EP1882731A1 - Waschmittelzusammensetzungen - Google Patents

Waschmittelzusammensetzungen Download PDF

Info

Publication number
EP1882731A1
EP1882731A1 EP06115574A EP06115574A EP1882731A1 EP 1882731 A1 EP1882731 A1 EP 1882731A1 EP 06115574 A EP06115574 A EP 06115574A EP 06115574 A EP06115574 A EP 06115574A EP 1882731 A1 EP1882731 A1 EP 1882731A1
Authority
EP
European Patent Office
Prior art keywords
ksm
ferm
composition according
surfactant
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06115574A
Other languages
English (en)
French (fr)
Inventor
Neil Lant
Steven Patterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP06115574A priority Critical patent/EP1882731A1/de
Priority to AT06116782T priority patent/ATE523583T1/de
Priority to EP06116782A priority patent/EP1867707B1/de
Priority to ES06116782T priority patent/ES2373051T3/es
Priority to EP06124858.9A priority patent/EP1867708B1/de
Priority to HUE06124858A priority patent/HUE032793T2/en
Priority to PL06124858T priority patent/PL1867708T3/pl
Priority to ES06124858.9T priority patent/ES2632356T3/es
Priority to BRPI0713668-4A priority patent/BRPI0713668A2/pt
Priority to PCT/IB2007/052310 priority patent/WO2007144857A1/en
Priority to JP2009514977A priority patent/JP2009539399A/ja
Priority to CN200780022556.9A priority patent/CN101473023B/zh
Priority to US11/818,648 priority patent/US20100022431A1/en
Priority to RU2008145092/10A priority patent/RU2430148C2/ru
Priority to MX2008016228A priority patent/MX298662B/es
Priority to MX2008016229A priority patent/MX295029B/es
Priority to JP2009513843A priority patent/JP5882561B2/ja
Priority to BRPI0712969A priority patent/BRPI0712969A8/pt
Priority to ARP070102655A priority patent/AR061495A1/es
Priority to PCT/IB2007/052308 priority patent/WO2007144855A1/en
Priority to ARP070102654A priority patent/AR061494A1/es
Priority to CA2652774A priority patent/CA2652774A1/en
Priority to CNA2007800225446A priority patent/CN101473024A/zh
Priority to US11/818,652 priority patent/US20090291875A1/en
Priority to CA002652776A priority patent/CA2652776A1/en
Publication of EP1882731A1 publication Critical patent/EP1882731A1/de
Priority to ZA200810075A priority patent/ZA200810075B/xx
Priority to ZA200810073A priority patent/ZA200810073B/xx
Priority to JP2015075389A priority patent/JP2015157953A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase

Definitions

  • the present invention relates to laundry detergent compositions and in particular to detergents comprising an alkaline bacterial enzyme exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4)
  • Cellulase enzymes have been used in detergent compositions for many years now for their known benefits of depilling, softness and colour care.
  • the use of most of cellulases has been limited because of the negative impact that cellulase may have on the tensile strength of the fabrics' fibers by hydrolysing crystalline cellulose.
  • cellulases with a high specificity towards amorphous cellulose have been developed to exploit the cleaning potential of cellulases while avoiding the negative tensile strength loss.
  • alkaline endo-glucanases have been developed to suit better the use in alkaline detergent conditions.
  • Novozymes in WO02/099091 discloses a novel enzyme exhibiting endo-beta-glucanase activity (EC 3.2.1.4) endogenous to the strain Bacillus sp., DSM 12648; for use in detergent and textile applications.
  • Novozymes further describes in WO04/053039 detergent compositions comprising an anti-redeposition endo-glucanase and its combination with certain cellulases having increased stability towards anionic surfactant and/or further specific enzymes.
  • Kao's EP 265 832 describes novel alkaline cellulase K, CMCase I and CMCase II obtained by isolation from a culture product of Bacillus sp KSM-635.
  • Kao further describes in EP 1 350 843 , alkaline cellulase which acts favourably in an alkaline environment and can be mass produced readily because of having high secretion capacity or having enhanced specific activity.
  • the problem facing the present inventors was how to maximise performance from this new generation of cellulases.
  • the present inventors found that whilst a small benefit could be achieved formulating such enzymes according to present day detergent formulations by simply replacing existing cellulase enzymes with the new generation of enzymes, a considerable improvement in performance was found by formulating the detergent compositions in a different way and even reducing the levels of some conventional detergent ingredients. Indeed, it has been surprisingly found that the use of very low levels of builder, or even complete absence of inorganic builder, enhances the cleaning performance of the bacterial alkaline cellulase.
  • inorganic builders such as STPP, zeolites and silicates interact with hardness to form insoluble materials that deposit on fabrics and potentially interfere with the catalytic mechanism of the cellulase and that (ii) hardness ions such as Ca2+ and Mg2+ stabilise the enzyme in solution, and promote deposition of enzyme onto fabric surfaces. Therefore, the removal or reduction in builder is thus expected to increase free hardness levels leading to increased enzyme stability and surface deposition while increasing its activity on fabrics through reduced levels of encrustation.
  • inorganic builders such as STPP, zeolites and silicates interact with hardness to form insoluble materials that deposit on fabrics and potentially interfere with the catalytic mechanism of the cellulase and that (ii) hardness ions such as Ca2+ and Mg2+ stabilise the enzyme in solution, and promote deposition of enzyme onto fabric surfaces. Therefore, the removal or reduction in builder is thus expected to increase free hardness levels leading to increased enzyme stability and surface deposition while increasing its activity on fabrics through reduced levels of encrustation.
  • a detergent composition comprising an alkaline bacterial enzyme exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4) and comprising less than 10 wt% aluminosilicate (anhydrous basis) builder and less than 10 wt% phosphate builder, the composition having a reserve alkalinity of greater than 4.
  • the detergent compositions of the invention comprise less than 10 wt% builders selected from aluminosilicate (zeolite) builder and/or phosphate builder. In a further preferred aspect of the invention, the compositions comprise less than 8wt% zeolite, or even less than 4wt% and less than 8 wt% phosphate builder or even less than 4wt%.
  • SEQ ID NO: 1 shows the amino acid sequence of an endoglucanase from Bacillus sp. AA349
  • SEQ ID NO: 2 shows the amino acid sequence of an endoglucanase from Bacillus sp KSM-S237
  • the endoglucanase to be incorporated into the detergent composition of the present invention is one or more bacterial alkaline enzyme(s) exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4) and is typically comprised at a level of from 0.00005% to 0.15%, from 0.0002% to 0.02%, or even from 0.0005% to 0.01% by weight of pure enzyme of one or more endoglucanase.
  • the endoglucanase is a bacterial polypeptide endogenous to a member of the genus Bacillus.
  • the alkaline enzyme exhibiting endo-beta-1,4-glucanase activity is a polypeptide containing (i) at least one family 17 carbohydrate binding module (Family 17 CBM) and/or (ii) at least one family 28 carbohydrate binding module (Family 28 CBM).
  • Family 17 carbohydrate binding module Family 17 CBM
  • Family 28 carbohydrate binding module Family 28 CBM
  • said enzyme comprises a polypeptide (or variant thereof) endogenous to one of the following Bacillus species: Bacillus sp.
  • Bacillus sp As described in: AA349 (DSM 12648) WO 2002/099091A (Novozymes) p2, line 25 WO 2004/053039A (Novozymes) p3, line19 KSM S237 EP 1350843A (Kao) p3, line 18 1139 EP 1350843A (Kao) p3, line 22 KSM 64 EP 1350843A (Kao) p3, line 24 KSM N131 EP 1350843A (Kao) p3, line 25 KSM 635, FERM BP 1485 EP 265 832A (Kao) p7, line 45 KSM 534, FERM BP 1508 EP 0271044 A (Kao) p9, line 21 KSM 539, FERM BP 1509 EP 0271044 A (Kao) p
  • Suitable endoglucanases for the compositions of the present invention are: 1) An enzyme exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4), which has a sequence of at least 90%, preferably 94%, more preferably 97% and even more preferably 99%, 100% identity to the amino acid sequence of position 1 to position 773 of SEQ ID NO:1 (Corresponding to SEQ ID NO:2 in WO02/099091 ); or a fragment thereof has endo-beta-1,4-glucanase activity, when identity is determined by GAP provided in the GCG program using a GAP creation penalty of 3.0 and GAP extension penalty of 0.1.
  • alkaline cellulase variants are obtained by substituting the amino acid residue of a cellulase having an amino acid sequence exhibiting at least 90%, preferably 95%, more preferably 98% and even 100% identity with the amino acid sequence represented by SEQ. ID NO:2 (Corresponding to SEQ.
  • alkaline cellulase having an amino acid sequence exhibiting at least 90% homology with the amino acid sequence represented by SEQ. ID NO:2 include alkaline cellulases having an amino acid sequence exhibiting preferably at least 95% homology, more preferably at least 98% homology, with the amino acid sequence represented by SEQ. ID NO:2.
  • alkaline cellulase derived from Bacillus sp. strain 1139 (Egl-1139) Fukumori, et al., J. Gen.
  • Microbiol., 132, 2329-2335 (91.4% homology), alkaline cellulases derived from Bacillus sp. strain KSM-64 (Egl-64) ( Sumitomo, et al., Biosci. Biotechnol. Biochem., 56, 872-877, 1992 ) (homology: 91.9%), and cellulase derived from Bacillus sp. strain KSM-N131 (Egl-N131b) ( Japanese Patent Application No. 2000-47237 ) (homology: 95.0%).
  • the amino acid is preferably substituted by: glutamine, alanine, proline or methionine, especially glutamine is preferred at position (a), asparagine or arginine, especially asparagine is preferred at position (b), proline is preferred at position (c), histidine is preferred at position (d), alanine, threonine or tyrosine, especially alanine is preferred at position (e), histidine, methionine, valine, threonine or alanine, especially histidine is preferred at position (f), isoleucine, leucine, serine or valine, especially isoleucine is preferred at position (g), alanine, phenylalanine, valine, serine, aspartic acid, glutamic acid, leucine, isoleucine, tyrosine, threonine, methionine or glycine, especially alanine, phenylalanine or serine is preferred at position (h), isole
  • amino acid residue at a position corresponding thereto can be identified by comparing amino acid sequences by using known algorithm, for example, that of Lipman-Pearson's method, and giving a maximum similarity score to the multiple regions of simirality in the amino acid sequence of each alkaline cellulase.
  • the position of the homologous amino acid residue in the sequence of each cellulase can be determined, irrespective of insertion or depletion existing in the amino acid sequence, by aligning the amino acid sequence of the cellulase in such manner (Fig. 1 of EP 1 350 843 ). It is presumed that the homologous position exists at the three-dimensionally same position and it brings about similar effects with regard to a specific function of the target cellulase.
  • alkaline cellulase having an amino acid sequence exhibiting at least 90% homology with SEQ. ID NO:1
  • Egl-237 Egl-1139 Egl-64 Egl-N131b (a) 10Leu 10Leu 10Leu 10Leu (b) 16Ile 16Ile 16Ile nothing corresponding thereto (c) 22Ser 22Ser 22Ser None corresponding thereto (d) 33Asn 33Asn 33Asn 19Asn (e) 39Phe 39Phe 39Phe 25Phe (f) 76Ile 76Ile 76Ile 62Ile (g) 109Met 109Met 109Met 95Met (h) 242Gln 242Gln 242Gln 228Gln (i) 263Phe 263Phe 263Phe 249Phe (j) 308Thr 308Thr 308Thr 294Thr (k) 462Asn 461Asn 461Asn 448Asn (l) 466Lys 465Lys 465Lys 452
  • laundry detergents comprise strong inorganic builder, with either phosphate builder typically sodium tripolyphosphate (STPP), or zeolite typically sodium aluminosilicate builder, being used as the predominant strong builder.
  • phosphate builder typically sodium tripolyphosphate (STPP)
  • zeolite typically sodium aluminosilicate builder
  • the amount of strong builder selected from phosphate and/or zeolite builder is no greater than 10 wt% based on the total weight of the detergent composition, preferably below 8 wt%, or even below 5 or 4 or 3 or 2 or 1 wt% .
  • compositions of the invention may comprise from 0 wt% to 10wt% zeolite builder, and 0 wt% to 10 wt% phosphate builder, the total amount of phosphate and/or zeolite not exceeding 10 wt%, and preferably being below 10 wt% as described above.
  • the compositions of the invention comprise from 0 wt% to 8 wt%, or from 0 wt% to 5 or 4 wt%, or from 0 wt% to 3 or even less than 2 wt% zeolite builder. It may even be preferred for the composition to be essentially free from zeolite builder.
  • the composition comprises no deliberately added zeolite builder. This is especially preferred if it is desirable for the composition to be very highly soluble, to minimise the amount of water-insoluble residues (for example, which may deposit on fabric surfaces), and also when it is highly desirable to have transparent wash liquor.
  • Zeolite builders include zeolite A, zeolite X, zeolite P and zeolite MAP.
  • compositions of the invention may comprise from 0 wt% to 10 wt% phosphate builder.
  • the composition preferably comprises from 0 wt% to 8 wt%, or from 0 wt% to 5 or 4 wt%, or from 0 wt% to 3 or even 2 wt% phosphate builder. It may even be preferred for the composition to be essentially free from phosphate builder. By essentially free from phosphate builder it is typically meant that the composition comprises no deliberately added phosphate builder. This is especially preferred if it is desirable for the composition to have a very good environmental profile.
  • Phosphate builders include sodium tripolyphosphate.
  • the total level of weak builders selected from layered silicate (SKS-6), citric acid, citrate salts and nitrilo triacetic acid or salt thereof is below 15 wt%, more preferably below 8 wt%, more preferably below 4 wt% or even below 3 or 2 wt% based on the total weight of the detergent composition.
  • the level of each of layered silicate, citric acid, citrate salts and nitrilo triacetic acid or salt thereof will be below 10 wt% or even below 5 wt% or wt% based on the total weight of the composition.
  • builders bring several benefits to the formulator, their main role is to sequester divalent metal ions (such as calcium and magnesium ions) from the wash solution that would otherwise interact negatively with the surfactant system. Builders are also effective at removing metal ions and inorganic soils from the fabric surface too, leading to improved removal of particulate and beverage stains. It would therefore be expected that reduction of their levels would negatively impact on cleaning performance and therefore, preparation of detergent compositions that are effective with the claimed reduced levels of phosphate and zeolite builders is surprising.
  • divalent metal ions such as calcium and magnesium ions
  • Adequate reserve alkalinity may be provided, for example, by one or more of alkali metal silicates (excluding crystalline layered silicate), typically amorphous silicate salts, generally 1.2 to 2.2 ratio sodium salts, alkali metal typically sodium carbonate, bicarbonate and/or sesquicarbonates.
  • alkali metal silicates excluding crystalline layered silicate
  • typically amorphous silicate salts generally 1.2 to 2.2 ratio sodium salts
  • alkali metal typically sodium carbonate, bicarbonate and/or sesquicarbonates.
  • STPP and persalts such as perborates and percarbonates also contribute to alkalinity. Buffering is necessary to maintain an alkaline pH during the wash process counteracting the acidity of soils.
  • the detergent composition preferably comprises from 0 wt% to 50 wt% silicate salt, more usually 5 to 30 wt% silicate salt, or 7 to 20 wt% silicate salt, usually sodium silicate.
  • the detergent compositions of the invention may comprise a carbonate salt, typically from 1 wt% to 70 wt%, or from 5 wt% to 50 wt% or from 10 wt% to 30 wt% carbonate salt.
  • Preferred carbonate salts are sodium carbonate and/or sodium bicarbonate and/or sodium sesquicarbonate.
  • the carbonate salt may be incorporated into the detergent composition wholly or partially via a mixed salt such as Burkeite.
  • a highly preferred carbonate salt is sodium carbonate.
  • the composition may comprise from 5 wt% to 50 wt% sodium carbonate, or from 10 to 40 wt% or even 15 to 35 wt% sodium carbonate. It may also be desired for the composition to comprise from 1wt% to 20 wt% sodium bicarbonate, or even 2 to 10 or 8 wt%.
  • the weight ratio of sodium carbonate and/or sodium silicate to zeolite builder may be at least 5:1, preferably at least 10:1, or at least 15:1, or at least 20:1 1 or even at least 25:1
  • the carbonate salt, or at least part thereof is typically in particulate form, typically having a weight average particle size in the range of from 200 to 500 micrometers. However, it may be preferred for the carbonate salt, or at least part thereof, to be in micronised particulate form, typically having a weight average particle size in the range of from 4 to 40 micrometers; this is especially preferred when the carbonate salt, or at least part thereof, is in the form of a co-particulate admixture with a detersive surfactant, such as an alkoxylated anionic detersive surfactant.
  • a detersive surfactant such as an alkoxylated anionic detersive surfactant.
  • the levels of carbonate and/or silicate salts typically sodium carbonate and sodium silicate will be from 10 to 70 wt%, or from 10 or even 15 to 50 wt% based on the total weight of the composition.
  • compositions of the present invention may comprise further ingredients as described below.
  • HEDP hydroxyethane-dimethylene-phosphonic acid
  • PBTC 2-phosphonobutane-1,2,4-tricarboxylic acid
  • Tiron® 4,5-dihydroxy-m-benzenedisulfonic acid, disodium salt
  • Another preferred ingredient is a fluorescent whitening agent, especially the following: wherein R1 and R2, together with the nitrogen atom linking them, form an unsubstituted or C1-C4 alkyl-substituted morpholino, piperidine or pyrrolidine ring. Indeed it is believed that the combination of the endoglucanase within the low builder system of the present invention with these fluorescent whitening agents provide even better cleaning and whiteness.
  • a highly preferred adjunct component of the compositions of the invention is a surfactant.
  • the detergent composition comprises one or more surfactants.
  • the detergent composition comprises (by weight of the composition) from 0% to 50%, preferably from 5% and more preferably from 10 or even 15 wt% to 40%, or to 30%, or to 20% one or more surfactants.
  • Preferred surfactants are anionic surfactants, non-ionic surfactants, cationic surfactants, zwitterionic surfactants, amphoteric surfactants, cationic surfactants and mixtures thereof.
  • Suitable anionic surfactants typically comprise one or more moieties selected from the group consisting of carbonate, phosphate, phosphonate, sulphate, sulphonate, carboxylate and mixtures thereof.
  • the anionic surfactant may be one or mixtures of more than one of C 8-18 alkyl sulphates and C 8-18 alkyl sulphonates.
  • Suitable anionic surfactants incorporated alone or in mixtures in the compositions of the invention are also the C 8-18 alkyl sulphates and/or C 8-18 alkyl sulphonates optionally condensed with from 1 to 9 moles of C 1-4 alkylene oxide per mole of C 8-18 alkyl sulphate and/or C 8-18 alkyl sulphonate.
  • the alkyl chain of the C 8-18 alkyl sulphates and/or C 8-18 alkyl sulphonates may be linear or branched, preferred branched alkyl chains comprise one or more branched moieties that are C 1-6 alkyl groups.
  • suitable anionic surfactants include the C 10 -C 20 primary, branched-chain, linear-chain and random-chain alkyl sulphates (AS), typically having the following formula: CH 3 (CH 2 ) x CH 2 -OSO 3 - M + wherein, M is hydrogen or a cation which provides charge neutrality, preferred cations are sodium and ammonium cations, wherein x is an integer of at least 7, preferably at least 9; C 10 -C 18 secondary (2,3) alkyl sulphates, typically having the following formulae: wherein, M is hydrogen or a cation which provides charge neutrality, preferred cations include sodium and ammonium cations, wherein x is an integer of at least 7, preferably at least 9, y is an integer of at least 8, preferably at least 9; C 10 -C 18 alkyl alkoxy carboxylates; mid-chain branched alkyl sulphates as described in more detail in US 6,020,303 and US 6,060,443
  • Preferred anionic surfactants are C 8-18 alkyl benzene sulphates and/or C 8-18 alkyl benzene sulphonates.
  • the alkyl chain of the C 8-18 alkyl benzene sulphates and/or C 8-18 alkyl benzene sulphonates may be linear or branched, preferred branched alkyl chains comprise one or more branched moieties that are C 1-6 alkyl groups.
  • Suitable anionic surfactants are selected from the group consisting of: C 8-18 alkenyl sulphates, C 8-18 alkenyl sulphonates, C 8-18 alkenyl benzene sulphates, C 8-18 alkenyl benzene sulphonates, C 8-18 alkyl di-methyl benzene sulphate, C 8-18 alkyl di-methyl benzene sulphonate, fatty acid ester sulphonates, di-alkyl sulphosuccinates, and combinations thereof.
  • esters of alpha-sulfonated fatty acids typically containing from 6 to 20 carbon atoms in the fatty acid group and from 1 to 10 carbon atoms in the ester group; 2-acyloxy-alkane-1-sulfonic acid and salts thereof, typically containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to 23 carbon atoms in the alkane moiety; alpha-olefin sulfonates (AOS), typically containing from about 12 to 24 carbon atoms; and beta-alkoxy alkane sulfonates, typically containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety.
  • AOS alpha-olefin sulfonates
  • beta-alkoxy alkane sulfonates typically containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety.
  • fatty acid esters containing an alkyl group typically with from 10 to 20 carbon atoms.
  • C 1-4 most preferably methyl ester sulphonates.
  • Preferred are C 16-18 methyl ester sulphonates (MES).
  • the anionic surfactants may be present in the salt form.
  • the anionic surfactant(s) may be an alkali metal salt of any of the above.
  • Preferred alkali metals are sodium, potassium and mixtures thereof.
  • Preferred anionic detersive surfactants are selected from the group consisting of: linear or branched, substituted or unsubstituted, C 12-18 alkyl sulphates; linear or branched, substituted or unsubstituted, C 10-13 alkylbenzene sulphonates, preferably linear C 10-13 alkylbenzene sulphonates; and mixtures thereof. Highly preferred are linear C 10-13 alkylbenzene sulphonates.
  • linear C 10-13 alkylbenzene sulphonates that are obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzenes (LAB);
  • suitable LAB include low 2-phenyl LAB, such as those supplied by Sasol under the tradename Isochem ® or those supplied by Petresa under the tradename Petrelab ® , other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename Hyblene ® .
  • the anionic detersive surfactant may be structurally modified in such a manner as to cause the anionic detersive surfactant to be more calcium tolerant and less likely to precipitate out of the wash liquor in the presence of free calcium ions.
  • This structural modification could be the introduction of a methyl or ethyl moiety in the vicinity of the head group of the anionic detersive surfactant, as this can lead to a more calcium tolerant anionic detersive surfactant due to steric hindrance of the head group, which may reduce the affinity of the anionic detersive surfactant for complexing with free calcium cations in such a manner as to cause precipitation out of solution.
  • the composition may comprise an alkoxylated anionic surfactant. Where present such a surfactant will generally be present in amounts from 0.1 wt% to 40 wt%, generally 0.1 to 10 wt%based on the detergent composition as a whole. It may be preferred for the composition to comprise from 3wt% to 5wt% alkoxylated anionic detersive surfactant, or it may be preferred for the composition to comprise from 1wt% to 3wt% alkoxylated anionic detersive surfactant.
  • the alkoxylated anionic detersive surfactant is a linear or branched, substituted or unsubstituted C 12-18 alkyl alkoxylated sulphate having an average degree of alkoxylation of from 1 to 30, preferably from 1 to 10.
  • the alkoxylated anionic detersive surfactant is a linear or branched, substituted or unsubstituted C 12-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 1 to 10.
  • the alkoxylated anionic detersive surfactant is a linear unsubstituted C 12-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 3 to 7.
  • the alkoxylated anionic detersive surfactant may also increase the non-alkoxylated anionic detersive surfactant activity by making the non-alkoxylated anionic detersive surfactant less likely to precipitate out of solution in the presence of free calcium cations.
  • the weight ratio of non-alkoxylated anionic detersive surfactant to alkoxylated anionic detersive surfactant is less than 5:1, or less than 3:1, or less than 1.7:1, or even less than 1.5:1. This ratio gives optimal whiteness maintenance performance combined with a good hardness tolerency profile and a good sudsing profile.
  • the weight ratio of non-alkoxylated anionic detersive surfactant to alkoxylated anionic detersive surfactant is greater than 5:1, or greater than 6:1, or greater than 7:1, or even greater than 10:1. This ratio gives optimal greasy soil cleaning performance combined with a good hardness tolerency profile, and a good sudsing profile.
  • Suitable alkoxylated anionic detersive surfactants are: Texapan LEST TM by Cognis; Cosmacol AES TM by Sasol; BES151TM by Stephan; Empicol ESC70/UTM; and mixtures thereof.
  • compositions of the invention may comprise non-ionic surfactant. Where present it is generally present in amounts of from 0.5wt% to 20, more typically 0.5 to 10 wt% based on the total weight of the composition.
  • the composition may comprise from 1wt% to 7wt% or from 2wt% to 4wt% non-ionic detersive surfactant.
  • non-ionic detersive surfactant helps to provide a good overall cleaning profile, especially when laundering at high temperatures such as 60°C or higher.
  • the non-ionic detersive surfactant could be an alkyl polyglucoside and/or an alkyl alkoxylated alcohol.
  • the non-ionic detersive surfactant is a linear or branched, substituted or unsubstituted C 8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 50, more preferably from 3 to 40.
  • Non-ionic surfactants having a degree of ethoxylation from 3 to 9 may be especially useful either.
  • Nonionic surfactants having an HLB value of from 13 to 25, such as C 8-18 alkyl ethoxylated alcohols having an average degree of ethoxylation from 15 to 50, or even from 20 to 50 may also be preferred non-ionic surfactants in the compositions of the invention.
  • these latter non-ionic surfactants are Lutensol AO30 and similar materials disclosed in WO04/041982 . These may be beneficial as they have good lime soap dispersant properties.
  • the non-ionic detersive surfactant not only provides additional soil cleaning performance but may also increase the anionic detersive surfactant activity by making the anionic detersive surfactant less likely to precipitate out of solution in the presence of free calcium cations.
  • the weight ratio of non-alkoxylated anionic detersive surfactant to non-ionic detersive surfactant is in the range of less than 8:1, or less than 7:1, or less than 6:1 or less than 5:1, preferably from 1:1 to 5:1, or from 2:1 to 5:1, or even from 3:1 to 4:1.
  • the detergent compositions are free of cationic surfactant.
  • the composition optionally may comprise from 0.1 wt% to 10 or 5wt% cationic detersive surfactant.
  • the composition comprises from 0.5wt% to 3wt%, or from 1% to 3wt%, or even from 1wt% to 2wt% cationic detersive surfactant. This is the optimal level of cationic detersive surfactant to provide good cleaning.
  • Suitable cationic detersive surfactants are alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, and alkyl ternary sulphonium compounds.
  • the cationic detersive surfactant can be selected from the group consisting of: alkoxylate quaternary ammonium (AQA) surfactants as described in more detail in US 6,136,769 ; dimethyl hydroxyethyl quaternary ammonium as described in more detail in US 6,004,922 ; polyamine cationic surfactants as described in more detail in WO 98/35002 , WO 98/35003 , WO 98/35004 , WO 98/35005 , and WO 98/35006 ; cationic ester surfactants as described in more detail in US 4,228,042 , US 4,239,660 , US 4,260,529 and US 6,022,844 ; amino surfactants as described in more detail in US 6,221,825 and WO 00/47708 , specifically amido propyldimethyl amine; and mixtures thereof.
  • AQA alkoxylate quaternary ammonium
  • Preferred cationic detersive surfactants are quaternary ammonium compounds having the general formula: (R)(R 1 )(R 2 )(R 3 )N + X- wherein, R is a linear or branched, substituted or unsubstituted C 6-18 alkyl or alkenyl moiety, R 1 and R 2 are independently selected from methyl or ethyl moieties, R 3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety, X is an anion which provides charge neutrality, preferred anions include halides (such as chloride), sulphate and sulphonate.
  • Preferred cationic detersive surfactants are mono-C 6-18 alkyl mono-hydroxyethyl di-methyl quaternary ammonium chlorides. Highly preferred cationic detersive surfactants are mono-C 8-10 alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride, mono-C 10-12 alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride and mono-C 10 alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride. Cationic surfactants such as Praepagen HY (tradename Clariant) may be useful and may also be useful as a suds booster.
  • Praepagen HY tradename Clariant
  • the cationic detersive surfactant provides additional greasy soil cleaning performance.
  • the cationic detersive surfactant may increase the tendency of any non-alkoxylated anionic detersive surfactant to precipitate out of solution.
  • the cationic detersive surfactant and any non-alkoxylated anionic detersive surfactant are separated in the detergent composition of the invention, for example if cationic surfactant is present, preferably the cationic and any anionic surfactant, particularly non-alkoxylated anionic surfactant will be present in the composition in separate particles.
  • the weight ratio of non-alkoxylated anionic detersive surfactant to cationic detersive surfactant is in the range of from 5:1 to 25:1, more preferably from 5:1 to 20:1 or from 6:1 to 15:1, or from 7:1 to 10:1, or even from 8:1 to 9:1.
  • the detergent composition comprises from 1 to 50 wt% anionic surfactant, more typically from 2 to 40 wt%.
  • Alkyl benzene sulphonates are preferred anionic surfactants.
  • compositions of the present invention comprise at least two different surfactants in combination comprising at least one selected from a first group, the first group comprising alkyl benzene sulphonate and MES surfactant; and at least one selected from a second group, the second group comprising alkoxylated anionic surfactant, MES and alkoxylated non-ionic surfactant and alpha olefin sulfonates (AOS).
  • a particularly preferred combination comprises alkyl benzene sulphonate, preferably LAS in combination with MES.
  • a further particularly preferred combination comprises alkyl benzene sulphonate, preferably LAS with an alkoxylated anionic surfactant, preferably C 8-18 alkyl alkoxylated sulphate having an average degree of alkoxylation of from 1 to 10.
  • a third particularly preferred combination comprises alkyl benzene sulphonate, preferably LAS in combination with an alkoxylated non-ionic surfactant, preferably C 8-18 alkyl ethoxylated alcohol having a degree of alkoxylation of from 15 to 50, preferably from 20 to 40.
  • the weight ratio of the surfactant from the first group to the weight ratio of the surfactant from the second group is typically 1:5 to 100:1, preferably 1:2 to 100:1 or 1:1 to 50:1 or even to 20:1 or 10:1.
  • the levels of the surfactants are as described above under the specific classes of surfactants. Presence of AE3S and/or MES in the system is preferred on account of their exceptional hardness-tolerance and ability to disperse lime soaps which are formed during the wash by lipase.
  • the surfactant in the detergent compositions of the invention comprises at least three surfactants, at least one from each of the first and second groups defined above and in addition a third surfactant, preferably also from the first or second groups defined above.
  • the detergent compositions of the invention may surprisingly contain relatively low levels of surfactant and yet still perform good cleaning, on account of the soil removal functionality delivered by the lipase, so that the overall level of surfactant may be below 12 wt%, or 10 wt% or 8 wt% based on total weight of the composition
  • compositions of the invention may comprise at least 0.1 wt%, or at least 0.5 wt%, or at least 2 or 3 wt%, or even at least 5 wt% polymeric polycarboxylates up to levels of 30 wt% or 20 wt% or 10 wt%.
  • Preferred polymeric polycarboxylates include: polyacrylates, preferably having a weight average molecular weight of from 1,000Da to 20,OOODa; co-polymers of maleic acid and acrylic acid, preferably having a molar ratio of maleic acid monomers to acrylic acid monomers of from 1:1 to 1:10 and a weight average molecular weight of from 10,000Da to 200,000Da, or preferably having a molar ratio of maleic acid monomers to acrylic acid monomers of from 0.3:1 to 3:1 and a weight average molecular weight of from 1,000Da to 50,000Da.
  • Suitable polycarboxylates are the Sokalan CP, PA and HP ranges (BASF) such as Sokalan CP5, PA40 and HP22, and the Alcosperse range of polymers (Alco) such as Alcosperse 725, 747, 408, 412 and 420.
  • Sokalan CP Sokalan CP5
  • PA40 and HP22 PA40 and HP22
  • Alcosperse range of polymers Alcosperse 725, 747, 408, 412 and 420.
  • the composition comprises at least 1wt%, or at least 2wt%, or at least 3wt% soil dispersants.
  • the detergent composition also comprises a suds booster, typically in amounts from 0.01 to 10 wt%, preferably in amounts from 0.02 to 5 wt% based on the total weight of the composition.
  • Suitable suds boosters include fatty acid amides, fatty acid alkalonamides, betaines, sulfobetaines and amine oxides. Particularly preferred materials are cocamidopropyl betaine, cocomonoethanolamide and amine oxide.
  • a suitable amine oxide is Admox 12, supplied by Albemarle.
  • composition may also be preferred for the composition to comprise, especially when a lipase is present, anti-redeposition polymers such as the polymeric polycarboxylates described above.
  • anti-redeposition polymers such as the polymeric polycarboxylates described above.
  • cellulose ethers such as carboxymethyl cellulose (CMC) will be useful.
  • CMC carboxymethyl cellulose
  • a suitable CMC is Tylose CR1500 G2, sold by Clariant.
  • Suitable polymers are also sold by Andercol, Colombia under the Textilan brand name.
  • additives with lime soap dispersancy functionality such as the aforementioned MES, AES, highly ethoxylated nonionic surfactant or polymers showing excellent lime soap dispersancy such as Acusol 460N (Rohm & Haas). Lists of suitable lime soap dispersants are given in the following references and documents cited therein.
  • a soil release polymer has been found to be especially beneficial in further strengthening the stain removal and cleaning benefits of the development, especially on synthetic fibres.
  • Modified cellulose ethers such as methyl hydroxyethyl cellulose (MHEC), for example as sold by Clariant as Tylose MH50 G4 and Tylose MH300 G4, are preferred.
  • Polyester-based Soil Release Polymers are especially preferred as they can also be effective as lime soap dispersants. Examples of suitable materials are Repel-o-Tex PF (supplied by Rhodia), Texcare SRA100 (supplied by Clariant) and Sokalan SR100 (BASF)
  • the detergent compositions of the invention may be in any convenient form such as solids such as powdered or granular or tablet solids, bars. Any of these forms may be partially or completely encapsulated.
  • the present invention particularly relates to solid detergent compositions, especially granular compositions.
  • the detergent compositions of the invention are solid, conventionally, surfactants are incorporated into agglomerates, extrudates or spray dried particles along with solid materials, usually builders, and these may be admixed to produce a fully formulated detergent composition according to the invention.
  • the detergent compositions of the present invention are preferably those having an overall bulk density of from 350 to 1200 g/l, more preferably 450 to 1000g/l or even 500 to 900g/l.
  • the detergent particles of the detergent composition in a granular form have a size average particle size of from 200 ⁇ m to 2000 ⁇ m, preferably from 350 ⁇ m to 600 ⁇ m.
  • the detergent compositions of the invention will comprise a mixture of detergent particles including combinations of agglomerates, spray-dried powders and/or dry added materials such as bleaching agents, enzymes etc.
  • the detergent compositions of the invention comprise an anionic surfactant from the list above which is a non-alkoxylated anionic detersive surfactant and this is preferably incorporated into the detergent composition in particulate form, such as via an agglomerate, a spray-dried powder, an extrudate, a bead, a noodle, a needle or a flake. Spray-dried particles are preferred.
  • the agglomerate preferably comprises at least 20%, by weight of the agglomerate, of a non-alkoxylated anionic detersive surfactant, more preferably from 25wt% to 65wt%, by weight of the agglomerate, of a non-alkoxylated anionic detersive surfactant. It may be preferred for part of the non-alkoxylated anionic detersive surfactant to be in the form of a spray-dried powder (e.g. a blown powder), and for part of the non-alkoxylated anionic detersive surfactant to be in the form of a non-spray-dried powder (e.g.
  • agglomerate, or an extrudate, or a flake such as a linear alkyl benzene sulphonate flake; suitable linear alkyl benzene sulphonate flakes are supplied by Pilot Chemical under the tradename F90 ® , or by Stepan under the tradename Nacconol 90G ® ). This is especially preferred when it is desirable to incorporate high levels of non-alkoxylated anionic detersive surfactant in the composition.
  • Any alkoxylated anionic detersive surfactant may be incorporated into the detergent compositons of the invention via a spray-dried particle of a non-spray-dried powder such as an extrudate, agglomerate, preferably an agglomerate.
  • a spray-dried particle of a non-spray-dried powder such as an extrudate, agglomerate, preferably an agglomerate.
  • Non- spray dried particles are preferred when it is desirable to incorporate high levels of alkoxylated anionic detersive surfactant in the composition
  • any non-ionic detersive surfactant, or at least part thereof can be incorporated into the composition in the form of a liquid spray-on, wherein the non-ionic detersive surfactant, or at least part thereof, in liquid form (e.g. in the form of a hot-melt) is sprayed onto the remainder of the composition.
  • the non-ionic detersive surfactant, or at least part thereof may be in included into a particulate for incorporation into the detergent composition of the invention and the non-ionic detersive surfactant, or at least part thereof, may be dry-added to the remainder of the composition.
  • the non-ionic surfactant, or at least part thereof may be in the form of a co-particulate admixture with a solid carrier material such as carbonate salt, sulphate salt, burkeite, silica or any mixture thereof.
  • Any non-ionic detersive surfactant, or at least part thereof, may be in a co-particulate admixture with either an alkoxylated anionic detersive surfactant, a non-alkoxylated anionic detersive surfactant or a cationic detersive surfactant.
  • the non-ionic detersive surfactant, or at least part thereof, may be agglomerated or extruded with either an alkoxylated anionic detersive surfactant, a non-alkoxylated anionic detersive surfactant or a cationic detersive surfactant.
  • the cationic detersive surfactant if present may be incorporated into the composition by incorporation in a particulate, such as a spray-dried powder, an agglomerate, an extrudate, a flake, a noodle, a needle, or any combination thereof.
  • a particulate such as a spray-dried powder, an agglomerate, an extrudate, a flake, a noodle, a needle, or any combination thereof.
  • the cationic detersive surfactant, or at least part thereof is in the form of a spray-dried powder or an agglomerate.
  • a detergent composition comprising granular components, and comprising at least two separate surfactant components or even at least three separate surfactant components: a first, a second and an optional third surfactant component.
  • These separate surfactant components may be present in separate particulates so that at least two surfactant components are separate from one another in the detergent composition.
  • the composition preferably comprises at least two separate surfactant components, each in particulate form. It may be preferred for the composition to comprise at least three separate surfactant components, each in particulate form.
  • the first surfactant component predominantly comprises an alkoxylated detersive surfactant.
  • predominantly comprises it is meant that the first surfactant component comprises greater than 50%, by weight of the first surfactant component, of an alkoxylated anionic detersive surfactant, preferably greater than 60%, or greater than 70%, or greater than 80%, or greater than 90% or even essentially 100%, by weight of the first surfactant component, of an alkoxylated anionic detersive surfactant.
  • the first surfactant component comprises less than 10%, by weight of the first surfactant component, of a non-alkoxylated anionic detersive surfactant, preferably less than 5%, or less than 2%, or even 0%, by weight of the first surfactant component, of a non-alkoxylated anionic detersive surfactant.
  • the first surfactant component is essentially free from non-alkoxylated anionic detersive surfactant.
  • essentially free from non-alkoxylated anionic detersive surfactant it is typically meant that the first surfactant component comprises no deliberately added non-alkoxylated anionic detersive surfactant. This is especially preferred in order to ensure that the composition has good dispensing and dissolution profiles, and also to ensure that the composition provides a clear wash liquor upon dissolution in water.
  • the first surfactant component comprises less than 10%, by weight of the first surfactant component, of a cationic detersive surfactant, preferably less than 5%, or less than 2%, or even 0%, by weight of the first surfactant component, of a cationic detersive surfactant.
  • the first surfactant component is essentially free from cationic detersive surfactant.
  • essentially free from cationic detersive surfactant it is typically meant that the first surfactant component comprises no deliberately added cationic detersive surfactant. This is especially preferred in order to reduce the degree of surfactant gelling in the wash liquor.
  • the first surfactant component is preferably in the form of a spray-dried powder, an agglomerate, an extrudate or a flake. If the first surfactant component is in the form of an agglomerate particle or an extrudate particle, then preferably the particle comprises from 20% to 65%, by weight of the particle, of an alkoxylated anionic detersive surfactant. If the first surfactant component is in spray-dried particle form, then preferably the particle comprises from 10wt% to 30wt%, by weight of the particle, of an alkoxylated anionic detersive surfactant.
  • the first surfactant component may be in the form of a co-particulate admixture with a solid carrier material.
  • the solid carrier material can be a sulphate salt and/or a carbonate salt, preferably sodium sulphate and/or sodium carbonate.
  • the second surfactant component predominantly comprises a non-alkoxylated detersive surfactant.
  • the second surfactant component comprises greater than 50%, by weight of the second surfactant component, of a non-alkoxylated anionic detersive surfactant, preferably greater than 60%, or greater than 70%, or greater than 80%, or greater than 90% or even essentially 100%, by weight of the second surfactant component, of a non-alkoxylated anionic detersive surfactant.
  • the second surfactant component comprises less than 10%, by weight of the second surfactant component, of an alkoxylated anionic detersive surfactant, preferably less than 5%, or less than 2%, or even 0%, by weight of the second surfactant component, of an alkoxylated anionic detersive surfactant.
  • the second surfactant component comprises less than 10%, by weight of the second surfactant component, of a cationic detersive surfactant, preferably less than 5%, or less than 2%, or even 0%, by weight of the second surfactant component, of a cationic detersive surfactant.
  • the second surfactant component is essentially free from alkoxylated anionic detersive surfactant.
  • alkoxylated anionic detersive surfactant it is typically meant that the second surfactant component comprises no deliberately added alkoxylated anionic detersive surfactant.
  • the second surfactant component is essentially free from cationic detersive surfactant.
  • essentially free from cationic detersive surfactant it is typically meant that the second surfactant component comprises no deliberately added cationic detersive surfactant. This is especially preferred in order to ensure that the composition has good dispensing and dissolution profiles, and also to ensure that the composition provides a clear wash liquor upon dissolution in water.
  • the second surfactant component may be in the form of a spray-dried powder, a flash-dried powder, an agglomerate or an extrudate. If the second surfactant component is in the form of an agglomerate particle, then preferably the particle from 5% to 50%, by weight of the particle, of a non-alkoxylated anionic detersive surfactant, or from 5wt% to 25wt% non-alkoxylated anionic detersive surfactant.
  • the second surfactant component may be in form of a co-particulate admixture with a solid carrier material.
  • the solid carrier material can be a sulphate salt and/or a carbonate salt, preferably sodium sulphate and/or sodium carbonate.
  • the detergent compositions of the invention may be substantially free of cationic surfactant, if present, the cationic surfactant may be present in a third surfactant component or may be incorporated into a spray-dried particle with at least some anionic surfactant. If present in a third component, it may be beneficial to have the third surfactant component predominantly comprising a cationic detersive surfactant. By predominantly comprises, it is meant the third surfactant component comprises greater than 50%, by weight of the third surfactant component, of a cationic detersive surfactant, preferably greater than 60%, or greater than 70%, or greater than 80%, or greater than 90% or even essentially 100%, by weight of the third surfactant component, of a cationic detersive surfactant.
  • the third surfactant component comprises less than 10%, by weight of the third surfactant component, of an alkoxylated anionic detersive surfactant, preferably less than 5%, or less than 2%, or even essentially 0%, by weight of the third surfactant component, of an alkoxylated anionic detersive surfactant.
  • the third surfactant component comprises less than 10%, by weight of the third surfactant component, of a non-alkoxylated anionic detersive surfactant, preferably less than 5%, or less than 2%, or even 0%, by weight of the third surfactant component, of a non-alkoxylated anionic detersive surfactant.
  • the third surfactant component is essentially free from alkoxylated anionic detersive surfactant.
  • alkoxylated anionic detersive surfactant it is typically meant that the third surfactant component comprises no deliberately added alkoxylated anionic detersive surfactant.
  • the third surfactant component is essentially free from non-alkoxylated anionic detersive surfactant.
  • non-alkoxylated anionic detersive surfactant By essentially free from non-alkoxylated anionic detersive surfactant it is typically meant that the third surfactant component comprises no deliberately added non-alkoxylated anionic detersive surfactant. This is especially preferred in order to ensure that the composition has good dispensing and dissolution profiles, and also to ensure that the composition provides a clear wash liquor upon dissolution in water.
  • the third surfactant component is preferably in the form of a spray-dried powder, a flash-dried powder, an agglomerate or an extrudate. If the third surfactant component is in the form of an agglomerate particle, then preferably the particle comprises from 5% to 50%, by weight of the particle, of cationic detersive surfactant, or from 5wt% to 25wt% cationic detersive surfactant.
  • the third surfactant component may be in form of a co-particulate admixture with a solid carrier material.
  • the solid carrier material can be a sulphate salt and/or a carbonate salt, preferably sodium sulphate and/or sodium carbonate.
  • the detergent ingredients can include one or more other detersive adjuncts or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition.
  • Usual detersive adjuncts of detergent compositions include the ingredients set forth in U.S. Pat. No. 3,936,537, Baskerville et al. and in Great Britain Patent Application No. 9705617.0, Trinh et al., published September 24, 1997 .
  • adjuncts are included in detergent compositions at their conventional art-established levels of use, generally from 0 wt% to about 80 wt% of the detergent ingredients, preferably from about 0.5 wt% to about 20wt % and can include color speckles, suds boosters, suds suppressors, anti-tarnish and/or anticorrosion agents, soil-suspending agents, soil release agents, dyes, fillers, optical brighteners, germicides, alkalinity sources, hydrotropes, antioxidants, enzymes, enzyme stabilizing agents, solvents, solubilizing agents, chelating agents, clay soil removal/anti-redeposition agents, polymeric dispersing agents, processing aids, fabric softening components, static control agents, bleaching agents, bleaching activators, bleach stabilizers, dye-transfer inhibitors, flocculants, fabric softeners, suds supressors, fabric integrity agents, perfumes, whitening agents, alkali metal sulphate salts, sulphamic acid, sodium sulphate and
  • Preferred zwitterionic surfactants comprise one or more quaternized nitrogen atoms and one or more moieties selected from the group consisting of: carbonate, phosphate, sulphate, sulphonate, and combinations thereof.
  • Preferred zwitterionic surfactants are alkyl betaines.
  • Other preferred zwitterionic surfactants are alkyl amine oxides.
  • Catanionic surfactants which are complexes comprising a cationic surfactant and an anionic surfactant may also be included. Typically, the molar ratio of the cationic surfactant to anionic surfactant in the complex is greater than 1:1, so that the complex has a net positive charge.
  • a preferred adjunct component is a bleaching agent.
  • the detergent composition comprises one or more bleaching agents.
  • the composition comprises (by weight of the composition) from 1% to 50% of one or more bleaching agent.
  • Preferred bleaching agents are selected from the group consisting of sources of peroxide, sources of peracid, bleach boosters, bleach catalysts, photo-bleaches, and combinations thereof.
  • Preferred sources of peroxide are selected from the group consisting of: perborate monohydrate, perborate tetra-hydrate, percarbonate, salts thereof, and combinations thereof.
  • Preferred sources of peracid are selected from the group consisting of: bleach activator typically with a peroxide source such as perborate or percarbonate, preformed peracids, and combinations thereof.
  • Preferred bleach activators are selected from the group consisting of: oxy-benzene-sulphonate bleach activators, lactam bleach activators, imide bleach activators, and combinations thereof.
  • a preferred source of peracid is tetra-acetyl ethylene diamine (TAED)and peroxide source such as percarbonate.
  • Preferred oxy-benzene-sulphonate bleach activators are selected from the group consisting of: nonanoyl-oxy-benzene-sulponate, 6-nonamido-caproyl-oxy-benzene-sulphonate, salts thereof, and combinations thereof.
  • Preferred lactam bleach activators are acyl- caprolactams and/or acyl-valerolactams.
  • a preferred imide bleach activator is N-nonanoyl-N-methyl-acetamide.
  • Preferred preformed peracids are selected from the group consisting of N,N-pthaloyl-amino-peroxycaproic acid, nonyl-amido-peroxyadipic acid, salts thereof, and combinations thereof.
  • the STW-composition comprises one or more sources of peroxide and one or more sources of peracid.
  • Preferred bleach catalysts comprise one or more transition metal ions.
  • Other preferred bleaching agents are di-acyl peroxides.
  • Preferred bleach boosters are selected from the group consisting of zwitterionic imines, anionic imine polyions, quaternary oxaziridinium salts, and combinations thereof.
  • Highly preferred bleach boosters are selected from the group consisting of: aryliminium zwitterions, aryliminium polyions, and combinations thereof. Suitable bleach boosters are described in US360568 , US5360569 and US5370826 .
  • a preferred adjunct component is an anti-redeposition agent.
  • the detergent composition comprises one or more anti-redeposition agents.
  • Preferred anti-redeposition agents are cellulosic polymeric components, most preferably carboxymethyl celluloses.
  • a preferred adjunct component is a chelant.
  • the detergent composition comprises one or more chelants.
  • the detergent composition comprises (by weight of the composition) from 0.01% to 10% chelant, or 0.01 to 5 wt% or 4 wt% or 2 wt%.
  • Preferred chelants are selected from the group consisting of: hydroxyethane-dimethylene-phosphonic acid (HEDP), 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), ethylene diamine tetra(methylene phosphonic) acid, diethylene triamine pentacetate, ethylene diamine tetraacetate, diethylene triamine penta(methyl phosphonic) acid, ethylene diamine disuccinic acid, and combinations thereof.
  • HEDP hydroxyethane-dimethylene-phosphonic acid
  • PBTC 2-phosphonobutane-1,2,4-tricarboxylic acid
  • ethylene diamine tetra(methylene phosphonic) acid diethylene triamine pen
  • a further preferred chelant is an anionically modified catechol.
  • An anionically modified catechol means 1,2-benzenediol having one or two anionic substitutions on the benzene ring. The anionic substitutions may be selected from sulfonate, sulfate, carbonate, phosphonate, phosphate, fluoride, and mixtures thereof.
  • One embodiment of an anionically modified catechol having two sulfate moieties having a sodium cation on the benzene ring is 4,5-dihydroxy-m-benzenedisulfonic acid, disodium salt (Tiron®).
  • the anionically modified catechol is essentially free (less than 3%) of catechol (1,2-benzenediol), to avoid skin irritation when present.
  • a preferred adjunct component is a dye transfer inhibitor.
  • the detergent composition comprises one or more dye transfer inhibitors.
  • dye transfer inhibitors are polymeric components that trap dye molecules and retain the dye molecules by suspending them in the wash liquor.
  • Preferred dye transfer inhibitors are selected from the group consisting of polyvinylpyrrolidones, polyvinylpyridine N-oxides, polyvinylpyrrolidone-polyvinylimidazole copolymers, and combinations thereof.
  • Preferred adjunct components include other enzymes.
  • Preferred enzymes are selected from then group consisting of: amylases, arabinosidases, carbohydrases, cellulases, chondroitinases, cutinases, dextranases, esterases, ⁇ -glucanases, glucoamylases, hyaluronidases, keratanases, laccases, ligninases, lipoxygenases, malanases, mannanases, oxidases, pectinases, pentosanases, peroxidases, phenoloxidases, phospholipases, proteases, pullulanases, reductases, tannases, transferases, xylanases, xyloglucanases, and combinations thereof.
  • Preferred additional enzymes are selected from the group consisting of: lipases, amylases, carbohydrases, cellulases, proteases, and combinations thereof
  • Preferred adjunct components include fluorescent whitening agents.
  • Any fluorescent whitening agent suitable for use in a laundry detergent composition may be used in the composition of the present invention.
  • the most commonly used fluorescent whitening agents are those belonging to the classes of diaminostilbene-sulphonic acid derivatives, diarylpyrazoline derivatives and bisphenyl-distyryl derivatives.
  • diaminostilbene-sulphonic acid derivative type of fluorescent whitening agents include the sodium salts of: 4,4'-bis-(2-diethanolamino-4-anilino-s-triazin-6-ylamino) stilbene-2,2'-disulphonate, 4,4'-bis-(2,4-dianilino-s-triazin-6-ylamino) stilbene-2.2'-disulphonate, 4,4'-bis-(2-anilino-4(N-methyl-N-2-hydroxy-ethylamino)-s-triazin-6-ylamino) stilbene-2,2'-disulphonate, 4,4'-bis-(4-phenyl-2,1,3-triazol-2-yl)stilbene-2,2'-disulphonate, 4,4'-bis-(2-anilino-4(1-methyl-2-hydroxy-ethylamino)-s-triazin-6-ylamino) stilbene-2,2'-disul
  • Tinopal® DMS is the disodium salt of 4,4'-bis-(2-morpholino-4 anilino-s-triazin-6-ylamino) stilbene disulphonate.
  • Tinopal® CBS is the disodium salt of 2,2'-bis-(phenyl-styryl) disulphonate.
  • fluorescent whitening agents of the structure: wherein R1 and R2, together with the nitrogen atom linking them, form an unsubstituted or C1-C4 alkyl-substituted morpholino, piperidine or pyrrolidine ring, preferably a morpholino ring (commercially available as Parawhite KX, supplied by Paramount Minerals and Chemicals, Mumbai, India).
  • fluorescers suitable for use in the invention include the 1-3-diaryl pyrazolines and the 7-alkylaminocoumarins.
  • Typical levels of fluorescent whitening agent in the composition are from 0.03-0.5%, preferably 0.05 % to 0. 3 % by weight.
  • a preferred adjunct component is a fabric integrity agent.
  • the detergent composition comprises one or more fabric integrity agents.
  • fabric integrity agents are polymeric components that deposit on the fabric surface and prevenat fabric damage during the laundering process.
  • Preferred fabric integrity agents are hydrophobically modified celluloses. These hydrophobically modified celluloses reduce fabric abrasion, enhance fibre-fibre interactions and reduce dye loss from the fabric.
  • a preferred hydrophobically modified cellulose is described in WO99/14245 .
  • Other preferred fabric integrity agents are polymeric components and/or oligomeric components that are obtainable, preferably obtained, by a process comprising the step of condensing imidazole and epichlorhydrin.
  • a preferred adjunct component is a salt.
  • the detergent composition comprises one or more salts.
  • the salts can act as alkalinity agents, buffers, builders, co-builders, encrustation inhibitors, fillers, pH regulators, stability agents, and combinations thereof.
  • the detergent composition comprises (by weight of the composition) from 5% to 60% salt.
  • Preferred salts are alkali metal salts of aluminate, carbonate, chloride, bicarbonate, nitrate, phosphate, silicate, sulphate, and combinations thereof.
  • Other preferred salts are alkaline earth metal salts of aluminate, carbonate, chloride, bicarbonate, nitrate, phosphate, silicate, sulphate, and combinations thereof.
  • Especially preferred salts are sodium sulphate, sodium carbonate, sodium bicarbonate, sodium silicate, sodium sulphate, and combinations thereof.
  • the alkali metal salts and/or alkaline earth metal salts may be anhydrous.
  • a preferred adjunct component is a soil release agent.
  • the detergent composition comprises one or more soil release agents.
  • soil release agents are polymeric compounds that modify the fabric surface and prevent the redeposition of soil on the fabric.
  • Preferred soil release agents are copolymers, preferably block copolymers, comprising one or more terephthalate unit.
  • Preferred soil release agents are copolymers that are synthesised from dimethylterephthalate, 1,2-propyl glycol and methyl capped polyethyleneglycol.
  • Other preferred soil release agents are anionically end capped polyesters.
  • the detergent compositions of the invention may comprise softening agents for softening through the wash such as clay optionally also with flocculant and enzymes. Further more specific description of suitable detergent components can be found in WO97/11151 .
  • the invention also includes methods of washing textiles comprising contacting textiles with an aqueous solution comprising the detergent composition of the invention.
  • the invention may be particularly beneficial at low water temperatures such as below 30°C or below 25 or 20°C.
  • the aqueous wash liquor will comprise at least 100 ppm, or at least 500ppm of the detergent composition.
  • Granular laundry detergent compositions designed for handwashing or top-loading washing machines.
  • Polyacrylate MW 4500 1 0.6 1 1 1.5 1 Carboxy Methyl Cellulose 1 0.3 1 1 1 1 1 1 1 Celluclean® (15.6mg/g) 0.1 0.2 0.1 0.2 0.1 0.1 Savinase
  • Granular laundry detergent compositions designed for front-loading automatic washing machines. 7 (wt%) 8 (wt%) 9 (wt%) 10 (wt%) 11 (wt%) 12 (wt%) Linear alkylbenzenesulfonate 8 7.1 7 6.5 7.5 7.5 AE3S 0 4.8 0 5.2 4 4 Alkylsulfate 1 0 1 0 0 0 AE7 2.2 0 3.2 0 0 0 C 10-12 Dimethyl hydroxyethylammonium chloride 0.75 0.94 0.98 0.98 0 0 Crystalline layered silicate ( ⁇ -Na 2 Si 2 O 5 ) 2.0 0 2.0 0 0 0 0 Zeolite A 7 0 7 0 2 2 Citric Acid 3 5 3 4 2.5 3 Sodium Carbonate 15 20 14 20 23 23 Silicate 2R (SiO 2 :Na 2 O at ratio 2:1) 0.08 0 0.11 0 0 0 Soil release agent 0.75 0.72 0.71 0.72 0 0 Acrylic Acid
  • Reactive Blue 19 sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S-ACMC.
  • Soil release agent is Repel-o-tex® PF, supplied by Rhodia, Paris, France
  • Acrylic Acid/Maleic Acid Copolymer is molecular weight 70,000 and acrylate:maleate ratio 70:30, supplied by BASF, Ludwigshafen, Germany
  • Na salt of Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer (EDDS) was supplied by Octel, Ellesmere Port, UK Hydroxyethane di phosphonate (HEDP) was supplied by Dow Chemical, Midland, Michigan, USA Suds suppressor agglomerate was supplied by Dow Coming, Midland, Michigan, USA
EP06115574A 2006-06-16 2006-06-16 Waschmittelzusammensetzungen Withdrawn EP1882731A1 (de)

Priority Applications (28)

Application Number Priority Date Filing Date Title
EP06115574A EP1882731A1 (de) 2006-06-16 2006-06-16 Waschmittelzusammensetzungen
AT06116782T ATE523583T1 (de) 2006-06-16 2006-07-07 Waschmittelzusammensetzungen
EP06116782A EP1867707B1 (de) 2006-06-16 2006-07-07 Waschmittelzusammensetzungen
ES06116782T ES2373051T3 (es) 2006-06-16 2006-07-07 Composiciones detergentes.
EP06124858.9A EP1867708B1 (de) 2006-06-16 2006-11-27 Waschmittelzusammensetzungen
HUE06124858A HUE032793T2 (en) 2006-06-16 2006-11-27 Detergent compositions
PL06124858T PL1867708T3 (pl) 2006-06-16 2006-11-27 Kompozycje detergentu
ES06124858.9T ES2632356T3 (es) 2006-06-16 2006-11-27 Composiciones detergentes
RU2008145092/10A RU2430148C2 (ru) 2006-06-16 2007-06-15 Моющие композиции
PCT/IB2007/052308 WO2007144855A1 (en) 2006-06-16 2007-06-15 Detergent compositions
JP2009514977A JP2009539399A (ja) 2006-06-16 2007-06-15 洗剤組成物
CN200780022556.9A CN101473023B (zh) 2006-06-16 2007-06-15 洗涤剂组合物
US11/818,648 US20100022431A1 (en) 2006-06-16 2007-06-15 Detergent Compositions
BRPI0713668-4A BRPI0713668A2 (pt) 2006-06-16 2007-06-15 composições detergentes
MX2008016228A MX298662B (es) 2006-06-16 2007-06-15 Composiciones detergentes.
MX2008016229A MX295029B (es) 2006-06-16 2007-06-15 Composiciones detergentes.
JP2009513843A JP5882561B2 (ja) 2006-06-16 2007-06-15 洗剤組成物
BRPI0712969A BRPI0712969A8 (pt) 2006-06-16 2007-06-15 composições detergentes
ARP070102655A AR061495A1 (es) 2006-06-16 2007-06-15 Composiciones detergentes
PCT/IB2007/052310 WO2007144857A1 (en) 2006-06-16 2007-06-15 Detergent compositions
ARP070102654A AR061494A1 (es) 2006-06-16 2007-06-15 Composiciones detergentes
CA2652774A CA2652774A1 (en) 2006-06-16 2007-06-15 Detergent compositions
CNA2007800225446A CN101473024A (zh) 2006-06-16 2007-06-15 洗涤剂组合物
US11/818,652 US20090291875A1 (en) 2006-06-16 2007-06-15 Detergent compositions
CA002652776A CA2652776A1 (en) 2006-06-16 2007-06-15 Detergent compositions comprising an alkaline bacterial enzyme having endo-beta-1,4-glucanase activity
ZA200810075A ZA200810075B (en) 2006-06-16 2008-11-26 Detergent compositions
ZA200810073A ZA200810073B (en) 2006-06-16 2008-11-26 Detergent compositions
JP2015075389A JP2015157953A (ja) 2006-06-16 2015-04-01 洗剤組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06115574A EP1882731A1 (de) 2006-06-16 2006-06-16 Waschmittelzusammensetzungen

Publications (1)

Publication Number Publication Date
EP1882731A1 true EP1882731A1 (de) 2008-01-30

Family

ID=38779540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06115574A Withdrawn EP1882731A1 (de) 2006-06-16 2006-06-16 Waschmittelzusammensetzungen

Country Status (6)

Country Link
EP (1) EP1882731A1 (de)
CN (2) CN101473023B (de)
AT (1) ATE523583T1 (de)
BR (1) BRPI0712969A8 (de)
ES (1) ES2373051T3 (de)
ZA (2) ZA200810075B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119342A1 (en) * 2009-04-15 2010-10-21 Tata Chemicals Limited A detergent composition and a process for preparing the same
WO2011005905A1 (en) * 2009-07-09 2011-01-13 The Procter & Gamble Company A mildly alkaline, low-built, solid fabric treatment detergent composition comprising phthalimido peroxy caproic acid
CN103344721A (zh) * 2013-07-09 2013-10-09 中国检验检疫科学研究院 一种测定洗涤用品中荧光增白剂的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015026442A2 (pt) * 2013-04-26 2017-07-25 Procter & Gamble grânulos de detergente com componente expansível em água
CN105164242A (zh) * 2013-04-26 2015-12-16 宝洁公司 具有水可溶胀组分的洗涤剂颗粒
KR102154005B1 (ko) * 2013-07-19 2020-09-09 라이온 가부시키가이샤 와이프 오프용의 액체 세정제
DK3088505T3 (da) * 2015-04-29 2020-08-03 Procter & Gamble Fremgangsmåde til behandling af et tekstilstof
EP3464536A1 (de) * 2016-05-26 2019-04-10 Novozymes A/S Verwendung von enzymen, reinigungsmittel und verfahren zum waschen
CN112006584A (zh) * 2020-09-16 2020-12-01 江苏省健尔康医用敷料有限公司 一种多功能湿巾及制备方法
CN113433085B (zh) * 2021-06-24 2022-11-29 四川新华西乳业有限公司 一种原料乳中脂肪酶活力的检测方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009133A1 (en) * 1997-08-14 1999-02-25 The Procter & Gamble Company Detergent compositions comprising a mannanase and a soil release polymer
WO2002099091A2 (en) * 2001-06-06 2002-12-12 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
WO2004053039A2 (en) * 2002-12-11 2004-06-24 Novozymes A/S Detergent composition comprising endo-glucanase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009133A1 (en) * 1997-08-14 1999-02-25 The Procter & Gamble Company Detergent compositions comprising a mannanase and a soil release polymer
WO2002099091A2 (en) * 2001-06-06 2002-12-12 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
WO2004053039A2 (en) * 2002-12-11 2004-06-24 Novozymes A/S Detergent composition comprising endo-glucanase

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119342A1 (en) * 2009-04-15 2010-10-21 Tata Chemicals Limited A detergent composition and a process for preparing the same
WO2011005905A1 (en) * 2009-07-09 2011-01-13 The Procter & Gamble Company A mildly alkaline, low-built, solid fabric treatment detergent composition comprising phthalimido peroxy caproic acid
CN102471738A (zh) * 2009-07-09 2012-05-23 宝洁公司 包含苯二甲酰亚氨基过氧己酸的轻度碱性低复配固体织物处理洗涤剂组合物
CN102471738B (zh) * 2009-07-09 2015-11-25 宝洁公司 包含苯二甲酰亚氨基过氧己酸的轻度碱性低复配固体织物处理洗涤剂组合物
CN103344721A (zh) * 2013-07-09 2013-10-09 中国检验检疫科学研究院 一种测定洗涤用品中荧光增白剂的方法
CN103344721B (zh) * 2013-07-09 2016-03-30 中国检验检疫科学研究院 一种测定洗涤用品中荧光增白剂的方法

Also Published As

Publication number Publication date
ES2373051T3 (es) 2012-01-31
CN101473023B (zh) 2014-07-23
BRPI0712969A2 (pt) 2012-12-18
ZA200810075B (en) 2009-12-30
ZA200810073B (en) 2009-12-30
CN101473023A (zh) 2009-07-01
CN101473024A (zh) 2009-07-01
BRPI0712969A8 (pt) 2019-01-02
ATE523583T1 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
EP1867707B1 (de) Waschmittelzusammensetzungen
EP1867708B1 (de) Waschmittelzusammensetzungen
EP1882731A1 (de) Waschmittelzusammensetzungen
US8859480B2 (en) Detergent compositions
EP1876227B2 (de) Waschmittelzusammensetzungen
EP1726636B2 (de) Waschmittelzusammensetzungen
US9062279B2 (en) Laundry detergent compositions comprising lipolytic or lipase enzymes
EP1698689A1 (de) Waschmittelzusammensetzungen
MX2009000141A (es) Composiciones detergentes.
US20090291875A1 (en) Detergent compositions
EP1712610B1 (de) Waschmittelzusammensetzungen
US20070197423A1 (en) Detergent compositions
EP1712611B1 (de) Waschmittelzusammensetzungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080801