EP1902311A2 - Commutateur de taille atomique commandé par grille - Google Patents

Commutateur de taille atomique commandé par grille

Info

Publication number
EP1902311A2
EP1902311A2 EP05779608A EP05779608A EP1902311A2 EP 1902311 A2 EP1902311 A2 EP 1902311A2 EP 05779608 A EP05779608 A EP 05779608A EP 05779608 A EP05779608 A EP 05779608A EP 1902311 A2 EP1902311 A2 EP 1902311A2
Authority
EP
European Patent Office
Prior art keywords
conductance
potential
source
drain
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05779608A
Other languages
German (de)
English (en)
Inventor
Thomas Schimmel
Fangqing Xie
Christian Obermair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1902311A2 publication Critical patent/EP1902311A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • H10N99/05Devices based on quantum mechanical effects, e.g. quantum interference devices or metal single-electron transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation

Definitions

  • microelectronics The development in microelectronics is characterized by increasing miniaturization. In addition to a reduction in the dimensions of individual components, in particular transistors and the transition to ever higher clock frequencies [1,2] is increasingly the reduction of energy consumption per logical operation in the foreground. Even with the semiconductor structures currently being produced in processors and memory chips, the dimensions of the individual components on a microchip are currently below 100 nanometers with the goal of further reduction. While semiconductor technology is still largely based on silicon-based systems, alternative systems for nanoelectronics are increasingly being discussed, in particular the construction of logic elements such as switches and transistors based on single molecules (so-called molecular electronics) [3, 4,5].
  • metallic point contacts on an atomic scale can also be produced by galvanic deposition of metals from an electrolyte in a small gap between two electrically conductive contacts [10,11,12] Frequently, but not always as quantum point contacts with conductivities of integer multiples of the conductance quantum, their conductance, which they assume, can hardly be predicted or deliberately adjusted to a certain value, but the conductance of the metallic bridge decreases with decreasing diameter - usually in
  • the group around Don Eigler [14] succeeded in switching the position of a single atom between two positions (at the tip of the tunnel or on the sample surface) in a tunneling microscope. This is undoubtedly a component whose only moving or moving part is a single one Atom is.
  • this "atom flip-flop" not only has the disadvantage that it can be operated in the configuration shown only at low temperatures (typically 4 K to 30 K) and in ultrahigh vacuum, ie not in the conditions in which Instead, there is no independent third electrode as a control electrode or gate, but the atomic position of the mobile atom is switched on by applying potentials to the two electrodes whose conductance is to be switched over but can not open and close an electrical circuit with this arrangement, but the resistance of the contact varies at best by typically 0% to 40% by the position change of the atom, this percentage of change is not exactly predictable.
  • the method according to the invention now solves this problem by developing an atomic switching element whose only moving elements are the contacting atoms and whose electrical contact between two electrodes (called source and drain) is deliberately opened via a potential (control potential) applied to an independent third electrode and can be closed.
  • the component can be reproducibly operated at room temperature and without exclusion of oxygen.
  • the relationship between the source Drain conductance in switched on and off state can be more than 1000, depending on execution more than 10000.
  • the basic idea in the process according to the invention is the "training" of an electrochemically produced atomic point contact by repeated cyclization in the following manner.
  • metal is electrolytically deposited from an electrolyte metal in a small gap between two electrodes until the contact between the two electrodes is closed and a preset upper conductance X is exceeded.
  • a resolution potential V2 is applied to the two electrodes relative to the reference electrode immediately or with a defined time delay (this happens, for example, but not necessarily by not the potential of the two gold electrodes, but the potential of the quasi-reference electrode relative to a reference potential "Ground" is varied) until a lower conductance Y is exceeded, and then a deposition potential Vl is again applied until in the contact the upper conductance X is reached and the cycle begins again with the application of the resolution potential V2.
  • an assumed conductance By means of a hold potential, ie with a value of the potential lying between deposition and dissolution potential, an assumed conductance (on-state or off-state) can then be kept stable until deliberately switched by potential change - via the deposition potential from off-state to on-state or via the resolution potential of on-state to off-state.
  • a transistor or a relay can be realized on an atomic scale.
  • the device represents an atomic switch or relay, which can be used as a functional unit for atomic logic circuits and logic chips as well as for atomic electronics.
  • the method can be used not only for the production and operation of atomic switches and atomic transistors, but also for the production of resistors with vorselektierbarem, predetermined before manufacture defined value, preferably an integer multiple of the Leitwertquantums can be.
  • the measuring setup used for the electrochemical deposition of atomic metallic contacts is shown schematically in FIG. It consists of an electrochemical cell filled with a metal ion-containing electrolyte and potentiostatically controlled electrodes.
  • the working electrodes used are two gold electrodes fixed on a glass substrate, which are electrically isolated from each other at a distance of the order of 100 nm. Both gold electrodes are isolated to a microscopic area around the contact region with a polymer paint against the electrolyte.
  • metal islands here in the example silver islands
  • the conductivity between both working electrodes is recorded. This is done until two touched on different gold electrodes metal islands touch and close the gap between the two gold electrodes electrically conductive.
  • an aqueous silver nitrate solution (0.1 mM AgNO 3 + 0.1 M HNO 3 , dissolved in bidistilled water) was used as the electrolyte.
  • As (pseudo) reference and counter electrode respectively silver wires with 0.25 mm diameter (purity 99.9985%).
  • a positive control voltage between 2 mV and 40 mV is applied to the (pseudo) reference electrode. This corresponds to a deposition potential between -2 mV and -40 mV (respectively vs. Ag / Ag + ) at one of the two working electrodes (here called gold electrode (1)).
  • the second working electrode, gold electrode (2) is constantly at a potential which is reduced by U me ss compared to the gold electrode (1).
  • electrochemically deposited atomic silver point contacts can be produced with quantized conductivities.
  • the measurement was carried out at room temperature.
  • the conductance of the atomic silver contact was about 1 Go- After the silver contact was deposited, the control voltage was lowered to a value of -29 mV.
  • This corresponds to an electrochemical dissolution potential of +29 mV vs. Ag / Ag + of the gold electrode (1) or of (+29 mV - 12.9 mV 16.1 mV) vs. Ag / Ag + of the gold electrode (2)).
  • the conductance jumps to zero.
  • bistable contacts To produce bistable contacts, a method is used in which multiple atomic contact is "trained" by repeated cyclic electrochemical deposition and dissolution, ie, as long as different contact configurations are generated until a bistable configuration is established corresponding parameters can be preselected and the cyclic process is run through automatically.
  • the following is an example of generating a switch between zero and 1 Go. First, an atomic contact was deposited.
  • FIG. 2 an example of a sequence of five switching operations of an atomic switch produced by the method just described is shown.
  • the silver atomic contact switches between an "off" state with conductance zero and an "on” state with conductance 1 Go, controlled by application of an external electrochemical control voltage.
  • This control voltage is shown as a function of time in Fig. 2 (a), while Fig. 2 (b) shows the simultaneously measured conductance. Any change in control voltage is followed by switching the conductance of the atomic silver contact.
  • ratios between 1000 and more than 3000 typically result.
  • the actual switching operation in the conductance does not immediately follow the applied control voltage, but a certain amount of time passes between the change of the control voltage and the effect on the contact. This characteristic period of time depends on the contact geometry and the ion concentration of the electrolyte and is a few seconds in the structure used here.
  • the actual switching time of the transition is considerably shorter, as shown in Fig. 3:
  • the falling edge of a switching process from a reproducible sequence of transitions between the conductances zero and 2 Go is shown with a time resolution in the ⁇ s range.
  • the conductance is nearly constant at about 2 Go.
  • the actual switching process begins with a pre-phase lasting about 50 ⁇ s (t 0 in Fig. 3), in which the conductance slowly drops to about 1.7 Go before the actual switching operation (t ⁇ ) takes place.
  • Fig. 4 Another example is shown in Fig. 4.
  • the decisive factor here is the choice of the upper threshold conductance in cyclic electrochemical deposition and dissolution of the contact. Will you z. For example, to create a switch between zero and 3 Go, one chooses an upper threshold of almost 3 Go.
  • a contact forms whose conductance is switchable between zero and 3 Go by an external control voltage (see Figure 4).
  • the waveform with which the control voltage is applied as a function of time here triangular has no influence on the switching operation of the conductance, which runs digitally between two values.
  • Fig. 1 ( ⁇ ) gives an illustration of the basic principle of atomic scale switching based on a metallic quantum dot contact.
  • the contacting atoms are moved back and forth by an externally applied gate voltage, resulting in a gate voltage controlled opening and closing of the contact on the atomic scale.
  • (B) is a schematic representation of the experimental setup.
  • an electrochemical deposition potential, controlled by the gate voltage in this example, silver is electrochemically deposited into the nanoscale gap between the gold electrodes ("source” and "drain"), while at the same time the conductivity between the gold electrodes with a measurement voltage of typically 12 , 9 mV is measured.
  • Repeated computer-controlled electrochemical cycling produces a bistable switch at the atomic scale.
  • the conductance of the atomic switch (b) is directly applied by the control voltage U ⁇ ont r o i ⁇ ( a ) between the electrochemical control electrode and the gold -Worked electrodes, controlled. If the control voltage is set to a "hold level" (arrows), the atomic switch remains stable at its conductance level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

L'invention concerne un procédé pour fabriquer un élément de commutation. L'invention est caractérisée en ce que l'élément de commutation comporte trois électrodes disposées dans un électrolyte, dont deux ("source" et "drain") sont mutuellement reliées par un pont constitué par un ou plusieurs atomes, ce pont pouvant être ouvert ou fermé. L'ouverture et la fermeture de ce contact entre l'électrode source et l'électrode drain peuvent être commandées par le potentiel appliqué à la troisième électrode ("électrode grille"). L'élément de commutation est réalisé par application répétée de cycles de potentiel entre l'électrode grille et l'électrode source ou drain. Pendant ces cycles, le potentiel est augmenté et de nouveau abaissé jusqu'à ce que, partant de cette variation de potentiel sur l'électrode grille, la conductance entre l'électrode source et l'électrode drain permet, en tant que fonction de la tension de l'électrode grille, la commutation alternative et reproductible entre deux conductances.
EP05779608A 2004-09-08 2005-09-02 Commutateur de taille atomique commandé par grille Withdrawn EP1902311A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004043811 2004-09-08
PCT/DE2005/001541 WO2006026961A2 (fr) 2004-09-08 2005-09-02 Commutateur de taille atomique commandé par grille

Publications (1)

Publication Number Publication Date
EP1902311A2 true EP1902311A2 (fr) 2008-03-26

Family

ID=35637145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05779608A Withdrawn EP1902311A2 (fr) 2004-09-08 2005-09-02 Commutateur de taille atomique commandé par grille

Country Status (4)

Country Link
US (3) US7960217B2 (fr)
EP (1) EP1902311A2 (fr)
DE (1) DE102005041648A1 (fr)
WO (1) WO2006026961A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0416600D0 (en) * 2004-07-24 2004-08-25 Univ Newcastle A process for manufacturing micro- and nano-devices
US7960217B2 (en) * 2004-09-08 2011-06-14 Thomas Schimmel Gate controlled atomic switch
US9792985B2 (en) 2011-07-22 2017-10-17 Virginia Tech Intellectual Properties, Inc. Resistive volatile/non-volatile floating electrode logic/memory cell
US8737114B2 (en) * 2012-05-07 2014-05-27 Micron Technology, Inc. Switching device structures and methods
CN102903848B (zh) * 2012-10-24 2015-02-18 东北大学 一种可寻址纳米尺度分子结制备方法
DE102014111164A1 (de) 2014-01-12 2015-07-16 Karlsruher Institut für Technologie Verwendung eines Schaltelementes auf atomarer Skala als Stand-by-Schaltung
CN113921715A (zh) * 2015-06-03 2022-01-11 巴登沃特姆伯格基础有限公司 光学设备及该设备的用途
EP3304193B1 (fr) 2015-06-04 2019-08-07 Karlsruher Institut für Technologie Dispositifs, en particulier dispositifs optiques ou électro-optiques à opération quantifiée
US10923656B2 (en) * 2016-07-12 2021-02-16 Industry-University Cooperation Foundation Hanyang University Switching atomic transistor and method for operating same
SG10201606137YA (en) * 2016-07-26 2018-02-27 Silicon Storage Tech Inc Current forming of resistive random access memory (rram) cell filament
CN112047296B (zh) * 2020-09-18 2022-07-29 南开大学 一种光控基底热膨胀实现双向原子开关的方法
EP4210112A1 (fr) 2022-01-10 2023-07-12 Karlsruher Institut für Technologie Transistors d'étain entièrement métalliques à l'échelle atomique à très faible dissipation de puissance
CN114421943B (zh) * 2022-01-25 2023-03-24 中国电子科技集团公司第五十八研究所 一种高可靠抗辐射原子开关型配置单元结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717673A (en) * 1984-11-23 1988-01-05 Massachusetts Institute Of Technology Microelectrochemical devices
US5536947A (en) * 1991-01-18 1996-07-16 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory element and arrays fabricated therefrom
US7026911B2 (en) * 2000-11-01 2006-04-11 Japan Science And Technology Corporation Point contact array, not circuit, and electronic circuit comprising the same
US6410934B1 (en) * 2001-02-09 2002-06-25 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle electronic switches
US7875883B2 (en) * 2001-09-25 2011-01-25 Japan Science And Technology Agency Electric device using solid electrolyte
US7876795B2 (en) * 2004-08-19 2011-01-25 Maxion Technologies, Inc. Semiconductor light source with electrically tunable emission wavelength
US7960217B2 (en) * 2004-09-08 2011-06-14 Thomas Schimmel Gate controlled atomic switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006026961A2 *

Also Published As

Publication number Publication date
US20090195300A1 (en) 2009-08-06
US20110241067A1 (en) 2011-10-06
DE102005041648A1 (de) 2006-07-27
US7960217B2 (en) 2011-06-14
US20120211368A1 (en) 2012-08-23
US8138522B2 (en) 2012-03-20
WO2006026961A3 (fr) 2008-02-21
WO2006026961A2 (fr) 2006-03-16

Similar Documents

Publication Publication Date Title
EP1902311A2 (fr) Commutateur de taille atomique commandé par grille
DE102005005938B4 (de) Resistives Speicherelement mit verkürzter Löschzeit, Verfahren zur Herstellung und Speicherzellen-Anordnung
DE60126310T2 (de) Punktkontaktarray, Not-Schaltung und elektronische Schaltung damit
DE112007002328B4 (de) Elektrisch betätigter Schalter und Verfahren zum Konfigurieren einer EIN/AUS-Polarität eines Schalters
EP1825534B1 (fr) Procede pour l'application structuree de molecules sur un trace conducteur et matrice de memoire moleculaire
DE69721929T2 (de) Tunneleffektanordnung und verfahren zur herstellung
DE10013013A1 (de) Chemisch synthetisierte und aufgebaute elektronische Bauelemente
DE112018003217B4 (de) Memristives Bauelement auf Grundlage eines reversiblen Transfers interkalierter Ionen zwischen zwei metastabilen Phasen und Verfahren zum Betreiben desselben
WO2015010904A1 (fr) Procédé de production d'un nanopore pour le séquençage d'un biopolymère
DE2800343A1 (de) Bistabile elektrostatische vorrichtung
DE10153562A1 (de) Verfahren zur Verringerung des elektrischen Kontaktwiderstandes in organischen Feldeffekt-Transistoren durch Einbetten von Nanopartikeln zur Erzeugung von Feldüberhöhungen an der Grenzfläche zwischen dem Kontaktmaterial und dem organischen Halbleitermaterial
DE102007043360A1 (de) Elektronisches Bauelement, Verfahren zu seiner Herstellung und seine Verwendung
DE10340644B4 (de) Mechanische Steuerelemente für organische Polymerelektronik
DE10244914A1 (de) Nanovorrichtung für einen geladenen Teilchenfluß und Verfahren zu deren Herstellung
DE1275221B (de) Verfahren zur Herstellung eines einen Tunneleffekt aufweisenden elektronischen Festkoerperbauelementes
DE112021005740T5 (de) Gemischt leitendes flüchtiges speicherelement zum beschleunigten beschreiben eines nichtflüchtigen memristiven bauelements
DE10001852C2 (de) Verfahren zum Formen einer elektrischen Signalleitung zwischen zwei Elektroden, Erzeugnis mit einer derartigen Signalleitung und Verwendung des Erzeugnisses
DE102008042323A1 (de) Elektronisches Bauelement mit Schalteigenschaften
DE2247882A1 (de) Elektrisches relais
DE2011851C3 (de) Elektrische Speichermatrix in Kompaktbauweise.
DE102004052645A1 (de) Speicherzelle und Verfahren zu deren Herstellung
EP2553692B1 (fr) Element ferroic structure en domaine, methode et appareil pour generation et controle de la conductivite electique des parois de domaine a temperature ambiente dans les elements ainsi que des applications de l'element
DE202023105125U1 (de) Widerstandsschaltverhaltenssystem unter Verwendung der Ipomea Carnea-Pflanze zur Herstellung eines biologisch abbaubaren, wiederbeschreibbaren Nur-Lese-Speichers
DE202022102677U1 (de) Eine nichtflüchtige Speicheranordnung mit leitender Brücke und wahlfreiem Zugriff auf Basis eines festen Polymerelektrolyten mit Kupferionen
DE102006047358A1 (de) Schaltungsanordnung zur Spannungspulserzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071116

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20080221

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080530

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160401