EP1213372B1 - Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process - Google Patents

Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process Download PDF

Info

Publication number
EP1213372B1
EP1213372B1 EP01128897A EP01128897A EP1213372B1 EP 1213372 B1 EP1213372 B1 EP 1213372B1 EP 01128897 A EP01128897 A EP 01128897A EP 01128897 A EP01128897 A EP 01128897A EP 1213372 B1 EP1213372 B1 EP 1213372B1
Authority
EP
European Patent Office
Prior art keywords
nickel
cobalt
deposition
anode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01128897A
Other languages
German (de)
French (fr)
Other versions
EP1213372A2 (en
EP1213372A3 (en
Inventor
Rüdiger Ewald
Peter Filke
Michael Heckmann
Wolfgang Keinath
Günter Langel
Anton Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium GmbH filed Critical Astrium GmbH
Publication of EP1213372A2 publication Critical patent/EP1213372A2/en
Publication of EP1213372A3 publication Critical patent/EP1213372A3/en
Application granted granted Critical
Publication of EP1213372B1 publication Critical patent/EP1213372B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Definitions

  • the present invention relates to a process for the electrodeposition of nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath using a nickel compounds or cobalt compounds such as electrolytes containing sulfates or sulfamates or chlorides.
  • Such electrolytes for electrodeposition are for example made DE 25 58 423 . DE 22 18 967 . US 2,470,775 such as EP 0 835 335 known.
  • At least one anode and at least one cathode of the bath is subjected to periodic current pulses.
  • Such methods with the aid of current pulses are known from the prior art, for example, from the already mentioned publications US 2,470,775 such as EP 0 835 335 known. From the US-A-3,915,835
  • the object of the present invention is therefore to provide a method for the electrodeposition of nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath, in which at least one anode and at least one cathode of the bath is subjected to periodic current pulses and with the nickel or cobalt layers or layers of a nickel or cobalt alloy can be produced, which can be permanently connected to other components, in particular can be welded to other components.
  • an electrolyte which contains corresponding nickel compounds or cobalt compounds, in particular sulfates or sulfamates or chlorides.
  • a cathode of the bath ie a so-called pulse plating process is used.
  • a cathode normally acts a deposition body on which a layer of the corresponding material to be deposited.
  • the ratio I A / I C is between 1.2 and 1.45, in particular between 1.3 and 1.4, and the charge ratio Q A / Q C - (T A * I A ) / (T C ⁇ I C ) is between 35% and 40%.
  • particularly advantageous properties of the deposited layer can be determined, in particular with regard to the strength and the extensibility.
  • At least one contoured anode is used for the deposition, the contour of which is aligned with the contour of the deposition body on which the nickel, the cobalt, the nickel government or the cobalt alloy is deposited is.
  • a contoured anode is used for at least one of the anodes located closest to the deposition body.
  • the effect of contouring the anode is more pronounced than for more remote anodes, i. that anodes without contouring can be used for these more remote anodes, which may be more cost-effective and can be used independently of the specific shape of the deposition body.
  • a contoured container permeable to the ions of the nickel or cobalt to be deposited or the nickel alloy or cobalt alloy and filled with bodies of nickel, cobalt or a nickel alloy or cobalt alloy may be used.
  • Special containers for such bodies are basically made DE 25 58 423 in the form of titanium or plastic baskets which are filled there with nickel pellets, but there is no contouring of the container is provided.
  • a solid electrode body which has at least one coating of the nickel, cobalt or the nickel alloy or cobalt alloy to be deposited or, in principle, consists of solid nickel, cobalt or a solid nickel alloy or cobalt alloy can also be used as the contoured anode.
  • a targeted influencing of the deposition is necessary, which should be different for different areas of the deposition body.
  • This influencing can take place additionally or else alternatively to the aforementioned measure of the contoured anodes.
  • the deposition body is at least partially shielded by current shutters during a part of the entire deposition period. In the shielded areas, a reduced deposition is then achieved as compared to the unshielded areas during the time these areas are shielded.
  • layer properties in particular the layer thickness, but possibly also the mechanical layer properties, can be realized on the deposition body.
  • the current shutters can be arranged in those regions of the deposition body in which a preferred deposition takes place.
  • an excessive layer growth in these areas can be prevented in comparison to other areas and thus a more homogeneous layer growth can be realized over the entire deposition body.
  • a cleaning of the electrolyte with the aid of activated carbon and / or hydrogen peroxide take place.
  • 0.5 g / l to 5 g / l, in particular 1 g / l to 3 g / l of activated carbon can be used to purify the electrolyte and 0.5 ml / l to 3 ml / l, in particular 1 ml / l before the deposition to 2ml / l of 30% hydrogen peroxide.
  • Purification of the electrolyte take place alternatively or additionally during the deposition.
  • filtering of the electrolyte for example by means of activated carbon filters, is provided for this purpose during the deposition on the one hand, and on the other hand foreign elements are removed from the electrolyte by a selective bath.
  • a selective bath corresponds to a galvanic bath, in which a targeted separation of foreign elements and thus their removal from the electrolyte takes place by targeted control of the currents.
  • the thus purified electrolyte then ideally contains only the desired elements, in the case of a nickel electrolyte then ideally only nickel or nickel alloys in the compounds mentioned above, in the case of a cobalt electrolyte ideally only cobalt or cobalt alloys in the compounds mentioned above ,
  • the purified electrolyte is then returned to the galvanic bath.
  • nozzles can now in particular be designed and arranged in the bath such that a circulation of the bath is favored by the nozzles and / or a flow of the electrolyte directed onto the deposition body is achieved.
  • the nozzles not only fulfill the purpose of circulation and return of the electrolyte in the bath, but by this optimized type of recycling, the deposition process in the bath favors, as always optimal mixing or targeted supply of a pure electrolyte as possible to the deposition body is guaranteed.
  • the inventive method is basically suitable for the production of different components that are later inextricably linked to other components, for example, to be welded.
  • the method is particularly suitable for the production of components that are exposed to high loads. This applies, for example, to components for rocket engines, in which case in particular the application of the method for the production of injection heads and / or combustion chambers and / or thrusters for rocket engines is called.
  • the method can also be used for other components that are subject to high loads in later operation, and therefore must have sufficient strength, but nevertheless should have sufficient extensibility, such as supporting mechanical structures, components for kilns or similar arrangements with high thermal stress, etc.
  • the achievable strength as well as the extensibility of the deposited layer over a relatively wide range is adjustable, as will be explained in more detail below.
  • This special galvanic bath can be used to implement a specific development of the aforementioned method.
  • the aforementioned method can in principle but also in otherwise trained galvanic Baths are realized, which are suitably adapted to the basic inventive method or one of its developments.
  • the at least one contoured anode is formed as a contoured container which can be filled with bodies of nickel or cobalt or a nickel alloy or a cobalt alloy.
  • a plurality of anodes are arranged in the bath, wherein only the anodes closest to the deposition body are formed as contoured anodes.
  • the other anodes also have a certain contour, but in this case, only the contour of those anodes which are closest to the deposition body should be adapted to the contour of the deposition body.
  • the contouring can only be done in one spatial direction e.g. in the longitudinal direction of the anode, or it can also take place in more than one spatial direction, e.g. additionally perpendicular to the longitudinal direction.
  • the cleaning device may include a filter device, in particular an activated carbon filter, and a Selektivbad.
  • a filter device in particular an activated carbon filter
  • Selektivbad a Selektivbad
  • a galvanic bath with an electrolyte is provided in the context of the following example, which contains nickel compounds.
  • a galvanic bath with cobalt compounds is conceivable.
  • electrolytes as nickel compounds or cobalt compounds, for example, nickel sulfate and nickel chloride or nickel sulfamate and nickel chloride can be provided, and in the case of cobalt compounds, the corresponding sulfates, sulfamates or chlorides.
  • the composition of the electrolyte reference is made to the cited prior art.
  • additional additives in the electrolyte such as that in US Pat EP 0 835 335 or DE 22 18 967 quoted sulfonated naphthalene or the in US 2,470,775 Column 3, paragraph 2.
  • pulse plating is now used for the deposition, that is, the charging of the anodes and cathodes of the bath with periodic current pulses, which is known in principle from the cited prior art.
  • periodic current pulses which is known in principle from the cited prior art.
  • Fig. 1 determines the dependence of the yield strength (0,2-proof stress) R p 0,2 .
  • Fig. 2 shows schematically the construction of the bath for the realization of the invention, which is filled with an electrolyte as described above.
  • a deposition body 2 such as a combustion chamber of a rocket engine in a bath 1.
  • a coating for example, nickel galvanically generated.
  • at least one anode 3 is embedded in the bath 1, wherein the anode 3 is contoured such that it is adapted to the contour of the deposition body 2.
  • the contouring can be given only in one spatial direction, for example in the longitudinal direction of the anode 3, or it can also be provided in more than one spatial direction, for example additionally perpendicular to the longitudinal direction.
  • FIG. 3 shows a possible arrangement of several anodes 3a, 3b in a bath 1, wherein those anodes 3a, which are closest to the deposition body, are formed as contoured anodes, since there makes the positive influence of the contouring most noticeable.
  • the more remote anodes 3b can be designed as universally usable, in the simplest case flat anodes, for which any standardized anode form can be used. Consequently, only the anode 3 a closest to the deposition body 2 may need to be adapted to the specific shape of different deposition bodies 2.
  • This anode concept represents an optimization of the effect of the anodes 3a, 3b while maintaining a possible universal arrangement.
  • the contoured anode 3 in Fig. 2 is formed by a contoured container 8, which is formed for example as a titanium basket and therefore permeable is for the necessary for the deposition of nickel ions.
  • the container 8 may also be surrounded by additional, likewise permeable to the nickel ions sheaths such as from a bag.
  • the nickel is introduced here in the form of small nickel bodies 9 in the container 8 and can be easily replenished in a simple manner with a gradual consumption of nickel during the deposition process.
  • a device 4 activates the anode 3 and the deposition body 2 acting as a cathode in the bath 1 with periodic current pulses for carrying out the described pulse plating process.
  • the current apertures 5 which shield certain areas of the deposition body 2 at least during part of the deposition process.
  • the edges of the deposition body 2 are shielded, since in these areas without shielding an increased deposition of the nickel would take place and so an inhomogeneous deposition would take place over the entire deposition body 2.
  • the current apertures 5 should be provided as rings, which are arranged concentrically around the edge regions of the deposition body 2. By means of the current diaphragms 5, these regions can be shielded, at least over a certain time, so that a more homogeneous deposition over the entire deposition body 2 can be achieved over the entire deposition period.
  • the deposition body 2 can be shielded analogously, the corresponding areas in which an increased deposition takes place, such as surveys. Thus, an otherwise lower deposition in other areas such as wells can be compensated.
  • the current sheds 5 can for example be arranged displaceably or even completely removable in the bath 1, for which purpose suitable devices are to be provided.
  • a cleaning device 6 is used to clean the electrolyte of interfering foreign elements and suspended particles during the deposition process and takes place with the aid of activated carbon filters 10 and a selective bath 11, in Fig. 2 only shown schematically.
  • the discharge and return of the electrolyte in the bath is carried out by appropriate supply and discharge lines.
  • the bathroom also has a in Fig. 2 schematically shown circulating device 13 for circulating the electrolyte, which consists of a circulation pump 12 and suitably designed and suitably arranged nozzles 7 for recycling the electrolyte.
  • a circulation pump 12 for circulating the electrolyte
  • nozzles 7 for recycling the electrolyte.
  • the appropriate arrangement and orientation of the nozzles 7 should be chosen so that these specifications are met.
  • the cleaning device 6 and the circulation device 13 could also be combined in a single device, for example by recycling the electrolyte purified in the cleaning device 6 into the bath 1 with the aid of nozzles 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A method for galvanically depositing nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath includes using electrolytes containing nickel compounds or cobalt compounds. At least one anode and at least one cathode of the bath are subject to periodic current pulses. The IA/IC ratio of the anode current density IA to the cathode current density IC is selected to be greater than 1 and smaller than 1.5, where the anode current density IA and the cathode current density IC are defined as current densities with respect to a deposition body on which deposition occurs during the application of periodic current pulses where the deposition body serves as anode and cathode respectively. The charge ratio QA/QC=TAIA/TCIC of the charge QA, transported during anode pulse of duration TA, to the charge QC transported during a cathode pulse of duration TC, is between 30% and 45%. A bath for carrying out the method may have contoured anodes, current restrictors, a cleaning device for the electrolyte, and a circulating device with recycling of the electrolyte through nozzles.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur galvanischen Abscheidung von Nickel, Kobalt, Nickellegierungen oder Kobaltlegierungen in einem galvanischen Bad unter Verwendung eines Nickelverbindungen bzw. Kobaltverbindungen wie Sulfate oder Sulfamate bzw. Chloride enthaltenden Elektrolyten. Solche Elektrolyten zur galvanischen Abscheidung sind beispielsweise aus DE 25 58 423 , DE 22 18 967 , US 2,470,775 sowie EP 0 835 335 bekannt. Zur Abscheidung wird mindestens eine Anode und mindestens eine Kathode des Bades mit periodischen Strompulsen beaufschlagt wird. Solche Verfahren mit Hilfe von Strompulsen sind aus dem Stand der Technik beispielsweise aus den bereits genannten Druckschriften US 2,470,775 sowie EP 0 835 335 bekannt. Aus der US-A-3,915,835 ist ein Verfahren zur Galvanisierung von ElNi-Sil-Überzügen bekannt, bei welchem eine konturierte Kathode verwendet wird.The present invention relates to a process for the electrodeposition of nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath using a nickel compounds or cobalt compounds such as electrolytes containing sulfates or sulfamates or chlorides. Such electrolytes for electrodeposition are for example made DE 25 58 423 . DE 22 18 967 . US 2,470,775 such as EP 0 835 335 known. For deposition, at least one anode and at least one cathode of the bath is subjected to periodic current pulses. Such methods with the aid of current pulses are known from the prior art, for example, from the already mentioned publications US 2,470,775 such as EP 0 835 335 known. From the US-A-3,915,835 For example, there is known a method of electroplating ElNi-Sil coatings using a contoured cathode.

Mit solchen Verfahren kann grundsätzlich eine Abscheidung von Nickel, Kobalt, Nickellegierungen oder Kobaltlegierungen in einem galvanischen Bad erfolgen. Ein besonderes Problem ergibt sich jedoch, wenn die Bauteile, die durch eine solche Abscheidung hergestellt werden sollen, bestimmte mechanische Eigenschaften wie eine vorgegebene Festigkeit bzw. eine vorgegebene Dehnbarkeit (Duktilität) aufweisen sollen. Eine solche Problematik ergibt sich insbesondere dann, wenn das herzustellende Bauteil später mit anderen Bauteilen unlösbar verbunden werden soll, beispielsweise verschweißt werden soll. Hierzu sind in der Regel gewisse Mindestanforderungen an die Dehnbarkeit gegeben, damit eine Schweißverbindung zwischen einer galvanisch erzeugten Nickel- oder Kobaltschicht oder einer Schicht aus einer Nickel- oder Kobaltlegierung und anderen Bauteilen mit ausreichender Festigkeit und dauerhafter Haltbarkeit der Schweißverbindung realisiert werden kann. Wird jedoch eine zu hohe Dehnbarkeit der entsprechenden, zu verschweißenden Schicht erzielt, so verringert sich die Festigkeit der entsprechenden Schicht, so dass die entsprechende Schicht unter Umständen nicht mehr den vorgegebenen Anforderungen an eine mechanische Belastbarkeit genügt. Dies gilt insbesondere für Bauteile, die relativ hohen Belastungen ausgesetzt werden sollen, wie dies beispielsweise bei Bauteilen in Raketentriebwerken auftreten kann. Speziell sind hierfür die Schubkammern von Raketentriebwerken zu nennen, die im wesentlichen aus den Komponenten Einspritzkopf, Brennkammer und Schubdüse bestehen.In principle, such processes can be used to deposit nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath. A particular problem, however, arises when the components to be produced by such a deposition, certain mechanical properties such as a given strength or a given ductility (ductility) should have. Such a problem arises in particular when the component to be produced is to be connected later inextricably with other components, for example, to be welded. For this purpose, certain minimum requirements are generally given to the extensibility, so that a welded joint between a galvanically produced nickel or cobalt layer or a layer of a nickel or cobalt alloy and other components with sufficient strength and durability of the welded joint can be realized. However, if too high extensibility of the corresponding, to be welded Achieved layer, so reduces the strength of the corresponding layer, so that the corresponding layer may no longer meet the specified requirements for mechanical strength. This is especially true for components that are to be exposed to relatively high loads, as may occur, for example, in components in rocket engines. Specifically, these are the thrust chambers of rocket engines, which consist essentially of the components injection head, combustion chamber and exhaust nozzle.

Es hat sich herausgestellt, dass die aus dem Stand der Technik bekannten Verfahren nicht die notwendigen Eigenschaften der galvanisch abgeschiedenen Nickel- oder Kobaltschichten oder Schichten der Nickel- oder Kobaltlegierung garantieren kann, die für eine unlösbare Verbindung einer solchen Schicht mit anderen Bauteilen, beispielsweise solchen aus einer Legierung auf Basis von Eisen oder Nickel, insbesondere für ein Verschweißen, unabdingbare Voraussetzung sind.It has been found that the methods known from the prior art can not guarantee the necessary properties of the electrodeposited nickel or cobalt layers or layers of nickel or cobalt alloy, which are indissoluble for such a layer with other components, such as an alloy based on iron or nickel, in particular for welding, are an indispensable prerequisite.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur galvanischen Abscheidung von Nickel, Kobalt, Nickellegierungen oder Kobaltlegierungen in einem galvanischen Bad bereitzustellen, bei dem mindestens eine Anode und mindestens eine Kathode des Bades mit periodischen Strompulsen beaufschlagt wird und mit dem Nickel- oder Kobaltschichten oder Schichten einer Nickel- oder Kobaltlegierung erzeugt werden können, die unlösbar mit anderen Bauteilen verbunden werden können, insbesondere mit anderen Bauteilen verschweißt werden können.The object of the present invention is therefore to provide a method for the electrodeposition of nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath, in which at least one anode and at least one cathode of the bath is subjected to periodic current pulses and with the nickel or cobalt layers or layers of a nickel or cobalt alloy can be produced, which can be permanently connected to other components, in particular can be welded to other components.

Diese Aufgabe wird gelöst durch die Merkmale der Patentansprüche 1 und 16.This object is achieved by the features of claims 1 and 16.

Bei dem erfindungsgemäßen Verfahren zur galvanischen Abscheidung von Nickel, Kobalt, Nickellegierungen oder Kobaltlegierungen in einem galvanischen Bad wird ein Elektrolyt verwendet, der entsprechende Nickelverbindungen oder Kobaltverbindungen, insbesondere Sulfate oder Sulfamate bzw. Chloride, enthält. Zur Abscheidung wird mindestens eine Anode und mindestens eine Kathode des Bades mit periodischen Strompulsen beaufschlagt, d.h. es wird ein sogenanntes Pulse Plating-Verfahren angewendet. Als Kathode wirkt dabei normalerweise ein Abscheidungskörper, auf dem eine Schicht des entsprechenden Materials abgeschieden werden soll. Erfindungsgemäß ist nun vorgesehen, dass das Verhältnis IA/IC aus Anodenstromdichte IA zu Kathodenstromdichte Ic größer als 1 und kleiner als 1,5 gewählt wird und das Ladungsverhältnis QA/Qc=(TA·IA)/(TC·IC) der während eines Anodenpulses der Dauer TA transportierten Ladung QA zu der während eines Kathodenpulses der Dauer TC transportierten Ladung QC zwischen 30 % und 45 % beträgt.In the method according to the invention for the electrodeposition of nickel, cobalt, nickel alloys or cobalt alloys in a galvanic bath, an electrolyte is used which contains corresponding nickel compounds or cobalt compounds, in particular sulfates or sulfamates or chlorides. For deposition, at least one anode and at least a periodic current pulses are applied to a cathode of the bath, ie a so-called pulse plating process is used. As a cathode normally acts a deposition body on which a layer of the corresponding material to be deposited. According to the invention, it is now provided that the ratio I A / I C of anode current density I A to cathode current density Ic is selected to be greater than 1 and smaller than 1.5 and the charge ratio Q A / Q c = (T A × I A ) / (T C · I C) is transported during an anode pulse of the duration T a to the charge Q a transported during a cathode pulse of the duration T C charge Q C between 30% and 45%.

Es hat sich herausgestellt, das nur bei einer solchen Wahl der Verhältnisse die für eine unlösbare Verbindung der abgeschiedenen Schicht mit anderen Bauteilen notwendigen Eigenschaften gerade hinsichtlich der Festigkeit und Dehnbarkeit der Schicht erzielt werden kann. Im Stand der Technik nach der EP 0 835 335 wird dagegen insbesondere vorgeschlagen, ein Verhältnis IA/IC zu wählen, das mindestens 1,5 beträgt, Auf geeignete Parameterbereiche zur Erzielung einer Schicht mit den vorgenannten Eigenschaften wird in diesem Dokument nicht eingegangen. Auch über eine geeignete Wahl des Verhältnisses QA/QC wird dort nichts ausgesagt.It has been found that it is only with such a choice of conditions that the necessary for a permanent connection of the deposited layer with other components properties can be achieved just in terms of strength and ductility of the layer. In the prior art according to the EP 0 835 335 On the other hand, it is proposed in particular to choose a ratio I A / I C which is at least 1.5. Suitable parameter ranges for obtaining a layer with the aforementioned properties are not discussed in this document. Also on a suitable choice of the ratio Q A / Q C nothing is said there.

Es kann insbesondere vorgesehen werden, dass das Verhältnis IA/IC zwischen 1,2 und 1,45, insbesondere zwischen 1,3 und 1,4 beträgt und das Ladungsverhältnis QA/QC-(TA·IA)/(TC·IC) zwischen 35 % und 40 % beträgt. Für diese Parameterbereiche sind besonders vorteilhafte Eigenschaften der abgeschiedenen Schicht, insbesondere hinsichtlich der Festigkeit und der Dehnbarkeit feststellbar.In particular, it may be provided that the ratio I A / I C is between 1.2 and 1.45, in particular between 1.3 and 1.4, and the charge ratio Q A / Q C - (T A * I A ) / (T C · I C ) is between 35% and 40%. For these parameter ranges, particularly advantageous properties of the deposited layer can be determined, in particular with regard to the strength and the extensibility.

Um eine verbesserte und gleichförmigere Abscheidung der Schicht auf einem Abscheidungskörper zu erzielen, was letztlich auch der Belastbarkeit der Schicht über ihre gesamte Ausdehnung zu Gute kommt, kann vorgesehen werden, dass zur Abscheidung mindestens eine konturierte Anode verwendet wird, deren Kontur an die Kontur des Abscheidungskörpers angepasst ist, auf dem das Nickel, das Kobalt, die Nickelregierung oder die Kobaltlegierung abzuscheinden ist. Durch diese Anpassung der Anodenkontur kann insbesondere ein nahezu über die gesamte Kontur des Abscheidungskörpers konstanter Abstand zwischen Anode und Abscheidungskörper erzielt werden, was eine gleichförmigere Abscheidung ermöglicht.In order to achieve an improved and more uniform deposition of the layer on a deposition body, which ultimately also benefits the loading of the layer over its entire extent, it can be provided that at least one contoured anode is used for the deposition, the contour of which is aligned with the contour of the deposition body on which the nickel, the cobalt, the nickel government or the cobalt alloy is deposited is. By means of this adaptation of the anode contour, it is possible in particular to achieve a constant distance between the anode and the deposition body over almost the entire contour of the deposition body, which permits a more uniform deposition.

Für den Fall, dass in dem Bad mehrere Anoden vorgesehen sind wird zumindest für eine der Anoden, die dem Abscheidungskörper am nächsten angeordnet sind, eine konturierte Anode verwendet. Für die dem Abscheidungskörper am nächsten liegenden Anoden wirkt sich der Effekt der Konturierung der Anode stärker aus als für weiter entfernt liegende Anoden, d.h. dass für diese entfernter liegenden Anoden jeweils Anoden ohne Konturierung verwendbar sind, die unter Umständen kostengünstiger sind und unabhängig von der speziellen Form des Abscheidungskörpers verwendbar sind. So kann durch diese geeignete Kombination aus konturierten und nicht-konturierten Anoden ein Optimum hinsichtlich der Qualität der Abscheidung wie auch des dafür notwendigen Aufwandes erzielt werden.In the case where several anodes are provided in the bath, a contoured anode is used for at least one of the anodes located closest to the deposition body. For the anodes closest to the deposition body, the effect of contouring the anode is more pronounced than for more remote anodes, i. that anodes without contouring can be used for these more remote anodes, which may be more cost-effective and can be used independently of the specific shape of the deposition body. Thus, by means of this suitable combination of contoured and non-contoured anodes, an optimum with regard to the quality of the deposition as well as the effort required for this purpose can be achieved.

Zur Bildung der konturierten Anode kann beispielsweise ein konturierter Behälter verwendet werden, der für die Ionen des abzuscheidenden Nickels oder Kobalts oder der Nickellegierung oder Kobaltlegierung durchlässig ist und der mit Körpern aus Nickel, Kobalt oder einer Nickellegierung oder Kobaltlegierung befüllt wird. Spezielle Behälter für solche Körper sind grundsätzlich aus DE 25 58 423 in Form von Titan- oder Kunststoffkörben bekannt, die dort mit Nickelpellets befüllt werden, wobei dort jedoch keine Konturierung der Behälter vorgesehen ist.For example, to form the contoured anode, a contoured container permeable to the ions of the nickel or cobalt to be deposited or the nickel alloy or cobalt alloy and filled with bodies of nickel, cobalt or a nickel alloy or cobalt alloy may be used. Special containers for such bodies are basically made DE 25 58 423 in the form of titanium or plastic baskets which are filled there with nickel pellets, but there is no contouring of the container is provided.

Alternativ zu solchen Behältern kann aber grundsätzlich auch als konturierte Anode ein massiver Elektrodenkörper verwendet werden, der zumindest eine Beschichtung aus dem abzuscheidenden Nickel, Kobalt oder der abzuscheidenden Nickellegierung oder Kobaltlegierung aufweist oder gar aus massivem Nickel, Kobalt oder einer massiven Nickellegierung- oder Kobaltlegierung besteht.As an alternative to such containers, however, a solid electrode body which has at least one coating of the nickel, cobalt or the nickel alloy or cobalt alloy to be deposited or, in principle, consists of solid nickel, cobalt or a solid nickel alloy or cobalt alloy can also be used as the contoured anode.

Es kann während des Abscheidevorganges erforderlich sein, dass eine gezielte Beeinflussung der Abscheidung nötig ist, die für unterschiedliche Bereiche des Abscheidungskörpers unterschiedlich erfolgen soll. Diese Beeinflussung kann zusätzlich oder auch alternativ zu der vorgenannten Maßnahme der konturierten Anoden erfolgen. Hierfür kann vorgesehen werden, dass der Abscheidungskörper zumindest während eines Teils der gesamten Abscheidungsdauer teilweise durch Stromblenden abgeschirmt wird. In den abgeschirmten Bereichen wird dann während der Zeit, in der diese Bereiche abgeschirmt werden, eine verringerte Abscheidung im Vergleich zu den nicht-abgeschirmten Bereichen erzielt. Dadurch kann eine lokale Beeinflussung von Schichteigenschaften wie insbesondere der Schichtdicke, aber gegebenenfalls auch der mechanischen Schichteigenschaften auf dem Abscheidungskörper realisiert werden.It may be necessary during the deposition process that a targeted influencing of the deposition is necessary, which should be different for different areas of the deposition body. This influencing can take place additionally or else alternatively to the aforementioned measure of the contoured anodes. For this purpose it can be provided that the deposition body is at least partially shielded by current shutters during a part of the entire deposition period. In the shielded areas, a reduced deposition is then achieved as compared to the unshielded areas during the time these areas are shielded. As a result, local influencing of layer properties, in particular the layer thickness, but possibly also the mechanical layer properties, can be realized on the deposition body.

Insbesondere können die Stromblenden in denjenigen Bereichen des Abscheidungskörpers angeordnet werden, in denen eine bevorzugte Abscheidung erfolgt. Damit kann ein übermäßiges Schichtwachstum in diesen Bereichen im Vergleich zu anderen Bereichen verhindert werden und somit ein homogeneres Schichtwachstum über den gesamten Abscheidungskörper realisiert werden.In particular, the current shutters can be arranged in those regions of the deposition body in which a preferred deposition takes place. Thus, an excessive layer growth in these areas can be prevented in comparison to other areas and thus a more homogeneous layer growth can be realized over the entire deposition body.

Es kann bevorzugt eine Entfernung von störenden Fremdelementen oder sonstiger suspendierter Schwebeteilchen aus dem Bad vorgesehen werden, um eine möglichst reine Elektrolytlösung zu erhalten. Hierzu kann zumindest vor Beginn der Abscheidung eine Reinigung des Elektrolyten mit Hilfe von Aktivkohle und/oder Wasserstoffperoxyd erfolgen. Insbesondere kann zur Reinigung des Elektrolyten vor Beginn der Abscheidung 0,5 g/l bis 5 g/l, insbesondere 1g/l bis 3g/l Aktivkohle verwendet werden und 0,5 ml/l bis 3 ml/l, insbesondere 1ml/l bis 2ml/l 30%iges Wasserstoffperoxyd verwendet werden.It may preferably be provided a removal of interfering foreign elements or other suspended suspended particles from the bath to obtain a pure electrolyte solution as possible. For this purpose, at least before the beginning of the deposition, a cleaning of the electrolyte with the aid of activated carbon and / or hydrogen peroxide take place. In particular, 0.5 g / l to 5 g / l, in particular 1 g / l to 3 g / l of activated carbon can be used to purify the electrolyte and 0.5 ml / l to 3 ml / l, in particular 1 ml / l before the deposition to 2ml / l of 30% hydrogen peroxide.

Um jedoch durch eine solche Reinigung nicht nur zu Beginn des Prozesses eine möglichst reine Elektrolytlösung zu garantieren, sondern diese Reinheit auch möglichst über den gesamten Prozess aufrecht zu erhalten, kann eine Reinigung des Elektrolyten alternativ oder auch zusätzlich während der Abscheidung erfolgen. In einer bevorzugten Weiterbildung der Erfindung ist dazu während der Abscheidung einerseits eine Filterung des Elektrolyten, beispielsweise durch Aktivkohlefilter, vorgesehen, andererseits werden Fremdelemente durch ein Selektivbad aus dem Elektrolyten entfernt. Ein solches Selektivbad entspricht einem galvanischen Bad, in dem durch eine gezielte Steuerung der Ströme eine gezielte Abscheidung von Fremdelementen und damit deren Entfernung aus dem Elektrolyten erfolgt. Der solchermaßen gereinigte Elektrolyt enthält dann idealerweise nur noch die erwünschten Elemente, im Fall eines Nickel-Elektrolyten dann idealerweise nur noch Nickel bzw. Nickellegierungen in den eingangs genannten Verbindungen, im Fall eines Kobalt-Elektrolyten idealerweise nur noch Kobalt oder Kobaltlegierungen in den eingangs genannten Verbindungen. Der gereinigte Elektrolyt wird dann dem galvanischen Bad wieder zugeführt.However, in order not only to guarantee the purest possible electrolyte solution at the beginning of the process by such a purification, but also to maintain this purity as far as possible throughout the entire process, one can Purification of the electrolyte take place alternatively or additionally during the deposition. In a preferred development of the invention, filtering of the electrolyte, for example by means of activated carbon filters, is provided for this purpose during the deposition on the one hand, and on the other hand foreign elements are removed from the electrolyte by a selective bath. Such a selective bath corresponds to a galvanic bath, in which a targeted separation of foreign elements and thus their removal from the electrolyte takes place by targeted control of the currents. The thus purified electrolyte then ideally contains only the desired elements, in the case of a nickel electrolyte then ideally only nickel or nickel alloys in the compounds mentioned above, in the case of a cobalt electrolyte ideally only cobalt or cobalt alloys in the compounds mentioned above , The purified electrolyte is then returned to the galvanic bath.

Es kann außerdem eine Umwälzung des Elektrolyten durchgeführt werden, wobei der Elektrolyt durch mindestens eine Umwälzpumpe umgewälzt wird und eine Rückführung des Elektrolyten in das Bad mittels Düsen erfolgt. Die Düsen können nun insbesondere derart ausgebildet und in dem Bad angeordnet werden, dass durch die Düsen eine Umwälzung des Bades begünstigt wird und/oder eine auf den Abscheidungskörper gerichtete Strömung des Elektrolyten erzielt wird. In diesem Fall erfüllen die Düsen nicht nur den Zweck der Umwälzung und Rückführung des Elektrolyten in das Bad, sondern durch diese optimierte Art der Rückführung wird der Abscheidungsprozess im Bad begünstigt, da stets eine optimale Durchmischung bzw. gezielte Zuführung eines möglichst reinen Elektrolyten zu dem Abscheidungskörper garantiert wird.It can also be carried out a circulation of the electrolyte, wherein the electrolyte is circulated through at least one circulating pump and a return of the electrolyte takes place in the bath by means of nozzles. The nozzles can now in particular be designed and arranged in the bath such that a circulation of the bath is favored by the nozzles and / or a flow of the electrolyte directed onto the deposition body is achieved. In this case, the nozzles not only fulfill the purpose of circulation and return of the electrolyte in the bath, but by this optimized type of recycling, the deposition process in the bath favors, as always optimal mixing or targeted supply of a pure electrolyte as possible to the deposition body is guaranteed.

Das erfindungsgemäße Verfahren ist grundsätzlich zur Herstellung unterschiedlichster Bauteile geeignet, die später mit anderen Bauteilen unlösbar verbunden, beispielsweise verschweißt werden sollen. Das Verfahren ist jedoch besonders zur Herstellung von Bauteilen geeignet, die hohen Belastungen ausgesetzt sind. Dies trifft beispielsweise zu für Bauteile für Raketentriebwerke, wobei hier insbesondere die Anwendung des Verfahrens zur Herstellung von Einspritzköpfen und/oder Brennkammern und/oder Schubdüsen für Raketentriebwerke zu nennen ist. Es kann das Verfahren aber auch für andere Bauteile eingesetzt werden, die im späteren Betrieb hohen Belastungen unterliegen, und daher eine ausreichende Festigkeit besitzen müssen, aber dennoch eine ausreichende Dehnbarkeit aufweisen sollen, wie beispielsweise tragende mechanische Strukturen, Bauteile für Brennöfen oder ähnliche Anordnungen mit hoher thermischer Beanspruchung etc. Durch eine Variation der Parameter des erfindungsgemäßen Verfahrens ist die erzielbare Festigkeit wie auch die Dehnbarkeit der abgeschiedenen Schicht über einen relativ weiten Bereich einstellbar, wie im weiteren Text noch detaillierter erläutert wird.The inventive method is basically suitable for the production of different components that are later inextricably linked to other components, for example, to be welded. However, the method is particularly suitable for the production of components that are exposed to high loads. This applies, for example, to components for rocket engines, in which case in particular the application of the method for the production of injection heads and / or combustion chambers and / or thrusters for rocket engines is called. However, the method can also be used for other components that are subject to high loads in later operation, and therefore must have sufficient strength, but nevertheless should have sufficient extensibility, such as supporting mechanical structures, components for kilns or similar arrangements with high thermal stress, etc. By varying the parameters of the method according to the invention, the achievable strength as well as the extensibility of the deposited layer over a relatively wide range is adjustable, as will be explained in more detail below.

Weiterer Gegenstand der Erfindung ist ein spezielles galvanisches Bad zur galvanischen Abscheidung von Nickel oder Nickellegierungen oder Kobalt oder Kobaltlegierungen mit einem Elektrolyten, aufweisend

  • mindestens eine konturierte Anode, deren Kontur an die Kontur eines Abscheidungskörpers angepasst ist,
  • eine Einrichtung zur Ansteuerung der Anode und der Kathode des Bades mit periodischen Strompulsen,
  • Stromblenden zur zumindest teilweisen Abschirmung des Abscheidungskörpers,
  • eine Filtereinrichtung zur Filterung des Elektrolyten und
  • eine Umwälzeinrichtung zur Umwälzung des Elektrolyten, aufweisend mindestens eine Umwälzpumpe und Düsen zur Rückführung des Elektrolyten in das Bad.
Another object of the invention is a special galvanic bath for the electrodeposition of nickel or nickel alloys or cobalt or cobalt alloys with an electrolyte, comprising
  • at least one contoured anode whose contour is adapted to the contour of a deposition body,
  • a device for controlling the anode and the cathode of the bath with periodic current pulses,
  • Current shields for at least partial shielding of the deposition body,
  • a filter device for filtering the electrolyte and
  • a circulation device for circulating the electrolyte, comprising at least one circulating pump and nozzles for returning the electrolyte into the bath.

Dieses spezielle galvanische Bad kann zur Umsetzung einer speziellen Weiterbildung des vorgenannten Verfahrens verwendet werden. Das vorgenannte Verfahren kann grundsätzlich aber auch in anders ausgebildeten galvanischen Bädern realisiert werden, die geeignet an das grundlegende erfindungsgemäße Verfahren oder eine seiner Weiterbildungen angepasst sind.This special galvanic bath can be used to implement a specific development of the aforementioned method. The aforementioned method can in principle but also in otherwise trained galvanic Baths are realized, which are suitably adapted to the basic inventive method or one of its developments.

Die weitere Ausgestaltung dieses speziellen Bades kann durch eine entsprechende Anpassung an die Merkmale der vorstehenden Beschreibung betreffend das erfindungsgemäße Verfahren erfolgen. So kann beispielsweise vorgesehen werden, dass die mindestens eine konturierte Anode als konturierter Behälter ausgebildet ist, der mit Körpern aus Nickel oder Kobalt oder einer Nickellegierung oder einer Kobaltlegierung befüllbar ist.The further embodiment of this special bath can be done by a corresponding adaptation to the features of the above description concerning the inventive method. For example, it can be provided that the at least one contoured anode is formed as a contoured container which can be filled with bodies of nickel or cobalt or a nickel alloy or a cobalt alloy.

Wie bereits ausgeführt, kann insbesondere vorgesehen sein, dass mehrere Anoden in dem Bad angeordnet sind, wobei lediglich die dem Abscheidungskörper am nächsten liegenden Anoden als konturierte Anoden ausgebildet sind. Dies bedeutet, dass natürlich auch die übrigen Anoden eine bestimmte Kontur aufweisen, jedoch soll in diesem Fall lediglich die Kontur derjenigen Anoden, die dem Abscheidungskörper am nächsten liegen, an die Kontur des Abscheidungskörpers angepasst sein. Die Konturierung kann dabei lediglich in einer Raumrichtung z.B. in Längsrichtung der Anode, erfolgen oder sie kann auch in mehr als einer Raumrichtung erfolgen, z.B. zusätzlich senkrecht zur Längsrichtung.As already stated, it can be provided, in particular, that a plurality of anodes are arranged in the bath, wherein only the anodes closest to the deposition body are formed as contoured anodes. This means that, of course, the other anodes also have a certain contour, but in this case, only the contour of those anodes which are closest to the deposition body should be adapted to the contour of the deposition body. The contouring can only be done in one spatial direction e.g. in the longitudinal direction of the anode, or it can also take place in more than one spatial direction, e.g. additionally perpendicular to the longitudinal direction.

Weiterhin kann die Reinigungseinrichtung eine Filtereinrichtung, insbesondere einen Aktivkohlefilter, und ein Selektivbad beinhalten. Dadurch können sowohl im Elektrolyten suspendierte Schwebeteilchen wie auch unerwünschte Fremdelemente aus dem Elektrolyten entfernt werden.Furthermore, the cleaning device may include a filter device, in particular an activated carbon filter, and a Selektivbad. As a result, both suspended in the electrolyte suspended particles as well as unwanted foreign elements can be removed from the electrolyte.

Ein spezielles Ausführungsbeispiel der vorliegenden Erfindung wird nachfolgend anhand der Figuren 1 bis 3 beschrieben.A specific embodiment of the present invention will be described below with reference to FIGS FIGS. 1 to 3 described.

Es zeigen:

Fig. 1:
Abhängigkeit der Festigkeit und Dehnbarkeit der abgeschiedenen Schicht von dem Ladungsverhältnis QA/QC im erfindungsgemäßen Bereich des Stromdichtenverhältnisses IA/IC
Fig. 2:
Aufbau eines erfindungsgemäßen Bades
Fig. 3:
Draufsicht auf eine spezielle Ausgestaltung eines erfindungsgemäßen Bades.
Show it:
Fig. 1:
Dependence of the strength and extensibility of the deposited layer on the charge ratio Q A / Q C in the range of the current density ratio I A / I C according to the invention
Fig. 2:
Structure of a bath according to the invention
3:
Top view of a special embodiment of a bath according to the invention.

Für das erfindungsgemäße Verfahren wird im Rahmen des nachfolgenden Beispieles ein galvanisches Bad mit einem Elektrolyten vorgesehen, welcher Nickelverbindungen enthält. Grundsätzlich ist aber auch ein galvanisches Bad mit Kobaltverbindungen denkbar. Hierfür können entsprechend den aus dem Stand der Technik bekannten Elektrolyten als Nickelverbindungen bzw. Kobaltverbindungen beispielsweise Nickelsulfat und Nickelchlorid oder auch Nickelsulfamat und Nickelchlorid vorgesehen werden, sowie im Falle der Kobaltverbindungen die entsprechenden Sulfate, Sulfamate bzw. Chloride. Zu den speziellen Möglichkeiten der Zusammensetzung des Elektrolyten wird auf den eingangs zitierten Stand der Technik verwiesen. Es können auch zusätzliche Additive in dem Elektrolyten vorgesehen sein wie beispielsweise das in der EP 0 835 335 oder DE 22 18 967 zitierte sulfonierte Naphthalin oder die in US 2,470,775 Spalte 3 Absatz 2 genannten Additive.For the inventive method, a galvanic bath with an electrolyte is provided in the context of the following example, which contains nickel compounds. In principle, however, a galvanic bath with cobalt compounds is conceivable. For this purpose, according to the known from the prior art electrolytes as nickel compounds or cobalt compounds, for example, nickel sulfate and nickel chloride or nickel sulfamate and nickel chloride can be provided, and in the case of cobalt compounds, the corresponding sulfates, sulfamates or chlorides. For the specific possibilities of the composition of the electrolyte, reference is made to the cited prior art. There may also be provided additional additives in the electrolyte, such as that in US Pat EP 0 835 335 or DE 22 18 967 quoted sulfonated naphthalene or the in US 2,470,775 Column 3, paragraph 2.

Es wird nun für die Abscheidung die Methode des sogenannten Pulse Plating angewendet, also die Beaufschlagung der Anoden und Kathoden des Bades mit periodischen Strompulsen, die prinzipiell aus dem eingangs zitierten Stand der Technik bekannt ist. Dort werden weite Parameterbereiche genannt, aus denen die speziellen Einstellungen für das Verfahren, insbesondere für die Wahl der Stromdichten und Pulsdauern ausgewählt werden können. Es hat sich jedoch herausgestellt, dass mit solchen Parameterwerten eine Schweißbarkeit der galvanisch hergestellten Schicht nicht erzielt werden kann, da die derart abgeschiedenen Schichten nicht die notwendigen Anforderungen bezüglich Festigkeit und Dehnbarkeit besitzen.The method of so-called pulse plating is now used for the deposition, that is, the charging of the anodes and cathodes of the bath with periodic current pulses, which is known in principle from the cited prior art. There are wide parameter ranges called from which the specific settings for the process, in particular for the choice of current densities and pulse durations can be selected. It has However, it has been found that with such parameter values, weldability of the electrodeposited layer can not be achieved since the layers thus deposited do not have the necessary strength and ductility requirements.

Diese notwendigen Festigkeiten können nur erzielt werden, wenn das Verhältnis IA/IC aus Anodenstromdichte IA zu Kathodenstromdichte IC größer als 1 und kleiner als 1,5 gewählt wird und das Ladungsverhältnis CA/QC=(TA·IA)/(TC·IC) der während eines Anodenpulses der Dauer TA transportierten Ladung QA zu der während eines Kathodenpulses der Dauer TC transportierten Ladung QC zwischen 30 % und 45 % beträgt, wobei bessere Ergebnisse erzielt werden, wenn das Verhältnis IA/IC zwischen 1,2 und 1,45 beträgt und die besten Ergebnisse für ein Verhältnis zwischen 1,3 und 1,4 erzielt werden, wobei das Ladungsverhältnis QA/QC=(TA·IA)/(TC·IC) jeweils zwischen 35 % und 40 % beträgt. Es hat sich also herausgestellt, dass keine beliebige Wahl der Verhältnisse IA/IC und QA/QC erfolgen darf, um die gewünschten vorteilhaften Eigenschaften der abgeschiedenen Schicht zu erzielen, sondern dass diese nur für einen bestimmten Wertebereich des Verhältnisses IA/IC und einen daran gekoppelten Wertebereich für das Verhältnis QA/QC gegeben ist. Dies ist insbesondere für die vorgenannten Wertebereiche erfüllt.These necessary strengths can only be achieved if the ratio I A / I C of anode current density I A to cathode current density I C greater than 1 and less than 1.5 is selected and the charge ratio C A / Q C = (T A · I A ) / (T C · I C) of the transported during an anode pulse of the duration T a charge Q a to the transported during a cathode pulse of the duration T C charge Q C between 30% and 45%, with better results are obtained when the Ratio I A / I C is between 1.2 and 1.45 and the best results are achieved for a ratio between 1.3 and 1.4, the charge ratio Q A / Q C = (T A * I A ) / (T C · I C ) is in each case between 35% and 40%. It has therefore been found that no arbitrary choice of the ratios I A / I C and Q A / Q C may be made in order to achieve the desired advantageous properties of the deposited layer, but that this only for a certain value range of the ratio I A / I C and a value range coupled thereto for the ratio Q A / Q C is given. This is fulfilled in particular for the aforementioned value ranges.

Hierzu wird verwiesen auf Fig. 1, die die Abhängigkeit der Streckgrenze (0,2-Dehngrenze) Rp 0,2. der Festigkeit Rm sowie der Dehnbarkeit A5 einer gemäß dem vorgenannten Verfahren abgeschiedenen Wickelschicht von dem Ladungsverhältnis QA/QC für Stromdichteverhältnisse IA/IC zwischen 1,3 und 1,4 beschreibt. Es zeigt sich hierbei, dass sich bei einem Ladungsverhältnis zwischen 35 % und 40 % die Festigkeiten und die Dehnbarkeit in einem mittleren Wertebereich bewegen, d.h. ein optimaler Ausgleich zwischen Dehnbarkeit und Festigkeit der abgeschiedenen Schicht gefunden wird. Wird das Ladungsverhältnis vergrößert, so nimmt zwar die Dehnbarkeit weiter zu, gleichzeitig nimmt aber die Festigkeit immer weiter ab, so dass keine ausreichende mechanische Stabilität der abgeschiedenen Schicht gegeben ist. Wird dagegen das Ladungsverhältnis weiter verringert, so nimmt zwar die Festigkeit zu, jedoch nimmt die Dehnbarkeit deutlich ab, was bedeutet, dass die abgeschiedene Schicht sehr spröde wird und gerade im Bereich von Schweißnähten, in denen beim Schweißen eine Materialschrumpfung und daher thermomechanische Beanspruchung der Schicht auftritt, die Gefahr von Materialbrüchen besteht. Auch bei einer Erhöhung oder Erniedrigung des Stromdichteverhältnisses werden die Werte entsprechend ungünstiger. Für Kobalt und Kobaltlegierungen wird ein analoges Verhalten erwartet.Reference is made to Fig. 1 , which determines the dependence of the yield strength (0,2-proof stress) R p 0,2 . the strength R m and the extensibility A 5 of a deposited according to the aforementioned process winding layer of the charge ratio Q A / Q C for current density ratios I A / I C between 1.3 and 1.4 describes. It can be seen here that with a charge ratio of between 35% and 40%, the strengths and the extensibility are within a medium range, ie an optimum balance is found between the extensibility and the strength of the deposited layer. If the charge ratio is increased, the extensibility increases, but at the same time the strength decreases more and more, so that there is no sufficient mechanical stability of the deposited layer. If, on the other hand, the charge ratio is further reduced, the strength increases, however the extensibility decreases markedly, which means that the deposited layer becomes very brittle and there is a risk of material fractures, especially in the area of welds in which material shrinkage and therefore thermo-mechanical stressing of the layer occur during welding. Even if the current density ratio is increased or decreased, the values become correspondingly less favorable. For cobalt and cobalt alloys, an analogous behavior is expected.

Fig. 2 zeigt schematisch den Aufbau des Bades zur Verwirklichung der Erfindung, das mit einem Elektrolyten wie vorstehend beschrieben befüllt ist. Dabei befindet sich ein Abscheidungskörper 2 wie beispielsweise eine Brennkammer eines Raketentriebwerkes in einem Bad 1. Auf diesem Abscheidungskörper soll nun eine Beschichtung beispielsweise aus Nickel galvanisch erzeugt werden. Hierzu ist mindestens eine Anode 3 in das Bad 1 eingelassen, wobei die Anode 3 derart konturiert ist, dass sie an die Kontur des Abscheidungskörpers 2 angepasst ist. Die Konturierung kann dabei lediglich in einer Raumrichtung z.B. in Längsrichtung der Anode 3, gegeben sein oder sie kann auch in mehr als einer Raumrichtung vorgesehen sein, z.B. zusätzlich senkrecht zur Längsrichtung. In Fig. 2 ist aus Gründen der Vereinfachung nur eine einzige Anode 3 dargestellt. Fig. 3 zeigt hingegen eine mögliche Anordnung mehrerer Anoden 3a, 3b in einem Bad 1, wobei diejenigen Anoden 3a, die dem Abscheidungskörper am nächsten liegen, als konturierte Anoden ausgebildet sind, da sich dort der positive Einfluss der Konturierung am stärksten bemerkbar macht. Die weiter entfernt liegenden Anoden 3b können hingegen als universell einsetzbare, im einfachsten Fall ebene Anoden ausgebildet sein, für die somit jede standardisierte Anodenform anwendbar ist. Folglich sind lediglich die dem Abscheidungskörper 2 am nächsten liegenden Anoden 3a gegebenenfalls an die spezielle Form verschiedener Abscheidungskörper 2 anzupassen. Dieses Anodenkonzept stellt eine Optimierung der Wirkung der Anoden 3a, 3b bei gleichzeitiger Beibehaltung einer möglichst universellen Anordnung dar. Fig. 2 shows schematically the construction of the bath for the realization of the invention, which is filled with an electrolyte as described above. In this case, there is a deposition body 2 such as a combustion chamber of a rocket engine in a bath 1. On this deposition body is now a coating, for example, nickel galvanically generated. For this purpose, at least one anode 3 is embedded in the bath 1, wherein the anode 3 is contoured such that it is adapted to the contour of the deposition body 2. The contouring can be given only in one spatial direction, for example in the longitudinal direction of the anode 3, or it can also be provided in more than one spatial direction, for example additionally perpendicular to the longitudinal direction. In Fig. 2 For reasons of simplicity, only a single anode 3 is shown. Fig. 3 on the other hand shows a possible arrangement of several anodes 3a, 3b in a bath 1, wherein those anodes 3a, which are closest to the deposition body, are formed as contoured anodes, since there makes the positive influence of the contouring most noticeable. By contrast, the more remote anodes 3b can be designed as universally usable, in the simplest case flat anodes, for which any standardized anode form can be used. Consequently, only the anode 3 a closest to the deposition body 2 may need to be adapted to the specific shape of different deposition bodies 2. This anode concept represents an optimization of the effect of the anodes 3a, 3b while maintaining a possible universal arrangement.

Die konturierte Anode 3 in Fig. 2 wird durch einen konturierten Behälter 8 gebildet, der beispielsweise als Titankorb ausgebildet ist und daher durchlässig ist für die zur Abscheidung nötigen Nickel-Ionen. Der Behälter 8 kann auch noch von zusätzlichen, ebenfalls für die Nickel-Ionen durchlässigen Umhüllungen umgeben sein wie beispielsweise von einem Beutel. Das Nickel wird hier in Form von kleinen Nickelkörpern 9 in den Behälter 8 eingebracht und kann so auf einfache Weise bei einem schrittweisen Verbrauch des Nickels während des Abscheidungsprozesses unkompliziert wieder nachgefüllt werden. Über eine Einrichtung 4 erfolgt eine Ansteuerung der Anode 3 sowie des als Kathode wirkenden Abscheidungskörpers 2 in dem Bad 1 mit periodischen Strompulsen zur Durchführung des beschriebenen Pulse Plating-Verfahrens.The contoured anode 3 in Fig. 2 is formed by a contoured container 8, which is formed for example as a titanium basket and therefore permeable is for the necessary for the deposition of nickel ions. The container 8 may also be surrounded by additional, likewise permeable to the nickel ions sheaths such as from a bag. The nickel is introduced here in the form of small nickel bodies 9 in the container 8 and can be easily replenished in a simple manner with a gradual consumption of nickel during the deposition process. A device 4 activates the anode 3 and the deposition body 2 acting as a cathode in the bath 1 with periodic current pulses for carrying out the described pulse plating process.

Es sind weiterhin Stromblenden 5 vorgesehen, die zumindest während eines Teils des Abscheidungsvorganges gewisse Bereiche des Abscheidungskörpers 2 abschirmen. Im Fall nach Fig. 2 werden die Kanten des Abscheidungskörpers 2 abgeschirmt, da in diesen Bereichen ohne Abschirmung eine erhöhte Abscheidung des Nickels erfolgen würde und so eine inhomogene Abscheidung über den gesamten Abscheidungskörper 2 erfolgen würde. Hier wären die Stromblenden 5 als Ringe vorzusehen, die konzentrisch um die Kantenbereiche des Abscheidungskörpers 2 angeordnet sind. Durch die Stromblenden 5 können zumindest während einer gewissen Zeit diese Bereiche abgeschirmt werden, so dass über die gesamte Abscheidungsdauer gesehen eine homogenere Abscheidung über den gesamten Abscheidungskörper 2 erzielt werden kann. Bei einer anderen Form des Abscheidungskörpers 2 können analog die entsprechenden Bereiche abgeschirmt werden, in denen eine erhöhte Abscheidung erfolgt, wie beispielsweise Erhebungen. Damit kann eine ansonsten geringere Abscheidung in anderen Bereichen wie beispielsweise Vertiefungen ausgeglichen werden. Die Stromblenden 5 können beispielsweise in dem Bad 1 verschiebbar oder auch komplett herausnehmbar angeordnet sein, wofür geeignete Einrichtungen vorzusehen sind.There are further provided current apertures 5, which shield certain areas of the deposition body 2 at least during part of the deposition process. In the case after Fig. 2 the edges of the deposition body 2 are shielded, since in these areas without shielding an increased deposition of the nickel would take place and so an inhomogeneous deposition would take place over the entire deposition body 2. Here, the current apertures 5 should be provided as rings, which are arranged concentrically around the edge regions of the deposition body 2. By means of the current diaphragms 5, these regions can be shielded, at least over a certain time, so that a more homogeneous deposition over the entire deposition body 2 can be achieved over the entire deposition period. In another form of the deposition body 2 can be shielded analogously, the corresponding areas in which an increased deposition takes place, such as surveys. Thus, an otherwise lower deposition in other areas such as wells can be compensated. The current sheds 5 can for example be arranged displaceably or even completely removable in the bath 1, for which purpose suitable devices are to be provided.

Vor der Abscheidung ist es sinnvoll, eine Reinigung des Elektrolyten durchzuführen. Diese kann insbesondere mit Hilfe von Aktivkohle in einer Konzentration von bevorzugt 1 g/l bis 3 g/l sowie mit 30 %-igem Wasserstoffperoxyd in einer Konzentration von bevorzugt 1 ml/l bis 2 ml/l erfolgen, wobei auch höhere oder niedrigere Konzentrationen grundsätzlich möglich sind.Before the deposition, it makes sense to carry out a cleaning of the electrolyte. This can in particular with the aid of activated carbon in a concentration of preferably 1 g / l to 3 g / l and with 30% hydrogen peroxide in a concentration of preferably 1 ml / l to 2 ml / l carried out, with higher or lower concentrations are in principle possible.

Eine Reinigungseinrichtung 6 dient zur Reinigung des Elektrolyten von störenden Fremdelementen und Schwebeteilchen während des Abscheidungsprozesses und erfolgt mit Hilfe von Aktivkohlefiltern 10 und eines Selektivbades 11, in Fig. 2 lediglich schematisch dargestellt. Die Abführung und Rückführung des Elektrolyten in das Bad erfolgt durch entsprechende Zu- und Ableitungen. Dadurch kann eine besonders hohe Reinheit des Elektrolyten und dessen beinahe vollständige Befreiung von Fremdelementen, insbesondere Fremdmetallen, sowie von suspendierten Teilchen erreicht werden. Es kann durch diesen Teil des Verfahrens insbesondere der Anteil der Fremdelemente Fe, Cu, Cr, Al, Zn, Co in dem Nickelbad auf Werte bis unter 0,1 mg/l reduziert werden, was den Eigenschaften der abgeschiedenen Schicht zusätzlich zugute kommt, da durch eine solche Reduzierung des Anteiles an Fremdelementen die Dehnbarkeit der abgeschiedenen Schicht noch weiter verbessert und zusätzlich eine weiterhin hohe oder gar höhere Festigkeit der abgeschiedenen Schicht garantiert.A cleaning device 6 is used to clean the electrolyte of interfering foreign elements and suspended particles during the deposition process and takes place with the aid of activated carbon filters 10 and a selective bath 11, in Fig. 2 only shown schematically. The discharge and return of the electrolyte in the bath is carried out by appropriate supply and discharge lines. As a result, a particularly high purity of the electrolyte and its almost complete liberation from foreign elements, in particular foreign metals, as well as suspended particles can be achieved. It can be reduced by this part of the method, in particular the proportion of foreign elements Fe, Cu, Cr, Al, Zn, Co in the nickel bath to values below 0.1 mg / l, which additionally benefits the properties of the deposited layer, as such a reduction in the proportion of foreign elements further improves the extensibility of the deposited layer and, in addition, guarantees a further high or even higher strength of the deposited layer.

Das Bad weist außerdem eine in Fig. 2 schematisch dargestellte Umwälzeinrichtung 13 zur Umwälzung des Elektrolyten auf, die aus einer Umwälzpumpe 12 und geeignet ausgebildeten und geeignet angeordneten Düsen 7 zur Rückführung des Elektrolyten besteht. Gerade die Rückführung in das Bad in dieser Form mit Hilfe von Düsen 7 kann zusätzlich dafür genutzt werden, eine Umwälzung des Elektrolyten im Bad 1 zu begünstigen und andererseits den Elektrolyten gezielt dem Abscheidungskörper 2 zuzuführen. Die geeignete Anordnung und Ausrichtung der Düsen 7 ist so zu wählen, dass diese Vorgaben erfüllt werden. Grundsätzlich könnten auch die Reinigungseinrichtung 6 und die Umwälzeinrichtung 13 in einer einzigen Einrichtung kombiniert werden, beispielsweise durch eine Rückführung des in der Reinigungseinrichtung 6 gereinigten Elektrolyten in das Bad 1 mit Hilfe von Düsen 7.The bathroom also has a in Fig. 2 schematically shown circulating device 13 for circulating the electrolyte, which consists of a circulation pump 12 and suitably designed and suitably arranged nozzles 7 for recycling the electrolyte. Especially the return to the bath in this form by means of nozzles 7 can additionally be used to favor a circulation of the electrolyte in the bath 1 and on the other hand to supply the electrolyte specifically to the deposition body 2. The appropriate arrangement and orientation of the nozzles 7 should be chosen so that these specifications are met. In principle, the cleaning device 6 and the circulation device 13 could also be combined in a single device, for example by recycling the electrolyte purified in the cleaning device 6 into the bath 1 with the aid of nozzles 7.

Claims (19)

  1. Process for the electrodeposition of nickel, cobalt, nickel alloys or cobalt alloys in an electrolytic bath (1) using an electrolyte which contains nickel compounds or cobalt compounds, wherein periodic current pulses are applied to at least one anode (3, 3a, 3b) and at least one cathode of the bath (1) for the deposition of nickel, cobalt, nickel alloys or cobalt alloys on a deposition body (2), wherein the deposition body (2) acts as anode or as cathode,
    characterized
    in that the ratio IA/IC of anode current density IA to cathode current density IC is selected to be greater than 1 and less than 1.5, and the charge ratio QA/QC=(TA·IA)/(TC·IC) of the charge QA transported during an anode pulse of the duration TA to the charge QC transported during a cathode pulse of the duration TC is between 30% and 45%, wherein the anode current density IA and the cathode current density IC are defined as current densities during the anodic or cathodic phases of the current pulses on the deposition body (2).
  2. Process according to Claim 1,
    characterized
    in that the ratio IA/IC is between 1.2 and 1.45, in particular between 1.3 and 1.4, and the charge ratio QA/QC=(TA·IA)/(TC·IC) is between 35% and 40%.
  3. Process according to either of Claims 1 and 2,
    characterized
    in that the deposition is carried out using at least one contoured anode (3, 3a, 3b), the contour of which is matched to the contour of the deposition body (2), on which the nickel or the cobalt or the nickel alloy or the cobalt alloy is to be deposited.
  4. Process according to Claim 3,
    characterized
    in that a plurality of anodes (3, 3a, 3b) are provided in the bath (1), and a contoured anode (3a) is used at least for one of the anodes (3a), which is arranged closest to the deposition body (2).
  5. Process according to either of Claims 3 and 4,
    characterized
    in that the contoured anode (3a) is formed using a contoured container (8), which is permeable to the nickel or the cobalt or the nickel alloy or the cobalt alloy to be deposited and is filled with bodies (9) of nickel or cobalt or of a nickel alloy or cobalt alloy.
  6. Process according to either of Claims 3 and 4,
    characterized
    in that the contoured anode (3, 3a, 3b) used is a solid electrode body having at least a coating of the nickel or cobalt to be deposited or of the nickel alloy or cobalt alloy to be deposited.
  7. Process according to one of Claims 1 to 6,
    characterized
    in that the deposition body (2) is partially shielded at least during part of the overall deposition duration by current diaphragms (5).
  8. Process according to Claim 7,
    characterized
    in that the current diaphragms (5) are arranged in those regions of the deposition body (2) in which preferred deposition takes place.
  9. Process according to one of Claims 1 to 8,
    characterized
    in that the electrolyte is cleaned before the start of the deposition and/or during the deposition.
  10. Process according to Claim 9,
    characterized
    in that the electrolyte is cleaned before the start of the deposition using 0.5 g/l to 5 g/l, in particular 1 g/l to 3 g/l, of activated carbon and using 0.5 ml/l to 3 ml/l, in particular 1 ml/l to 2 ml/l, of 30% strength hydrogen peroxide.
  11. Process according to either of Claims 9 and 10,
    characterized
    in that the electrolyte is cleaned during the deposition by filtering the electrolyte, in particular with the aid of at least one activated carbon filter (10), and by removing foreign elements from the electrolyte with the aid of at least one selective bath (11).
  12. Process according to one of Claims 1 to 11,
    characterized
    in that, at least during part of the deposition duration, the electrolyte is circulated with the aid of at least one circulating device (13), and the electrolyte is returned into the bath (1) by means of nozzles (7).
  13. Process according to Claim 12,
    characterized
    in that the nozzles (7) are formed and arranged in the bath (1) in such a manner as to achieve circulation of the bath (1) and/or an electrolyte flow directed at the deposition body (2).
  14. Use of a process according to one of Claims 1 to 13 for producing components for rocket engines.
  15. Use of a process according to one of Claims 1 to 13 for producing injection heads and/or combustion chambers and/or propelling nozzles for rocket engines.
  16. Electrolytic bath (1) for the electrodeposition of nickel or nickel alloys or cobalt or cobalt alloys, having
    - an electrolyte, which contains nickel compounds or cobalt compounds, on a deposition body (2) having at least one contoured anode (3, 3a, 3b), the contour of which is matched to the contour of the deposition body (2),
    - a device (4) for activating the anode (3, 3a, 3b) and a cathode (2) of the bath (1) with periodic current pulses having a ratio IA/IC of greater than 1 and less than 1.5 and a charge ratio QA/QC=(TA·IA)/(TIC) of between 30% and 45%,
    - current diaphragms (5) for at least partially shielding the deposition body (2),
    - a cleaning device (6) for cleaning the electrolyte, and
    - a circulating device (13) for circulating the electrolyte, having at least one circulating pump (12) and nozzles (7) for returning the electrolyte into the bath,
    wherein the anode current density IA and the cathode current density IC are defined as current densities during the anodic or cathodic phases of the current pulses on the deposition body (2).
  17. Electrolytic bath according to Claim 16,
    characterized
    in that the at least one contoured anode (3, 3a, 3b) is in the form of a contoured container (8), which can be filled with bodies (9) of nickel or cobalt or of a nickel alloy or of a cobalt alloy.
  18. Electrolytic bath according to either of Claims 16 and 17,
    characterized
    in that a plurality of anodes (3, 3a, 3b) are arranged in the bath (1), wherein only those anodes (3a) located closest to the deposition body (2) are in the form of contoured anodes.
  19. Electrolytic bath according to one of Claims 16 to 18,
    characterized
    in that the cleaning device (6) contains a filter device (10) and a selective bath (11).
EP01128897A 2000-12-07 2001-12-05 Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process Expired - Lifetime EP1213372B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10061186A DE10061186C1 (en) 2000-12-07 2000-12-07 Electroplating of nickel, cobalt, and their alloys onto rocket engine components, uses differing current densities and pulsed charge ratios at anode and cathode
DE10061186 2000-12-07

Publications (3)

Publication Number Publication Date
EP1213372A2 EP1213372A2 (en) 2002-06-12
EP1213372A3 EP1213372A3 (en) 2004-02-04
EP1213372B1 true EP1213372B1 (en) 2011-02-09

Family

ID=7666361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01128897A Expired - Lifetime EP1213372B1 (en) 2000-12-07 2001-12-05 Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process

Country Status (6)

Country Link
US (1) US6790332B2 (en)
EP (1) EP1213372B1 (en)
JP (1) JP4285932B2 (en)
AT (1) ATE498026T1 (en)
DE (2) DE10061186C1 (en)
RU (1) RU2281990C2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237381B4 (en) * 2002-08-12 2005-06-23 Eads Space Transportation Gmbh Combustion structure and method for its production
US7306710B2 (en) * 2002-11-08 2007-12-11 Pratt & Whitney Rocketdyne, Inc. Apparatus and method for electroplating a metallic film on a rocket engine combustion chamber component
DE10259362A1 (en) * 2002-12-18 2004-07-08 Siemens Ag Process for depositing an alloy on a substrate
US20060037865A1 (en) * 2004-08-19 2006-02-23 Rucker Michael H Methods and apparatus for fabricating gas turbine engines
GB0811016D0 (en) * 2008-06-17 2008-07-23 Smart Stabilizer Systems Ltd Steering component and steering assembly
FR2935147B1 (en) * 2008-08-25 2010-09-17 Snecma DEVICE AND METHOD FOR APPLYING A COATING TO A WORKPIECE BY ELECTRO DEPOSITION.
US8425751B1 (en) 2011-02-03 2013-04-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Systems and methods for the electrodeposition of a nickel-cobalt alloy
DE102013010025A1 (en) * 2013-06-17 2014-12-18 Muhr Und Bender Kg Method for producing a product from flexibly rolled strip material
CN103526246A (en) * 2013-09-26 2014-01-22 沈阳化工大学 Method for preparing composite Al-Ni coating on engine rotor surface
CN103556192B (en) * 2013-10-09 2016-03-30 北京航空航天大学 A kind of bidirectional pulse power supply that adopts prepares the method with strong mechanical performance electroforming nickel dam
GB2528873A (en) * 2014-07-31 2016-02-10 Mohammad Sakhawat Hussain Direct high speed nickel plating on difficult to plate metals
RU2617470C1 (en) * 2015-12-28 2017-04-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университе имени Д. И. Менделеева (РХТУ им. Д. И. Менделеева) Method for nickel-phosphorus coating electrodeposition
CN105862093B (en) * 2016-05-26 2018-03-06 安庆师范大学 A kind of method of electroplated Ni Cr PTFE composite deposites in ionic liquid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL72938C (en) * 1947-07-09
US3726768A (en) * 1971-04-23 1973-04-10 Atomic Energy Commission Nickel plating baths containing aromatic sulfonic acids
US3915835A (en) * 1973-11-05 1975-10-28 Ford Motor Co Method of improving plating distribution of elnisil coatings
DE2558423B2 (en) * 1975-12-23 1978-09-07 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Process for the electrodeposition of nickel from a nickel sulfamate bath
DK172937B1 (en) * 1995-06-21 1999-10-11 Peter Torben Tang Galvanic process for forming coatings of nickel, cobalt, nickel alloys or cobalt alloys
DE19545231A1 (en) * 1995-11-21 1997-05-22 Atotech Deutschland Gmbh Process for the electrolytic deposition of metal layers
US6071398A (en) * 1997-10-06 2000-06-06 Learonal, Inc. Programmed pulse electroplating process
US6210555B1 (en) * 1999-01-29 2001-04-03 Faraday Technology Marketing Group, Llc Electrodeposition of metals in small recesses for manufacture of high density interconnects using reverse pulse plating

Also Published As

Publication number Publication date
US6790332B2 (en) 2004-09-14
JP2002226991A (en) 2002-08-14
EP1213372A2 (en) 2002-06-12
EP1213372A3 (en) 2004-02-04
JP4285932B2 (en) 2009-06-24
DE10061186C1 (en) 2002-01-17
ATE498026T1 (en) 2011-02-15
RU2281990C2 (en) 2006-08-20
US20020084190A1 (en) 2002-07-04
DE50115791D1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
EP1213372B1 (en) Process and arrangement for the galvanic deposition of nickel, cobalt, nickel alloys or cobalt alloys with periodic current pulses and use of the process
EP1717353B1 (en) Alkaline galvanizing bath comprising a filtration membrane
EP1717351A1 (en) Galvanic bath
EP1712660A1 (en) Insoluble anode
EP0990423B1 (en) Method of manufacturing prosthetic elements for the dental field and prosthetic element
EP1903132B1 (en) Electropolishing method for cobalt and cobalt alloys
DE4023444A1 (en) Cyanide-free copper plating process - where a portion of the plating bath is electrolysed by an independently-controlled insol. anode to reduce bath impurities
DE112016002153T5 (en) Method for producing chromium-plated parts and chrome plating plant
EP1902161B1 (en) Electrode arrangement and method for the electrochemical coating of a workpiece surface
DE3123833C2 (en) Process for controlling the composition of electrodeposited nickel-cobalt alloys
DE2951472C2 (en) Electroplating processes including the recovery and reuse of used rinsing baths
EP1507612B1 (en) Method for the galvanic coating of a continuous casting mould
DE2556716C2 (en) Electrolytically produced layers with the properties of a black body, which is almost ideal in the solar spectrum
DE2228229A1 (en) Method and apparatus for the electrolytic deposition of metals
DE3840310A1 (en) Method for accelerated deposition of a thick reconditioning layer on a worn workpiece
DE10259362A1 (en) Process for depositing an alloy on a substrate
DE102020133582B4 (en) Process for joining nanolaminates using galvanic metal deposition
DE102009023124A1 (en) Process for the galvanic copper coating and apparatus for carrying out such a process
DE2147257A1 (en) Galvanic bath and process for the deposition of semi-glossy nickel coatings
DE3423690A1 (en) AQUEOUS BATH FOR DEPOSITING GOLD AND USING IT IN A GALVANIC PROCESS
DE2636552A1 (en) METHOD OF ELECTRICAL DEPOSITION OF A FERRO-NICKEL ALLOY
EP3064615B1 (en) Method for electrolytical coating of complex components
DE3209559A1 (en) Process for electrodepositing an alloy coating on a metal object, in particular a zinc/nickel alloy coating on steel strip
DE3131367C2 (en) Process and electrode for the electroforming production of form-forming metal tools
DE1496962C (en) Electrolytic deposition of lead dioxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 25D 17/12 B

Ipc: 7C 25D 21/18 B

Ipc: 7C 25D 7/00 B

Ipc: 7C 25D 5/18 A

Ipc: 7C 25D 21/00 B

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS SPACE TRANSPORTATION GMBH

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20040814

17Q First examination report despatched

Effective date: 20051118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASTRIUM GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50115791

Country of ref document: DE

Date of ref document: 20110324

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50115791

Country of ref document: DE

Effective date: 20110324

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110609

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115791

Country of ref document: DE

Effective date: 20111110

BERE Be: lapsed

Owner name: ASTRIUM G.M.B.H.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 498026

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50115791

Country of ref document: DE

Owner name: ARIANEGROUP GMBH, DE

Free format text: FORMER OWNER: ASTRIUM GMBH, 82024 TAUFKIRCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20191219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191230

Year of fee payment: 19

Ref country code: FR

Payment date: 20191219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201223

Year of fee payment: 20

Ref country code: DE

Payment date: 20201211

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201205

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50115791

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211204