EP1892309B1 - Tuyau de puits de pétrole pour utilisation en tube extensible d une excellente robustesse après expansion du tube et procédé de fabrication idoine - Google Patents

Tuyau de puits de pétrole pour utilisation en tube extensible d une excellente robustesse après expansion du tube et procédé de fabrication idoine Download PDF

Info

Publication number
EP1892309B1
EP1892309B1 EP06747307.4A EP06747307A EP1892309B1 EP 1892309 B1 EP1892309 B1 EP 1892309B1 EP 06747307 A EP06747307 A EP 06747307A EP 1892309 B1 EP1892309 B1 EP 1892309B1
Authority
EP
European Patent Office
Prior art keywords
pipe
oil well
less
expansion
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06747307.4A
Other languages
German (de)
English (en)
Other versions
EP1892309A4 (fr
EP1892309A1 (fr
Inventor
Hitoshi c/o Nippon Steel Corporation ASAHI
Taro c/o NIPPON STEEL CORPORATION MURAKI
Hideyuki c/o NIPPON STEEL CORPORATION NAKAMURA
Eiji c/o NIPPON STEEL CORPORATION TSURU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of EP1892309A1 publication Critical patent/EP1892309A1/fr
Publication of EP1892309A4 publication Critical patent/EP1892309A4/fr
Application granted granted Critical
Publication of EP1892309B1 publication Critical patent/EP1892309B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • this invention relates to an oil well pipe for expandable tubular applications excellent in post-expansion toughness, namely to such an oil well pipe suitable for implementing expandable tubular technology for finishing an oil or gas well by expanding the oil well pipe in the oil well or gas well.
  • the invention relates to a method of manufacturing the oil well pipe.
  • JP2003096536 A discloses an ultrahigh tensile strength electric resistance welded tube having a composition containing, by weight, 0.10 to 0.19% C, 0.01 to 0.5% Si, 0.8 to 2.2% Mn, 0.01 to 0.06% Al, 0.005 to 0.03% Nb, and 0.0005 to 0.0030% B, and in which the content of P is controlled to ⁇ 0.02%, S to ⁇ 0.003%, N to ⁇ 0.004%, and Ti to ⁇ 0.015%, having high tensile strength, excellent hydrogen delayed cracking resistance and excellent corrosion resistance.
  • the hot rolled steel strip after pickling and cold rolling is subjected to soaking under heating at 800 to 900°C, rapid cooling after that in a continuous annealing furnace, and it further undergoes tempering treatment at 150 to 250 °C.
  • the present invention provides an oil well pipe for expandable tubular applications excellent in post-expansion toughness, having a pre-expansion yield strength of 482 to 689 MPa (70 to 100 ksi) that is suitable for implementing expandable tubular technology for finishing an oil or gas well by expanding the oil well pipe in the oil well or gas well.
  • This invention also provides a method of manufacturing the oil well pipe.
  • the pre-expansion strength is the strength needed to prevent the steel pipe from breaking, bursting due to internal pressure, and crushing due to external pressure between insertion into an oil well and expansion therein. It is the strength standard generally applied in oil well design.
  • the inventors carried out an in-depth study on how steel chemical composition and manufacturing method affect toughness after pipe expansion and learned that imparting a structure of tempered martensite low in added C content gives the best results.
  • the present invention was achieved based on this knowledge and the gist thereof is as follows:
  • tempered martensite which is of uniform structure, is excellent in pipe expandability and that the most effective way to improve post-expansion toughness is to impart a structure of tempered martensite low in added C content.
  • Japanese Patent No. 3562461 teaches with regard to the invention set out therein that the strength of the steel pipe declines and that reduction of C content is required.
  • an electric-resistance-welded steel pipe is especially preferable owing to its excellent thickness uniformity.
  • the oil well pipe under the aforesaid manufacturing conditions is basically required to be made of a high-strength steel having a yield strength of 482 to 689 MPa and a thickness of 7 to 15 mm, and be excellent in expandability and post-expansion toughness.
  • the chemical composition was defined to meet these requirements. Since the temperature in an oil well is 0 °C or greater, toughness at 0 °C was taken into account.
  • C is a required element for enhancing hardenability and improving steel strength.
  • the lower limit of C content necessary for achieving the desired strength is 0.03 mass%.
  • post-expansion toughness decreases when the C content is excessive.
  • the upper limit of C content is therefore defined as 0.14 mass%.
  • Si is an element added to improve deoxidation and strength. However, it markedly degrades low-temperature toughness when added in a large amount.
  • the upper limit of Si content is therefore made 0.8 mass%. Either Al or Si suffices for deoxidation of the steel, so that addition of Si is not absolutely necessary. Therefore, no lower limit is defined, but 0.1 mass% or greater is usually entrained as an impurity.
  • Mn is an indispensable element for enhancing hardenability and ensuring high strength.
  • the lower limit of Mn content is 0.3 mass%.
  • an excessive Mn content makes the strength too high by causing formation of much martensite.
  • the upper limit is therefore defined as 2.5 mass%.
  • the invention steel further contains B and Ti as required elements.
  • B is an element required for increasing low carbon steel hardenability and obtaining martensite structure by hardening.
  • B content of less than 0.0005 mass% does not improve hardenability sufficiently and one of greater than 0.003 mass% lowers toughness owing to precipitation of B at the grain boundaries.
  • B content is therefore defined as 0.0005 to 0.003 mass%.
  • B to contribute to hardenability it is necessary to prevent formation of BN, which in turn makes it necessary to fix N as TiN.
  • N content is low, Ti needs to be added to a content of at least 0.005 mass%, but addition in a large amount exceeding 0.03 mass% lowers toughness by causing precipitation of coarse TiN and TiC.
  • the relationship Ti ⁇ 3.4 N should preferable be satisfied for fixing N as TiN.
  • Al is an element usually included in steel as a deoxidizer and also has a structure refining effect. But an Al content exceeding 0.1 mass% impairs steel cleanliness by increasing Al nonmetallic inclusions. The upper limit is therefore defined as 0.1 mass%. However, addition of Al is not absolutely necessary because Ti or Si can be used as deoxidizer. Therefore, no lower limit is defined, but 0.001 mass% or greater is usually entrained as an impurity.
  • N forms TiN, thereby improving low-temperature toughness by inhibiting austenite grain coarsening during slab reheating.
  • the minimum amount required for this is 0.001 mass%.
  • an excessive N content causes TiN grain coarsening, which gives rise to adverse effects such as surface flaws and toughness degradation.
  • the upper limit of N content must therefore be held to 0.01 mass%.
  • the present invention further limits the content of the impurity elements P and S to 0.03 mass% or less and 0.01 mass% or less, respectively.
  • the chief purpose of this limitation is to further improve the low-temperature toughness of the base metal, particularly to enhance weld toughness.
  • Reduction of P content mitigates center segregation in the continuously cast slab and also improves low-temperature toughness by preventing grain boundary fracture.
  • Reduction of S content minimizes MnS inclusions elongated by hot rolling and thus works to improve ductility and toughness.
  • Toughness is optimum when S content is lowered to 0.003 mass% or less.
  • the contents of both P and S are preferably as low as possible but the extent to which they are lowered needs to be decided taking the balance between steel properties and cost into account.
  • Nb, Ni, Mo, Cr, Cu and V The purpose of adding Nb, Ni, Mo, Cr, Cu and V will now be explained.
  • the primary reason for adding these elements is to further improve the strength and toughness of the invention steel and increase the size of the steel product that can be manufactured, without loss of the superior properties of the steel.
  • Nb when present together with B, enhances the hardenability improving effect of B. Nb also inhibits coarsening of crystal grains during hardening, thereby improving toughness. These effects are inadequate at an Nb content of less than 0.01 mass%. When Nb is added excessively to greater than 0.3 mass%, it conversely lowers toughness by causing heavy precipitation of NbC during tempering. Nb content is therefore defined as 0.01 to 0.3 mass%.
  • Ni is added for the purpose of improving hardenability. Ni addition causes less degradation of low-temperature toughness than does Mn, Cr or Mo addition. The hardening improvement effect of Ni is insufficient at a content of less than 0.1 mass%. Excessive addition of Ni increases the likelihood of reverse transformation during tempering. The upper limit of Ni content is therefore defined as 1.0 mass%.
  • Mo improves the hardenability of the steel and is added to achieve high strength. Moreover, when present together with Nb, Mo inhibits recrystallization of austenite during controlled rolling and thus also has an effect of refining the austenite structure before hardening. These effects are inadequate at an Mo content of less than 0.05 mass%. Excessive Mo addition causes formation of much martensite, making the steel strength too high. The upper limit of Mo content is therefore defined as 0.6 mass%.
  • Cr increases the strength of the base metal and welds. This effect is inadequate at a Cr content of less than 0.1 mass%, so this value is defined as the lower limit. When the Cr content is excessive, coarse carbide forms at the grain boundaries to lower toughness. The upper limit of Cr content is therefore defined as 1.0 mass%.
  • Cu is added for the purpose of improving hardenability. This effect is insufficient at a Cu content of less than 0.1 mass%. Excessive addition of Cu to greater than 1.0 mass% makes flaws more likely to occur during hot rolling. Cu content is therefore defined as 0.1 to 1.0 mass%.
  • V has substantially the same effect as Nb. But the effect of V is weaker than that of Nb and cannot be sufficiently obtained when the amount added is less than 0.01 mass%. Since excessive addition of V degrades low-temperature toughness, the upper limit of V content is defined as 0.3 mass%.
  • Ca and REM control the form of sulfides (MnS and the like), thereby improving low-temperature toughness. This effect is insufficient at a Ca content of less than 0.001 mass% and an REM content of less than 0.002 mass%.
  • Addition of Ca to greater than 0.01 mass% or REM to greater than 0.02 mass% causes formation of a large amount of CaO-CaS or REM-CaS, giving rise to large clusters and large inclusions that impair steel cleanliness.
  • the upper limits of Ca and REM addition are therefore defined as 0.01 mass% and 0.02 mass%, respectively.
  • the preferred upper limit of Ca addition is 0.006 mass%.
  • A 2.7 C + 0.4 Si + Mn + 0.45 Ni + 0.45 Cu + 0.8 Cr + 2 Mo.
  • A 2.7 C + 0.4 Si + Mn + 0.45 Ni + 0.45 Cu + 0.8 Cr + Mo -1, so that the value of A cannot be made 1.8 or greater owing to the large amount of alloy that must be added.
  • the symbols C, Si, Mn, Ni, Cu, Cr and Mo are the contents (mass%) of the respective elements.
  • the contents of the optionally contained elements Ni, Cu, Cr and Mo are at the impurity level, specifically when the content of each of Ni, Cr and Cu is less than 0.05 mass% and the content of Mo is less than 0.02 mass%, the value of A is calculated using zero (mass%) as the content of each of these elements.
  • the present invention restricts the structure of the steel pipe to low-carbon tempered martensite.
  • the tempered martensite structure is a required condition of an oil well pipe for expandable tubular applications.
  • it is necessary to give the steel pipe a structure that is predominantly martensite or bainite.
  • strain concentrates at the soft ferrite portions during pipe expansion with the result that the pipe expansion ratio is small and cracking occurs.
  • a bainite structure a mixed structure occurs that makes uniformity hard to achieve. Also in this case, strain concentrates at the relatively soft portions, so that the pipe expansion ratio is low and cracking occurs.
  • martensite formation requires heating to within the austenite single phase range and quenching (hardening). If the heating temperature is made the Ac 3 point, it is in the austenite range but for fully realizing the hardening improvement effect of B, heating to the Ac 3 point + 30 °C or higher is required. Quenching (hardening) as termed here presumes cooling at 20 °C/sec or greater at all locations in the thickness direction. The hardened steel pipe is tempered for strength adjustment. A stable structure is not obtained at a hardening temperature below 350 °C, while austenite forms when the temperature exceeds 720 °C. The tempering temperature is therefore defined as 350 to 720 °C.
  • Tempered martensite which is a structure exhibiting uniform expandability, is excellent for avoiding cracking at a high pipe expansion ratio. However, if small thickness regions are present, the pipe expansion ratio may be lowered as a result of cracking caused by strain concentrating at these regions.
  • the effect of the small thickness regions on expandability is very small if the thickness of the thinnest region is not less than 95%, preferably not less than 97%, the average thickness.
  • ERW electric-resistance-welded
  • the steel pipe manufactured in this manner is run down an oil well and thereafter expanded 10 to 30% for use. This is done, for example, by passing a cone-shaped plug of an outer diameter larger than the inner diameter of the steel pipe through the pipe interior from bottom to top.
  • the pipe expansion ratio is calculated by dividing the difference in inner diameter between before and after expansion by the inner diameter before expansion and converting the result to a percentage.
  • a cone-shaped plug having a maximum diameter 20% larger than the inner diameter of the pipe was inserted into the pipe bore to expand the pipe at a pipe expansion ratio of 20%, thereby obtaining steel pipe of 201.96 mm inner diameter.
  • the plug surface was coated with a spray-type lubricant containing molybdenum disulfide so as to prevent seizing between the plug and steel pipe inner wall during insertion. After the expansion, the steel pipe surface was carefully examined for cracking.
  • the steel pipes manufactured in the foregoing manner were subjected to Charpy testing for assessing toughness.
  • the Charpy test was conducted in accordance with JIS Z 2242 at 0 °C using a V-notch specimen.
  • the steel pipes were further subjected to flare testing to evaluate expansion performance.
  • the flare test was conducted by driving a punch of 60 degree apex angle into the pipe bore until cracking occurred and stopping the insertion at this point.
  • the pipe expansion ratio was calculated by determining the difference in inner diameter of the pipe between that at the time cracking occurred and that before testing, dividing the difference by the inner diameter of the pipe before testing, and converting the result to a percentage.
  • the comparative examples that experienced cracking when expanded at a pipe expansion ratio of 20% were also poor in flare pipe expansion ratio.
  • the seamless steel pipe No. 7 was somewhat low in pipe expansion ratio in the flare test because it had a low minimum thickness ratio.
  • the present invention enables provision of an oil well pipe for expandable tubular applications excellent in post-expansion toughness in an oil well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (4)

  1. Conduite de puits de pétrole pour des applications tubulaires expansibles d'excellente ténacité post-expansion, la conduite de puits de pétrole pour des applications tubulaires expansibles étant constituée, en % en masse :
    C: 0,03 à 0,14%,
    Si : 0,8 % ou moins,
    Mn:0,3 à 2,5%,
    P : 0,03 % ou moins,
    S : 0,01 % ou moins,
    Ti : 0,005 à 0,03 %,
    Al : 0,1 % ou moins,
    N : 0,001 à 0,01 %,
    B : 0,0005 à 0,003 %, éventuellement,
    un ou plusieurs choisis dans le groupe de :
    Nb : 0,01 à 0,3 %,
    Ni : 0,1 à 1,0 %,
    Mo : 0,05 à 0,6 %,
    Cr : 0,1 à 1,0 %,
    Cu : 0,1 à 1,0 %,
    V : 0,01 à 0,3 %,
    Ca : 0,001 à 0,01 %, et
    REM : 0,002 à 0,02 % et
    le reste étant du fer et des impuretés inévitables,
    où A représenté par l'expression (1) ci-dessous présente une valeur de 1,8 ou supérieure ; et
    est constituée d'une structure de martensite revenue : A = 2 , 7 C + 0 , 4 Si + Mn + 0 , 45 Ni + 0 , 45 Cu + 0 , 8 Cr + 2 Mo
    Figure imgb0007

    où C, Si, Mn, Ni, Cu, Cr et Mo représentent les teneurs des éléments respectifs (en % en masse),
    dans laquelle la conduite de puits de pétrole présente une limite élastique pré-expansion de 482 à 689 MPa et l'épaisseur de paroi minimale de la conduite de puits de pétrole pour des applications tubulaires expansibles n'est pas inférieure à 95 % d'une épaisseur de paroi moyenne de celle-ci.
  2. Conduite de puits de pétrole pour des applications tubulaires expansibles d'excellente ténacité post-expansion selon la revendication 1, dans laquelle la teneur en S de la conduite de puits de pétrole pour des applications tubulaires expansibles est de 0,003 % en masse ou inférieure.
  3. Procédé de fabrication d'une conduite de puits de pétrole pour des applications tubulaires expansibles d'excellente ténacité post-expansion, consistant :
    à soumettre une conduite de matière première d'acier à un durcissement à partir d'un intervalle de température du point Ac3 + 30°C ou supérieure avec une vitesse de refroidissement de 20°C ou supérieure à tous les endroits dans la direction de l'épaisseur et au revenu à une température de 350 à 720°C, en lui fournissant par là une structure de martensite revenue,
    la conduite de matière première d'acier étant constituée, en % en masse, de
    C : 0,03 à 0,14 %,
    Si : 0,8 % ou moins,
    Mn : 0,3 à 2,5 %,
    P : 0,03 % ou moins,
    S : 0,01 % ou moins,
    Ti : 0,005 à 0,03 %,
    Al : 0,1 % ou moins,
    N : 0,001 à 0,01 %,
    B : 0,0005 à 0,003 %, éventuellement,
    un ou plusieurs choisis dans le groupe de :
    Nb : 0,01 à 0,3 %,
    Ni : 0,1 à 1,0 %,
    Mo : 0,05 à 0,6 %,
    Cr : 0,1 à 1,0 %,
    Cu : 0,1 à 1,0 %,
    V : 0,01 à 0,3 %,
    Ca : 0,001 à 0,01 %, et
    REM : 0,002 à 0,02 % et
    le reste étant du fer et des impuretés inévitables,
    où A représenté par l'expression (1) ci-dessous présente une valeur de 1,8 ou supérieure ; et
    étant constitué d'une structure de martensite revenue : A = 2 , 7 C + 0 , 4 Si + Mn + 0 , 45 Ni + 0 , 45 Cu + 0 , 8 Cr + 2 Mo
    Figure imgb0008
    où C, Si, Mn, Ni, Cu, Cr et Mo représentent les teneurs des éléments respectifs (en % en masse),
    dans laquelle la conduite de puits de pétrole présente une limite élastique pré-expansion de 482 à 689 MPa et l'épaisseur de paroi minimale de la conduite de puits de pétrole pour des applications tubulaires expansibles n'est pas inférieure à 95 % d'une épaisseur de paroi moyenne de celle-ci.
  4. Procédé de fabrication d'une conduite de puits de pétrole pour des applications tubulaires expansibles d'excellente ténacité post-expansion selon la revendication 3, dans lequel la conduite de matière première d'acier est une conduite en acier résistance-électrique-soudée.
EP06747307.4A 2005-06-10 2006-06-09 Tuyau de puits de pétrole pour utilisation en tube extensible d une excellente robustesse après expansion du tube et procédé de fabrication idoine Ceased EP1892309B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005170540 2005-06-10
JP2006147073 2006-05-26
PCT/JP2006/312080 WO2006132441A1 (fr) 2005-06-10 2006-06-09 Tuyau de puits de pétrole pour utilisation en tube extensible d’une excellente robustesse après expansion du tube et procédé de fabrication idoine

Publications (3)

Publication Number Publication Date
EP1892309A1 EP1892309A1 (fr) 2008-02-27
EP1892309A4 EP1892309A4 (fr) 2010-05-05
EP1892309B1 true EP1892309B1 (fr) 2013-08-07

Family

ID=37498617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06747307.4A Ceased EP1892309B1 (fr) 2005-06-10 2006-06-09 Tuyau de puits de pétrole pour utilisation en tube extensible d une excellente robustesse après expansion du tube et procédé de fabrication idoine

Country Status (5)

Country Link
US (1) US20090044882A1 (fr)
EP (1) EP1892309B1 (fr)
JP (1) JP4943325B2 (fr)
CN (1) CN102206789B (fr)
WO (1) WO2006132441A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846275B2 (en) 2006-05-24 2010-12-07 Kobe Steel, Ltd. High strength hot rolled steel sheet having excellent stretch flangeability and its production method
KR101257547B1 (ko) 2007-07-23 2013-04-23 신닛테츠스미킨 카부시키카이샤 변형 특성이 우수한 강관 및 그 제조 방법
JP5660285B2 (ja) * 2010-05-31 2015-01-28 Jfeスチール株式会社 拡管性と低温靭性に優れた油井用溶接鋼管の製造方法および溶接鋼管
CN102517511B (zh) * 2012-01-11 2013-07-24 河北工业大学 高膨胀率石油套管用钢及其用于制作石油套管的方法
CN104109813B (zh) * 2014-07-03 2016-06-22 西南石油大学 一种高耐油气田采出水腐蚀的大膨胀率膨胀管用双相钢及其制备方法
CN105002425B (zh) * 2015-06-18 2017-12-22 宝山钢铁股份有限公司 超高强度超高韧性石油套管用钢、石油套管及其制造方法
CN106702289B (zh) * 2015-11-16 2018-05-15 宝鸡石油钢管有限责任公司 一种高均匀变形性能、高钢级sew膨胀管及其制造方法
CN106011638B (zh) * 2016-05-18 2017-09-22 宝鸡石油钢管有限责任公司 一种稠油热采井用膨胀套管及其制造方法
WO2019234851A1 (fr) * 2018-06-06 2019-12-12 日本製鉄株式会社 Tuyau en acier soudé par résistance électrique pour puits de pétrole
NL2032426B1 (en) 2022-07-08 2024-01-23 Tenaris Connections Bv Steel composition for expandable tubular products, expandable tubular article having this steel composition, manufacturing method thereof and use thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155950B (en) * 1984-03-01 1988-01-20 Nippon Steel Corp Erw-oil well pipe and process for producing same
JPS616208A (ja) * 1984-06-21 1986-01-11 Nippon Steel Corp 硫化物応力腐食割れ抵抗性に優れた低合金高張力鋼の製造方法
JPS6210240A (ja) * 1985-07-08 1987-01-19 Sumitomo Metal Ind Ltd 耐食性と圧潰強度の優れた継目無油井管用鋼
JPS6210241A (ja) * 1985-07-08 1987-01-19 Sumitomo Metal Ind Ltd 耐食性と圧潰強度の優れた継目無油井管用鋼
JP2579094B2 (ja) * 1991-12-06 1997-02-05 新日本製鐵株式会社 耐硫化物応力割れ性に優れた油井用鋼管の製造法
JPH06184636A (ja) * 1992-12-18 1994-07-05 Nippon Steel Corp 溶接性の優れた高強度高靭性シームレス鋼管の製造法
JP3358135B2 (ja) * 1993-02-26 2002-12-16 新日本製鐵株式会社 耐硫化物応力割れ抵抗性に優れた高強度鋼およびその製造方法
JP3374659B2 (ja) * 1995-06-09 2003-02-10 日本鋼管株式会社 超高張力電縫鋼管およびその製造方法
JP4192537B2 (ja) * 1995-06-09 2008-12-10 Jfeスチール株式会社 超高張力電縫鋼管
JP4203143B2 (ja) * 1998-02-13 2008-12-24 新日本製鐵株式会社 耐炭酸ガス腐食性に優れた耐食鋼及び耐食油井管
JP4043004B2 (ja) * 1998-04-13 2008-02-06 三菱製鋼株式会社 耐応力腐食割れ性の優れた高強度、高靭性中空鍛造品の製造法および中空鍛造品
AR023265A1 (es) * 1999-05-06 2002-09-04 Sumitomo Metal Ind Material de acero de elevada resistencia para un pozo petrolero, excelente en el craqueo de la tension de sulfuros y metodo para producir un material deacero de elevada resistencia.
JP3562461B2 (ja) 2000-10-30 2004-09-08 住友金属工業株式会社 埋設拡管用油井管
CN1323221C (zh) * 2001-03-09 2007-06-27 住友金属工业株式会社 一种扩管钢管及油井用钢管的埋设方法
US7459033B2 (en) * 2002-06-19 2008-12-02 Nippon Steel Corporation Oil country tubular goods excellent in collapse characteristics after expansion and method of production thereof
US7169239B2 (en) * 2003-05-16 2007-01-30 Lone Star Steel Company, L.P. Solid expandable tubular members formed from very low carbon steel and method
JP4513496B2 (ja) * 2003-10-20 2010-07-28 Jfeスチール株式会社 拡管用継目無油井鋼管およびその製造方法
BRPI0415653B1 (pt) * 2003-10-20 2017-04-11 Jfe Steel Corp artigos tubulares para petróleo sem costura expansíveis do tipo octg e método de fabricação dos mesmos

Also Published As

Publication number Publication date
US20090044882A1 (en) 2009-02-19
CN102206789A (zh) 2011-10-05
JPWO2006132441A1 (ja) 2009-01-08
EP1892309A4 (fr) 2010-05-05
EP1892309A1 (fr) 2008-02-27
WO2006132441A1 (fr) 2006-12-14
CN102206789B (zh) 2015-03-25
JP4943325B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
EP1892309B1 (fr) Tuyau de puits de pétrole pour utilisation en tube extensible d une excellente robustesse après expansion du tube et procédé de fabrication idoine
EP2192203B1 (fr) Tubes en acier présentant d'excellentes caractéristiques de déformation et leur procédé de fabrication
EP1473376B1 (fr) Tole d'acier haute resistance et procede de production
EP2505682B1 (fr) Tuyau d'acier soudé pour tube de canalisation présentant une résistance à la compression supérieure, et procédé de production de celui-ci
EP1546417B1 (fr) Tuyau en acier sans soudure a haute resistance, s'agissant notamment de resistance aux craquelures provoquees par l'hydrogene et procede de fabrication
JP4833835B2 (ja) バウシンガー効果の発現が小さい鋼管およびその製造方法
EP2824198B1 (fr) Procédé de fabrication d'un tube sans soudure d'acier à résistance élevée ayant une excellente résistance à la fissuration sous contrainte au sulfure
EP2484784B1 (fr) Tuyau en acier de grand épaisseur avec une excellente résistance à basse température et résistance à la corrosion sous tension par sulfures
EP2177634B1 (fr) Procédé de production de tubes en acier inoxydable duplex
EP1681364B1 (fr) Conduite en acier continue a potentiel d'expansion pour puits de petrole et procede d'elaboration
EP1918400A1 (fr) Tuyau d acier sans couture pour tuyau d'oléoduc et procédé de fabrication idoine
AU2008207591B2 (en) Oil country tubular good for expansion in well and manufacturing method thereof
EP2902519A1 (fr) Tuyau en acier soudé par résistance électrique
JPWO2008123422A1 (ja) 継目無鋼管の製造方法
EP3636787B1 (fr) Tube en acier cintré et son procédé de production
US10550962B2 (en) Steel material and oil-well steel pipe
US20210268862A1 (en) Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same
JP4513496B2 (ja) 拡管用継目無油井鋼管およびその製造方法
US20080283161A1 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
EP3330398B1 (fr) Tuyau en acier pour un tuyau de canalisation et procédé permettant de produire ce dernier
JP4367259B2 (ja) 拡管性に優れる油井用継目無鋼管
US20210054473A1 (en) Steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP2003293075A (ja) 造管後の表面硬度ならびに降伏比が低い高強度鋼管素材およびその製造方法
JP2006111928A (ja) ラインパイプ用厚鋼板及びその製造方法
CN113646455B (zh) 管线管用钢材及其制造方法以及管线管及其制造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

A4 Supplementary search report drawn up and despatched

Effective date: 20100409

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/58 20060101ALI20100401BHEP

Ipc: C21D 8/10 20060101ALI20100401BHEP

Ipc: C22C 38/00 20060101AFI20070208BHEP

Ipc: C21D 9/08 20060101ALI20100401BHEP

Ipc: C22C 38/14 20060101ALI20100401BHEP

Ipc: C21D 9/50 20060101ALI20100401BHEP

Ipc: C22C 38/06 20060101ALI20100401BHEP

17Q First examination report despatched

Effective date: 20101122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101ALI20121217BHEP

Ipc: C22C 38/06 20060101ALI20121217BHEP

Ipc: C22C 38/00 20060101AFI20121217BHEP

Ipc: C21D 8/10 20060101ALI20121217BHEP

Ipc: C22C 38/14 20060101ALI20121217BHEP

Ipc: C22C 38/58 20060101ALI20121217BHEP

Ipc: C21D 1/22 20060101ALI20121217BHEP

Ipc: C21D 1/25 20060101ALI20121217BHEP

Ipc: C22C 38/04 20060101ALI20121217BHEP

Ipc: C21D 9/50 20060101ALI20121217BHEP

Ipc: C21D 9/14 20060101ALI20121217BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006037730

Country of ref document: DE

Effective date: 20131002

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006037730

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006037730

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006037730

Country of ref document: DE

Owner name: NIPPON STEEL CORPORATION, JP

Free format text: FORMER OWNER: NIPPON STEEL & SUMITOMO METAL CORPORATION, TOKYO, JP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190515

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190620

Year of fee payment: 14

Ref country code: DE

Payment date: 20190528

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190510

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190605

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006037730

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609