EP1896623A1 - Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation - Google Patents

Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation

Info

Publication number
EP1896623A1
EP1896623A1 EP06761728A EP06761728A EP1896623A1 EP 1896623 A1 EP1896623 A1 EP 1896623A1 EP 06761728 A EP06761728 A EP 06761728A EP 06761728 A EP06761728 A EP 06761728A EP 1896623 A1 EP1896623 A1 EP 1896623A1
Authority
EP
European Patent Office
Prior art keywords
content
sub
equ
steels
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06761728A
Other languages
German (de)
English (en)
Inventor
Andreas Weiss
Heiner Gutte
Piotr R. Scheller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1896623A1 publication Critical patent/EP1896623A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the innovation relates to a high-strength austenitic-martensitic lightweight steel alloyed with chromium, silicon, manganese and aluminum and having a tensile strength greater than 800 to 1200 MPa and an elongation at break greater than 25% and its use.
  • Steels with tensile strengths above 600 MPa are referred to as lightweight steels because the tensile strength per unit weight is higher than that of aluminum.
  • austenitic-martensitic steels In order to increase the strength of multiphase steels, such as austenitic-martensitic steels, there are various possibilities. For example, increasing the phase fraction of martensite and / or cold working and / or precipitation hardening. In austenitic-martensitic steels, the 0.2% proof stress, the tensile strength and the hardness of the steels compared to austenitic steels are raised due to the martensite content.
  • Stainless austenitic-martensitic CrNi steels combine the advantages of austenitic and preferably soft-martensitic steels.
  • High-alloyed austenitic-martensitic steels are stainless steels [1] or high-manganese steels and obviously also LIP steels (light-induced plasticity) [2, 3, 4].
  • LIP steels light-induced plasticity
  • the high manganese steels have 0.2% proof strengths of 200 to 450 MPa and tensile strengths of 780 MPa to 1100 MPa and the elongations at break of 39 to 47%.
  • a steel with 15% manganese and silicon contents of 4 to 2% and aluminum contents of 2 to 4% exhibits these properties [1, 2].
  • the alloying range of the austenitic-martensitic steels with TRIP effect has been specified to some extent for high-manganese steels, but not for stainless steels [3].
  • the product of tensile strength and maximum elongation can be used as an index to assess the cold workability of the steels.
  • the product of maximum elongation and tensile strength in the austenitic-martensitic steels is in the range of more than 20,000 MPa% [3-5].
  • the steels can still be cold formed relatively well.
  • the steels still have a residual energy absorption capacity. This means that austenitic-martensitic steels still have a sufficiently high expansion reserve for a crash load [3-5].
  • the different strength-enhancing mechanisms can be influenced in principle by the austenite stacking energy, which depends on the austenite chemical composition [2, 6].
  • a prerequisite for the formation of strain-induced ⁇ '-martensite is that the structure consists at least partially of austenite.
  • the austenite must be metastable to have a correspondingly high propensity for the formation of strain-induced martensite.
  • a corresponding chromium and nickel equivalent is required for the chemical composition of the steels. That is, the chemical composition of the steels must be matched to each other with respect to the ferrite stabilizing and austenite stabilizing elements.
  • a modified chromium and known nickel equivalent have been used to specify the range of existence of strain-induced ⁇ 'phase formation, as formulated in the claim. Under these conditions, the required chemical composition of the steel according to the invention can be determined.
  • the advantages achieved by the invention are, in particular, that with the lightweight structural steels according to the invention an improvement in the strength properties is achieved and at the same time the toughness properties remain at a relatively high level.
  • These steels are therefore characterized by a good combination of high strength and good toughness properties. As a result, these steels can still be cold formed relatively well and also have a relatively high energy absorption capacity.
  • the lightweight steels according to the invention can be divided into two different steel types.
  • the first type of steel includes TRIP stainless steels with chromium contents in excess of 12.0 to 18.0%.
  • the second type of steel includes TRIP / TWIP lightweight steels with chromium contents greater than 0.5% and less than 12.0%, which are generally weather resistant and resistant to corrosion. example 1
  • the invention high-strength lightweight structural steel with TRIP effect, a carbon content of 0.03%, a chromium content of 14.1%, a
  • the structure of the steel consists mainly of metastable austenite and martensite. The steel shows a TRIP effect at room temperature. It is observed a high hardenability. The 0.2% yield strength is about 300 MPa and the tensile strength is 890. The steel achieves a maximum elongation of 45%.
  • Example 2 The high-strength lightweight structural steel according to the invention with TWIP / TRIP
  • the structure of the steel consists of metastable austenite and martensite.
  • the steel shows a TRIP / TWIP effect. A relatively high hardenability is observed.
  • the 0.2% proof strength is 310 MPa and the tensile strength is 1170
  • the stainless steels according to the invention have lower martensite and no ferrite fractions in the undeformed starting structure compared to the soft-martensitic steels. It is only as a consequence of a TRIP effect in the process of cold forming that the martensite content in the steels according to the invention increases and reaches values which soft martensitic steels generally already have in their undeformed initial state. Therefore, the steels according to the invention generally have lower 0.2% proof strengths compared to the soft-martensitic steels.
  • these steels strongly strengthen in the process of mechanical stress and achieve approximately equal or higher tensile strengths and high elongation at break. For this reason, these steels can also be cold worked well.
  • the nickel contents can be lowered compared with the commercial soft-martensitic CrNi steels. This results in a cost-effective production of these steels.
  • the steel according to the invention distinguishes itself from steels, as described in [7], by a lower nickel equivalent.
  • the structure of the undeformed initial state consists of martensite and austenite.
  • Lightweight steels is their weather resistance or corrosion inertia. These properties are achieved in the case of a tight-fitting rust layer.
  • the strength and toughness properties of this group of steels according to the invention in individual cases are sufficient for the outstanding mechanical properties high-manganese TRIP / TWIP steels.
  • These steels with rust layer formation according to the invention can also be cold formed and still have a relatively high energy absorption capacity.
  • the austenite in the steels according to the invention is metastable. By a mechanical treatment, it is possible to influence the microstructure of the austenite with respect to the formation of stacking faults, twins and deformation-induced martensite, preferably deformation-induced ⁇ '-martensite.
  • the formation of preferably deformation-induced ⁇ '-martensite in an austenitic-martensitic structure is activated by alloying measures.
  • the nickel equivalent is lowered compared to cold-formable austenitic lightweight steels [7].
  • the steels according to the invention differ from the austenitic lightweight steels, which are readily cold-formable.
  • the austenitic-martensitic steel according to the invention however, the stated property potential is reached in the process of mechanical stress as a result of deformation-induced martensite formation and without aftertreatment.
  • the steels according to the invention fundamentally differ from the ultra-high-strength steels, as described in [8, 9, 10].
  • the steel according to the invention may have a chemical composition, as they have aluminum-containing CrNi steels [8, 10], as well as those containing Ti, Si, Nb and V [9].
  • Manganese is alloyed in the steels of the invention as Austenitchanner and as a substitution element for nickel.
  • titanium and niobium promote the formation of austenitic fines and cause a fine martensite structure.
  • these elements have a positive influence on the mechanical properties.
  • niobium and titanium cause the carbon to set and thus cause an improvement in the corrosion properties. If the austenite of the austenitic-martensitic steels transforms into ⁇ - and / or ⁇ '-martensite during a mechanical stress deformation-induced, a TRIP effect is observed. As a result, the plastic deformation capacity and the tensile strength increase. By twinning, these property changes can be enhanced. It is then observed a high hardenability. In contrast to the metastable austenitic steels with TRIP effect, austenitic-martensitic steels with TRIP effect have higher 0.2% proof strengths and tensile strengths.
  • the steels according to the invention differ from the previous austenitic TRIP / TWIP steels in that the TRIP effect is induced not in an austenitic starting structure but in an austenitic-martensitic starting structure.
  • the tensile strengths of more than 800 MPa are then mainly a consequence of the existing cooling martensite and the
  • Strain-induced martensite The elongations at break of more than 25% are mainly caused by the TRIP effect and thus the formation of deformation martensite. Excretion hardening or aging is not necessary to achieve the specified mechanical properties.
  • metallurgical measures are required both with regard to the oxygen uptake of the melt and thus the dissolved oxygen content and the deposition of such inclusions.
  • the dissolved oxygen content in the melt should therefore not exceed a value of 0.003% in the steel according to the invention.
  • the impact factor of Aluminum on the nickel equivalent in the relationship 2 given in claim 1 has been set at -0.2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention concerne un acier austénitique-martensitique à résistance élevée pour construction légère et son utilisation. Selon l'invention, cet acier présente une teneur en chrome comprise entre 0,5 et 18 %, une teneur en silicium comprise entre 1 et 4 %, une teneur en manganèse comprise entre 2,5 et 30 % et une teneur en aluminium comprise entre 0,05 et 4 % et il se trouve dans une gamme d'alliage déterminée par les coordonnées de quatre points (Créqu = 2 ; Niéqu = 2), (Créqu = 2 ; Niéqu = 24), (Créqu = 20 ; Niéqu = 10) et (Créqu = 20 ; Niéqu = 6,5), l'équivalent chrome et l'équivalent nickel étant calculés par l'intermédiaire des relations (1) Créqu = % Cr + % Mo + 1,5 % Si + 0,5 % W + 0,9 % Nb + 4 % AI + 4 % Ti + 1,5 % V et (2) Niéqu = % Ni + 30 % C + 18 % N + 0,5 % Mn + 0,3 % Co + 0,2 % Cu - 0,2 % AI à partir de la composition chimique de l'acier, les indications correspondant à des pourcentages en masse et le reste étant constitué essentiellement de fer et d'autres éléments indésirables de l'acier (P, S). Cet acier peut être formé à froid et il peut être utilisé comme matériau pour des tôles, des feuillards et des tubes laminés à chaud et à froid, pour des demi-produits et des produits non plats et des éléments de fixation, pour des composants soumis à des chocs et des éléments structuraux de renforcement dans le domaine de la construction automobile, pour des pièces d'usure et pour des pièces résistant aux intempéries, à la corrosion et à la rouille.
EP06761728A 2005-06-28 2006-06-28 Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation Withdrawn EP1896623A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005030413A DE102005030413C5 (de) 2005-06-28 2005-06-28 Hochfester austenitisch-martensitischer Leichtbaustahl und seine Verwendung
PCT/DE2006/001124 WO2007000156A1 (fr) 2005-06-28 2006-06-28 Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation

Publications (1)

Publication Number Publication Date
EP1896623A1 true EP1896623A1 (fr) 2008-03-12

Family

ID=36999850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06761728A Withdrawn EP1896623A1 (fr) 2005-06-28 2006-06-28 Acier austenitique-martensitique a resistance elevee pour construction legere et son utilisation

Country Status (5)

Country Link
US (1) US20080247902A1 (fr)
EP (1) EP1896623A1 (fr)
KR (1) KR20080034903A (fr)
DE (1) DE102005030413C5 (fr)
WO (1) WO2007000156A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033973A1 (de) * 2006-07-20 2008-01-24 Technische Universität Bergakademie Freiberg Nichtrostender austenitischer Stahlguss und seine Verwendung
DE102007044160A1 (de) * 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Verbundwerkstoff aus Metall und Keramik und Verfahren zu dessen Herstellung
DE102008005803A1 (de) 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteil aus höher kohlnstoffhaltigem austenitischem Stahlformguss, Verfahren zu deren Herstellung und deren Verwendung
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
KR101330756B1 (ko) * 2009-04-14 2013-11-18 신닛테츠스미킨 카부시키카이샤 피삭성이 우수한 저비중 단조용 강
EP2383353B1 (fr) 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG Acier à résistance élevée comprenant du Mn, produit plat en acier composé d'un tel acier et son procédé de fabrication
DE102010026808B4 (de) 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
KR101817085B1 (ko) 2015-09-23 2018-01-10 (주)휴스틸 전기저항 용접을 이용하여 만들어진 오스테나이트계 고망간 강관의 제조방법
DE102015117956A1 (de) * 2015-10-21 2017-04-27 Salzgitter Flachstahl Gmbh Verbundrohr bestehend aus einem Trägerrohr und mindestens einem Schutzrohr und Verfahren zur Herstellung hierfür
EP3225702B1 (fr) 2016-03-29 2020-03-25 Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG Acier a epaisseur reduite et procede de fabrication d'un produit allonge ou plat en acier a partir d'un tel acier
CN107537860A (zh) * 2016-06-25 2018-01-05 天津大学 采用冷轧调整tp347h奥氏体耐热钢组织的方法
WO2018083029A1 (fr) * 2016-11-02 2018-05-11 Salzgitter Flachstahl Gmbh Tube fabriqué sans soudure et réalisé par formage à basse température en acier au manganèse moyen et procédé de fabrication
KR101903174B1 (ko) 2016-12-13 2018-10-01 주식회사 포스코 강도 및 연성이 우수한 저합금 강판
KR101952818B1 (ko) * 2017-09-25 2019-02-28 주식회사포스코 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법
CN115505851B (zh) * 2022-10-08 2023-06-09 长春工业大学 一种高硬度高氮马氏体不锈钢刀具材料及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133807A (en) * 1975-05-14 1976-11-19 Hitachi Ltd Turbo type impeller with high performance
SE420623B (sv) * 1979-12-28 1981-10-19 Fagersta Ab Austenitiskt, utskiljningsherdbart rostfritt krom- nickel- aluminiumstal
NL193218C (nl) * 1985-08-27 1999-03-03 Nisshin Steel Company Werkwijze voor de bereiding van roestvrij staal.
JPH04154921A (ja) * 1990-10-16 1992-05-27 Nisshin Steel Co Ltd 形状の優れた高強度ステンレス鋼帯の製造方法
JPH06287635A (ja) * 1993-03-31 1994-10-11 Nisshin Steel Co Ltd 延性に優れ溶接軟化のない高耐力・高強度ステンレス鋼材の製造方法
DE19727759C2 (de) * 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Verwendung eines Leichtbaustahls
JP4207137B2 (ja) * 1998-02-16 2009-01-14 日立金属株式会社 高硬度高耐食ステンレス鋼
DE19824532A1 (de) * 1998-06-03 1999-12-09 Basf Ag Verfahren zur Herstellung von Schalenkatalysatoren für die katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen und so erhältliche Katalysatoren
DE60026746T2 (de) * 1999-10-04 2006-11-16 Hitachi Metals, Ltd. Treibriemen
JP2001131713A (ja) * 1999-11-05 2001-05-15 Nisshin Steel Co Ltd Ti含有超高強度準安定オーステナイト系ステンレス鋼材および製造法
DE102004061284A1 (de) * 2003-12-23 2005-07-28 Salzgitter Flachstahl Gmbh Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007000156A1 *

Also Published As

Publication number Publication date
KR20080034903A (ko) 2008-04-22
DE102005030413C5 (de) 2009-12-10
DE102005030413B3 (de) 2007-03-15
US20080247902A1 (en) 2008-10-09
WO2007000156A1 (fr) 2007-01-04

Similar Documents

Publication Publication Date Title
DE102005030413B3 (de) Hochfester austenitisch-martensitischer Leichtbaustahl und seine Verwendung
DE102005024029B3 (de) Austenitischer Leichtbaustahl und seine Verwendung
DE112006003169B4 (de) Stahlbleche zum Warmpressformen mit ausgezeichneten Wärmebehandlungs- und Schlageigenschaften, daraus hergestellte Warmpressteile und Verfahren zu deren Herstellung
AT394056B (de) Verfahren zur herstellung von stahl
EP2059623A1 (fr) Acier moulé austénitique inoxydable, son procédé de fabrication et son utilisation
KR102580316B1 (ko) 고강도 갈바닐링되는 강판 및 이러한 강판을 제조하는 방법
WO2009090231A1 (fr) Composants en acier moulé austénitique à plus forte teneur en carbone, procédé de production et utilisation de ceux-ci
EP3504349B1 (fr) Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier
DE102005052069B4 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
EP3535431B1 (fr) Produit d'acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication
WO2013113304A2 (fr) Acier multiphases très résistant, aux propriétés améliorées lors de sa fabrication et de son traitement
DE4219336A1 (de) Verwendung eines Stahls zur Herstellung von Konstruktionsrohren
EP3512968B1 (fr) Procédé pour fabriquer un produit plat en acier à partir d'un acier au manganèse et produit plat en acier résultant
EP3899064B1 (fr) Matériau superausténitique
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
EP3225702B1 (fr) Acier a epaisseur reduite et procede de fabrication d'un produit allonge ou plat en acier a partir d'un tel acier
DE2118697A1 (de) Hochfeste, kohlenstoffarme Baustähle mit guter Schweißbarkeit
DE3437765C1 (de) Verwendung eines nichtrostenden hochfesten Stahls
WO2024068957A1 (fr) Procédé de fabrication d'une bande d'acier à partir d'un acier multiphase à haute résistance et bande d'acier correspondante
DE621850C (de) Herstellung von Gegenstaenden aus Chrom-Mangan-Staehlen
EP1358359B1 (fr) Acier et procede de production d'un produit intermediaire
DE102020132909A1 (de) Nickellegierung
DE4112766C2 (de) Verwendung eines korrosionsbeständigen, hochfesten martensitischen Chrom-Stahls für Scharnierbandketten
DE102020110319A1 (de) Verfahren zur Herstellung eines Stahlbandes mit einem Mehrphasengefüge und Stahlband hinzu
DE3437766C1 (de) Verwendung eines Stahls als Federstahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103