces from iron-chromium alloy, comprises phosphoric acid electrolyte, methane sulfonic acid and a tertiary amine
EP3640372A1 (en) Method for removing metallic support structures on a metal component manufactured using an additive process
EP3899076B1 (en) Method for increasing the corrosion resistance of a component formed of a magnesium-based alloy against galvanic corrosion, and corrosion-resistant component obtainable by said method
DE4018694A1 (en) METHOD FOR PRODUCING AN ANODE MATERIAL FOR ELECTROLYTIC APPLICATIONS
DE3032480C2 (en) Process for removing electrocatalytically effective protective coatings from electrodes with a metal core and application of the process
DE912634C (en) Process for reconditioning or processing materials that contain carbides of refractory metals
EP3851554A1 (en) Method for etching or dissolving a hard material coating
DE19832404C1 (en) Production of cyanide from nitrocarburised melts containing cyanate by electrolysis
EP3186417A1 (en) Electrolyte for polishing stainless steels, containing a pyridinecarboxylic acid
DE2356675B2 (en) A method for producing a molten treatment bath for producing a chromium carbide layer on the surface of an article made of iron, an iron alloy or cemented tungsten carbide containing at least 0.06% carbon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOEHME, OLAF

Inventor name: PIESSLINGER-SCHWEIGER, SIEGFRIED

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20110203

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C25F 3/22 20060101AFI20110330BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008571

Country of ref document: DE

Effective date: 20120202

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2374310

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120215

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E013314

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008571

Country of ref document: DE

Effective date: 20120803

BERE Be: lapsed

Owner name: POLIGRAT G.M.B.H.

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007008571

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008571

Country of ref document: DE

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: POLIGRAT GMBH, 81829 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: POLIGRAT GMBH, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: POLIGRAT DEUTSCHLAND GMBH

Effective date: 20190919

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): SCHLAEFER LASZLO, DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER(S): POLIGRAT GMBH, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: POLIGRAT DEUTSCHLAND GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: POLIGRAT GMBH

Effective date: 20191010

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 531836

Country of ref document: AT

Kind code of ref document: T

Owner name: POLIGRAT DEUTSCHLAND GMBH, DE

Effective date: 20191202

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200213 AND 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20220919

Year of fee payment: 16

Ref country code: GB

Payment date: 20220726

Year of fee payment: 16

Ref country code: CZ

Payment date: 20220905

Year of fee payment: 16

Ref country code: AT

Payment date: 20220919

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20220905

Year of fee payment: 16

Ref country code: FR

Payment date: 20220726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220930

Year of fee payment: 16

Ref country code: ES

Payment date: 20221018

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220920

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230927

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL