EP1882299B1 - Bidirektionaler batteriewechselrichter - Google Patents

Bidirektionaler batteriewechselrichter Download PDF

Info

Publication number
EP1882299B1
EP1882299B1 EP06742297A EP06742297A EP1882299B1 EP 1882299 B1 EP1882299 B1 EP 1882299B1 EP 06742297 A EP06742297 A EP 06742297A EP 06742297 A EP06742297 A EP 06742297A EP 1882299 B1 EP1882299 B1 EP 1882299B1
Authority
EP
European Patent Office
Prior art keywords
converter
battery
transformer
circuit part
semiconductor switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06742297A
Other languages
English (en)
French (fr)
Other versions
EP1882299A1 (de
Inventor
Andreas Falk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMA Solar Technology AG
Original Assignee
SMA Solar Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMA Solar Technology AG filed Critical SMA Solar Technology AG
Publication of EP1882299A1 publication Critical patent/EP1882299A1/de
Application granted granted Critical
Publication of EP1882299B1 publication Critical patent/EP1882299B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3372Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a bidirectional battery inverter according to the preamble of the independent claims.
  • Bidirectional inverters serve on the one hand, a DC battery voltage of, for example, 12 volts in a 50 Hz or 60 Hz AC voltage of z. B. 230 volts, but also on the other hand to charge the battery from the AC voltage.
  • the flow of energy takes place both from the battery to a DC / AC converter and from the DC / AC converter to the battery.
  • the problem arises that occur at such small DC voltages relatively large conduction losses.
  • From the EP 1 458 084 A2 is a bidirectional DC-DC converter known. This comprises an input-side bridge circuit, an output-side bridge circuit and a transformer connected between the two circuits with a resonance capacitor and a resonance inductance.
  • a DC-AC converter with a transformer, which has two windings with center tap on the primary side, which is a power electronic one Midpoint circuit is connected to semiconductor switches and secondary side has a winding is in the US 6,507,503 B2 shown and described.
  • WO 2005/036684 From the WO 2005/036684 is a bidirectional battery inverter known. This includes a DC / DC converter and a DC / AC converter.
  • phase-shift For each active switch of this circuit, a capacitor is connected in parallel, so that each time a switching operation of the parallel-connected capacitor is used. This transhipment process is carried out in such a way that a voltage-free switching on and a soft switching of the switches is set.
  • phase-shift Such methods for reducing the switching losses are known, as a so-called "phase-shift" method.
  • phase shifting only switching on is lossless. When switching off, losses occur.
  • IGBT switches are poorly suited for phase-shifting, so that in practice only GTOs can be used.
  • Another limitation is that the circuit only works in a full bridge. The use of a half bridge is not possible. This circuit also has the disadvantage that the frequency is very strong the power and the voltage difference depends. This results in different frequencies and a complicated control. In addition, this solution has a high reactive power and a poor component utilization.
  • the WO96 / 18937A teaches to use a step-up / step-down converter for a bidirectional inverter.
  • a battery inverter with a high-frequency transformer which forms a resonant circuit with a resonant capacitor.
  • the transformer On the primary side, the transformer has two windings with a center tap, which is connected to a power electronic center circuit with semiconductor switches.
  • the invention has for its object to provide an inverter which has a high efficiency.
  • the invention makes use of all the advantages of resonant switching without the disadvantage of large forward losses on the low-voltage side to have to accept.
  • a high switching frequency can be used.
  • a planar transformer which is provided according to a preferred embodiment, can be used.
  • the present invention combines the advantages of low on-line losses and the potential of a planar transformer without the disadvantages of inconveniently high transformer apparent power and primary switching overvoltages, limited operating range, and high low and high switching losses on the low voltage side.
  • a DC-AC converter circuit part which is located on the output side of the inverter and has a step-up converter which is interposed between the DC-DC converter and the DC-AC converter circuit part.
  • the clock frequency of the half-bridge circuit is below the resonance frequency which is determined by the transformer leakage inductance and the resonance capacitor, depending on whether such a capacitor is provided or two capacitors connected in series.
  • the resonant frequency results from the stray inductance of the transformer and the series resonant capacitance or from the stray inductance of the transformer and in series switched capacitors.
  • the clock frequency of the half-bridge circuit is below the resonant frequency resulting from the stray inductance of the transformer and the series resonant capacitance, then it should be turned on whenever the current is zero, since in that case the switching losses are low or absent.
  • the transformer has according to an embodiment on the primary side two windings with a center tap, which is connected to a power electronic center circuit with semiconductor switches, and on the secondary side, a winding is present at which the resonant capacitor is connected in series.
  • a division takes place in offset clocking subcircuits.
  • the synchronous control has the advantage that the effective current load in the capacitors of the inverter is reduced.
  • the transformer is designed as a planar transformer, this being provided with two printed circuit boards.
  • Both the Transformer core, as well as the circuit boards are housed in a housing.
  • a cast housing is cheaper to produce because protrusions in the cast housing, which are required when using such a planar transformer, are easier to manufacture.
  • a planar transformer with two printed circuit boards is cheaper to produce than one with a large printed circuit board.
  • a large PCB is more expensive than two small PCBs.
  • Fig. 1 shows an inverter 1 according to the invention, for example, for the supply of AC consumers in isolated networks. This is connected to a battery 2.
  • the inverter 1 comprises a DC / DC converter circuit part 3 with a capacitor 4 connected in parallel to the battery 2 and an HF transformer HFT.
  • the inverter 1 includes a DC / AC converter circuit part 5 located on the output side of the inverter 1 and a step-up converter 8 interposed between the DC / DC converter circuit part 3 and the DC / AC conversion circuit part 5.
  • the DC / AC converter circuit part 5 is single-phase.
  • the inverter 1 is designed as a bidirectional battery inverter and is used to generate an AC output voltage from the battery voltage in a discharge operation and to charge the battery 2 in the charging mode.
  • the HF transformer HFT forms a resonant circuit with a resonance capacitor 6.
  • Fig. 2 shows an equivalent circuit diagram of the transformer HFT.
  • the transformer HFT on the primary side two windings 11, 12 with a center tap 20, which is connected to a power electronic center circuit with semiconductor switches 21, 31, wherein on the secondary side, a winding 13 is provided, at which the resonant capacitor 6 is connected in series.
  • the semiconductor switches 21, 31 form a center circuit.
  • Fig. 2 the primary-side leakage inductances 15, 16 and the secondary-side leakage inductance 17 are shown.
  • the reference numeral 14 indicates the transformer core.
  • the reference numeral 20 denotes the center tap.
  • Reference numeral 10 denotes an additional inductance.
  • the semiconductor switches 21, 31 switch alternately and generate the AC voltage required for the voltage transformation, which is again converted on the secondary side by the semiconductor elements 41, 51, 61, 71 in bridge circuit into a DC voltage and smoothed by a smoothing capacitor 7.
  • the DC-DC conversion part operates at a constant operating point, so that its input and output voltage are in a fixed - predetermined by the transmission ratio of the transformer - relationship to each other.
  • Planar transformers can be used meaningfully only for frequencies above 50 kHz.
  • the resonant frequency of the AC circuit which consists of stray inductances of the transformer HFT and a series resonance capacity 6 (FIG. Fig. 1 ), is above the clock frequency of the semiconductor switch.
  • the semiconductor switches 21, 31 can be switched on as well as switched off.
  • the use of the Hoch-Tiefsetzstellers 8 is provided in order to use the circuit for highly fluctuating battery voltages can.
  • the step-up converter 8 is avoided that the intermediate voltage at low battery voltages so far breaks that no output rated voltage is reached more. If the pulse width is reduced in charging mode with low battery voltage in the DC-DC converter, resonant operation can no longer be guaranteed. This switching losses would be caused by a non-optimal operation.
  • a step-up converter 8 is used, which adjusts the variable battery voltage to a constant voltage across the capacitor 19.
  • the up-down converter 8 consists of a reactor 18, the switching elements 141 and 151 and the capacitor 19. When the input voltage (Battery voltage) is higher than z. B. 12 volts, then the voltage across the capacitor 19 increases in proportion to the input voltage. Then the Hoch-Tiefsetzeller no longer needs to be clocked.
  • the transformer circuit may be constructed in two subcircuits with two RF transformers HFT1 and HFT21.
  • the arrangements are clocked offset, whereby a lower capacitor load and a low RF ripple current is given in the DC source.
  • Both of them in Fig. 3 shown subcircuits are designed as a half-bridge arrangement. In an embodiment with half bridges results in only half as large Trafoüber GmbHshunt. A smaller transformer gear ratio is advantageous because then the leakage inductance 15 and 16 transformed by the gear ratio of the high-voltage side is not too large.
  • a half-bridge arrangement requires fewer semiconductor switches and thus causes less costs.
  • the in Fig. 4 Planar transformer 29 shown is embedded in a cast aluminum housing 24 and has two printed circuit boards 22, 23.
  • the power semiconductors can be designed in SMD construction.
  • the transformer has a primary winding 26 and a secondary winding 27 which are arranged on a printed circuit board 25.
  • the throttle core 30 is provided with an air gap and is also integrated in the printed circuit board 25. It is magnetized only by the secondary winding 27 and not by the primary winding 26.
  • Fig. 6 an embodiment of the circuit is shown in which the capacitors 34, 35 together with the leakage inductance of HFT form a resonant circuit.
  • the parasitic capacitors of the semiconductor switches 21, 31 before switching on by the currents in the main inductance of the transformer discharged to particularly low values. This results in smaller switch-on losses.
  • transformer currents and voltages on the secondary side correspond to the representation in Fig. 7.
  • Fig. 7 shows current 60 and voltage 50 on the transformer secondary side.
  • the DC / AC converter 5 may be implemented as an H-bridge for converting a single-phase AC voltage or as a three-phase bridge for converting a three-phase AC voltage.
  • the DC / AC converter 5 is always operated in such a way that the voltage across the capacitor 19 is always greater than the peak value of the mains voltage.
  • the DC / AC converter can be operated in a PFC mode (Power Factor Correction) and sinusoidal current in phase to the mains voltage can be taken from the grid.
  • a sinusoidal AC voltage can be generated at any current form.
  • a switched N can be added as a fourth phase and the entire circuit can be designed such that the capacitor 19 consists of two capacitors with a grounded center, each capacitor being separate is charged or discharged by a resonant converter with a downstream up-down converter.
  • the semiconductors 21, 31, 41, 51, 61, 71, 141, 151 may be implemented as MOSFETs, IGBTs bipolar transistors or GTOs.
  • the parallel Diodes can be separate components or consist of parasitic diodes of the MOSFETs used.
  • the DC-Gluelle 2 may be a battery, a fuel cell, a generator-fed DC link or a double-layer capacitor (Ultracap).
  • the resonant converter can be used to advantage in automobiles to enable the exchange of energy between various DC sources such as traction battery, double-layer capacitor, auxiliary battery, and so on.
  • the direction of energy flow can reverse during acceleration and braking.
  • planar transformer can advantageously be designed so that the secondary leakage inductance is increased by the integration of an additional inductor in the secondary transformer winding. That can be in the in Fig. 5 done way.
  • the semiconductor voltages of the semiconductors 21, 31, 221 and 231 are not limited to the capacitor voltage of the capacitor 4.
  • the capacitor voltage is not limited to twice the capacitor voltage of the capacitor 4, but there is still the voltage drop across the primary side portion of the resonance inductance of the transformers HFT 1 and HFT 21 added. This effect can only be controlled if the major part of the resonance inductance is shifted to the secondary side. This is achieved by the described transformer construction and / or by additional resonance inductances 10 on the secondary side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Ac Motors In General (AREA)

Description

  • Die Erfindung betrifft einen bidirektionalen Batteriewechselrichter nach dem Oberbegriff der unabhängigen Ansprüche.
  • Bidirektionale Wechselrichter dienen einerseits dazu, eine DC-Batteriespannung von beispielsweise 12 Volt in eine 50 Hz oder 60 Hz AC-Spannung von z. B. 230 Volt umzuwandeln, aber auch andererseits dazu, die Batterie aus der AC-Spannung aufzuladen. Der Energiefluss findet sowohl von der Batterie zu einem DC/AC-Wandler statt als auch vom DC/AC-Wandler zur Batterie statt. Hierbei tritt das Problem auf, dass bei solchen kleinen DC-Spannungen relativ große Durchlassverluste eintreten.
  • Ein Wechselrichter mit einer primärseitigen Halbbrückenanordnung und einer sekundärseitigen Vollbrückenanordnung ist aus der EP 0820 893 A2 bekannt.
  • Aus der EP 1 458 084 A2 ist ein bidirektionaler DC-DC-Wandler bekannt. Dieser umfasst eine eingangsseitige Brückenschaltung, eine ausgangsseitige Brückenschaltung und einen zwischen beiden Schaltungen geschalteten Transformator mit einem Resonanzkondensator und eine Resonanzinduktivität.
  • Ein DC-AC-Wandler mit einem Transformator, der primärseitig zwei Wicklungen mit Mittenabgriff aufweist, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern geschaltet ist und sekundärseitig eine Wicklung aufweist, ist in der US 6,507,503 B2 gezeigt und beschrieben.
  • Weitere Wandler-Schaltungen sind in der DE 40 13 506 A1 und in der US 2003/0142513 A1 offenbart.
  • Aus der WO 2005/036684 ist ein bidirektioneller Batterie-Wechselrichter bekannt. Dieser umfasst einen DC/DC-Wandler und einen DC/AC-Wandler.
  • Die Veröffentlichung HOFSAJER I W ET AL "A comparative study of some electromagnetically integrated structures in hybrid technology", POWER ELECTRONICS SPECIALISTS CONFERENCE, 1998, PESC 98 RECORD. 29TH ANNUAL IEEE FUKUOKA, JAPAN 17-22 MAY 1998, NEW YORK, USA, IEEE, US, Bd. 2, 17.Mai 1998, Seiten 1957-1963, XP 010294677, ISBN: 0-7803-4489-8, beschreibt einen bidirektionellen DC-DC-Wechselrichter mit einer 12V Eingangsgleichspannung, die durch zwei Schalter einer Transformator-Mittelpunktschaltung in Wechselspannung umgewandelt wird. Sekundärseitig ist eine Vollbrücke zur Umwandlung der Wechselspannung in Gleichspannung vorgesehen. Zu jedem aktiven Schalter dieser Schaltung ist ein Kondensator parallel geschaltet, so dass bei jedem Schaltvorgang eine Umladung des parallel geschalteten Kondensators einsetzt. Dieser Umladeprozess wird so ausgeführt, dass ein spannungsloses Einschalten und ein weiches Schalten der Schalter eingestellt wird. Solche Verfahren zur Verminderung der Schaltverluste sind bekannt, und zwar als sogenannte "Phase-shift"-Verfahren. Beim Phase-shifting erfolgt nur das Einschalten verlustlos. Beim Ausschalten entstehen Verluste. Außerdem sind IGBT Schalter für das Phase-shifting schlecht geeignet, so dass in der Praxis nur GTOs eingesetzt werden können. Ein weitere Einschränkung ist, dass die Schaltung nur in einer Vollbrücke funktioniert. Der Einsatz einer Halbbrücke ist nicht möglich. Diese Schaltung hat außerdem den Nachteil, dass die Frequenz sehr stark von der Leistung und der Spannungsdifferenz abhängt. Dadurch ergeben sich unterschiedliche Frequenzen und eine komplizierte Ansteuerung. Zudem hat diese Lösung eine hohe Blindleistung und eine schlechte Bauteilausnutzung.
  • Die WO96/18937 A lehrt bei einem bidirektionellen Wechselrichter einen Hoch-/Tiefsetzsteller einzusetzen.
  • Aus der JP 2003 088118 A ist ein Batterie-Wechselrichter mit einem Hochfrequenz-Transformator bekannt, der mit einem Resonanzkondensator einen Resonanzkreis bildet. Primärseitig weist der Transformator zwei Wicklungen mit einem Mittenabgriff auf, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern geschaltet ist.
  • Die Veröffentlichung ENRICO DALLAGO ET AL: "Advantages in High-Frequency Power Conversion by Delta-Sigma Modulation" IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I; FUNDAMENTAL THEORY AND APPLICATIONS; IEEE INC. NEW YORK, US, Bd. 44, Nr 8, August 1997, Seiten 712-721, XP 011011594 ISSN: 1057-7122 lehrt einen Resonanzkondensator bei einem bidirektionellen resonanten DC-DC-Wandler einzusetzen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Wechselrichter zu schaffen, der einen hohen Wirkungsgrad aufweist.
  • Diese Aufgabe wird durch einen Wechselrichter mit den kennzeichnenden Merkmalen der unabhängigen Ansprüche in Verbindung mit den Merkmalen des Oberbegriffs gelöst.
  • Durch die Erfindung werden alle Vorteile des resonanten Schaltens genutzt, ohne den Nachteil großer Durchlassverluste auf der Unterspannungsseite in Kauf nehmen zu müssen. Hierbei kann eine hohe Schaltfrequenz eingesetzt werden. Dadurch kann ein Planartransformator, der nach einer bevorzugten Ausführungsform vorgesehen ist, eingesetzt werden.
  • Die vorliegende Erfindung kombiniert die Vorteile von geringen Durchlassverlusten und der Einsatzmöglichkeit eines Planartransformators, ohne die Nachteile einer ungünstig hohen Transformatorscheinleistung sowie Schaltüberspannungen auf der Primärseite, einen eingeschränkten Betriebsbereich und große Durchlass- sowie Schaltverluste auf der Niederspannungsseite in Kauf nehmen zu müssen. Oder anders ausgedrückt bedeutet dies, dass mit der erfindungsgemäßen Topologie gegenüber dem Stand der Technik eine sehr verlustarme vollresonante Schaltung auf der Hochstromseite dadurch ermöglicht wird, dass in Betriebsbereichen, wo eine Spannungsanpassung erfolgen muss, die Anpassstufe (Hoch-Tiefsetzsteller) aktiviert wird.
  • Erfindungsgemäß ist vorgesehen, dass ein DC-AC-Wandlerschaltungsteil vorhanden ist, das an der Ausgangsseite des Wechselrichters liegt und einen Hoch-Tiefsetzsteller aufweist, der zwischen dem DC-DC-Wandler und dem DC-AC-Wandlerschaltungsteil zwischengeschaltet ist. Dadurch werden Schaltverluste durch einen nicht optimalen Betrieb, in dem der DC-DC-Wandler nicht resonant geschaltet werden kann und eine ungünstige Strom-/Spannungsauslegung im optimalen Betriebspunkt vermieden.
  • Erfindungsgemäß liegt die Taktfrequenz der Halbbrückenschaltung unterhalb der Resonanzfrequenz, die von der Transformatorstreuinduktivität und dem Resonanzkondensator bestimmt wird, abhängig davon, ob ein solcher Kondensator vorgesehen ist oder zwei in Reihe geschaltete Kondensatoren. Die Resonanzfrequenz ergibt sich aus der Streuinduktivität des Transformators und der Reihenresonanzkapazität bzw. aus der Streuinduktivität des Transformators und den in Reihe geschalteten Kondensatoren. Durch die Wahl dieser Taktfrequenz werden die Halbleiter sowohl stromlos ein- als auch abgeschaltet.
  • Wenn die Taktfrequenz der Halbbrückenschaltung unterhalb der Resonanzfrequenz liegt, die sich aus der Streuinduktivität des Transformators und der Reihenresonanzkapazität ergibt, dann sollte immer dann eingeschaltet werden, wenn der Strom null ist, da in diesem Fall die Schaltverluste gering sind bzw. nicht vorhanden sind.
  • Der Transformator weist gemäß einer Ausführungsform primärseitig zwei Wicklungen mit einem Mittenabgriff auf, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern geschaltet ist, und sekundärseitig eine Wicklung vorhanden ist, an der der Resonanzkondensator in Serie geschaltet ist.
  • Gemäß einer anderen Ausführungsform erfolgt eine Aufteilung in versetzt taktende Teilschaltungen.
  • Dadurch, dass ein resonant schaltender Teil in versetzt taktende Teilschaltungen aufgeteilt ist, ist eine geringe Kondensatorbelastung und ein geringer HF-Rippelstrom in der DC-Quelle gegeben.
  • Es kann gemäß einer dritten Ausführungsform ein Transformator mit zwei Resonanzkondensatoren vorhanden sein.
  • Es kann eine synchrone Ansteuerung des Hoch-Tiefsetzstellers und des Resonanzwandlers vorgesehen. Die synchrone Ansteuerung hat den Vorteil, dass die effektive Strombelastung in den Kondensatoren des Wechselrichters vermindert wird.
  • Besonders günstig ist es, wenn der Transformator als Planartransformator ausgebildet ist, wobei dieser mit zwei Leiterplatten versehen ist. Sowohl der Transformatorkern, als auch die Leiterplatten sind in einem Gehäuse untergebracht. Ein Gussgehäuse ist preiswerter herzustellen, da Vorsprünge im Gussgehäuse, die erforderlich sind, wenn ein solcher Planartransformator verwendet wird, leichter herzustellen sind. Ein Planartransformator mit zwei Leiterplatten ist darüber hinaus preiswerter herzustellen als einer mit einer großen Leiterplatte. Eine große Leiterplatte ist teurer als zwei kleine Leiterplatten.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Ein Ausführungsbeispiel wird anhand der Zeichnungen näher erläutert, wobei weitere vorteilhafte Weiterbildungen der Erfindung und Vorteile derselben beschrieben sind.
  • Es zeigen:
  • Fig. 1
    ein Schaltbild eines erfindungsgemäßen DC/DC-Wandlers,
    Fig. 2
    ein Ersatzschaltbild des Transformators HFT,
    Fig. 3
    ein Schaltbild eines erfindungsgemäßen DC-DC-Wandlers mit zwei HF Transformatoren,
    Fig. 4
    eine Schnittdarstellung eines Planartransformators, und
    Fig. 5
    eine weitere Darstellung eines Planartransformators.
    Fig. 6
    ein weitere Schaltbild des erfindungsgemäßen DC-DC-Wandlers mit Halbbrückenkondensatoren als Resonanzelemente;
    Fig. 7
    Transformatorstrom und Transformatorspannung auf der Transformatorsekundärseite
  • In den Figuren sind gleiche Teile mit denselben Bezugszeichen versehen.
  • Fig. 1 zeigt einen erfindungsgemäßen Wechselrichter 1 beispielsweise für die Versorgung von AC-Verbrauchern in Inselnetzen. Dieser ist an eine Batterie 2 angeschlossen. Der Wechselrichter 1 umfasst ein DC/DC-Wandlerschaltungsteil 3 mit einem parallel an die Batterie 2 angeschlossenen Kondensator 4 und einen HF-Transformator HFT.
  • Weiterhin umfasst der Wechselrichter 1 ein DC/AC-Wandlerschaltungsteil 5, das an der Ausgangsseite des Wechselrichters 1 liegt und einen Hoch-Tiefsetzsteller 8, der zwischen dem DC/DC-Wandlerschaltungsteil 3 und dem DC/AC-Wandierschaltungsteil 5 zwischengeschaltet ist. Das DC/AC-Wandlerschaltungsteil 5 ist einphasig ausgebildet.
  • Der Wechselrichter 1 ist als bidirektionaler Batteriewechselrichter ausgebildet und dient zur Erzeugung einer AC-Ausgangsspannung aus der Batteriespannung in einem Entladebetrieb und zum Laden der Batterie 2 im Ladebetrieb. Der HF-Transformator HFT bildet mit einem Resonanzkondensator 6 einen Resonanzkreis.
  • Fig. 2 zeigt ein Ersatzschaltbild des Transformators HFT. Erfindungsgemäß weist der Transformator HFT primärseitig zwei Wicklungen 11, 12 mit einem Mittelabgriff 20 auf, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern 21, 31 geschaltet ist, wobei sekundärseitig eine Wicklung 13 vorhanden ist, an der der Resonanzkondensator 6 in Serie geschaltet ist. Die Halbleiterschaltern 21, 31 bilden eine Mittelpunktschaltung.
  • In Fig. 2 sind die primärseitigen Streuinduktivitäten 15, 16 und die sekundärseitige Streuinduktivität 17 dargestellt. Mit dem Bezugszeichen 14 ist der Transformatorkern gekennzeichnet. Mit dem Bezugszeichen 20 ist der Mittelabgriff gekennzeichnet. Bezugszeichen 10 bezeichnet eine zusätzliche Induktivität.
  • Die Halbleiterschalter 21, 31 schalten abwechselnd und erzeugen die für die Spannungstransformation erforderliche Wechselspannung, die sekundärseitig durch die Halbleiterelemente 41, 51, 61, 71 in Brückenschaltung wieder in eine Gleichspannung umgewandelt wird und durch einen Glättungskondensator 7 geglättet wird. Der DC-DC-Wandlungsteil arbeitet in einem konstanten Betriebspunkt, so dass dessen Ein- und Ausgangsspannung in einem festen - durch das Übersetzungsverhältnis des Transformators vorgegebenen - Verhältnis zueinander stehen.
  • Durch die resonante Betriebsweise sind hohe Schaltfrequenzen von über 50 kHz zweckmäßig, so dass ein Planartransformator eingesetzt werden kann. Planartransformatoren können nämlich nur für Frequenzen oberhalb von 50 kHz sinnvoll eingesetzt werden.
  • Die Resonanzfrequenz des Wechselspannungskreises, die sich aus Streuinduktivitäten der Transformator HFT und einer Serienresonanzkapazität 6 (Fig. 1) zusammensetzt, liegt oberhalb der Taktfrequenz der Halbleiterschalter. Dadurch können die Halbleiterschalter 21, 31 sowohl stromlos ein- als auch ausgeschaltet werden.
  • Vorgesehen ist der Einsatz des Hoch-Tiefsetzstellers 8, um die Schaltung für stark schwankende Batteriespannungen einsetzen zu können. Durch den Hoch-Tiefsetzsteller 8 wird vermieden, dass die Zwischenspannung bei kleinen Batteriespannungen so weit einbricht, dass keine Ausgangsnennspannung mehr erreicht wird. Wenn im Ladebetrieb mit niedriger Batteriespannung im DC-DC-Wandler die Pulsbreite reduziert würde, kann kein resonanter Betrieb mehr gewährleistet werden. Dadurch würden Schaltverluste durch einen nicht optimalen Betrieb verursacht. Insbesondere wird ein Hoch-Tiefsetzsteller 8 eingesetzt, der die variable Batteriespannung auf eine konstante Spannung am Kondensator 19 anpasst. Der Hoch-Tiefsetzsteller 8 besteht aus einer Drossel 18, den Schaltelementen 141 und 151 und dem Kondensator 19. Wenn die Eingangsspannung (Batteriespannung) höher ist als z. B. 12 Volt, dann steigt die Spannung am Kondensator 19 proportional mit der Eingangsspannung an. Dann braucht der Hoch-Tiefsetzteller nicht mehr getaktet werden.
  • Wie Fig. 3 veranschaulicht, kann die Transformatorschaltung in zwei Teilschaltungen mit zwei HF-Transformatoren HFT1 und HFT 21 aufgebaut sein. Hierbei werden die Anordnungen versetzt getaktet, wodurch eine geringere Kondensatorbelastung und ein geringer HF-Ripplestrom in der DC-Ouelle gegeben ist. Beide der in Fig. 3 dargestellten Teilschaltungen sind als Halbbrückenanordnung ausgeführt. Bei einer Ausgestaltung mit Halbbrücken ergibt sich ein nur halb so großes Trafoübersetzungsverhältnis. Ein kleineres Transformatorübersetzungsverhältnis ist vorteilhaft, weil dann die Streuinduktivität 15 und 16 durch das Übersetzungsverhältnis transformiert von der Oberspannungsseite nicht zu groß wird.
  • Eine Halbbrückenanordnung benötigt weniger Halbleiterschalter und verursacht dadurch weniger Kosten.
  • Der in Fig. 4 gezeigte Planartransformator 29 ist in einem Aluminiumgussgehäuse 24 eingebettet und weist zwei Leiterplatten 22, 23 auf. Die Leistungshalbleiter können in SMD-Bauweise ausgeführt sein. Wie in Fig. 5 gezeigt ist, weist der Transformator eine Primärwicklung 26 und eine Sekundärwicklung 27 auf, die auf einer Leiterplatte 25 angeordnet sind. Der Drosselkern 30 ist mit einem Luftspalt versehen und ist ebenfalls in die Leiterplatte 25 integriert. Er wird nur von der Sekundärwicklung 27 und nicht von der Primärwicklung 26 magnetisiert.
  • In Fig. 6 ist eine Ausgestaltung der Schaltung dargestellt, bei der die Kondensatoren 34, 35 zusammen mit der Streuinduktivität von HFT einen Resonanzkreis bilden. Bei einer solchen Ausgestaltung werden die parasitären Kondensatoren der Halbleiterschalter 21, 31 vor dem Einschalten durch die Ströme in der Hauptinduktivität des Trafos auf besonders niedrige Werte entladen. Dadurch entstehen kleinere Einschaltverluste. Die bei dieser Ausgestaltung auftretenden Transformatorströme und Spannungen auf der Sekundärseite entsprechen der Darstellung in Fig. 7. Fig. 7 zeigt Strom 60 und Spannung 50 auf der Transformatorsekundärseite.
  • Der DC/AC-Wandler 5 kann als H-Brücke zur Wandlung einer einphasigen AC-Spannung oder als Dreiphasenbrücke zur Wandlung einer dreiphasigen AC-Spannung ausgeführt sein.
  • Vorteilhaft kann auch eine Anordnung sein, bei der der DC/AC-Wandler 5 immer in der Weise betrieben wird, dass die Spannung am Kondensator 19 immer größer als der Scheitelwert der Netzspannung ist. Dadurch kann im Falle, dass die Batterie geladen wird, der DC/AC-Wandler in einem PFC-Modus (Power Factor Correction) betrieben werden und dem Netz sinusförmiger Strom in Phase zu der Netzspannung entnommen werden. Im Falle, dass die Batterie entladen wird, kann eine sinusförmige AC-Spannung bei beliebiger Stromform generiert werden.
  • Um beliebige Lasten (auch Schieflast und unpolare Lasten) bei dreiphasigen Umrichtern versorgen zu können, kann eine geschaltete N als vierte Phase ergänzt werden und die gesamte Schaltung so ausgeführt werden, dass der Kondensator 19 aus zwei Kondensatoren mit geerdetem Mittelpunkt besteht, wobei jeder Kondensator separat durch einen Resonanzwandler mit nachgeschaltetem Hoch-Tiefsetzsteller geladen bzw. entladen wird.
  • Die Halbleiter 21, 31, 41, 51, 61, 71, 141, 151 können als MOSFETs, IGBTs Bipolartransistoren oder GTOs ausgeführt werden. Die parallelen Dioden können separate Bauteile sein oder aus parasitären Dioden der eingesetzten MOSFETs bestehen.
  • Die DC-Gluelle 2 kann eine Batterie, eine Brennstoffzelle, ein generatorgespeister DC-Zwischenkreis oder ein Doppelschichtkondensator (Ultracap) sein.
  • Der Resonanzwandler kann vorteilhaft in Automobilen eingesetzt werden, um den Energieaustausch zwischen verschiedenen DC-Quellen wie Traktionsbatterie, Doppelschichtkondensator, Hilfsbetriebebatterie usw. zu ermöglichen. Dabei kann die Energieflussrichtung sich beim Beschleunigen und Bremsen umkehren.
  • Der Planartransformator kann vorteilhaft so ausgestaltet werden, dass die sekundäre Streuinduktivität durch die Integration einer zusätzlichen Drossel in die sekundäre Trafowicklung erhöht wird. Dass kann in der in Fig. 5 dargestellten Weise geschehen.
  • Im Gegensatz zu den Halb- und Vollbrückenschaltungen werden die Halbleiterspannungen der Halbleiter 21, 31, 221 und 231 nicht auf die Kondensatorspannung des Kondensators 4 begrenzt. Im Gegensatz zu normalen Mittelpunktschaltungen ist die Kondensatorspannung auch nicht auf das doppelte der Kondensatorspannung des Kondensators 4 begrenzt, sondern es kommt noch der Spannungsabfall über dem primärseitigen Anteil der Resonanzinduktivität der Transformatoren HFT 1 und HFT 21 hinzu. Dieser Effekt kann nur beherrscht werden, wenn der wesentliche Anteil der Resonanzinduktivität auf die Sekundärseite verlagert wird. Dies wird durch den beschriebenen Transformatoraufbau und/oder durch zusätzliche Resonanzinduktivitäten 10 auf der Sekundärseite erreicht.
  • Liste der Bezugszeichen
  • 1
    Wechselrichter
    2
    Batterie
    3
    DC/DC-Wandlerschaltungsteil
    4
    Kondensator
    5
    DC/AC-Wandierschaltungsteil
    6
    Resonanzkondensator
    7
    Glättungskondensator
    8
    Hoch-Tiefsetzsteller
    10
    zusätzliche Streuinduktivität
    11, 12
    primärseitige Wicklungen
    13
    sekundärseitige Wicklung
    14
    Transformatorkern
    15, 16
    primärseitige Streuinduktivitäten
    17
    Streuinduktivität
    18
    Drossel
    19
    Kondensator
    20
    Mittelabgriff
    21
    Halbleiterschalter
    22, 23
    Leiterplatten
    24
    Aluminiumgussgehäuse
    25
    Leiterplatte
    26
    Primärwicklung
    27
    Sekundärwicklung
    28
    Resonanzkondensator
    29
    Planartransformator
    30
    Drosselkern
    31
    Halbleiterschalter
    32, 33
    Halbbrückenkondensatoren
    34, 35
    Halbbrückenkondensatoren als Resonanzelemente
    41, 51, 61, 71
    Halbleiterelemente
    50
    sekundärseitige Transformatorspannung
    60
    sekundärseitiger Transformatorstrom
    141, 151
    Halbleiterschalter
    HFT
    HF-Transformator
    HFT 1, HFT 21
    HF-Transformatoren
    LSP
    Luftspalt
    221,231
    Schalterelement

Claims (7)

  1. Bidirektionaler Batteriewechselrichter (1) mit einem DC-DC-Wandlerschaltungsteil (3), an dem die Batterie (2) anschließbar ist, zur Erzeugung einer AC-Ausgangsspannung aus einer Batteriespannung der Batterie (2) in einem Entladebetrieb und zum Laden der Batterie (2) in einem Ladebetrieb, dadurch gekennzeichnet, dass der Wechselrichter (1) einen HF-Transformator umfasst, der mit einem Resonanzkondensator (6) einen Resonanzkreis bildet,
    - dass der Transformator primärseitig zwei Wicklungen (11, 12) mit einem Mittenabgriff (20) aufweist, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern (21, 31) geschaltet ist, und sekundärseitig eine Wicklung (13) vorhanden ist, die mit dem Resonanzkondensator (6) in Serie geschaltet ist, und
    - dass ein DC-AC-Wandlerschaltungsteil (5) vorhanden ist, das an der Ausgangsseite des Wechselrichters (1) liegt, dass ein Hochsetz- oder Tiefsetzsteller (8) vorhanden ist, der zwischen dem DC-DC-Wandlerschaltungsteil (3) und dem DC-AC-Wandlerschaltungsteil (5) zwischengeschaltet ist
    - wobei die Resonanzfrequenz aus der Streuinduktivität des Transformators (HFT) und einer Serienresonanzkapazität (6) oberhalb der Taktfrequenz der Halbleiterschalter (21, 31) liegt,
    - wobei durch die Wahl der Taktfrequenz die Halbleiterschalter sowohl stromlos ein- als auch ausgeschaltet werden.
  2. Bidirektionaler Batteriewechselrichter (1) mit einem DC-DC-Wandlerschaltungsteil (3), an dem die Batterie (2) anschließbar ist, zur Erzeugung einer AC-Ausgangsspannung aus einer Batteriespannung der Batterie (2) in einem Entladebetrieb und zum Laden der Batterie (2) in einem Ladebetrieb, dadurch gekennzeichnet, dass der Wechselrichter (1) einen HF-Transformator umfasst, der mit Resonanzkondensatoren (6, 28) einen Resonanzkreis bildet,
    - dass ein resonant schaltender Teil in versetzt taktende Teilschaltungen aufgeteilt ist, wobei eine Transformatorschaltung mit zwei Transformatoren (HFT1, HFT2) aufgebaut ist, sowie jeder Transformator (HFT1, HFT2) primärseitig zwei Wicklungen (11, 12) mit einem Mittelabgriff (20) aufweist, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern (21, 31; 221, 231) geschaltet ist, und sekundärseitig eine Wicklung (13) aufweist, die mit je einem der Resonanzkondensatoren (6, 28) in Serie geschaltet ist,
    - dass ein DC-AC-Wandlerschaltungsteil (5) vorhanden ist, das an der Ausgangsseite des Wechselrichters (1) liegt, und dass ein Hochsetz- oder Tiefsetzsteller (8) vorhanden ist, der zwischen dem DC-DC-Wandlerschaltungsteil (3) und dem DC-AC-Wandlerschaltungsteil (5) zwischengeschaltet ist,
    - wobei die Resonanzfrequenz aus der Streuinduktivität der Transformatoren (HFT1, HFT2) und der Kondensatoren (6, 28) oberhalb der Taktfrequenz der Halbleiterschalter (21, 31; 221, 231) liegt,
    - wobei durch die Wahl der Taktfrequenz die Halbleiterschalter sowohl stromlos ein- als auch ausgeschaltet werden.
  3. Bidirektionaler Batteriewechselrichter (1) mit einem DC-DC-Wandlerschaltungsteil (3), an dem die Batterie (2) anschließbar ist, zur Erzeugung einer AC-Ausgangsspannung aus einer Batteriespannung der Batterie (2) in einem Entladebetrieb und zum Laden der Batterie (2) in einem Ladebetrieb, dadurch gekennzeichnet, dass der Wechselrichter (1) einen HF-Transformator umfasst, der mit Resonanzkondensatoren (34, 35) einen Resonanzkreis bildet,
    - dass der Transformator primärseitig zwei Wicklungen (11, 12) mit einem Mittenabgriff (20) aufweist, der zu einer leistungselektronischen Mittelpunktschaltung mit Halbleiterschaltern (21, 31) geschaltet ist, und sekundärseitig eine Wicklung (13) aufweist, die mit den Resonanzkondensatoren (34, 35) an einem Summenpunkt verbunden ist, und
    - dass ein DC-AC-Wandlerschaltungsteil (5) vorhanden ist, das an der Ausgangsseite des Wechselrichters (1) liegt, dass ein Hochsetz- oder Tiefsetzsteller (8) vorhanden ist, der zwischen dem DC-DC-Wandlerschaltungsteil (3) und dem DC-AC-Wandlerschaltungsteil (5) zwischengeschaltet ist,
    - wobei die Resonanzfrequenz aus der Streuinduktivität des Transformators HFT und der Kondensatoren (34, 35) oberhalb der Taktfrequenz der Halbleiterschalter (21, 31) liegt,
    - wobei durch die Wahl der Taktfrequenz die Halbleiterschalter sowohl stromlos ein- als auch ausgeschaltet werden.
  4. Bidirektionaler Batteriewechselrichter nach einem der vorhergehenden Ansprüche 1 oder 3,
    dadurch gekennzeichnet,
    dass der DC-DC-Wandlerschaltungsteil (3) eine Halbbrücke umfasst.
  5. Bidirektionaler Batteriewechselrichter nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der DC-DC-Wandlerschaltungsteil (3) zwei Halbbrücken mit Halbleiterschalter (21, 31; 221, 231) umfasst.
  6. Bidirektionaler Batteriewechselrichter nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass jeder Transformator als Planartransformator (29) ausgebildet ist.
  7. Bidirektionaler Batteriewechselrichter nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die Primärwicklungen des Transformators nur um den Trafokem, die Sekundärwicklung aber um den Trafokern und einen zusätzlichen Drosselkern (30) geführt sind.
EP06742297A 2005-05-20 2006-04-29 Bidirektionaler batteriewechselrichter Not-in-force EP1882299B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005023290A DE102005023290A1 (de) 2005-05-20 2005-05-20 Bidirektionaler Batteriewechselrichter
PCT/DE2006/000755 WO2006125410A1 (de) 2005-05-20 2006-04-29 Bidirektionaler batteriewechselrichter

Publications (2)

Publication Number Publication Date
EP1882299A1 EP1882299A1 (de) 2008-01-30
EP1882299B1 true EP1882299B1 (de) 2010-01-06

Family

ID=37011945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06742297A Not-in-force EP1882299B1 (de) 2005-05-20 2006-04-29 Bidirektionaler batteriewechselrichter

Country Status (9)

Country Link
US (2) US7746669B2 (de)
EP (1) EP1882299B1 (de)
KR (1) KR100966418B1 (de)
CN (1) CN101180787B (de)
AT (1) ATE454744T1 (de)
AU (1) AU2006251711B2 (de)
DE (2) DE102005023290A1 (de)
ES (1) ES2336140T3 (de)
WO (1) WO2006125410A1 (de)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009158720A2 (en) 2008-06-27 2009-12-30 The Regents Of The University Of California Circuit for direct energy extraction from a charged-particle beam
KR20110110783A (ko) 2009-01-29 2011-10-07 브루사 일렉트로닉 아게 단상과 3상 동작을 위한 컨버터, dc 전압원 및 배터리충전기
CA2655007C (en) 2009-02-20 2017-06-27 Queen's University At Kingston Photovoltaic cell inverter
KR20110120967A (ko) * 2009-02-27 2011-11-04 에이비비 리써치 리미티드 통합된 전압원 변환기를 구비한 하이브리드 배전 변압기
CA2760581A1 (en) * 2009-05-01 2010-11-04 Alpha Technologies, Inc. Solar power systems optimized for use in cold weather conditions
CN102458912B (zh) 2009-06-24 2014-06-04 布鲁萨电子公司 用于机动车配电的电路装置
KR101106413B1 (ko) * 2010-06-14 2012-01-17 삼성에스디아이 주식회사 에너지 저장 시스템의 인버터
EP2589136B1 (de) 2010-06-29 2018-03-21 Brusa Elektronik AG Spannungswandler
WO2012041613A2 (en) * 2010-09-27 2012-04-05 Siemens Aktiengesellschaft A bi-directional dc-dc converter and a system for starting and controlling a power plant
WO2012054406A1 (en) 2010-10-18 2012-04-26 Alpha Technologies, Inc. Uninterruptible power supply systems and methods for communications systems
WO2012062375A1 (en) * 2010-11-12 2012-05-18 Sma Solar Technology Ag Power inverter for feeding electric energy from a dc power generator into an ac grid with two power lines
US9660451B1 (en) * 2010-11-29 2017-05-23 Sunpower Corporation Islanded operation of distributed power sources
US20140049229A1 (en) 2011-03-11 2014-02-20 Siemens Aktiengesellschaft Power generation unit driver, power generation unit and energy output equipment in power grid
GB2489467A (en) * 2011-03-29 2012-10-03 Sony Corp Grid tied inverter having DC-DC current fed push-pull converter
GB2489468A (en) * 2011-03-29 2012-10-03 Sony Corp Grid tied inverter having DC-DC current fed push-pull converter
WO2012131361A2 (en) * 2011-03-29 2012-10-04 Sony Corporation An ac tied inverter, system and method
EP2512000B1 (de) 2011-04-15 2022-03-02 ABB Schweiz AG Umkonfigurierbare Stromsysteme und -wandler
CN102291037A (zh) * 2011-07-22 2011-12-21 上海交通大学 交流推挽逆变-可控整流的降压电路
DE102012017801A1 (de) 2011-09-10 2013-03-14 E3/Dc Gmbh Bidirektionaler Batteriewechselrichter
US9037443B1 (en) 2011-10-16 2015-05-19 Alpha Technologies Inc. Systems and methods for solar power equipment
AT512779B1 (de) * 2012-06-01 2013-11-15 Fronius Int Gmbh Spannungsversorgung für einen Wechselrichter
CN104782039A (zh) * 2012-11-08 2015-07-15 Abb技术有限公司 Dc-dc转换器、包括其的i/o模块以及用于控制dc-dc转换器的方法
US8995156B2 (en) * 2012-12-11 2015-03-31 Eaton Corporation DC/DC converter with resonant converter stage and buck stage and method of controlling the same
US9461546B2 (en) * 2013-02-08 2016-10-04 Advanced Charging Technologies, LLC Power device and method for delivering power to electronic devices
DE102013004262A1 (de) 2013-03-13 2014-09-18 E3/Dc Gmbh Bidirektionaler Batteriewechselrichter
US20140268892A1 (en) * 2013-03-14 2014-09-18 Voltronic Power Technology Corp. Converter with adjustable output voltage
US9584044B2 (en) * 2013-03-15 2017-02-28 Sunpower Corporation Technologies for converter topologies
CN103280868B (zh) * 2013-05-24 2016-05-18 奇瑞汽车股份有限公司 一种双向充电装置
KR101505403B1 (ko) * 2013-11-07 2015-03-26 (주)티에스식스티즈 전력 저장 장치를 제어하기 위한 전력 제어 장치
CN103701330B (zh) * 2013-11-27 2016-03-02 北京机械设备研究所 一种大功率高变比升压电路
DE102013226066A1 (de) * 2013-12-16 2015-06-18 Siemens Aktiengesellschaft Planartransformator und elektrisches Bauteil
US9424984B2 (en) 2014-03-05 2016-08-23 Wisconsin Alumni Research Foundation Integrated capacitor and inductor having co-located magnetic and electrical energy storage volumes
DE102014205652A1 (de) * 2014-03-26 2015-10-01 Robert Bosch Gmbh Modulationsverfahren für den Hochsetzsteller-Betrieb eines Gegentaktwandlers
CN103986223B (zh) * 2014-04-11 2016-06-22 矽力杰半导体技术(杭州)有限公司 储能供电电路及应用其的持续供电方法
DE102015210920A1 (de) 2015-06-15 2016-12-15 TRUMPF Hüttinger GmbH + Co. KG Redox-Flow-Batteriesystem und Verfahren zum Erkennen eines Fehlers in einer Brückenschaltung eines DC/DC-Wandlers eines Redox-Flow-Batteriesystems
US9934903B2 (en) 2015-08-14 2018-04-03 Wisconsin Alumni Research Foundation Integrated capacitor and inductor with low parasitic inductance
US10381897B2 (en) 2017-07-25 2019-08-13 Wisconsin Alumni Research Foundation Bus bar with integrated voltage rise time filter
CN111033929A (zh) * 2017-08-14 2020-04-17 日产自动车株式会社 电力控制系统
US11407322B2 (en) 2019-09-05 2022-08-09 Hong Kong Applied Science and Technology Research Institute Company, Limited Smart power hub
FR3100941B1 (fr) 2019-09-12 2021-08-13 Renault Sas Système de charge bidirectionnelle d’une batterie de véhicule automobile à sources d’énergie multiples
CN111934553A (zh) * 2020-08-07 2020-11-13 厦门能瑞康电子有限公司 一种他激式微功率模块
US11575326B2 (en) * 2020-11-27 2023-02-07 Lear Corporation Wide high voltage-input range DC-DC converter
KR102565061B1 (ko) * 2021-10-13 2023-08-08 연세대학교 산학협력단 풀브릿지 벅-부스트 인버터 제어 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013506A1 (de) * 1990-04-27 1991-10-31 Volker Prof Fleckenstein System und verfahren zum betrieb eines gleichspannungsgespeisten antriebs
EP0820893A2 (de) * 1996-07-26 1998-01-28 ABB Daimler-Benz Transportation (Technology) GmbH Antriebssystem für ein Schienenfahrzeug und Ansteuerungsverfahren hierzu
US6507503B2 (en) * 2001-05-17 2003-01-14 Abb Ab Apparatus and a method for voltage conversion
US20030142513A1 (en) * 2002-01-31 2003-07-31 Patrizio Vinciarelli Factorized power architecture with point of load sine amplitude converters
EP1458084A2 (de) * 2003-03-13 2004-09-15 HONDA MOTOR CO., Ltd. Bidirektionaler Gleichstromwandler

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179508A (en) * 1991-10-15 1993-01-12 International Business Machines Corp. Standby boost converter
US5315497A (en) * 1991-11-07 1994-05-24 Premier Power, Inc. Symmetrical universal AC-AC power conditioner
FR2720567B1 (fr) * 1994-05-27 1996-07-26 Europ Agence Spatiale Convertisseur continu continu à rendement élevé.
US5488554A (en) * 1994-08-23 1996-01-30 Acme Electric Corporation Low-loss clamp circuit
AU4149396A (en) * 1994-12-14 1996-07-03 Kenetech Windpower, Inc. Grid connected bi-directional converter including a pwm, dc-dc chopper, and energy storage/supply device
JP3418905B2 (ja) * 1997-11-28 2003-06-23 三菱電機株式会社 高圧放電灯点灯装置
CN1338811A (zh) * 2000-08-09 2002-03-06 华滢股份有限公司 零电压且零电流切换的谐振式转换电源供应器
JP4556331B2 (ja) * 2001-01-22 2010-10-06 株式会社豊田自動織機 スイッチング電源回路
JP4682482B2 (ja) * 2001-08-24 2011-05-11 富士電機システムズ株式会社 スイッチング電源回路
JP2003088118A (ja) * 2001-09-10 2003-03-20 Sanken Electric Co Ltd 共振型dc−dcコンバータ
KR100439414B1 (ko) 2002-06-28 2004-07-09 정환명 절연형 디씨/디씨 전력변환기 및 이를 이용한 무정전전원공급 장치
US6906933B2 (en) * 2002-11-01 2005-06-14 Powerware Corporation Power supply apparatus and methods with power-factor correcting bypass mode
JP3696604B2 (ja) * 2003-05-23 2005-09-21 ローム株式会社 直流−交流変換装置、及び交流電力供給方法
WO2005036684A2 (en) * 2003-10-10 2005-04-21 Nuvera Fuel Cells, Inc. Power electronics for fuel cell power system
DE102004020499A1 (de) * 2004-04-26 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung zum Betrieb von Hochdruckentladungslampen und Betriebsverfahren für eine Hochdruckentladungslampe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013506A1 (de) * 1990-04-27 1991-10-31 Volker Prof Fleckenstein System und verfahren zum betrieb eines gleichspannungsgespeisten antriebs
EP0820893A2 (de) * 1996-07-26 1998-01-28 ABB Daimler-Benz Transportation (Technology) GmbH Antriebssystem für ein Schienenfahrzeug und Ansteuerungsverfahren hierzu
US6507503B2 (en) * 2001-05-17 2003-01-14 Abb Ab Apparatus and a method for voltage conversion
US20030142513A1 (en) * 2002-01-31 2003-07-31 Patrizio Vinciarelli Factorized power architecture with point of load sine amplitude converters
EP1458084A2 (de) * 2003-03-13 2004-09-15 HONDA MOTOR CO., Ltd. Bidirektionaler Gleichstromwandler

Also Published As

Publication number Publication date
ES2336140T3 (es) 2010-04-08
DE102005023290A1 (de) 2006-11-23
KR100966418B1 (ko) 2010-06-28
AU2006251711A1 (en) 2006-11-30
US20080094860A1 (en) 2008-04-24
WO2006125410A1 (de) 2006-11-30
DE502006005851D1 (de) 2010-02-25
CN101180787A (zh) 2008-05-14
EP1882299A1 (de) 2008-01-30
US7746669B2 (en) 2010-06-29
CN101180787B (zh) 2010-11-17
KR20080016559A (ko) 2008-02-21
USRE45069E1 (en) 2014-08-12
ATE454744T1 (de) 2010-01-15
AU2006251711B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
EP1882299B1 (de) Bidirektionaler batteriewechselrichter
DE102006025975B4 (de) Wechselrichterschaltung und Verfahren zum Betreiben der Wechselrichterschaltung
EP3172823B1 (de) Gleichspannungswandler mit transformator
EP1311058B1 (de) Frequenzumrichter
EP1606872B1 (de) Gasentladungsprozess-spannungsversorgungseinheit
EP2136463A2 (de) AC-DC-Zwischenkreis-Wandler mit sehr weitem AC-Eingangsspannungs-Bereich
EP2144359A2 (de) DC/DC- Wandler
EP2291906B1 (de) Wechselrichter und verfahren zum betreiben des wechselrichters
EP2623363B1 (de) Vorrichtung und Verfahren zum Laden einer Traktionsbatterie eines Elektrofahrzeugs
DE102006012164A1 (de) Schaltungsanordnung zur Erzeugung einer Wechselspannung oder eines Wechselstroms
DE102011051482A1 (de) Brückenschaltungsanordnung und Betriebsverfahren für einen Spannungswandler und Spannungswandler
EP3718201A1 (de) Stromrichterkomponente und halbleitermodul einer solchen stromrichterkomponente
DE102017212462A1 (de) Galvanisch gekoppelter elektrischer Wandler
DE102018210807A1 (de) Elektrische Schaltung für Zero-Voltage-Soft-Switching in einem Gleichspannungswandler
DE10303421A1 (de) Strom-/Spannungswandleranordnung
EP0474060B1 (de) Vierquadranten-Wechselstrom-Umrichter
EP3949099B1 (de) Isolierter dc/dc wandler mit sekundärseitigem vollbrückendiodengleichrichter und asymmetrischem hilfskondensator
DE10138751B4 (de) Wechselrichter mit schnellschaltenden ansteuerbaren elektronischen Schaltern, insbesondere IGBT-Schaltern, sowie Verfahren zur Ansteuerung eines derartigen Wechselrichters
DE102012023425A1 (de) Spannungswandler für Gleichstrom
DE102018105608A1 (de) Ladeanordnung für Kraftfahrzeuge mit Schaltungssteuerung auf der Empfängerseite
DE102011081448A1 (de) Schaltungsanordnung mit elektronischem Schalter und Induktivität
DE102011053622A1 (de) Leistungsfaktorkorrekturschaltung und leistungsversorgungsvorrichtung mit leistungsfaktorkorrekturschaltung
DE69818415T2 (de) Hochspannungsschalter aus reihengeschalteten resonanten Zellen
DE3830460A1 (de) Schaltungsanordnung zur speisung eines elektrischen verbrauchers aus einem wechselspannungsnetz
DE102021108250A1 (de) Ladestation und Verfahren zum Betreiben einer Ladestation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMA SOLAR TECHNOLOGY AG

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006005851

Country of ref document: DE

Date of ref document: 20100225

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2336140

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

BERE Be: lapsed

Owner name: SMA SOLAR TECHNOLOGY A.G.

Effective date: 20100430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100406

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

26N No opposition filed

Effective date: 20101007

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006005851

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20150416

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210421

Year of fee payment: 16

Ref country code: IT

Payment date: 20210430

Year of fee payment: 16

Ref country code: FR

Payment date: 20210421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210420

Year of fee payment: 16

Ref country code: ES

Payment date: 20210519

Year of fee payment: 16

Ref country code: CH

Payment date: 20210422

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006005851

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 454744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220429

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430