EP1886395A1 - Signalverbindungsteil für eine elektrische drehmaschine - Google Patents

Signalverbindungsteil für eine elektrische drehmaschine

Info

Publication number
EP1886395A1
EP1886395A1 EP06743818A EP06743818A EP1886395A1 EP 1886395 A1 EP1886395 A1 EP 1886395A1 EP 06743818 A EP06743818 A EP 06743818A EP 06743818 A EP06743818 A EP 06743818A EP 1886395 A1 EP1886395 A1 EP 1886395A1
Authority
EP
European Patent Office
Prior art keywords
signal
module
power
piece
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06743818A
Other languages
English (en)
French (fr)
Inventor
Cyril Dubuc
Laurent Thery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP1886395A1 publication Critical patent/EP1886395A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters

Definitions

  • the invention relates to a signal interconnection piece for a rotating electrical machine.
  • the present invention applies to all types of polyphase, synchronous or asynchronous rotating electrical machines, such as alternators, alternator-starters, and still be they electrical machines for motor vehicles and driven for example by belt , cooled by air, by liquid or by any other conceivable solution.
  • such an electric machine comprises, for example without limitation:
  • a rotor comprising an inductor into which an excitation current is fed, and a stator comprising a polyphase winding.
  • the alternator-starter operates in motor mode or in generator mode. It is a so-called reversible machine. In generator or alternator mode, the machine makes it possible to transform a rotational movement of the rotor driven by the heat engine of the vehicle into an electric current induced in the phases of the stator. In this case, a rectifier bridge connected to the stator phases makes it possible to rectify the sinusoidal induced current in a direct current to supply consumers of the vehicle as well as a battery.
  • the electric machine acts as an electric motor for driving in rotation, via the rotor shaft, the engine of the vehicle. It makes it possible to transform electrical energy into mechanical energy.
  • an inverter transforms a direct current from the battery into an alternating current to supply the phases of the stator to rotate the rotor.
  • Control signals are used to determine the operating mode of the rotating electrical machine (motor mode or generator mode).
  • an object of the present invention is to provide a signal interconnect piece for a rotating electrical machine which can easily be connect to said electronic components for transmitting control signals thereto.
  • said signal interconnection piece comprises electrically conductive signal traces, said traces comprising interconnection means intended to cooperate with signal connections of an electronic module of so as to convey control signals in said module intended for the operation of the machine, said module integrating on said machine.
  • the fact of having a signal interconnection piece comprising means of interconnection with the electronic modules makes it possible to have a signal interconnection piece independent of said modules and of stacking said part in a plane different from that used by the electronic components which avoids the problems of overmoulding traces and thus eliminates the risk of short circuits by contact between different traces of power and signal. Furthermore, the fact of deporting the interconnections on a different plane modules, frees more surface for electronic modules and therefore for electronic components.
  • the signal interconnection piece forming the subject of the invention has the additional characteristics set out below.
  • the interconnection means are orifices.
  • the signal interconnection piece comprises a base plate of insulating material which overmold said signal traces.
  • interconnection means comprise axes which are in a first plane perpendicular to a second plane on which all the signal traces are arranged, said first plane passing through an axis of rotor rotation of the machine.
  • the signal interconnection piece further comprises interconnection means disposed on the outer periphery of said piece.
  • the signal interconnection piece further comprises signal metal traces configured in the form of circular arcs substantially concentric with respect to an axis of rotation of the rotor of the machine.
  • the signal interconnection piece further comprises positioning pins for assembly on a heatsink of the machine.
  • the signal interconnection piece further comprises separators for protecting signal connections of an electronic module.
  • the signal interconnection piece further comprises at least one pre-assembly means for fixing a power interconnection piece, said power piece for conveying the necessary electrical power to said modules.
  • the signal interconnection piece further comprises fixing devices on the electronic module, arranged on the outer diameter and inner of said piece.
  • the signal interconnection piece further comprises support devices on the module, arranged on the outside and inside diameter of the part for fixing said module on a heatsink of the machine by pressure.
  • the support devices are crutches without sharp stops.
  • the signal interconnection piece further comprises four inserts for attachment to a heatsink of the machine.
  • the signal interconnection piece further comprises a central recess for receiving a brush holder.
  • the signal interconnection piece further comprises pre-positioning devices of the part on several electronic modules.
  • the signal interconnection piece further comprises housings for accommodating filtering capacitors intended to be connected to said electronic module.
  • the signal interconnection piece is intended to be placed in a different plane of the electronic module.
  • the signal interconnection piece is placed above the electronic module.
  • the signal interconnection piece is intended to be placed between a more dissipative electronic module assembly and a power interconnection piece, said power piece making it possible to convey the electrical power required for said modules.
  • the signal interconnection piece is intended to be placed above a set of electronic modules plus dissipator plus power interconnection piece, said power piece for conveying the electrical power required for said modules.
  • the heatsink is a heatsink reported.
  • the signal interconnection piece forms with the electronic modules assembly plus dissipator plus power interconnection piece, an electronic subassembly independent of a bearing of the machine.
  • FIG. la represents a first embodiment of an electronic module according to the invention
  • FIG. Ib represents the module of FIG. the view from below
  • FIG. Ic is a view without overmoulding of the module of FIG. the
  • FIG. Id is the view of FIG. Ic with wired links of the electronic components of the electronic module, - FIG. 2a is a first variant of the first embodiment of FIG. the,
  • FIG. 2b is a bottom view of the module of FIG. 2a
  • Fig. 2c is the view of FIG. 2a with wired links of the electronic components of the electronic module
  • FIG. 2d is a second variant of the first embodiment of FIG. 2a
  • FIG. 3a represents a second embodiment of an electronic module according to the invention
  • FIG. 3b is a bottom view of the module of FIG. 3a
  • FIG. 3c is a view without overmoulding of the module of FIG. 3a
  • FIG. 3d is a variant of the second embodiment of FIG. 3a
  • FIG. 3e is the view of FIG. 3d with wired links of the electronic components of the electronic module
  • FIG. 4a is a third embodiment of the electronic module according to the invention, - FIG. 4b is a bottom view of the module of FIG. 4a,
  • Fig. 4c is a view without overmoulding of the module of FIG. 4a
  • FIG. 4d is a sectional view without overmoulding of the module of FIG. 4a integrating a support plate
  • FIG. 4th is the view of FIG. 4c with wired links of the electronic components of the electronic module
  • - FIG. 5a is a variant of the third embodiment of FIG. 4a
  • FIG. 5b is a bottom view of the module of FIG. 5a
  • Fig. 5c is a first top view without overmoulding of the module of FIG. 5a
  • FIG. 5d is a second bottom view without overmoulding of the module of FIG. 5a
  • Fig. 5e is a third top view without premoulding and overmoulding of the module of FIG. 5a
  • Fig. 5f is a fourth bottom view without premoulding and overmoulding of the module of FIG. 5b,
  • FIG. 6 shows a first embodiment of a dissipator bearing for receiving a module of FIGS. 1 and 2
  • FIG. 7 shows a second embodiment of a dissipator bearing for receiving a module of FIGS. 3
  • FIG. 8a shows a first embodiment of a dissipator for receiving a module of FIGS. 4 and 5,
  • Fig. 8b is a bottom view of the dissipator of FIG. 8a
  • FIG. 8c is a sectional view of FIG. 8b, - Fig. 8d shows an axial air flow and a radial air flow in the dissipator of FIG. 8b,
  • FIG. 9a shows a first embodiment of a signal interconnection piece intended to be placed on a module of FIGS. 1 and 2, - FIG. 9b is a bottom view of the part of FIG. 9a,
  • FIG. 9c is a view without overmoulding of the part of FIG. 9a.
  • FIG. 10a shows a second embodiment of a signal interconnection piece intended to be placed on a module of FIGS. 3
  • FIG. 10b is a bottom view of the signal interconnection piece of FIG. 10a
  • Fig. 10c is a view without overmolding of the signal interconnection piece of FIG. 10a
  • Figure 11a shows a third embodiment of a signal interconnection piece for positioning on a module of Figs. 4 and 5,
  • FIG. 11b is a bottom view of the signal interconnection piece of FIG. lia
  • Fig. lie is another top view of the signal interconnection piece of FIG. lia
  • FIG. Hd is a view without overmoulding of the signal interconnection piece of FIG. Ha
  • - FIG. 12a shows a first embodiment of a power interconnection piece intended to be in contact with a module of FIGS. 1 and 2, and to be located above the signal interconnection piece of FIGS. 9
  • Fig. 12b is a bottom view of the part of FIG. 12a
  • - Fig. 12c is a view without overmoulding of the part of FIG. 12a
  • FIG. 13a shows a second embodiment of a power interconnection piece intended to be in contact with a module of FIGS. 3 and to be located above the signal interconnection piece of Figs. 10
  • Fig. 13b is a bottom view of the part of FIG. 13a
  • FIG. 13c is a view without overmoulding of the part of FIG. 13a
  • FIG. 14a shows a third embodiment of a power interconnection piece for receiving a dissipator of FIGS. 8
  • Fig. 14b is a bottom view of the part of FIG. 14a
  • FIG. 14c is a view without overmoulding of the part of FIG. 14a
  • Fig. 14d is a view of the part of FIG. 14a incorporating a flange
  • - Fig. 14e is a view of the part of FIG. 14d on a dissipating bearing
  • FIG. 15a is a first embodiment of a cover intended to be situated above the power piece of FIGS. 12, - FIG. 15b is a top view of the hood of FIG. 15a,
  • Fig. 15c is a side view of the hood of FIG. 15a
  • FIG. 16 is a second embodiment of a cover intended to be located above the power piece of FIGS. 13
  • FIG. 17a is a third embodiment of a cover intended to be located above the signal interconnection piece of FIGS. 11
  • Fig. 17b is a top view of the hood of FIG. 17a
  • FIG. 18 shows a mounting of an electronic module of FIGS. 1 and 2 on a dissipating bearing
  • FIG. 19 shows a mounting of a signal interconnection piece of FIGS. 9 on the dissipator-module bearing assembly of FIG. 18
  • Figure 20 shows a mounting of the power interconnection portion of Figs. 12 on the dissipator-module-signal interconnection piece assembly of FIG. 19, -
  • FIG. 21 shows the arrangement of FIG.
  • FIG. 22 is a complete view of the arrangement according to FIG. 21 with the hood in place, showing a positioning of the hood with respect to a module,
  • FIG. 23 shows a mounting of an electronic module of FIGS. 3 on a dissipating bearing
  • Fig. 24 shows a mounting of the signal interconnection portion of FIG. 10 on the dissipator-module bearing assembly of FIG. 23
  • FIG. Fig. 25 shows an arrangement of the power interconnection portion of Fig. 12 on the dissipator-module-signal interconnection piece assembly of Fig. 24.
  • FIG. 26 shows the arrangement of FIG. 25 with a partially sectioned hood
  • FIG. 27a shows an assembly of the modules of FIGS. 4 on a heatsink
  • FIG. 27b shows a mounting of the power interconnection part of FIGS. 14 on a heatsink
  • FIG. 28 shows a mounting of the power interconnection piece of FIGS. 14 on the heatsink-module assembly of FIG. 27a
  • Fig. 29 shows a mounting of the signal interconnection piece throughout FIG. 28
  • FIG. 30a is an assembly of the assembly of FIG. 29 on a landing
  • Fig. 30b is a section along an X-Y plane of FIG. 30a of the assembled power interconnection piece of FIG. 14a, and
  • Fig. 30c represents a bearing on which is assembled the assembly of FIG. 29.
  • the outer diameter of the machine is defined as the diameter of a bearing of the machine excluding the fixing lug.
  • an electronic module in the context of the invention, is a set of electronic components which are arranged in a housing and comprises connection elements accessible from the outside for its operation, these elements making it possible to transmit signals control and / or power.
  • Fig. la represents a first non-limiting embodiment of an electronic module 10 according to the invention.
  • Said module 10 comprises: A housing 101,
  • said module 10 comprises, as indicated in the bottom view of FIG. Ib:
  • the housing 101 is made of an electrically insulating material.
  • the housing has a substantially triangular base shape, so it has at least three side faces and an upper face and a lower face. This shape will make it possible to use a maximum of surface on the cylindrical rear of the machine, and this in an optimal way.
  • one of the faces of the module 10 is an arc of a circle. This allows to be in adequacy with the general shape of the machine.
  • the electrical power supply conductors 103 (B +), 104 (B-) can convey a current from the battery through the electronic elements.
  • the conductors are two traces of power connections 103, 104 whose ends are arranged on the outer periphery of the module.
  • said traces are made of copper.
  • each module is powered independently, ie they are powered in parallel.
  • the power traces 103, 104 extend along a plane parallel to that along which the block of electronic elements extends. This allows axial laser welding with respect to the axis of the machine.
  • the traces extend in two planes parallel to each other and parallel to the plane of the block of electronic elements.
  • trace means a cut sheet formed of a metal such as copper.
  • the signal connection elements 106 allow to convey control signals for controlling the electronic elements 102. They thus allow the sending and receiving of information necessary for the control of the inverter arm (motor mode) and / or of the righting bridge arm (generator mode) . They allow a connection with a signal plate (described later).
  • these signal connections 106 comprise a first series of tongues 106a and are aligned on one of the lateral faces of the triangular housing of the module.
  • the axes of these signal connection elements 106a are in the same plane P1 perpendicular to the lower face of the module, said plane passing essentially through the axis of rotation AX rotor.
  • This alignment makes it possible to carry out linear strip welding which limits the time of the manufacturing process called "process", and the bulk.
  • This configuration has the advantage of having, for the signal interconnection piece, a signal trace cut at one time, unlike another configuration in which the signal traces would overlap.
  • Fastening means 108 shown here by orifices are intended to facilitate the maintenance of the module on the electrical machine by means of pins 113 or screws etc. or any suitable means of attachment.
  • the positioning means 109 of the module 10 on a dissipating bearing or dissipator are here two in number 109a, 109b as illustrated in FIG. Ib who are on the underside of the module, nearby two opposite edges. In the example, they are pins located on either side of the electronic elements 102. They are thus spaced to the maximum which limits positioning errors.
  • the module 10 further comprises, as illustrated in FIG. 2a:
  • Protection means 107 signal connections 106 to facilitate the positioning of a hood (described below).
  • said electronic module 10 further comprises, as illustrated in FIG.
  • Fig. la • A phase trace 105 for connecting said module to a phase of the stator.
  • the phase trace 105 has an end 105z which comprises a hook 105cr and makes it possible to connect thereto, by welding, soldering or any other suitable method, a phase wire or a phase strip coming from the stator of the electric machine.
  • said end 105z is perpendicular to said trace, ieie the lower face, and is located below said plane; it extends down.
  • the end 105z of the phase trace 105 is on the outer circumference of the module which facilitates the connection with a phase of the stator.
  • the end 105z of the phase trace 105 is placed between two electrical power conductors 103, 104. This optimizes the electrical wire bonds "wire bounding" between the electronic components transistors and traces, including their length, and this avoids overlapping traces.
  • the end of the phase trace 105 is at the right of a phase output of the stator which facilitates the welding with said phase.
  • said electronic module 10 is a control module 30 which furthermore comprises, as illustrated in FIGS. 2a and 2b:
  • a second series of tabs 106b which are aligned parallel to the third series 106c and shifted inwardly of the module.
  • This second series of tongues makes it possible to convey complementary signals that could not be integrated in the first series of tabs 106a, for example signals SC for a control element of a switch. This allows cutting of the two sets of tabs 106b and 106c at one time.
  • the third set of tabs 106c is preferably positioned higher than the second series 106b to facilitate the welding of a hood to the control module after welding of a signal interconnection piece.
  • the second and third series of signal connections 106b, 106c are aligned on the same face on which the ends of the power links are arranged.
  • the interconnections between the transistors and the associated traces are achieved by wire bounding wire links as illustrated in FIG. 2c.
  • a transistor disposed on the positive trace 103 which is connected to the phase trace 105 and the ceramic 1110 of the driver 111, while a second transistor is arranged on the phase trace 105 and is connected to the negative trace 104 and also to the ceramic 1110. Note that one could also have a transistor on the negative trace 104.
  • said electronic module 10 is an excitation module 40, as illustrated in FIG. 2d. It comprises electronic components 102, in particular MOS transistors and diodes, which materialize the excitation stage of the rotor of the machine.
  • the electronic modules 10 have, with regard to the arrangement of the traces 103, 104 and their ends forming electrical conductors inside each module and as regards the arrangement of the signal connections 106, a standardized architecture makes it possible to use said modules on different types of electrical machines.
  • This standardization of the architecture allows replace any module 10 with a module of the same architecture.
  • it allows to integrate said modules directly on the rear bearing of the machine. This integrates the power and control electronics on the machine directly. The electronics are no longer in an electronic power board in a separate housing.
  • the electronic components 102 illustrated in FIG. Ic, include for example:
  • a set of electronic switches 110 intended to produce a rectifier / inverter bridge arm for a phase of the machine
  • the switches may be, for example, MOSFET technology transistors 110 which are either in the form of package components, that is to say presented with a housing, or, to increase the compactness of the arrangement of the modules and to reduce costs, in the form of bare chips, that is to say without housing.
  • the MOSFETs 110 are controlled by the control elements 111 commonly called drivers on a ceramic 1110 with additional components.
  • the drivers are ASICs.
  • the electronic elements can also be diodes of an arm of a bridge rectifier, knowing that the MOS have a better efficiency than the diodes.
  • Number of electronic components depends mainly on the constraints of the particular application (three-phase machine or hexaphase for example), the power level required by the machine ....
  • the machine is a polyphase machine (x phases), preferably having one module per phase.
  • Fig. Id illustrates the wire bonds commonly called “wire bounding" between the transistors and the power connectors 104 and the phase connectors 105. Note that in this example, there are four MOS transistors, so as to increase the power of the machine. Of course, there can only be two. It will be noted that the ceramic 1110 thus serves as a support for electronic components but also as an interconnection between the transistors and the driver 111.
  • the control module 30 controls the machine and in particular the adjustment of the excitation current of the machine by controlling the drivers of the MOS transistors. It includes, as illustrated in FIG. 2a, a 102CTRL electronic control component, 102CA capacitors, and a 102TR transformer for powering the drivers 111 of the power modules. Control signals will thus be sent from the control component 102CTRL to the drivers 111 of the power modules.
  • the excitation module 40 supplies the rotor coil of said machine, said module conventionally comprising MOS transistors and diodes for determining the current in the rotor.
  • the control module 30 and the excitation module 40 take up the architecture of the power modules 10 and in particular the arrangement of the ends of the power traces 103, 104 and signal connections 106.
  • control module 30 and the excitation module 40 can be replaced by a common excitation and control module.
  • the set of modules 20, 30 and 40 is mounted on a rear bearing of the rotating electrical machine.
  • the electronic module 10 differs from the first mode in that:
  • the fastening means 108 instead of the fastening means 108, it comprises bearing zones 114 for receiving crutches belonging to a signal interconnection piece as will be described later, which makes it possible to remove the fixing studs 113 from so that the cost of parts and assembly are reduced, and this allows for a simpler assembly.
  • the new module 10 can be seen from below in FIG. 3b and in view without over-molding in FIG. 3c for a power module.
  • the module preferably comprises a fastening clip 125 of a plastic cover for module to protect the protective gel components.
  • This fastening clip can be replaced by a bonding of the cover or an ultrasonic weld for example.
  • Fig. 3d presents an alternative embodiment for a 30/40 control / excitation module.
  • having a single module for the control and excitation function makes it possible to gain in terms of size.
  • Fig. 3e presents the wire binding of this variant. It will be noted that there is an interconnection between the control ceramic and the excitation ceramic (substrate) produced by a wired "wire bounding" connection in order to allow signal transmission between the excitation portion and the control portion.
  • the ends of said power tracks 103, 104 are flat and flush on the underside of said module.
  • this configuration has the advantage of being able to weld traces of a power plate (described in detail below) on the trace ends of a module by transparency (flat on flat).
  • the electronic module 10 is configured to be fixed on a dissipator, itself fixed on the rear bearing of the machine.
  • the end 105z of the phase trace 105 is perpendicular to the lower face of the module, and protrudes from the housing 101 of the module and its plastic cover, it extends upwards.
  • the end of the positive trace 103 (B +) is a folded tongue allowing a radial laser welding with a power plate or an axial electrical welding by electrodes; it extends axially upwards relative to the housing 101 of the module and protrudes from said housing to engage said electrodes, ie that it is perpendicular to the lower face of the module; the tab protrudes from the heatsink.
  • the end of the negative trace 104 (B-) is no longer a tongue, but a hollow cylindrical metal insert allowing electrical connection to a dissipator 80 via the trace B- and a screw 1150 corresponding to the orifice 115, said screw for compressing said trace on the insert and thus compressing the trace + insert on the dissipator so as to achieve the grounding of the module, said dissipator being grounded as will be described in detail below,
  • the positioning pins 109 on the underside, are positioned differently.
  • a first pin 109a is positioned closest to the signal tongues 106, and preferably centered on the middle one, to reduce the positioning tolerance of said tongues relative to the clearance that may exist between the second pin 109b and the orifice 609b (described in FIG. in more detail later) corresponding dissipative bearing. This reduces the positioning errors of the tabs relative to the heatsink. As illustrated in FIG. 4b, this first piece 109a is in the middle of the two extreme tabs 106a signal. Note that the first pin 109a serves to position the module along the axis XY, and the second 109b serves to orient the module in rotation and is the farthest from the tabs 106a,
  • One of the protection pins 107 is moved further outside the module so that there is a support space 119 to allow to receive a leg of a signal plate.
  • the pins 107 prevent the signal tongues 106 from bending between the moment of manufacture of the module and its assembly on the machine, and serve as pre-guidance for a signal interconnection piece (described later).
  • module 10 according to this third mode furthermore comprises:
  • An insert 120 comprising a fixing orifice 115, said insert allowing the module to be grounded, and said orifice being intended to fix said module on a dissipator by means of screws 1150 for example,
  • Electrical protection means 126 of the end of the trace 103 (B +) which avoid a short circuit between the potentials B + (power trace of the power interconnection piece) and B- (dissipating mass).
  • each power module 20 comprises a plate 1022 that is not very resistive and thermally conductive, preferably aluminum (same resistance as the dissipator) or copper.
  • a plate 1022 that is not very resistive and thermally conductive, preferably aluminum (same resistance as the dissipator) or copper.
  • the metal traces which are visible on the lower face of the module housing, are glued to the plate 1022 by an electrically insulating and thermally conductive adhesive, for example a glass ball adhesive, said adhesive making it possible to electrically isolate the traces between them and the traces in relation to the outside, and
  • an electrically insulating and thermally conductive adhesive for example a glass ball adhesive
  • the plate thus makes it possible to test the electrical insulation of each module independently before assembly on the dissipator or dissipator bearing. Thus, if there is a short-circuit problem due to a poor application of the insulating glue, this plate 1022 avoids the problem of all the modules mounted on the heatsink. Only the problem module will be discarded prior to assembly on the heatsink.
  • the module 10 comprises, as illustrated in FIG. 5a:
  • a screw 117a allowing electrical contact between two traces 117b (+ EX, -EX) of a brush holder 50 and said module 10, and a screw 117c for mechanical retention on the dissipator and for supporting the mechanical forces of the connector 116.
  • control module 30 or the control / excitation module which comprises said connector 116 and said screw 117a.
  • the brush holder is here monobloc with said module 30. Indeed, it overmolded with said module.
  • the presence of said signal connector 116 has the advantage of:
  • Fig. 5b is a bottom view of the control module 30 according to this third embodiment.
  • the first positioning pin 109a is as close to the two sets of signal tongues 106a and 106b as to limit the positioning errors of the tabs relative to the dissipator.
  • a metal plate 121 fixed by the screw 1150 said plate preferably being made of aluminum and thus being grounded to the dissipating mass via said screw 1150, said plate comprising ceramic-type substrates 123 on which are integrated electronic components, position sensors 122 for giving the position of the stator of the electric machine.
  • Fig. 5c is a top view of the control module / excitation without overmolding, without the connector 116 and without the brush holder 50.
  • FIG. 5d represents the view from below.
  • Fig. 5th is a first view without premoulding and without overmolding traces of the control / excitation module in which can be seen in particular: a control ceramic 123 comprising the electronic components for the control of the machine, and
  • an excitation portion 124 comprising the electronic components for the excitation of the machine via the brush holder 50.
  • the traces of said module can also be seen in FIG. next 5f without premoulding and without the plastic overmolding seen from below.
  • the premoulding is an operation that takes place before overmolding and that allows certain elements to be held in position, such as the signal tongues 106 for example.
  • the electronic components 102 are mounted on the power links, namely here the positive trace
  • the traces of power modules are visible on the underside of the modules. It is thus possible to electrically isolate them from the dissipator or dissipator bearing by glue in place of the plastic of the housing 101.
  • the use of the glue instead of the plastic of the housing 101 makes it possible to have a smaller thickness under the modules (approximately 0.2mm in a non-limiting example), and to have a lower thermal resistance than plastic so as to have a better dissipation in the dissipating bearing or dissipator.
  • driver it includes the elements making it possible to drive the MOS transistors called drivers,
  • a module is configured to integrate perfectly on the sink or sink dissipator so that:
  • All the ends of the power and signal traces are outside the circumference of the dissipator or dissipator bearing, which facilitates the connections to be made contrary to the case where they are inside said circumference, so as to be accessible and so that there is more room available on the outside diameter than inside for the said ends
  • a module is preferentially configured for a single phase so that:
  • the definition of the module makes it possible to have a power, control and excitation module of the same architecture
  • An electronic module 10 cooperates with the following elements:
  • dissipating bearing 60 dissipator integrated in the bearing, i.e. integral with said bearing
  • a dissipator 80 dissipator not integrated with the bearing, i.e. mounted on the bearing
  • signal interconnection piece 22 a dissipating bearing 60 (dissipator integrated in the bearing, i.e. integral with said bearing), or a dissipator 80 (dissipator not integrated with the bearing, i.e. mounted on the bearing) - a signal interconnection piece 22
  • Heatsink Bearing has the function of evacuating the heat of the electronic modules.
  • the rear dissipator bearing 60 shown in FIG. 6 comprises according to a first non-limiting embodiment: a plurality of positioning orifices 609, preferably two 609a, 609b by modules, for positioning said modules on said bearing, said orifices being on the same diameter, or in the illustrated example, ten orifices,
  • a plurality of fixing orifices 608 for receiving the three fixing studs of each module on which the power plate will be positioned, or in the example illustrated, fifteen orifices of the air inlets 601 comprising fins 606,
  • air outlets 602 comprising fins 606, different clearances referenced 603 for the rotor shaft of the rotary electrical machine, 604 for hall effect sensors making it possible to know the rotor position, and 605 for a brush holder 50, and positioning orifices 610 for positioning a signal plate, here two orifices 610a and 610b which are distributed on either side of the diameter of the dissipating bearing.
  • one of the orifices is the reference control of the dissipating bearing, thus using an already existing orifice.
  • FIG. 6 shows the locations of the different modules. Thus, marked locations
  • P, c, and E respectively receive the three power modules 20, the control module 30 and finally the excitation module 40.
  • the dissipating bearing 60 comprises:
  • a plurality of fixing holes here four, 681, 682, 683 and 684 for receiving four studs for holding the signal plate, a fixing orifice 685 for receiving a screw for fixing a brush holder 50, there is no stud which avoids the section reduction of the trace B + of a power plate,
  • air inlets 601 having fins 66 air outlets 602 having fins 606, • different clearances 603, 604 and
  • control and excitation functions have been combined in a single control / excitation module.
  • location C / E and P respectively of the control / excitation module and the power modules 20 in FIG. 7.
  • the fins 606 can in a manner known to those skilled in the art be replaced by a liquid cooling circuit for the two embodiments of the dissipator bearing described above.
  • the heat sink has the function of evacuating the heat from the electronic modules.
  • the dissipator 80 as shown in plan view of FIG. 8a is independent of the rear bearing of the rotating machine.
  • a base plate 801 preferably of cast aluminum, and
  • an electrical connection port 805 for connecting the dissipator to ground via the power interconnection plate by means of a nut
  • Fig. 8b shows a top view of the dissipator. It can be seen that the dissipator further comprises: cooling fin blocks 802 intended to increase substantially the heat dissipation of the power modules 20, said blocks being situated on the lower face in the position of use of the base plate 801 ,
  • a boss 813 which guides the air from the radial inlet of the machine to the inside of said machine and thus prevents the air stagnates at the dissipator. This is also the case for axial air. He is guided towards the inside of the machine. It will be noted that the fins at this level pass through said boss 813. A section XX of the boss can be seen in FIG. 8c.
  • the base plate 801 is configured firstly to be sandwiched between a power interconnection plate and the modules, and a signal interconnection plate, and secondly to leave in the center a passage large enough for the cooling air of the electric machine.
  • the spacing 817 that is configured to allow air to pass around the rotor shaft and is therefore wider than the diameter of the rotor shaft or to be more accurate of the manifold protector. of the tree.
  • the axial air flow is guided by the first slope 813Pl of the boss 813 of the dissipator so that there is no stagnant air on the underside of the dissipator at the fins.
  • this radial air flow does not stagnate because it is guided by the second slope 813P2 of said boss 813 towards the inside of the machine.
  • the signal interconnection plate 22 is intended to convey various signals necessary for the operation of the modules and, by that, the proper operation of the rotating electrical machine. Such signals are for example:
  • an operating mode signal of the electric machine for example a motor or a generator, a signal indicating the temperature of the modules, a signal that goes back to a fault detected on the modules,
  • Figs. 9a to 9c represent a first non-limiting embodiment of the signal interconnection piece 22.
  • a base plate 220 of insulating material preferably made of plastic, and preferably substantially cylindrical, which overmoulds metallic traces of signal TS, a central recess 223 for lightening said material plate, recesses 221a for leaving traces exposed metal TS, said traces having interconnection orifices 2210, here five orifices, whose axes are arranged in a plane P2 (shown in FIG 9c) perpendicular to the surface of the plate and passing substantially through the axis of rotor rotation AX, said orifices being intended to receive the signal tongues 106 of an electronic module in order to be electrically connected,
  • connection recess 221b to leave visible metal traces TS, said traces comprising interconnection orifices
  • fastening tabs 222 intended to be inserted into one of the three holding studs 113 of an electronic module, and intended to receive a fastening nut, said fastening tabs making it possible to hold the signal interconnection plate 22 on the modules, via the studs, the first legs 222a being disposed on the outer diameter of said plate and protruding from said plate, and second tabs 222b being disposed on the inner diameter of said plate and further attenuating vibrations of the plate.
  • the recesses 221a and 221b can be protected subsequently against the external environment by a resin for example.
  • the overmolding 220 has orifices 221Oz, 2211z next to the holes of the metal traces TS as shown in FIG. 9b.
  • the signal plate 22 further comprises:
  • Figs. 10a to 10c show a second preferred embodiment of the signal interconnection piece 22.
  • This signal interconnection plate 22 comprises:
  • crutches 225 for pressing the modules against a dissipating bearing instead of the fixing brackets of the first mode, crutches 225 for pressing the modules against a dissipating bearing, first legs 225a and second legs 225b respectively positioned on the outer or inner periphery of said plate, here nine in total; we thus have three points of support on each module,
  • a metal insert 226 for receiving a screw 226v making it possible to fix the plate on the dissipating bearing. This screw avoids reducing the section of positive power traces
  • the plate 22 further comprises:
  • the plate further comprises separators 229 of signal tongues 106 so as to avoid short circuits between said tongues, short circuits due in particular to salt spray. Thus, it increases the electrical path length between the tabs.
  • said plate does not include separators. At this time, to isolate said tabs between them, there are provided joints which surround said tabs 106 on the modules themselves. Subsequently, the signal plate 22 will compress these seals.
  • Said metal traces are configured to adapt to the position of the tabs 106 of the modules, and preferably to the shape of said plate, and moreover to circumvent the four inserts 226. They are preferably configured in the form of circular arcs substantially concentric with respect to the axis of rotor rotation.
  • stands 225 are, in a nonlimiting manner, of cylindrical shape. This form has a sharp stop 2250.
  • the interconnection plate 22 according to this second embodiment has the same elements as the plate according to the first mode: the base plate 220, the recesses 221a and 221b, the central recess 223 intended to receive here a rotor shaft, the positioning pins 224, and the metal traces TS with the orifices 2210 and 2211.
  • the signal traces are preferably configured inside the diameter on which the power terminals are made (described in detail below). This allows the power plate 21 (described later) to cap the signal plate 22. Thus, mounting is facilitated and said signal traces do not interfere with power traces.
  • Figs. 1a to Hd represent a third non-limiting embodiment of the signal interconnection piece 22.
  • the crutches 225a and 225b have a different shape. They have a shape that no longer include a sharp stop which avoids that the stresses experienced by the plastic are concentrated on the sharp edges. This reduces the risk of breaking said crutches.
  • Said signal plate 22 further comprises: recessed protuberances 230 for prepositioning said plate on said modules.
  • protuberances there are two protuberances. They are used especially for pre-guidance during process assembly. This thus makes it possible to subsequently fix the positioning pins 224 of said plate 22 in the dissipator 80. It will thus be possible to position the signal plate 22 before the assembly of the signal tongues 106, and the housings 231 to house there filtering capabilities. These capabilities will be connected to the electronic modules. The housings allow good mechanical strength of said capabilities. Resin will be deposited in said housing.
  • interconnection plate 22 according to this third mode has the same following elements as the plate according to the second mode:
  • the orifices 2210 and 2211 are configured so as to carry out a tin-welding between said orifices and the corresponding signal tongues 106. They are thus chamfered holes as illustrated in FIG. 11a and in FIG. 11b in view from below.
  • the orifices 2210 and 2211 are configured so as to carry out laser welding between said orifices and the corresponding signal tongues 106. They are thus folded micro-tongues as illustrated in FIG. Isle.
  • the metal traces of the signal plate 22 are configured to adapt to the position of the tabs 106 of the modules, and preferably in the form of said plate, and further to bypass the four inserts 226. They are preferably configured in the form of circular arcs substantially concentric with respect to the axis of rotation of the rotor.
  • such a signal plate has the advantages of:
  • traces not necessarily made of copper. Indeed, because of the relatively low power carried by these traces, it does not necessarily need a low electrical resistance material.
  • said traces may for example be, without limitation, steel,
  • interconnection orifices 2210, 2211 other interconnection means such as folded tabs for example.
  • the power interconnection piece 21 distributes the power between the electronic modules 20, 30, 40 from the outside (in particular the vehicle battery).
  • This part is independent of the electronic modules which makes it possible to supply each module independently with current and thus avoids the heating of the modules linked to the passage of the current intended for a module in all the modules. Thus, depending on the configuration of this part and associated modules, there is no current flow between the three power modules.
  • the interconnection piece 21 is, in the simplest case, in the form of a plate made of an electrically insulating material, preferably plastic.
  • FIGS. 12a to 12c it comprises:
  • traces 211, 212 are disposed at least on one face of the plate. These are traces of a weakly resistive metal, preferably copper, which are overmolded in plastic of the power plate 21. They can be made in the form of flat strips clipped, riveted, glued or fixed in any other way appropriate on the plastic plate. According to a preferred embodiment, the traces 211, 212 are nested (the trace 211 is surrounded by the trace 212) and concentric and on the same plane. In this case, the negative power terminals 2110 are folded so as not to interfere with the positive interconnection trace 212 (+ BATT).
  • the location of the recesses 214a, 214b can be optimized to orient a hood according to the need for a client connector which connects the machine to the outside.
  • Said traces 211 and 212 are not superimposed so as to allow electrical connection with the traces of such a cover, said area comprising the recesses 214a and 214b.
  • the traces 211, 212 may be superimposed on one another. This promotes a radial size.
  • each of the power interconnection traces 211, 212 comprises a hole 217a, 217b making it possible to position said trace in x, y in a mold, the latter making it possible to make the plastic overmolding 213.
  • the power interconnection traces 211, 212 respectively have negative power terminals 2110 (-BATT) L-shaped, and positive 2120 (+ BATT). Said terminals extend radially towards the outer periphery of said part 21. These terminals have curved free ends. The precise dimensions and position of the terminals 2110, 2120 are determined so as to enable them to position themselves above the trace ends 104, 103 of each of the modules in order to be able to be connected to said traces by means of a weld.
  • the overmolding 213 comprises a first recess 214a for an electrical connection of the interconnection trace 211, preferably by laser welding, with a cover towards the battery, and a second recess 214b in said overmolding for an electrical connection of the trace of FIG. interconnection 212, preferably by laser welding, with a cover towards the battery.
  • overmolding 213 includes assembly recesses 216 allowing assembly tooling to pass through said plate and assemble the rear dissipator bearing with a front bearing.
  • ends of the power terminals 2110 and 2120 are not overmolded so that said ends can be supported on the ends traces 104, 103 of the modules.
  • the entire end piece of power is not overmolded so that the assembly on the ends of the traces is facilitated. Indeed, it brings more flexion in such an assembly.
  • the tabs 215 extend substantially radially on the outer periphery of the interconnection plate.
  • Each of the legs 215 is provided with an orifice for passing, during assembly of the various modules and other elements of the arrangement, fastening means such as threaded rods or bolts or gougeons or any other element appropriate fixation.
  • the power interconnection plate 21 comprises:
  • At least one bearing pin 2113, and an orifice 219c are at least one bearing pin 2113, and an orifice 219c.
  • the brush cage protector is an independent piece assembled on the brush holder, and the brush holder can be removable relative to the control / excitation module, which facilitates the maintenance of the machine especially in a retrofit optics, that is to say when we change the brushes (and therefore the brush holder) when they are worn. So, instead of change all the electronics (the modules and the two plates), we will change only the brush holder (if the electronics are not faulty).
  • the fixing clips 218 allow the plate 21 to be held mechanically on the signal plate
  • the inserts 219a and 219b for receiving retaining studs, here two in total, and for connecting the traces of power 211, 212 to a cover 70.
  • the two inserts 219a, 219b provide access to said power traces so that overmoulding 213 may be performed on said traces as illustrated in FIG. 13a. These two inserts thus allow a mechanical strength of the plate 21 and an electrical connection.
  • the mechanical stop 2112 stops the power plate 21 in translation when assembled. It is based, for example, on the control / excitation module. Furthermore this stop a shorter length than the power terminals 2110 and 2120 power traces so that said terminals are based on the traces of the corresponding modules before the stop bears on the control module. The stop is disposed on the outer diameter of the plate and protrudes from this plate.
  • Support pins 2113 here two, allow said plate 21 to press the dissipating bearing during assembly.
  • the plate 21 comprises, as described in the first mode: the central recess 210,
  • the overmolding 213 here comprises a clearance 2130 for lightening the plastic material, said release being possible because there are no traces of power opposite.
  • the power terminals 2110 and 2120 are not overmolded.
  • the power traces 211 and 212 are shown in FIG. 13c.
  • the plate 21 can furthermore integrate passive filtering components 2114 shown in FIG. 13b, for example capacitors connected between the power traces 211 (- BATT), 212 (+ BATT) via micro-tabs 21140a and 21140b.
  • passive filtering components 2114 shown in FIG. 13b for example capacitors connected between the power traces 211 (- BATT), 212 (+ BATT) via micro-tabs 21140a and 21140b.
  • This makes it possible, for example, to filter the voltage of the onboard network of the motor vehicle, and in particular to filter oscillations due to the electrical conversion components MOS, diodes, etc.
  • the ends of the power tracks are flat and flush with the surface of the vehicle. module.
  • this configuration has the advantage of being able to weld traces of a power plate (described in detail later) on the ends of the traces of a module by plane flat transparency, - the power interconnection plate 21 can furthermore incorporate a brush cage protector (not shown) which makes it possible to seal the door brushes.
  • a brush cage protector (not shown) which makes it possible to seal the door brushes. This allows to have one piece less to assemble.
  • the brush holder allows the supply of the excitation current from the excitation module to the rotor via brushes.
  • Said protector then comprises positioning guides which will make it possible to position said protector facing the brush holder,
  • the positive terminals 2120 are rigid tabs defining a reference bearing plane for said piece of power on the corresponding traces of the modules,
  • the negative power terminals 2110 are flexible tabs to take into account the assembly tolerances.
  • this will allow to deform the traces of said power plate before welding by transparency. This facilitates contacting the traces of the power interconnection with the corresponding traces of the modules.
  • This flexibility can also be used for the first embodiment, also for the third mode described below (although this is not necessary).
  • Figs. 14a to 14e represent a third non-limiting embodiment of the power interconnection piece 21.
  • the power interconnection plate 21 comprises:
  • a fixing terminal 215d making it possible to fix said plate on the dissipator 80, an electric insert 216d,
  • a terminal 22Od for mechanical connection to a power client connector (not shown) connected to the battery
  • connection terminal 22Od a mechanical connection orifice 220e connected to the connection terminal 22Od.
  • stator phase protection means 211d are located on the outer diameter of said plate and protruding beyond the plane of said plate, said means avoiding contact between a stator phase and the dissipating mass or bearing mass in particular,
  • the positioning means 212d on the rear bearing of the machine said means being here a positioning pin, extend on the lower face of the plate, said pin is positioning advantageously in an oblong hole which is the machining reference orifice of the bearing,
  • the fixing terminal 215d makes it possible to fix said plate on the dissipator 80 by means of a nut, and is connected to the negative power trace B-, which carries out a grounding of the dissipator,
  • the electrical insert 216d is intended to be assembled with the terminal 215d on the trace 222d, said trace thus being sandwiched by said insert and said terminal, thus avoiding a difficult welding to be performed between the dissipator, which is preferentially foundry aluminum and copper power trace,
  • the power connector 219d has a negative trace B- and a positive trace B +,
  • the electrical power terminals 217d derived from a positive trace B + here are L-shaped and have an axial tongue, ie perpendicular to the plane of said plate 21 and projecting from said plane upwards; said terminals are not overmoulded to allow a connection with the end of the positive trace 103 (B +) of an electronic module, the terminals extend towards the outer periphery of said piece 22,
  • the protection means 218d of the electrical terminals 217d protect against short circuits and salt spray in particular
  • the positive traces 221d (B +) and negative 222d (B-) are overmolded in plastic 213 for example, traces that can be seen in FIG. 14c.
  • the traces are apparent on the power connector 219d which allows the establishment of the power client connector to make the electrical connections between said connector and said traces, • the connection terminal 22Od to the customer connector connected to the battery, said terminal for effecting a pressure between the traces 221d and 222d and the traces of the power client connector so that current can be properly established between the battery and the machine, and
  • a 220th mechanical connection orifice for a screw thus avoiding the transmission of mechanical stresses to overmoulding when the power client connector is attached to the connection terminal 22Od.
  • the overmolding 213 of the power plate 21 covers the openings of the air outlets of the bearing (to the outside diameter of the bearing) so as to guide the air outlet to reduce a radial loopback of air to the inside the machine.
  • said overmolding comprises a cover flange 213z shown in FIG. 14th.
  • the cover 70 as illustrated in FIGS. 15a to 15c comprises:
  • hood elements are described in detail below.
  • the power tracks 71, 72 are intended to electrically connect the power tracks 212, 211 of the power interconnection piece 21 providing the connection with the customer power connector of the motor vehicle.
  • the power tracks 71, 72 are overmolded in the cover 70 and laser welded to the two traces 212, 211 of the interconnection piece 21.
  • the electrical connections made between these two elements for example through the opening 74 provided for this purpose.
  • the electrical connections can be made by welding, in particular by laser welding or brazing soldering, as well as by brazing or by mechanical contact. In the latter case, the mechanical contact is obtained for example by fastening screws of the cover 70 exerting pressure on the traces.
  • the signal connector 76 allows a dialogue with the other electronic boxes of the vehicle.
  • connection comprises signal traces 75 integrated in the cover 70 and connected on one side to the control module 30 and the other end to the client signal connector (not shown).
  • Said signal client connector comprises a connection cable to a control means such as, for example, a computer controlling various functions of the vehicle such as, for example, the management of the rotating electrical machine according to its functions of generator or engine. • Grooves or holes to undeceive
  • the cover comprises: openings 79 for receiving fastening means such as studs instead of screws. It further comprises the following elements described in the first mode.
  • cover 70 as described in both modes is intended to be a customer specific piece due to the specific location and type of the customer connector (s) used.
  • the cover is a simple cover which includes only fastening clips 791 of the cover which is plugged on studs 226g of the signal plate 22 fixing the assembly. It has no trace or connector. There is only plastic.
  • a cover 70 according to the first or second embodiments.
  • a first step 1) the electronic module or modules are mounted on the dissipating bearing 60.
  • each module on the dissipator bearing 60 is facilitated by the two positioning pins 109a, 109b which will end up in view of each orifice 609a, 609b of the corresponding bearing 60.
  • the fixing of the modules on the dissipating bearing 60 is done on the one hand by means of an adhesive, for example glass beads, and on the other hand mechanically in two different ways.
  • each of the modules is fixed by three studs 113.
  • the three studs will fit into the corresponding holes 608 of said bearing.
  • Fig. 18 represents the assembly of five modules, three power modules 20, a control module 30 and an excitation module 40.
  • the fixing is effected by means of:
  • Fig. 23 shows the assembly of four modules, three power modules 10, a control / excitation module.
  • all of the modules are preferably arranged in the same plane perpendicular to the axis of rotation of the rotor of the electric machine, as are the power traces and the signal connections, in order to facilitate their assembly.
  • the modules can be arranged on different planes.
  • the signal interconnection plate 22 is mounted on the electronic modules. As a result, said plate is closer to the modules to reduce the length of the signal connections as much as possible and to avoid plugging problems. In this way, the signal connections 106 of the modules are short; their deformation is thus more controlled (they are less deformable), said connections being preferably flexible.
  • the signal interconnection plate 22 is attached to the module-bearing assembly in two different ways corresponding to the two ways of attaching the modules to the bearing as previously described.
  • the plate 22 is positioned by means of the positioning pins 224 which are positioned opposite the positioning orifices 610a and 610b of the bearing. So, thanks to this positioning:
  • connection recesses 221a are placed opposite the signal connection elements 106a of the modules,
  • connection recesses 221b are placed opposite the signal connection elements 106b of the modules, and
  • the fixing lugs 222 are placed opposite the studs 113 of the modules 10.
  • the plate 22 is positioned on the modules by means of the positioning pins 224 which are positioned opposite the positioning orifices 610a and 610b of the bearing. So, thanks to this positioning:
  • connection recesses 221a are placed opposite the signal connection elements 106a of the modules,
  • connection recesses 221b are placed opposite the signal connection elements 106b of the modules,
  • the crutches 225a and 225b are placed opposite the support zones 114 of the modules, and the inserts 226 are placed opposite the corresponding openings 681 to 684 of the bearing.
  • the studs 226g which are inserted into the orifices 224 of the said plate 22 and 681, 682, 683 of the dissipating bearing 60 are then fixed.
  • the studs bear on the said plate and consequently on the plate-module-bearing assembly so as to allow better mechanical strength.
  • the screw 226v is screwed into the respective corresponding orifices 226 and 684 of the plate 22 and the bearing 60.
  • the signal interconnection plate 22 is made to exert pressure on the power modules 20 and the other modules 30, 40 to ensure their maintenance throughout the life of the rotating electrical machine.
  • the material of said plate is plastic PPS (phenylene polysulphide) loaded with glass fibers.
  • the signal plate is deformed to exert pressure on the modules, the deformation preferably being about 0.3mm. In this way, it is avoided that the modules are detached and avoids the stresses on the welds tabs.
  • the power interconnection plate 21 is mounted on the bearing-module-signal plate assembly.
  • the power interconnection plate 21 is fixed over the signal interconnection plate 22.
  • the power plate 21 is fixed in two different ways.
  • the power plate 21 is placed on the signal plate 22 so that:
  • the fastening lugs 215 are placed facing the studs 113 of the modules 22, said studs making it possible to position said plate 21, the power terminals 2120, 2110 are placed opposite corresponding traces of the module 103, 104,
  • the power plate 21 is placed on the signal plate 22 so that: the inserts 219 are placed opposite the studs 226g, said orifices and studs acting as polarizer, the tab 218 is placed opposite the holding clip 227 of the signal plate 22. Then, after support, the orifices 219 insert on the studs 226g and the tab 218 is snapped into the clip 227, and
  • the orifice 219c is placed opposite a third stud 226g.
  • the hood is mounted on the assembly.
  • the cover 70 forms a cap of the rear bearing of the machine.
  • the fastening of the cover 70 is done in two different ways.
  • the cover 70 is placed on the power plate 21 so that the grooves 77 of the cover are opposite the guides 107 of the control module 30. These guides and these grooves serve as a key.
  • said grooves insert into said guides so that: - the contact is established between the signal traces 75 of the cover 70 and the tabs 106c of the control module 30, and the contact is established between the traces of powers 71 (B +), 72 (B-) of the cover and respectively the power traces 212, 211 of the power plate 21. Finally, after installation of the cover, the electrical connection is made between the tracks 71, 72 of the cover and the traces 212, 211 by laser welding via the openings 74.
  • the cover is fixed by three screws or nuts 78.
  • the cover 70 is placed on the power plate 21 in the same manner as the first way to establish the electrical contacts.
  • the openings 79 are placed above the three studs 226g which fix the electronic assembly.
  • the cover 70 is fixed by means of said studs on the electronic assembly (bearing-modules-interconnect plates).
  • the cover 70 presses all the elements of the arrangement and thus provides a sufficiently strong support for both immobilize the power plate 21 on the dissipator bearing and ensure the necessary electrical contacts.
  • the electronic modules 10, the signal interconnection piece 22, the power interconnection piece 21 and the dissipator respectively occupy a first, second, third and fourth planes all parallel to each other, and the plans are superimposed in the following order starting from the plane closest to the rear bearing of the machine:
  • the power interconnection piece 21 is independent of the electronic modules and is not connected to said modules in particular by its electrical power terminals.
  • an electronic module interfaces with the following elements:
  • a first step 1) illustrated in FIG. 27a, the modules are positioned on the upper face of the dissipator 80 so as to fix them.
  • the positioning is effected by means of positioning pins 109a and 109b which are placed facing the orifices 810 of the dissipator 80, and during positioning, the insert 120 of each module is positioned opposite each associated orifice 804 of the dissipator 80.
  • fixing is done via: screws 1150 which fit into the fixing holes 115 of the modules and the corresponding orifices 804 of the dissipator 80. These fixing screws also make it possible to connect the modules to ground via the insert 120, and
  • the connector 116 of the control / excitation module 30 which is screwed into the associated orifice 807 of the dissipator, by means of a screw via.
  • the electrical protection means 126 of the modules fit into the recesses 809 of the dissipator provided for this purpose.
  • modules are also glued to the dissipator 80 by means of an adhesive, such as a glass bead glue.
  • the brush holder 50 prior to the fixing of the control / excitation module 30 on the dissipator 80, the brush holder 50 has been fixed to said module via the screw 117a provided for this purpose. In another variant, it can be fixed after the installation of said module 30 on the dissipator 80.
  • a second step 2) illustrated in FIG. 28, positioning the power plate 21 on the underside of the dissipator so as to fix said plate 21 on said dissipator 80.
  • Fixing said plate 21 on the dissipator is effected by means of:
  • Phase protection means 211d are integrated in the recesses 812 provided for this purpose of the dissipator.
  • the means 211d will protect the phase tongues of the stator, the axial tongues of the electrical terminals 217d are then opposite the corresponding positive traces 103 (B +) of each electronic module 10 which will make it possible to establish an electrical connection between said traces 103 and the positive trace 221d (B +) of the power plate 21, and
  • the electric insert 216d integrated in the terminal 215d makes it possible to ground the dissipator 80.
  • a third step 3 illustrated in FIG. , the signal interconnection plate is positioned 22 on said electronic modules 10 so as to fix it.
  • the signal plate 22 is pre ⁇ positioned (pre-guided) with two protection pins 107 of two electronic modules 10, said pins being furthest apart from each other to pre-guide well.
  • two recessed protuberances 230 serving as pre-guiding and pre-positioning on two positioning pins or guides 107 belonging to electronic modules.
  • connection recesses 221a which are placed opposite the signal connection elements
  • connection recesses 221b which are placed opposite the signal connection elements 106b of the modules, the crutches 225a and 225b which are placed facing the support zones 119, 114 respectively of the modules, and the inserts 226 which are place opposite corresponding holes 806 of the dissipator.
  • Fixation is carried out by means of:
  • housing 231 of the signal plate comprise in the example shown in FIG. 29 a capacity associated with each of the power modules 20, which is connected, on the one hand to the positive trace 103 (B +) of the associated module, and on the other hand, to the negative trace 104 (B-) of said associated module .
  • connection recesses 221a and 221b of the signal tongues 106 it is preferable to carry out a tin or laser weld, or else to deposit a resin + polymerization in the connection recesses 221a and 221b of the signal tongues 106, in particular to protect them from the salt spray.
  • a fourth step 4 illustrated in FIG. 30a, positioning all the electronics thus obtained on the rear bearing 90 of the machine. Fixation is carried out by means of:
  • Fig. 30b is a sectional view along the X-Y plane shown in FIG. 30a, showing a whole assembly of main parts mentioned above. It shows in particular: the bearing 90,
  • the rear bearing comprises in particular:
  • a positioning orifice 901 configured to receive the positioning pin 1151 of the control / excitation module 30, which allows precise positioning of the position sensors with respect to the bearing, and
  • phase hooks 105cr are also soldered to the phases of the stator (standard wires or pods).
  • the plastic cover 70 is put in place by means of fastening clips which snap onto the studs.
  • the steps defined above can be performed in a different order.
  • the second step can of course be performed before the first step (Fig. 27b illustrates this case) or after the third step.
  • the second mode of assembly has the following advantages:
  • the assembly of the entire electronic part (modules, power and signal plates) is done outside the rear bearing so that the electronics can be tested before assembly on the machine; it integrates as well as electronics that operates in said machine which saves time in terms of process, and to have two independent processes and therefore not to change the process
  • the assembly of the electronic part can be done after the assembly of the rear bearing of the machine on the front bearing, especially after the establishment of tie rods of the bearings which will then be covered by the electronics;
  • the thermal cooling performance is improved because of the axial air flow added to the radial air flow. There is a decrease in pressure losses with an axial air inlet;
  • the hood is more than just a plastic cover. There are no molded traces in the hood, the power tracks and the signal traces being integrated respectively in the plate of power and in the control / excitation module, which makes it possible to limit the number of interconnection welds to be made;
  • the ground plane is realized by the dissipator. There is therefore a decrease in the resistance and inductance of the internal power circuit between the customer's two-phase power connector and the power module due to the proximity of the positive polarity trace (B +) of the power plate. 21 with the dissipating mass.
  • the ground plane is formed by the dissipator, so that there is a gain in axial space.
  • An existing room is used to convey current.
  • the electronic modules 10, the signal interconnection piece 22, the power interconnection piece 21 and the dissipator respectively occupy a first, second, third and fourth plane all parallel to each other , and the plans are superimposed in the following order, starting from the plane closest to the rear landing:
  • the power interconnection piece 21 is independent of the electronic modules and is connected to said modules in particular only by its electrical power terminals. It is the same for the signal interconnection piece 22 which is connected to said modules in particular only by its signal connections 106.
  • the two assembly modes have the advantage of using the maximum available area on the back of the machine for the modules through the stacking of the various elements for power interconnections and signals contrary to a solution in which traces of power and signal interconnection would occupy the surface on the back of the machine to the detriment of the modules.
  • signal interconnection plate 22 can be used when there is no power plate 21.
  • modules carrying out their power interconnection themselves can be used when there is no power plate 21.
  • the power interconnection plate 21 can also be used without the signal plate 22.
  • the power interconnection plate 21 can also be used without the signal plate 22.
  • a PCB electronic card performing the signal interconnection.
  • the assembly according to all the embodiments presented above has the following additional advantages: it avoids piling up all the traces on one another, a stack not being conducive to a good positional maintenance of the traces
  • this assembly makes it possible to convey a greater power

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
EP06743818A 2005-05-31 2006-04-20 Signalverbindungsteil für eine elektrische drehmaschine Withdrawn EP1886395A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0505502A FR2886477B1 (fr) 2005-05-31 2005-05-31 Piece d'interconnexion de signal pour machine electrique tournante
PCT/FR2006/050360 WO2006129030A1 (fr) 2005-05-31 2006-04-20 Piece d'interconnexion de signal pour machine electrique tournante

Publications (1)

Publication Number Publication Date
EP1886395A1 true EP1886395A1 (de) 2008-02-13

Family

ID=35474726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06743818A Withdrawn EP1886395A1 (de) 2005-05-31 2006-04-20 Signalverbindungsteil für eine elektrische drehmaschine

Country Status (10)

Country Link
US (1) US7932649B2 (de)
EP (1) EP1886395A1 (de)
JP (1) JP5039030B2 (de)
KR (1) KR101267714B1 (de)
CN (1) CN101185221B (de)
BR (1) BRPI0609805A2 (de)
FR (1) FR2886477B1 (de)
MX (1) MX2007015146A (de)
RU (1) RU2007149270A (de)
WO (1) WO2006129030A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053920B2 (en) * 2007-07-30 2011-11-08 GM Global Technology Operations LLC Compact terminal assembly for power converters
US20090284213A1 (en) * 2008-05-15 2009-11-19 Gm Global Technology Operations, Inc. Power module layout for automotive power converters
US8462529B2 (en) * 2007-07-30 2013-06-11 GM Global Technology Operations LLC Power converter assembly with symmetrical layout of power modules
FR2947680A1 (fr) * 2009-07-03 2011-01-07 Valeo Equip Electr Moteur Machine electrique tournante equipee d'un module electronique de puissance perfectionne
FR2947679A1 (fr) * 2009-07-03 2011-01-07 Valeo Equip Electr Moteur Machine electrique tournante equipee d'un module electronique de puissance perfectionne
JP5360602B2 (ja) * 2010-03-04 2013-12-04 株式会社デンソー 車両用回転電機
US9819241B2 (en) 2010-06-14 2017-11-14 Black & Decker Inc. Stator assembly for a brushless motor in a power tool
FR2967845B1 (fr) 2010-11-23 2013-08-02 Valeo Equip Electr Moteur Architecture de modules electroniques de puissance interconnectes pour une machine electrique tournante et machine electrique tournante comprenant une telle architecture
FR2967846B1 (fr) 2010-11-23 2012-11-30 Valeo Equip Electr Moteur Procede d'interconnexion de modules electroniques de puissance d'une machine electrique tournante et assemblage de modules de puissance interconnectes obtenu par ce procede
FR2969411B1 (fr) * 2010-12-20 2012-12-28 Valeo Equip Electr Moteur Dispositif regulateur de tension pour une machine electrique tournante, palier d'une telle machine equipe d'un tel dispositif et une telle machine comportant un tel palier
ITBO20110413A1 (it) * 2011-07-11 2013-01-12 Spal Automotive Srl Macchina elettrica rotante e relativo metodo di assemblaggio.
JP5774207B2 (ja) * 2012-04-16 2015-09-09 三菱電機株式会社 回転電機
FR2992794B1 (fr) * 2012-06-29 2014-08-08 Leroy Somer Moteurs Machine electrique tournante equipee d'une boite a bornes.
FR2999360B1 (fr) 2012-12-07 2018-10-19 Valeo Equipements Electriques Moteur Montage d'un corps de stator dans un palier d'une machine electrique tournante et machine electrique tournante comportant un tel montage
JP2015006118A (ja) * 2013-06-24 2015-01-08 株式会社デンソー 車両用回転電機
CN103683975A (zh) * 2013-12-30 2014-03-26 重庆博耐特实业(集团)有限公司 一种汽车交流发电机电压调节器与整流桥一体型结构
FR3032746B1 (fr) 2015-02-16 2018-08-03 Valeo Equipements Electriques Moteur Machine electrique tournante dotee d'une poulie de reception d'une courroie et d'un dispositif de reglage de la tension de la courroie
FR3037738B1 (fr) 2015-06-22 2019-07-05 Valeo Equipements Electriques Moteur Stator a connecteur equipe d'une unite de mesure thermique et machine electrique comportant un tel stator
FR3041832B1 (fr) 2015-09-30 2017-11-10 Valeo Equip Electr Moteur Machine electrique tournante refroidie par un fluide caloporteur
FR3044841B1 (fr) * 2015-12-02 2018-01-12 Valeo Systemes De Controle Moteur Connecteur electrique destine a etre connecte electriquement a au moins une unite electronique et a une source d'energie electrique
FR3049784B1 (fr) 2016-03-30 2019-05-03 Valeo Equipements Electriques Moteur Flasque avant perfectionne de machine electrique tournante et machine electrique tournante comportant un tel flasque
FR3056842B1 (fr) * 2016-09-28 2018-10-12 Valeo Equipements Electriques Moteur Machine electrique tournante munie d'un interconnecteur a configuration amelioree
FR3057413B1 (fr) * 2016-10-11 2018-10-12 Valeo Equipements Electriques Moteur Procede de fabrication d'un porte balais de machine electrique tournante et porte balais
KR101852584B1 (ko) * 2016-11-29 2018-06-14 대우전자부품(주) 차량용 교류 발전기
KR102032902B1 (ko) * 2016-12-22 2019-10-17 이래에이엠에스 주식회사 차량용 교류발전기의 히트싱크
FR3062002A1 (fr) 2017-01-16 2018-07-20 Valeo Equipements Electriques Moteur Systeme de regulation pour un circuit de controle d'une machine electrique tournante
FR3072024A1 (fr) 2017-10-11 2019-04-12 Olivier Petitjean Prevention et traitement de l’hyperplasie benigne de la prostate a l‘aide d’un inhibiteur selectif de la production d’especes reactives de l’oxygene d’origine mitochondriale
FR3083385B1 (fr) 2018-06-27 2022-01-21 Valeo Equip Electr Moteur Machine electrique tournante munie d'un capteur de courant et d'un module de diagnostic

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528484A (en) * 1982-09-13 1985-07-09 Hansen Thomas C Electronically controlled motor assembly
JPH0619281Y2 (ja) * 1990-07-13 1994-05-18 マブチモーター株式会社 交流駆動モータ
DE9218701U1 (de) * 1992-03-26 1995-02-23 Kienzle Uhrenfabriken Gmbh Schrittmotor
US5451823A (en) * 1993-02-11 1995-09-19 Transpo Electronics, Inc. Vehicular thermoconductive lead frame rectifier assembly
US5467252A (en) * 1993-10-18 1995-11-14 Motorola, Inc. Method for plating using nested plating buses and semiconductor device having the same
JP3374491B2 (ja) * 1993-12-24 2003-02-04 株式会社デンソー 車両用発電電動装置
DE4421358B4 (de) * 1994-06-18 2009-04-09 Robert Bosch Gmbh Gleichrichteranordnung, vorzugsweise für einen Drehstromgenerator für Kraftfahrzeuge
US5587890A (en) * 1994-08-08 1996-12-24 Cooper Industries, Inc. Vehicle electric power distribution system
DE4442867C2 (de) * 1994-12-02 1999-09-09 Mannesmann Sachs Ag Antriebsanordnung für ein Fahrzeug, insbesondere ein Straßenfahrzeug
US5583376A (en) * 1995-01-03 1996-12-10 Motorola, Inc. High performance semiconductor device with resin substrate and method for making the same
US5873751A (en) * 1995-12-07 1999-02-23 Methode Electronics, Inc. Circuitized insulator
IT1285410B1 (it) 1996-06-07 1998-06-03 Gate Spa Dispositivo circuitale di controllo per un motore elettrico
DE19838266A1 (de) * 1998-08-22 2000-02-24 Mannesmann Vdo Ag Einrichtung und Verfahren zum Vergießen elektrischer Schaltungen mittels Spritzguß
JP3983426B2 (ja) 1999-07-29 2007-09-26 三菱電機株式会社 交流発電機
DE10035540A1 (de) * 2000-04-01 2001-10-04 Vorwerk Co Interholding Reluktanzmotor und Verfahren zur Regelung eines Reluktanzmotors
JP3949368B2 (ja) 2000-10-17 2007-07-25 三菱電機株式会社 車両用交流発電機
US6400059B1 (en) * 2000-11-15 2002-06-04 Chun-Pu Hsu Inner stator of drum type motor
DE10063619B4 (de) * 2000-12-20 2010-02-18 Trw Automotive Electronics & Components Gmbh & Co. Kg Antriebseinheit für Gebläse in Fahrzeugen
FR2819943B1 (fr) * 2001-01-24 2003-02-28 Valeo Equip Electr Moteur Connecteur electrique a contacts multiples
US7046518B2 (en) * 2001-04-02 2006-05-16 International Rectifier Corporation Power module
DE10119404A1 (de) * 2001-04-20 2002-10-24 Bosch Gmbh Robert Elektronisch kommutierter Gleichstrommotor
DE10120414A1 (de) 2001-04-26 2002-10-31 Zf Sachs Ag Elektrische Maschine
US20030083131A1 (en) * 2001-06-29 2003-05-01 Armstrong Brad A. Controller with analog pressure sensor (s)
CN1283036C (zh) * 2001-07-16 2006-11-01 瓦莱奥电机设备公司 用于旋转电机的电流整流装置
US6737786B2 (en) * 2002-02-22 2004-05-18 Chun-Pu Hsu Wheel drum structure of inner stator portion with inbuilt switches
DE10214277A1 (de) * 2002-03-28 2003-10-16 Bosch Gmbh Robert Regler und Gleichrichter für eine elektrische Maschine sowie elektrische Maschine
FR2842042A1 (fr) * 2002-07-04 2004-01-09 Valeo Equip Electr Moteur Module de controle et de puissance d'un alterno-demarreur integrale
FR2842041B1 (fr) 2002-07-04 2005-04-15 Valeo Equip Electr Moteur Module de controle et de puissance d'un alterno-demarreur integrable
DE102004007395B4 (de) * 2003-02-18 2016-11-03 Denso Corporation Motorgenerator
US6911750B2 (en) * 2003-07-03 2005-06-28 Delco Remy International, Inc. Electronic package for electrical machine
JP2005117708A (ja) * 2003-10-02 2005-04-28 Denso Corp 制御手段一体型交流モータ
JP3560606B1 (ja) * 2003-10-10 2004-09-02 東京パーツ工業株式会社 駆動回路が内蔵されたステータと同ステータを備えた軸方向空隙型ブラシレスモータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2006129030A1 *

Also Published As

Publication number Publication date
FR2886477B1 (fr) 2007-07-06
CN101185221A (zh) 2008-05-21
US7932649B2 (en) 2011-04-26
BRPI0609805A2 (pt) 2011-10-11
RU2007149270A (ru) 2009-07-20
CN101185221B (zh) 2012-04-25
US20080191588A1 (en) 2008-08-14
MX2007015146A (es) 2008-02-19
FR2886477A1 (fr) 2006-12-01
JP2008543260A (ja) 2008-11-27
KR20080019602A (ko) 2008-03-04
WO2006129030A1 (fr) 2006-12-07
KR101267714B1 (ko) 2013-05-23
JP5039030B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
EP1886400B1 (de) Anordnung elektronischer bauteile für eine elektrische rotationsmaschine
EP1886401B1 (de) Elektronikmodul für eine elektrische drehmaschine
EP1886396B1 (de) Rotierende elektrische Maschine mit ein Leistungsverbindungsstück
EP1886397B1 (de) Kühler für elektronische komponente einer elektrischen rotationsmaschine
EP1886395A1 (de) Signalverbindungsteil für eine elektrische drehmaschine
EP1523803B1 (de) Steuer- und leistungsmodul einer integrierten anlasser-lichtmaschine
EP2643921B1 (de) Verbundenenes elektronisches leistungsmodularchitektur für elektrische maschine und elektrische maschine mit einem solchen architektur
WO2016207537A1 (fr) Stator a connecteur equipe d'une unite de mesure thermique et machine electrique comportant un tel stator
EP3140901B1 (de) Elektronische baugruppe für eine elektrische drehmaschine für ein kraftfahrzeug
EP2643919B1 (de) Verfahren zur verbindung von elektronischen leistungsmodulen einer elektrischen drehmaschine und anhand dieses verfahrens hergestellte anordnung aus miteinander verbundenen leistungsmodulen
FR3052610A1 (fr) Machine electrique tournante a electronique de puissance amelioree
WO2015170036A1 (fr) Module de puissance d'un ensemble electronique pour machine electrique tournante pour vehicule automobile
FR3093889A1 (fr) Système électronique et ensemble électrique
EP2351194B1 (de) Vorrichtung zur stromgleichrichtung für eine drehende elektrische maschine und drehende elektrische maschine mit einer solchen vorrichtung ausgestattet
WO2013054023A2 (fr) Dispositif pour regulateur d'un alternateur de vehicule automobile
WO2017216434A1 (fr) Machine électrique tournante munie d'un porte-balais intégré
FR3047851A1 (fr) Ensemble electronique d'une machine electrique tournante
FR3020728A1 (fr) Piece-boitier surmoulee d'un ensemble electronique pour machine electrique tournante pour vehicule automobile
WO2020234029A1 (fr) Systeme electronique de controle pour machine electrique et ensemble electrique
FR3065595A1 (fr) Dispositif de redressement de courant pour machine electrique tournante
FR3060936A1 (fr) Ceinture de protection, module electronique de puissance et compresseur de suralimentation electrique pilote par un tel module electronique de puissance
FR3052611A1 (fr) Machine electrique tournante munie d'un module de regulation integre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160804

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603